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Tämän tutkielman aiheena ovat erilaiset kaoottiset hajotelmat Lévy prosessien
funktionaaleille. Näillä hajotelmilla pyritään esittämään kyseiset funktionaalit iteroitu-
jen integraalien summana tietyn, keskenään ortogonaalisten martingaalien joukon
suhteen.

Ensimmäisenä käymme läpi hieman teoriaa, jonka pohjalle myöhemmin tutkiel-
massa esiintyvät hajotelmat pohjautuvat. Esittelemme joukon määritelmiä, jotka
ovat tarpeen tässä tutkielmassa esiintyvän teorian ymmärtämiseksi. Näihin määritelmiin
lukeutuu muun muassa Lévy processit, martingaalit ja stokastiset integraalit. Lisäksi
esittelemme myöhemmissä todistuksissa tarvittavia epäyhtälöitä, lemmoja ja lauseita.

Kun olemme käsitelleet tarvittavat esitiedot, siirrymme kohti tutkielman keskeis-
intä lausetta. Tätä lausetta varten esittelemme niin kutsutut Teugelin martingaalit.
Nämä martingaalit ovat käytännössä Lévy prosessin kompensoituja hyppyprosesseja.
Näistä Teugelin martingaaleista muodostamme keskenään ortogonaalisen joukon, jota
käytämme kaoottisen hajotelman määrittelemiseen. Tämä teoria ja kaoottinen ha-
jotelma pohjautuvat David Nualartin ja Win Schoutensin artikkeliin Chaotic and pre-
dictable representations for Lévy processes. Käytämme tätä tutkielmamme keskeisim-
pänä lähteenä, jossa esiintyviä lauseita ja todistuksia tutkimme yksityiskohtaisemmin.
Lisäksi esittelemme ja käsittelemme muita kirjallisuudessa esiintyviä kaoottisia ha-
jotelmia.

Yksi näistä hajotelmista on Kyoshi Itôn ortogonaalinen hajotelma, jonka hän esit-
teli artikkelissaan Spectral Type of the Shift Transformation of Differential Processes
With stationary increments. Tämä lause hyödyntää Wiener integraaleja Lévy pros-
essin avulla määritellyn kahdesti integroituvien satunnaismuuttujien avaruuden or-
togonaalisen hajotelman määrittelyssä. Tämän hajotelman todistuksen käymme läpi
ykityiskohtaisesti, jonka jälkeen hyödynnämme sitä toisen hajotelman todistamiseen.

Lopuksi esittelemme vielä hieman yleisempään tapaukseen soveltuvan hajotelman.
Paolo Di Tellan ja Haus-Juergen Engelbertin, artikkelissa The Chaotic Representa-
tion of Compensated-Covariation Stable Families of Martingales, esittelemä hajotelma
sopeutuu funktionaalejen esittämiseen iteroitujen Wiener integraalien avulla suh-
teessa ortogonaaliseen ja kompensoidun kovarianssin suhteen vakaiden martingaalien
joukkoon.
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Abstract

In the present thesis, we will study the chaotic representation properties for func-
tionals on Lévy processes. These chaotic representation properties are a way to rep-
resent square integrable random variables as a sum of iterated integrals with respect
to a certain set of orthogonal martingales.

We will first go over the basic settings and some preliminary theory we need in
order to understand Lévy processes, martingale theory, stochastic integrals and the
chaotic representation properties following later in the thesis. These preliminaries
include some inequalities, lemmas and theorems used in the proofs of this thesis as
well as the basic definitions.

The main result of this thesis characterizes a chaotic representation property using
a pairwise strongly orthogonal family of so-called Teugels martingales. These Teugels
martingales are, in fact, the compensated power jump processes of a Lévy process.
This theorem covering the chaotic representation property for Teugels martingales
was explored by David Nualart and Wim Schoutens in their article Chaotic and pre-
dictable representations for Lévy processes. We use this article as our main source for
this thesis and expand upon it by providing more details and exploring alternative
versions of chaotic representation properties found in the literature.

One of the chaotic representation properties we examine and prove in detail after
our main theorem is Itô’s orthogonal decomposition introduced in Spectral Type of the
Shift Transformation of Differential Processes With stationary increments by Kyoshi
Itô. This theorem uses multiple Wiener integrals to define an orthogonal decomposi-
tion of the space of square integrable random variables. After the proof, we use this
theorem to formulate another, different orthogonal decomposition.

Finally we conclude our thesis by going over a more general decomposition. This
chaotic representation property uses iterated integrals with respect to a family of
compensated-covariance stable martingales. This property has been covered by Paolo
Di Tella and Hans-Juergen Engelbert in The Chaotic Representation of Compensated-
Covariation Stable Families of Martingales.
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1. Introduction

In this thesis we are going to study different types of chaotic representation prop-
erties for functionals on Lévy processes. These representation properties are used in
stochastic analysis and stochastic process theory. As an example, the Itô’s orthogonal
decomposition was used to investigate quantitative properties of stochastic processes
in continuous time and to prove covariance relations and inequalities for general Pois-
son process ([2], page 8607).

We will start by going over general Lévy processes satisfying some moment condi-
tions, their associated power jump processes and orthogonalized Teugels martingales.
This orthogonalization will then be used to generate a system of iterated integrals
in order to formulate the chaotic representation property introduced by Nualart and
Schoutens ([13]).

After this we will be going over other chaotic representation properties. We start
this by taking a look at the decomposition generated with the multiple Itô integrals
in [12]. Then we will use this decomposition to prove another decomposition, that
will be similar to the chaotic representation property of Nualart and Schoutens.

At the end we shall briefly consider one more decomposition. This will be the
chaotic representation property of compensated-covariation stable families of mar-
tingales treated by Di Tella and Engelbert ([5]), which is constructed using iterated
integrals with respect to a certain family of square integrable martingales. This is a
more general result and the family of orthogonal Teugels martingales is an example
of it.

2. Preliminaries

In this thesis we will assume that we are given a stochastic basis that satisfies the
usual assumptions([8], Definition 2.4.11, page 36).

Definition 2.1. A stochastic basis (Ω,F ,P; (Ft)t∈I), where I = [0,∞), satisfies
the usual conditions given that

(1) (Ω,F ,P) is complete,
(2) A ∈ Ft for all t ∈ I, where A ∈ F with P(A) = 0,
(3) the filtration (Ft)t∈I is right-continuous, which means that
Ft = ∩s>tFs, for all t ∈ I.

Definition 2.2 (Adapted process). A stochastic process X = {Xt, t ≥ 0} is
called adapted to the filtration (Ft)t≥0 (or (Ft)t≥0-adapted) if Xt is Ft-measurable for
every t ≥ 0.

Given a process X = (Xt)t>0, Xt : Ω → R, in this thesis we use the augmenta-
tion of the natural filtration Ft := FXt ∪ N , where FXt := σ(Xs : s ∈ [0, t]) is the
natural filtration, also denoted simply by FX , and N = {A ∈ F : P(A) = 0}. With
the augmentation of the natural filtration, as well as with the natural filtration, the
stochastic process X is always (Ft)t≥0-adapted.
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We note that in this thesis we assume that the filtered probability space (Ω,F ,Ft,P)
satisfies the usual assumptions, which we will define next ([14], page 3).

Definition 2.3. A filtered probability space (Ω,F ,Ft,P) satisfies the usual as-
sumptions given that

(i) N ⊂ F0, where N = {A ∈ F : P(A) = 0},
(ii) Ft is right continuous, which means that Ft = ∩u>tFu for all 0 ≤ t <∞.

Next we define what it means for a stochastic process to be càdlàg ([14], page 4).
We need this for the definition of a Lévy process.

Definition 2.4. A stochastic process X = {Xt : t ≥ 0} is called càdlàg if all the
trajectories [0,∞) ∋ t → Xt(ω) ∈ R are right continuous, with left limits. Similarly,
a stochastic process X is called càglàd if the trajectories are left continuous with right
limits.

These acronyms càdlàg and càglàd come from the French language and stand for
continu à droite, limites à gauche and continu à gauche, limites à droite, respectively.

Now we can define the notion of a Lévy process.

Definition 2.5 (Lévy process). A real-valued stochastic process X = {Xt : t ≥
0} is called a Lévy process if it satisfies the following properties:

(1) X0 ≡ 0.
(2) Independent increments: The random variables Xt0 , Xt1−Xt0 , Xt2−Xt1 , ..., Xtn−

Xtn−1 are independent for any 0 = t0 < t1 < ... < tn <∞.
(3) Stationary increments: Xt − Xs and Xt−s have the same distribution for any

0 ≤ s ≤ t ≤ ∞.
(4) All trajectories [0,∞) ∋ t→ Xt(ω) ∈ R are càdlàg.

If we replace the condition (4) with stochastic continuity we obtain a Lévy process
in law ([15], page 3).

Next we want to define semi-martingales. Before we can do that we need to give
definitions for stopping times ([1], page 91), martingales ([1], page 84), stochastic
processes of bounded variation ([8], Theorem 3.2.3, page 68) and local martingales
([1], page 92).

Definition 2.6 (Stopping times). A random variable τ : Ω → [0,∞] is called a
stopping time provided that {τ ≤ t} ∈ Ft for all t ≥ 0.

Definition 2.7. Let τ be a stopping time and define

Fτ := {A ∈ F : A ∩ {τ ≦ t} ∈ Ft for all t ≥ 0}.

Fτ is a σ-algebra and it is called the σ-algebra generated by τ .

Definition 2.8 (Martingale). An adapted process M = {Mt, t ≥ 0} is called a
martingale if it is integrable, i.e. E|Mt| <∞ for all t ≥ 0, and for all 0 ≤ s < t <∞



3

we have that

E(Mt|Fs) =Ms a.s.

Definition 2.9. A stochastic process X = {Xt, t ≥ 0} is said to be of bounded
variation if, X0 ≡ 0 and for all ω ∈ Ω and all t ≥ 0,

V 1
t (X(ω)) := sup

n∈N
t0,...,tn with

0=t0≤...≤tn=t

n∑
k=1

|Xtk(ω)−Xtk−1
(ω)| <∞.

Definition 2.10 (Local martingale). A càdlàg process M = {Mt, t ≥ 0}, with
M0 ≡ 0, is called a local martingale if there exists a sequence of stopping times such
that τ1 ≤ ... ≤ τn →∞ on Ω and each of the processes {Mt∧τn , t ≥ 0} is a martingale.

Now we can define semi-martingales ([1], page 137).

Definition 2.11 (Semi-martingale). An adapted càdlàg processN = {Nt : t ≥ 0}
is called a semi-martingale provided that there is a local martingale M = {Mt, t ≥ 0}
and an adapted càdlàg process of bounded variation C = {Ct, t ≥ 0}, such that one
has

Nt = N0 +Mt + Ct, t ≥ 0, almost surely.

We note that every Lévy process is a semi-martingale ([1], Proposition 2.7.1, page
137).

The jump size at time t will be part of many of our upcoming formulas so we shall
define that next:

Definition 2.12 (Jump size at time t). The jump size of a Lévy process at time
t > 0 is defined by ∆Xt := Xt−Xt−, where Xt− = lims→t−Xs is the left limit if t > 0
and X0− := 0.

In this thesis we also use stochastic integrals ([14], page 58). To define stochastic
integrals we need first to define simple predictable processes ([14], page 51).

Definition 2.13. A process L = (Lt)t≥0 is called a simple process if there exists
an n ∈ N and a finite sequence of stopping times 0 = τ0 ≤ ... ≤ τn < ∞, and Fτi-
measurable random variables vi : Ω→ R, i = 0, 1, ..., n, with supi,ω |vi(ω)| <∞, such
that

Lt(ω) =
∑n

i=1 χ(τi−1(ω),τi(ω)](t)vi−1(ω).

The class of these processes is denoted by L0.

Definition 2.14. For L ∈ L0, with the representation

Lt(ω) =
∑n

i=1 χ(τi−1(ω),τi(ω)](t)vi−1(ω),
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and a càdlàg process X the mapping

JXt (L) :=
∑n

i=1 vi−1(Xt∧τi −Xt∧τi−1
)

is called the stochastic integral of L with respect to X and is also denoted by∫
(0,t]

LsdXs.

Now we want to extend this mapping to all left continuous adapted processes. In
order to do so we have to introduce the ucp topology. We define this in the space of
càglàd adapted processes which is denoted by L.

Definition 2.15. It is said that a sequence of processes (Hn)n≥1 ⊆ L converges
to a process H ∈ L uniformly on compacts in probability (abbreviated ucp) if, for
each t ≥ 0, sup0≤s≤t |Hn

s −Hs| converges to 0 in probability. This is also denoted by
Hn → H in ucp.

We check that sup0≤s≤t |Hn
s −Hs| is indeed measurable, so that the above definition

is well-posed. We know that there exists a countable and dense subset S of [0, t] with
0 ∈ S, for example [0, t]∩Q. Since H,Hn ∈ L for all n ≥ 1, we know that these pro-
cesses have left continuous paths. Combining the facts thatH andHn have left contin-
uous paths and S is dense in [0, t], we get that sup0≤s≤t |Hn

s −Hs| = sups∈S |Hn
s −Hs|.

Since S is countable we have that sups∈S |Hn
s − Hs| is measurable, which in turn

implies that sup0≤s≤t |Hn
s −Hs| is measurable.

In Protter ([14], page 57) it is stated that Hn → H in ucp if (Hn − H)∗t → 0 in
probability for each t > 0, where H∗

t = sup0≤s≤t |Hs|. We also know that the space L
is metrizable with the ucp topology. For example one suitable metric for X, Y ∈ L is
given by

d(X, Y ) =
∞∑
n=1

1

2n
E[min(1, (X − Y )∗n)].

Now with the ucp topology we get that L0 is dense in L ([14], Theorem 10, page
57) and the integration operator is sequentially continuous in L0 ([14], Theorem 11,
page 58), which allows us to extend the mapping to all left continuous adapted pro-
cesses. So in this thesis we can consider a stochastic integral as a map from L to
the space of càdlàg and adapted processes that are vanishing in zero. Here by the
deterministic cáglád processes generate B([0, T ]), which means that a deterministic
Borel-measurable process is predictable ([14], page 156).

Next we define the bracket processes ([14], page 66).

Definition 2.16. Let M and N be semi-martingales. Then the quadratic varia-
tion, [M,M ] = ([M,M ]t)t≥0, is defined by

[M,M ]t :=M2
t − 2

∫
(0,t]

Ms−dMs.
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The bracket process (also known as quadratic covariation) of M and N , [M,N ] =
([M,N ]t)t≥0, is defined by

[M,N ] := 1
2
([M +N,M +N ]− [M,M ]− [N,N ]).

We also note that for the bracket process it holds that:

[M,N ]t :=MtNt −
∫
(0,t]

Ns−dMs −
∫
(0,t]

Ms−dNs, t ≥ 0, a.s.

In this thesis we take for [M,M ] the version that is càdlàg, [M,M ]0 = M2
0 and

all paths are non-decreasing ([14], Theorem 22, page 66).

We can also separate [M,M ] into its continuous part [M,M ]c and its jump part∑
0≤s≤t(∆Ms)

2 ([14], page 70). So we have that

[M,M ]t = [M,M ]ct +
∑

0≤s≤t(∆Ms)
2, t ≥ 0 pathwise.

From this we get for the bracket process of M and N that, pathwise,

[M,N ]t =
1

2
([M +N,M +N ]t − [M,M ]t − [N,N ]t)

=
1

2
([M +N,M +N ]ct +

∑
0≤s≤t

(∆(M +N)s)
2

− [M,M ]ct −
∑
0≤s≤t

(∆Ms)
2 − [N,N ]ct −

∑
0≤s≤t

(∆Ns)
2)

=
1

2
([M +N,M +N ]ct − [M,M ]ct − [N,N ]ct

+
∑
0≤s≤t

(∆(M +N)s)
2 −

∑
0≤s≤t

(∆Ms)
2 −

∑
0≤s≤t

(∆Ns)
2)

=[M,N ]ct +
1

2
(
∑
0≤s≤t

(∆(M +N)s)
2 −

∑
0≤s≤t

(∆Ms)
2 −

∑
0≤s≤t

(∆Ns)
2),

where [M,N ]ct =
1
2
([M + N,M + N ]ct − [M,M ]ct − [N,N ]ct) denotes the continu-

ous part of [M,N ]t. We denote Ω0 = {ω ∈ Ω :
∑

0≤s≤t[(∆Ms(ω))
2 + (∆Ns(ω))

2) +

(∆(M + N)s(ω))
2] < ∞}. For each ω ∈ Ω there are only countably many s ∈ [0, t]

with ∆Ms(ω) ̸= 0 or ∆Ns(ω) ̸= 0 or ∆(M+N)s(ω) ̸= 0, which means that P(Ω0) = 1.
From this we get that

[M,N ]t =[M,N ]ct +
1

2
(
∑
0≤s≤t

(∆(M +N)s)
2 −

∑
0≤s≤t

(∆Ms)
2 −

∑
0≤s≤t

(∆Ns)
2)(1)

=[M,N ]ct +
1

2

∑
0≤s≤t

∆Ms∆Ns pathwise.
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Next we will define Itô’s formula on Lévy processes that we shall use in this thesis.
The proof for this formula can be found in [14] (page 78, Theorem 32).

Theorem 2.17 (Itô’s formula). Let N be a semi-martingale and f: R → R be a
twice differentiable function, where the second derivative is continuous, also known
as a C2(R) function. Then f(N) = (f(Nt))t≥0 is also a semi-martingale, and for all
t0 ∈ [0,∞) one has:

f(Nt)− f(Nt0) =

∫
(t0,t]

f ′(Ns−)dNs +
1

2

∫
(t0,t]

f ′′(Ns−)d[N,N ]cs

+
∑
t0<s≤t

{f(Ns)− f(Ns−)− f ′(Ns−)∆Ns}

for all t ≥ t0 a.s.

Now we define the Kunita-Watanabe Inequality ([14], Theorem 25, page 69).

Theorem 2.18 (Kunita-Watanabe Inequality). If X and Y are semi-martingales
and H,K ∈ L, then∫∞

0
|Hs||Ks||d[X, Y ]s| ≤ (

∫∞
0
H2
sd[X]s)

1/2(
∫∞
0
K2
sd[Y ]s)

1/2 a.s.

The following theorem ([14], Corollary 2, page 68) will also be used later.

Theorem 2.19 (Integration by parts). Let X and Y be semi-martingales. Then
XY is also a semi-martingale and

XtYt = X0Y0 +
∫
(0,t]

Xs−dYs +
∫
(0,t]

Ys−dXs + [X, Y ]t, t ≥ 0, a.s.

It is also known that the special case of Yt ≡ t leads to XtYt =
∫
(0,t]

Xs−dYs +∫
(0,t]

Ys−dXs +X0Y0 =
∫
(0,t]

Xs−dYs +
∫
(0,t]

Ys−dXs, t ≥ 0, a.s. This follows from the

Kunita-Watanabe inequality, which gives us

|[X, Y ]T | =|
∫
(0,t]

d[X, Y ]s| ≤ (

∫
(0,t]

d[X,X]s)
1
2 (

∫
(0,t]

d[Y, Y ]s)
1
2

=(

∫
(0,t]

d[X,X]s)
1
2 × 0 = 0.

From the quadratic covariation we can define a random measure

d[X,X]t(ω) ∼= µ(dt, ω),
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where t→ [X,X]t(ω) is the distribution function of µ(·, ω). This random measure
and the fact that for H ∈ L the map ω →

∫
(0,t]

Hs(ω)µ(ds, ω) is Ft-measurable are

used to formulate the following theorem ([14], Theorem 29, page 75).

Theorem 2.20. If X and Y are semi-martingales and H,K ∈ L, then

[∫
(0,·]

HsdXs,

∫
(0,·]

KsdYs

]
t

=

∫
(0,t]

HsKsd[X, Y ]s, t ≥ 0, a.s.

Now we define square integrable martingales ([14], page 178) and introduce the
definitions for the angle bracket process ([11], Definition 6.24, page 185) and bracket
process ([11], Definition 6.27, page 186) for such martingales.

Definition 2.21. M2
0 denotes the space of square integrable martingales M on a

stochastic basis (Ω,F ,P, (Ft)t≥0), which means that E(M2
t ) <∞, for all t ≥ 0, with

M0 ≡ 0.

Definition 2.22. Let M,N ∈ M2. There exists a unique predictable increasing
process, denoted by ⟨M,M⟩ or ⟨M⟩, such that M2 − ⟨M⟩ ∈ M0, whereM0 stands
for the martingales withM0 ≡ 0. The process ⟨M⟩ is called the predictable quadratic
variation or the angle bracket process of M . We also set ⟨M,N⟩ = 1

2
[⟨M + N⟩ −

⟨M⟩−⟨N⟩] and call ⟨M,N⟩ the predictable quadratic covariation or the angle bracket
process of M and N .

Next we use Theorems 2.18, 2.19 and 2.20 to prove a form of Itô’s isometry.

Theorem 2.23 (Itô isometry). Let X and Y be square integrable martingales with
X0 ≡ Y0 ≡ 0, i.e. X, Y ∈M2

0. Assume H,K ∈ L with

E

∫
(0,T ]

H2
sd[X]s + E

∫
(0,T ]

K2
sd[Y ]s <∞.

Then

(1) E[
∫
(0,T ]

HsdXs

∫
(0,T ]

KsdYs] = E
∫
(0,T ]

HsKsd[X, Y ]s, for T ≥ 0.

(2) If additionally,

E

∫
(0,T ]

H2
sd⟨X⟩s + E

∫
(0,T ]

K2
sd⟨Y ⟩s <∞,

then

E
[ ∫

(0,T ]

HsdXs

∫
(0,T ]

KsdYs

]
= E

∫
(0,T ]

HsKsd⟨X, Y ⟩s, for T ≥ 0.
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Proof. We only prove part (1). By Theorem 2.20 we get that E|
∫∞
0
HsdXs|2 < ∞

and E|
∫∞
0
KsdYs|2 < ∞ which gives us that

∫∞
0
HsdXs

∫∞
0
KsdYs ∈ L1. When we

combine this with the Theorem 2.18 we get E
∫∞
0
|HsKs|d|[X, Y ]|s <∞ and because

of this the terms in (1) are well-defined.

From [11] (Theorem 6.28, page 167) we get that X, Y ∈M2
0 implies that (XtYt−

[X, Y ]t)t≥0 ∈M0. This means that EXtYt = E[X, Y ]t. By combining all of this with
Theorem 2.20 we get that

E[

∫
(0,T ]

HsdXs

∫
(0,T ]

KsdYs] =E
[ ∫

(0,·]
HsdXs,

∫
(0,·]

KsdYs

]
T

=E

∫
(0,T ]

HsKsd[X, Y ]s.

□

The stochastic integral also has a property called associativity that we will need
later ([14], Theorem 19, page 62).

Theorem 2.24. Let (Yt)t≥0 be a process, where Yt = (H ·X)t :=
∫
(0,t]

HsdXs, is a

semi-martingale and assume that G ∈ L. Then we have that G · Y = G · (H ·X) =
(GH) ·X.

Now we define uniform integrability ([15], Definition 36.1, page 245).

Definition 2.25. A family of random variables {Xi : i ∈ I} is called uniformly
integrable if supi∈I E|Xi|1{|Xi|>a} = supi∈I

∫
{|Xi|>a} |Xi|dP→ 0 when a→∞.

The following theorem ([14], Theorem 13, page 9) can be used to check if a mar-
tingale is uniformly integrable.

Theorem 2.26. A càdlàg martingale (Xt)t≥0 is uniformly integrable if and only
if Y = limt→∞Xt exists a.s, E(|Y |) < ∞ and (Xt)0≤t≤∞ is a martingale, where
Y = X∞.

Next we define a Π-system ([1], page 4) and a Π-step-function.

Definition 2.27 (Π-system). A collection Π of subsets of Ω is called a Π−system
if A ∩B ∈ Π for all A,B ∈ Π.

Definition 2.28 (Π-step-function). Let Π ⊆ 2Ω be a non-empty system of sub-
sets. A function h : Ω→ R is called a Π-step-function, provided that h =

∑n
k=1 αkχAk

for some α1, α2, ..., αn ∈ R and A1, ..., An ∈ Π.

Now we consider a Lévy process X = (Xt)t≥0 and a Π-system where

Π := {A = {ω ∈ Ω : Xs2 −Xs1 ∈ B1, ..., Xsm −Xsm−1 ∈ Bm} :
0 ≤ s1 ≤ s2 ≤ ... ≤ sm,m ∈ N,B1, ...,Bm ∈ B(R)}.
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With this we get that σ(Π) = σ(Xs : s ≥ 0) and by definition ∅,Ω ∈ Π. This is
used to apply the following theorem ([10], Theorem A.8, page 101) later on Π-step-
functions.

Theorem 2.29. Let Π be a system of subsets of a non-empty Ω for which

i) A ∩B ∈ Π when A,B ∈ Π,
ii) Ω ∈ Π.

When p ∈ [1,∞) and F := σ(Π), then for all f ∈ Lp(Ω,F ,P) there exists Π-step-
functions fn : Ω→ R such that limn ||f − fn||p = 0.

The following proposition ([7], Proposition 4.1.4, page 48) will also be used in this
thesis, but first we need to define step functions ([7], Proposition 4.1.1, page 48).

Definition 2.30 (step function). A function f : Ω→ R is called a step function
given that

f(ω) :=
∑n

i=1 αiχAi
(ω),

where n ∈ N, α1, ..., αn ∈ R and A1, ..., An ∈ F .

Proposition 2.31. Let f : Ω → R be a function in a measurable space (Ω,F).
Then the following properties are equivalent:

(1) There exists a sequence (fn)
∞
n=1 of step functions fn : Ω → R, such that f(ω) =

limn→∞ fn(ω) for all ω ∈ Ω.
(2) f is (F ,B(R))−measurable.

Now we introduce the Hölder’s inequality ([7], Theorem 6.12.5, page 106) and
Lebesgue’s dominated convergence theorem ([1], Theorem 1.1.4, page 8).

Theorem 2.32 (Hölder’s inequality). Let (Ω,F , µ) be a measurable space and
f, g : Ω→ R be measurable maps. For p, q ∈ (1,∞) with 1

p
+ 1

q
= 1 one has that

∫
Ω

|fg|dµ ≤ (

∫
Ω

|f |pdµ)
1
p (

∫
Ω

|g|pdµ)
1
q .

Theorem 2.33 (Lebesgue’s dominated convergence theorem). Let (Ω,F , µ) be a
measurable space and g, f, f1, f2, ... : Ω → R be measurable with |fn| ≤ g a.e. If∫
Ω
|g|dµ <∞ and f = limn→∞ fn a.e., then f is integrable and

∫
Ω

fdµ = lim
n→∞

∫
Ω

fndµ.

We also use the following uniqueness theorem for Fourier transforms ([4], Propo-
sition 5.1.11, page 193) later in this thesis.

Definition 2.34 (Fourier transform). Let f ∈ L1(Rd,C), then
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f̂(u) := (2π)−
d
2

∫
Rd

e−i(u,x)f(x)dx

denotes the Fourier transform of f for all u ∈ Rd.

Theorem 2.35. If f ∈ L1(Rd,C) and f̂(u) = 0 on Rd, then f(x) = 0 a.e.

Next we introduce Urysohn’s lemma for metric spaces ([16]).

Lemma 2.36 (Urysohn’s lemma). Let (M,d) be a metric space and let F0 and
F1 be non-empty closed sets such that F0 ∩ F1 = ∅. Then there exists a continuous
function f :M → [0, 1] such that f(x) = i for x ∈ Fi.

3. Orthogonal decompositions of the Lévy-Itô space by Teugels martingales

Here we explore the orthogonal decomposition of the Lévy-Itô space using a
strongly orthogonal set of Teaugels martingales. This chaotic representation prop-
erty, or CRP, has been explored by Nualart and Schoutens ([13]). We will expand on
their results in this section.

3.1. Notation. Before we can take a look at the CRP we must go over some defi-
nitions and notation. Now let X = (Xt)t≥0 be a Lévy process and F be the σ-algebra
generated by it ([15], page 6), which we will define next.

Definition 3.1. Let T be an arbitrary index-set and X = {Xt : t ∈ T} be a
family of random variables on a probability space (Ω,F ,P). Then the sub-σ-algebra
G = σ(Xt : t ∈ T ) is called the σ-algebra generated by X if

(1) Xt is G-measurable for every t ∈ T ,
(2) G is the smallest that satisfises (1).

Let N : B([0,∞) × R) × Ω → {∞, 0, 1, 2, ...} be the Poisson random measure
associated with X, where

N(E) := #{t ∈ [0,∞) : (t,∆Xt) ∈ E}

for E ∈ B([0,∞)×R). For B ∈ B(R), with B ∩ (−ϵ, ϵ) = ∅ for some ϵ > 0, we set

ν(B) := EN([0, 1]×B).

By letting ϵ→ 0 we obtain the Lévy measure ν on B(R) that satisfies ν({0}) = 0

and
∫ +∞
−∞ (1 ∧ x2)ν(dx) < ∞. In this section we assume that the Lévy measure ν

satisfies the following moment conditions for some ϵ > 0 and λ > 0:∫
(−ϵ,ϵ)c e

λ|x|ν(dx) <∞.

This also means that
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−∞ |x|

iν(dx) <∞, i ≥ 2,

which in turn implies that Xt has moments of all orders ([15], Theorem 25.3, page
159). Now we can formulate the Lévy-Khintchine formula ([14], Theorem 43, page
32), which describes uniquely the distribution of a Lévy process.

Theorem 3.2 (Lévy-Khintchine formula). Let X = (Xt)t≥0 be a Lévy process and
ν be the associated Lévy measure. Then

E(eiuXt) = e−tψ(u),

where ψ(u) = σ2

2
u2 − iαu +

∫
{|x|≥1}(1− e

iux)dν(x) +
∫
{|x|<1}(1− e

iux + iux)dν(x)

is the characteristic function of X, α ∈ R and σ ≥ 0. Moreover every Lévy process
is uniquely described by the triplet (α, σ2, ν).

Next we will define some important transformations of a Lévy process X that will
be needed for our analysis.

X
(i)
t :=

∑
0<s≤t(∆Xs)

i, i ≥ 2 and X
(1)
t = Xt .

These processes X(i) = {X(i)
t , t ≥ 0}, i = 1, 2, ... are called the power jump pro-

cesses and they jump at the same points as the original process. We know, that
the sums used to define these power jump processes are well defied, since the càdlàg
process t → Xt(ω) has only countably many jumps. Otherwise there would exist
an ϵ > 0, such that Xt would have uncountably many jumps of size larger than ϵ,

which is a contradiction ([3], Lemma 1, page 122). Now we recall that E|X(i)
t | <∞.

From here we get the compensated power jump process of order i, also known as the
Teugels martingales ([13]):

Y
(i)
t := X

(i)
t − E[X

(i)
t ] = X

(i)
t −mit, i = 1, 2, 3, ...,

where mi =
∫
R x

iν(dx). We prove that E[X
(i)
t ] = mit = t

∫
R x

iν(dx), by taking a
B ∈ B(R) with 0 ̸∈ B̄. From here we get that

ν(B) =E#{∆Xs ∈ B : s ∈ (0, 1]}

=
1

t
E#{∆Xs ∈ B : s ∈ (0, t]}

=
1

t
E

∑
s∈(0,t]

1B(∆Xs).
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This implicates that

t

∫
R
1B(x)dν(x) = E

∑
s∈(0,t]

1B(∆Xs),

and therefore

t

∫
R
γ(x)dν(x) = E

∑
s∈(0,t]

γ(∆Xs),

for any Borel function γ : R → R, such that
∫
R |γ(x)|dν(x) < ∞. Now one can

see that

(2) tmi = EX
(i)
t = E

∑
s∈(0,t]

(∆Xs)
i = t

∫
R
xidν(x).

Next we give the definition of strong orthogonality ([14], page 179).

Definition 3.3 (Strongly orthogonal martingales). Two martingales N,M ∈M2
0

are strongly orthogonal if and only if their product MN is a martingale. We denote
this by M ⊥⊥ N .

It is also known that strong orthogonality implies that EMtNt = 0. This is be-
cause MN is a martingale, when M ⊥⊥ N , which gives us EMtNt = EM0N0 = 0. We
also have the following proposition ([11], Corollary 6.30, page 187).

Proposition 3.4. For M,N ∈M2
0 the following assertions are equivalent:

(1) M ⊥⊥ N and ∆M∆N = 0,
(2) [M,N ] = 0.

Later in this thesis we shall need a set of pairwise strongly orthogonal martingales
{H(i), i ≥ 1} for which each H(i) is a linear combination of Y (j), j = 1, 2, ..., i with the
leading coefficient equal to 1. This means that

H(i) = Y (i) + ai,i−1Y
(i−1) + ....+ ai,1Y

(1), i ≥ 1,

and the {H(i), i ≥ 1} are pairwise strongly orthogonal.

Because of the Equation (1) and since X
(i)
t has no continuous part for i > 1 we

get that
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[X(k), X(j)]t =
∑

0<s≤t(∆Xs)
k(∆Xs)

j =
∑

0<s≤t(∆Xs)
k+j = X

(k+j)
t , for j > 1 and

k ≥ 1.

Now we have that

[H(i), Y (j)]t =
i∑

k=1

ai,k[Y
(k), Y (j)]t =

i∑
k=1

ai,k[X
(k), X(j)]t

=X
(i+j)
t + ai,i−1X

(i+j−1)
t + · · ·+ ai,1X

(1+j)
t + ai,1σ

2t1{j=1}.

The term ai,1σ
2t1{j=1} comes from the Brownian motion part ai,1[X

(1), X(1)]t =

ai,1[X,X]t = ai,1([X,X]ct +
∑

0<s≤t(∆Xs)
2) = ai,1X

(2)
t + ai,1σ

2t, which only appears
in the above sum expression for the bracket process if j = 1. From the expression
above we also get that

E[H(i), Y (j)]t = t(mi+j + ai,i−1mi+j−1 + · · ·+ ai,1m1+j + ai,1σ
21{j=1}).

So E[H(i), Y (j)]t = tE[H(i), Y (j)]1. Which means that [H(i), Y (j)]t = 0, ∀ t ≥ 0,
if and only if [H(i), Y (j)]1 = 0. This implies that when [H(i), Y (j)]1 = 0 we have that
H(i) ⊥⊥ Y (j).

Now let S1 be the space of all real polynomials on the positive real line. On this
space we apply a scalar product ⟨., .⟩1 given by

⟨P (x), Q(x)⟩1 :=
∫ +∞
−∞ P (x)Q(x)x2v(dx) + σ2P (0)Q(0).

From this and equation 2 we get that

⟨xi−1, xj−1⟩1 =
∫ +∞

−∞
xi−1xj−1x2ν(dx) + σ20i−10j−1

=

∫ +∞

−∞
xi+jν(dx) + σ21{i=j=1}

=mi+j + σ21{i=j=1}, i, j ≥ 1.

Then we denote the space of all linear transformations of the compensated power
jump processes by S2 := {

∑n
i=1 aiY

(i) : n ∈ {1, 2, ...}, ai ∈ R, ∀ i = 1, ..., n} and apply
on it the scalar product ⟨., .⟩2 given by

(3) ⟨Y (i), Y (j)⟩2 := E([Y (i), Y (j)]1) = mi+j + σ21{i=j=1}, i, j ≥ 1.

Now we see that xi−1 ←→ Y (i) is an isometry between S1 and S2. This means that
an orthogonalization of {1, x1, x2, ...} also gives us an orthogonalization of {Y (1), Y (2), ...}.
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From this we can establish for the rest of the thesis that {H(i), i = 1, 2, ...} is the
set of pairwise strongly orthogonal martingales that we were looking for, given by the
orthogonalization of {Y (1), Y (2), ...}.

3.2. Main result. We want to prove the following chaotic representation property:

Theorem 3.5 (Chaotic representation property (CRP)). Let F ∈ L2(Ω,F). Then
F has a representation of the form

F =E[F ]

+
∞∑
j=1

∑
i1,...,ij≥1

∫
(0,∞)

∫ t1−

0

...

∫ tj−1−

0

f(i1,...,ij)(t1, ..., tj)dH
(ij)
tj ...dH

(i2)
t2 dH

(i1)
t1 a.s.,

where the functions f(i1,...,ij) belong to L2(Rj
+).

3.3. Preparation for the proof of Theorem 3.5. Before we can prove Theorem
3.5 we need several lemmas and propositions, which we shall present in this subsec-
tion. First we prove a representation of the power of an increment of a Lévy process,
(Xt+t0 − Xt0)

k, k = 1, 2, 3, ..., as a sum of stochastic integrals with respect to the
compensated power jump processes Y (j), j = 1, ..., k.

Lemma 3.6. The power of an increment of a Lévy process, (Xt+t0 −Xt0)
k, has a

representation of the form

(Xt+t0 −Xt0)
k =f (k)(t) +

k∑
j=1

∑
(i1,...,ij)∈{1,...,k}j

∫
(t0,t+t0]

∫ t1−

t0

. . .

∫ tj−1−

t0

f
(k)
(i1,...,ij)

(t0, t1, ..., tj)dY
(ij)
tj ...dY

(i2)
t2 dY

(i1)
t1 ,

where the f
(k)
(i1,...,ij)

are deterministic functions in L2(Rj
+).

Proof. Using Itô’s formula and integration by parts we get for the function f(x) =
xk, k ≥ 2 and the Lévy process Yt = Xt+t0 −Xt0 , a.s.,
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(Xt+t0 −Xt0)
k =(Xt+t0 −Xt0)

k − (X0+t0 −Xt0)
k = f(Yt)− f(Y0)

=

∫
(0,t]

k(Ys−)
k−1dYs

+
1

2

∫
(0,t]

k(k − 1)(Ys−)
k−2d[Y, Y ]cs

+
∑
0<s≤t

[(Ys)
k − (Ys−)

k − k(Ys−)k−1∆Ys]

=

∫
(0,t]

k(X(s+t0)− −Xt0)
k−1d(Xs+t0 −Xt0)

+
σ2

2

∫
(0,t]

k(k − 1)(X(s+t0)− −Xt0)
k−2ds

+
∑
0<s≤t

[(Xs+t0 −Xt0)
k − (X(s+t0)− −Xt0)

k

− k(X(s+t0)− −Xt0)
k−1∆Xs+t0 ]

=

∫
(t0,t+t0]

k(Xu− −Xt0)
k−1dX(1)

u

+
σ2

2
k(k − 1)

(
(Xt+t0 −Xt0)

k−2t−
∫
(0,t]

sd(Xs+t0 −Xt0)
k−2

)
+

∑
0<s≤t

[(X(s+t0)− +∆Xs+t0 −Xt0)
k − (X(s+t0)− −Xt0)

k

− k(X(s+t0)− −Xt0)
k−1∆Xs+t0 ]

=

∫
(t0,t0+t]

k(Xu− −Xt0)
k−1dX(1)

u

+
σ2

2
k(k − 1)

(
(Xt+t0 −Xt0)

k−2t−
∫
(0,t]

sd(Xs+t0 −Xt0)
k−2

)
+

∑
0<s≤t

k∑
j=2

(
k

j

)
(X(s+t0)− −Xt0)

k−j(∆Xs+t0)
j

=

∫
(t0,t0+t]

k(Xu− −Xt0)
k−1dX(1)

u

+
σ2

2
k(k − 1)

(
(Xt+t0 −Xt0)

k−2t−
∫
(0,t]

sd(Xs+t0 −Xt0)
k−2

)
+

∑
t0<u≤t+t0

k∑
j=2

(
k

j

)
(Xu− −Xt0)

k−j(∆Xu)
j

=
k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xu− −Xt0)
k−jdX(j)

u(4)
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+
σ2

2
k(k − 1)

(
(Xt+t0 −Xt0)

k−2t−
∫
(0,t]

sd(Xs+t0 −Xt0)
k−2

)
Next we rewrite the sum from (4) by using integration by parts again:

k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdX(j)

s

=
k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jd(Y (j)

s +mjs)

=
k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k∑
j=1

(
k

j

)
mj

∫
(t0,t+t0]

(Xs −Xt0)
k−jds

=
k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k∑
j=1

(
k

j

)
mj

∫
(0,t]

(Xu+t0 −Xt0)
k−jdu

=
k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k∑
j=1

(
k

j

)
mj

(
t(Xt+t0 −Xt0)

k−j

−
∫
(0,t]

ud(Xu+t0 −Xt0)
k−j

)
=

k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k−1∑
j=1

(
k

j

)
mj

(
t(Xt+t0 −Xt0)

k−j

−
∫
(t0,t+t0]

(s− t0)d(Xs −Xt0)
k−j

)
+

(
k

k

)
mk

(
t(Xt+t0 −Xt0)

k−k −
∫
(0,t]

ud(Xu+t0 −Xt0)
k−k

)
=

k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k−1∑
j=1

(
k

j

)
mjt(Xt+t0 −Xt0)

k−j(5)

−
k−1∑
j=1

(
k

j

)
mj

∫
(t0,t+t0]

(s− t0)d(Xs −Xt0)
k−j +mkt.

By combining (4) and (5) we get, a.s., that

(Xt+t0 −Xt0)
k(6)

=
σ2

2
k(k − 1)

(
(Xt+t0 −Xt0)

k−2t−
∫
(0,t]

sd(Xs+t0 −Xt0)
k−2

)
+

k∑
j=1

(
k

j

)∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY (j)

s +
k−1∑
j=1

(
k

j

)
mjt(Xt+t0 −Xt0)

k−j
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−
k−1∑
j=1

(
k

j

)
mj

∫
(t0,t+t0]

s− t0d(Xs −Xt0)
k−j +mkt.

Now we finish the proof by induction.

If k = 1, then we have that, a.s., Xt+t0 − Xt0 =
∫
(t0,t+t0]

dXs =
∫
(t0,t+t0]

d(Y
(1)
s +

m1s) =
∫
(t0,t+t0]

dY
(1)
s +m1t, where m1t is linear in t. This gives us that the lemma

holds for k = 1.

As the induction hypothesis we assume that for l ∈ {1, ..., k − 1}, where k ∈
{2, 3, ...}, it holds a.s. that

(Xt+t0 −Xt0)
l =f (l)(t) +

l∑
j=1

∑
(i1,...,ij)∈{1,...,l}j

∫
(t0,t+t0]

∫ t1−

t0

. . .

∫ tj−1−

t0

f
(l)
(i1,...,ij)

(t0, t1, ..., tj)dY
(ij)
tj ...dY

(i2)
t2 dY

(i1)
t1 ,

where the f
(l)
(i1,...,ij)

are deterministic functions in L2(Rj
+). We also know that f (l)(t)

is a polynom in t, because of the term m1t, in case k = 1, that is linear in t.

Then we want to represent the Equation (6) as a sum of deterministic functions
and iterated integrals of the form shown in the lemma. We do this by applying
the induction hypothesis to the equation. For this there are 3 types of terms, with
j = 1, ..., k, that we need to consider:

i) (Xt+t0 −Xt0)
k−j

ii)
∫
(t0,t+t0]

(Xs− −Xt0)
k−jdY

(j)
s

iii)
∫
(t0,t+t0]

sd(Xs −Xt0)
k−j.

After that the linearity of the integral mapping finishes the proof.

i) In the first case we have that, a.s.,

(Xt+t0 −Xt0)
k−j

=f (k−j)(t) +

k−j∑
n=1

∑
(i1,...,in)∈{1,...,k−j}n

∫ t+t0

t0

∫ t1−

t0

. . .

∫ tn−1−

t0

f
(k−j)
(i1,...,in)

(t0, t1, ..., tn)dY
(in)
tn ...dY

(i2)
t2 dY

(i1)
t1 .
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ii) In the second case we get a.s. that

∫
(t0,t+t0]

(Xs −Xt0)
k−jdY (j)

s

=

∫
(0,t]

(Xs+t0 −Xt0)
k−jdY

(j)
s+t0

=

∫
(0,t]

(
f (k−j)(s) +

k−j∑
n=1

∑
(i1,...,in)∈{1,...,k−j}n

∫ (s+t0)−

t0

∫ t1−

t0

. . .

∫ tn−1−

t0

f
(k−j)
(i1,...,in)

(t0, t1, ..., tn)dY
(in)
tn ...dY

(i2)
t2 dY

(i1)
t1

)
dY

(j)
s+t0

=

∫
(0,t]

f (k−j)(s)dY
(j)
s+t0

+

k−j∑
n=1

∑
(i1,...,in)∈{1,...,k−j}n

∫
(0,t]

∫ (s+t0)−

t0

∫ t1−

t0

. . .

∫ tn−1−

t0

f
(k−j)
(i1,...,in)

(t0, t1, ..., tn)dY
(in)
tn ...dY

(i2)
t2 dY

(i1)
t1 dY

(j)
s+t0

=

∫
(t0,t+t0]

f (k−j)(s− t0, t0)dY (j)
s

+

k−j∑
n=1

∑
(i1,...,in)∈{1,...,k−j}n

∫
(t0,t+t0]

∫ (s+t0)−

t0

∫ t1−

t0

. . .

∫ tn−1−

t0

f
(k−j)
(i1,...,in)

(t0, t1, ..., tn)dY
(in)
tn ...dY

(i2)
t2 dY

(i1)
t1 dY (j)

s .

iii) For the final case we apply Theorem 2.24, to get a.s. that

∫
(t0,t+t0]

sd(Xs−Xt0)
k−j

=

∫
(0,t]

sd(Xs+t0 −Xt0)
k−j

=

∫
(0,t]

sd
(
f (k−j)(s) +

k−j∑
n=1

∑
(i1,...,in)∈{1,...,k−j}n

∫
(t0,s+t0]

∫ t1−

t0

. . .

∫ tn−1−

t0

f
(k−j)
(i1,...,in)

(t0, t1, ..., tn)dY
(in)
tn ...dY

(i2)
t2 dY

(i1)
t1

)
.
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So we have shown that each term in the Equation (6) can be formulated as the
type of sum the representation of the Lemma 3.6 consists of. Now one can finally
apply the linearity of the integral mapping to this sum and thus the lemma is proven.

□

Lemma 3.7. The power of an increment of a Lévy process, (Xt+t0 −Xt0)
k, has a

representation of the form

(Xt+t0 −Xt0)
k =f (k)(t) +

k∑
j=1

∑
(i1,...,ij)∈{1,...,k}j

∫ t+t0

t0

∫ t1−

t0

. . .

∫ tj−1−

t0

h
(k)
(i1,...,ij)

(t, t0, t1, ..., tj)dH
(ij)
tj ...dH

(i2)
t2 dH

(i1)
t1 ,

where the h
(k)
(i1,...,ij)

are deterministic functions in L2(Rj
+).

Proof. Since we have that

H(i) = Y (i) + ai,i−1Y
(i−1) + ....+ ai,1Y

(1), i ≥ 1,

we get that


1 0 0 · · · 0
a2,1 1 0 · · · 0
a3,1 a3,2 1 · · · 0
...

...
...

. . .
...

ai,1 ai,2 ai,3 · · · 1



Y (1)

Y (2)

Y (3)

...
Y (i)

 =


H(1)

H(2)

H(3)

...
H(i)

 .

Now since

A =


1 0 0 · · · 0
a2,1 1 0 · · · 0
a3,1 a3,2 1 · · · 0
...

...
...

. . .
...

ai,1 ai,2 ai,3 · · · 1



is a lower triangular matrix where all the diagonal elements are 1, we get that
det(A) = 1 ̸= 0. This means that the matrix A is invertible. Because of this the
lemma follows from the representation in Lemma 3.6 by switching from the Y (i) to
the H(i) by a linear transformation. □

We denote
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H(i1,...,ij) :=
{
F ∈ L2(Ω) :

F =

∫ ∞

0

∫ t1−

0

...

∫ tj−1−

0

f(t1, ..., tj)dH
(ij)
tj ...dH

(i2)
t2 dH

(i1)
t1 , f ∈ L2(Rj

+)
}
,

where {H(i), i = 1, 2, ...} is the set of pairwise strongly orthogonal martingales
that we established in Section 3.

Definition 3.8. Two multi-indexes (i1, ..., ik) and (j1, ..., jl) are different if k ̸= l
or k = l and for some 1 ≤ n ≤ k = l we have that jn ̸= in. This is denoted by
(i1, ..., ik) ̸= (j1, ..., jl).

Proposition 3.9. If (i1, ..., ik) ̸= (j1, ..., jl), then H(i1,...,ik) ⊥ H(j1,...,jl) i.e. K ⊥ L
when K ∈ H(i1,...,ik) and L ∈ H(j1,...,jl).

Proof. First we prove the case l = k and after that we consider the case l ̸= k. For
this we use induction, starting with the case l = k = 1. This means that j1 ̸= i1. We
also assume the following representations:

K =
∫∞
0
f(t1)dH

(i1)
t1 and L =

∫∞
0
g(t1)dH

(j1)
t1 .

Since we know that H(i1) ⊥⊥ H(j1) and stochastic integrals with respect to strongly
orthogonal martingales are orthogonal ([14], Theorem 36 and Lemma 2, page 180),
we get that K ⊥ L and therefore the case l = k = 1 holds.

For the induction hypothesis we assume that the proposition holds for 1 ≤ k =
l ≤ n−1 and prove then the case k = l = n. We assume the following representations:

K =

∫ ∞

0

∫ t1−

0

...

∫ tn−1−

0

f(t1, ..., tn)dH
(in)
tn ...dH

(i2)
t2 dH

(i1)
t1 =

∫ ∞

0

αt1dH
(i1)
t1 ,

L =

∫ ∞

0

∫ t1−

0

...

∫ tn−1−

0

g(t1, ..., tn)dH
(jn)
tn ...dH

(j2)
t2 dH

(j1)
t1 =

∫ ∞

0

βt1dH
(j1)
t1 .

for this we have to consider two cases:

i) i1 ̸= j1
ii) i = i1 = j1.

In case i) we again apply the fact that H(i1) ⊥⊥ H(j1) and stochastic integrals
with respect to strongly orthogonal martingales are orthogonal ([14], Theorem 36
and Lemma 2, page 180). This means that K ⊥ L.

For ii) we must have (i2, ..., in) ̸= (j2, ..., jn) and therefore by the induction hy-
pothesis αt1 ⊥ βt1 . From this we get by applying Theorem 2.23 that
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E[KL] = lim
T→∞

E
[∫

(0,T ]

αt1dH
(i)
t1

∫
(0,T ]

βt1dH
(i)
t1

]
= lim

T→∞
E
[∫

(0,T ]

αsβsd⟨H(i), H(i)⟩s
]

= lim
T→∞

∫
(0,T ]

E[αsβs]d⟨H(i), H(i)⟩s

=

∫ ∞

0

0d⟨H(i), H(i)⟩s = 0,

because (⟨H(i), H(i)⟩s)s≥0 is deterministic based on equation (3), which means that
K ⊥ L.

Now we are left with the case k ̸= l, and because of symmetry we can assume that
k < l. Now we again consider two cases:

i) (i1, ..., ik) ̸= (j1, ..., jk)
ii) (i1, ..., ik) = (j1, ..., jk).

In case i) we can just apply the first part of the proof and that stochastic integrals
with respect to strongly orthogonal martingales are orthogonal ([14], Theorem 36 and
Lemma 2, page 180) for representations

K =

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

f(t1, ..., tk)dH
(ik)
tk

...dH
(i2)
t2 dH

(i1)
t1 ,

L =

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

...

∫ tl−1−

0

g(t1, ..., tk, ..., tl)dH
(jl)
tl
...dH

(jk)
tk

...dH
(j2)
t2 dH

(j1)
t1

=

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

β(t1, ..., tk)dH
(jk)
tk

...dH
(j2)
t2 dH

(j1)
t1 a.s.

which gives us that K ⊥ L.

For the case ii) we have the following representations:

K =

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

f(t1, ..., tk)dH
(ik)
tk

...dH
(i2)
t2 dH

(i1)
t1 ,

L =

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

...

∫ tl−1−

0

g(t1, ..., tk, ..., tl)dH
(jl)
tl
...dH

(jk)
tk

...dH
(j2)
t2 dH

(j1)
t1

=

∫ ∞

0

∫ t1−

0

...

∫ tk−1−

0

β(t1, ..., tk)dH
(ik)
tk

...dH
(i2)
t2 dH

(i1)
t1 a.s.

Next we use induction to finish the proof. First lets assume that k=1. This gives
us that
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K =

∫ ∞

0

f(t1)dH
(i1)
t1 ,

L =

∫ ∞

0

∫ t1−

0

...

∫ tl−1−

0

g(t1, ..., tl)dH
(jl)
tl
...dH

(j2)
t2 dH

(j1)
t1

=

∫ ∞

0

β(t1)dH
(i1)
t1 a.s.

Now since
∫ t1−
0

...
∫ tl−1−
0

g(t1, ..., tl)dH
(jl)
tl
...dH

(j2)
t2 has mean 0 and f(t1) is a determin-

istic function we get that

E[KL] = lim
T→∞

E
[∫

(0,T ]

f(t1)dH
(i1)
t1

∫
(0,T ]

β(t1)dH
(i1)
t1

]
= lim

T→∞
E
[∫

(0,T ]

f(s)β(s)d⟨H(i1), H(i1)⟩s
]

= lim
T→∞

∫
(0,T ]

E[f(s)β(s)]d⟨H(i1), H(i1)⟩s

=

∫ ∞

0

0d⟨H(i1), H(i1)⟩s = 0,

which proves the case k = 1. For the induction hypothesis we assume that when
k ∈ {1, 2, ..., n − 1} we have that K ⊥ L and use this to prove the case k = n. Now
the induction hypothesis gives us that, when

K =

∫ ∞

0

∫ t1−

0

...

∫ tn−1−

0

f(t1, ..., tn)dH
(in)
tn ...dH

(i2)
t2 dH

(i1)
t1 =

∫ ∞

0

α(t1)dH
(i1)
t1 and

L =

∫ ∞

0

∫ t1−

0

...

∫ tn−1−

0

...

∫ tl−1−

0

g(t1, ..., tn, ..., tl)dH
(jl)
tl
...dH

(jn)
tn ...dH

(j2)
t2 dH

(j1)
t1

=

∫ ∞

0

∫ t1−

0

...

∫ tn−1−

0

β(t1, ..., tn)dH
(in)
tn ...dH

(i2)
t2 dH

(i1)
t1 =

∫ ∞

0

γ(t1)dH
(i1)
t1 ,

we have that α(t1) ⊥ γ(t1). From this we can once again get that

E[KL] = lim
T→∞

E
[∫

(0,T ]

α(t1)dH
(i1)
t1

∫
(0,T ]

γ(t1)dH
(i1)
t1

]
= lim

T→∞
E
[∫

(0,T ]

α(s)γ(s)d⟨H(i1), H(i1)⟩s
]

= lim
T→∞

∫
(0,T ]

E[α(s)γ(s)]d⟨H(i1), H(i1)⟩s

=

∫ ∞

0

0d⟨H(i1), H(i1)⟩s = 0

and this completes the proof. □
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For the next proposition we define a total family.

Definition 3.10. Let A ⊂ L2(Ω,F). A is called a total family if f = 0 a.s. for
any f ∈ L2(Ω,F), such that ⟨f, g⟩ =

∫
fgdP = 0, for every g ∈ A.

Now we use this definition to get a proposition, so that we are ready to prove the
main theorem.

Proposition 3.11. Let

P := {Xk1
t1 (Xt2 −Xt1)

k2 ...(Xtn −Xtn−1)
kn :

n ≥ 0, 0 ≤ t1 < t2 < ... < tn, k1, ..., kn ≥ 1}.

Then P is a total family in L2(Ω,F).

Proof. We need to show that P is a total family in L2(Ω,F). We do this by taking
a Z ∈ L2(Ω,F), such that Z ⊥ P , and showing that Z = 0 a.s.

Let ϵ > 0. We recall that F is the σ-algebra generated by the Lévy process X and
because of this we can apply Theorem 2.29. So there exists a set {0 < s1 < ... < sm}
and a square integrable random variable Zϵ ∈ L2(Ω, σ(Xs1 , Xs2 , ..., Xsm)) such that

E(Z − Zϵ)2 < ϵ.

This means that there exists a Borel function f such that

Zϵ = fϵ(Xs1 , (Xs2 −Xs1), ..., (Xsm −Xsm−1)).

Since
∫
(−ϵ,ϵ)c e

λ|x|ν(dx) < ∞ applies for the Lévy measure ν, the polynomials are

dense in L2(R,P ◦ X−1
t ) for each t > 0 ([6], Theorem 3.2.18, page 69). This means

that we can approximate Zϵ ∈ L2(Ω,F ,P) with polynomials in (Xt − Xs), so that
E[ZZϵ] = 0, since Z ⊥ P . From this and, by Hölder’s inequality, we get that

|E[Z(Z − Zϵ)]| ≤
√
E[Z2]E[(Z − Zϵ)2], which finally gives us

E[Z2] = E[Z2]− E[ZZϵ] = E[Z(Z − Zϵ)] ≤
√
E[Z2]E[(Z − Zϵ)2] <

√
ϵE[Z2].

Now it’s clear that ϵE[Z2]→ 0, when ϵ→ 0, and thus Z = 0 a.s. □

3.4. Proof of Theorem 3.5. Now we are prepared to give a proof for the main
theorem of this thesis.

From Proposition 3.11 we get that P is a total family in L2(Ω,R). This means
that it is sufficient for us to show that the theorem applies to every element of P .
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Lemma 3.7 implies that any product (Xs − Xt)
k(Xv − Xu)

l, where k, l ≥ 1 and
0 ≤ t < s ≤ u < v, can be represented as a sum of products of the form AB where

A =

∫ s

t

∫ t1−

t

...

∫ tn−1−

t

h
(k)
(i1,...,in)

(t, t1, ..., tn)dH
(in)
tn ...dH

(i2)
t2 dH

(i1)
t1

and

B =

∫ v

u

∫ u1−

u

...

∫ um−1−

u

h
(l)
(j1,...,jm)(u, u1, ..., um)dH

(jm)
um ...dH(j2)

u2
dH(j1)

u1
.

From this we get that

AB =

∫ v

u

∫ u1−

u

...

∫ um−1−

u

∫ s

t

∫ t1−

t

...

∫ tn−1−

t

h
(l)
(j1,...,jm)(u, u1, ..., um)

× h(k)(i1,...,in)
(t, t1, ..., tn)dH

(in)
tn ...dH

(i2)
t2 dH

(i1)
t1 dH(jm)

um ...dH(j2)
u2

dH(j1)
u1

=

∫ ∞

0

∫ u1−

0

...

∫ um−1−

0

∫ um−

0

∫ t1−

0

...

∫ tn−1−

0

1(u,v](u1)

× 1(u,u1)(u2)...1(u,um−1)(um)1(t,s](t1)1(t,t1)(t2)...1(t,tn−1)(tn)

× h(l)(j1,...,jm)(u, u1, ..., um)h
(k)
(i1,...,in)

(t, t1, ..., tn)

× dH(in)
tn ...dH

(i2)
t2 dH

(i1)
t1 dH(jm)

um ...dH(j2)
u2

dH(j1)
u1

.

Now we note that this is an integral of the form that is presented in the Theorem
3.4. This means that the product (Xs − Xt)

k(Xv − Xu)
l can be represented as a

sum of integrals which corresponds to the form shown in the Theorem 3.4. We also
recall that every element of P is of the form Xk1

t1 (Xt2−Xt1)
k2 ...(Xtn−Xtn−1)

kn , where
n ≥ 0, 0 ≤ t1 < t2 < ... < tn, k1, ..., kn ≥ 1, which means that they can also be
represented in the desired way and this completes the proof.

4. Itô’s chaos decomposition

Now we move on to other types of decompositions of a Lévy-Itô space and com-
pare them to the result of Nualart and Schoutens. We start with Itô’s decomposition
([12], Theorem 2, page 257) using multiple Wiener integrals. In this section we have
a change of setting from t ∈ [0,∞) to finite time t ∈ [0, T ].



25

4.1. Notation and preliminaries. We start by going over the necessary notation
for this chapter and defining the multiple Wiener integrals, so that we can introduce
the decomposition from [12]. First we define the compensated Poisson random mea-
sure Ñ := N − λ ⊗ ν on the ring E ∈ B([0, T ] × R) with m(E) < ∞. Next we
formulate the Lévy-Itô-decomposition ([1], Theorem 2.4.16, page 126).

Theorem 4.1 (The Lévy-Itô decomposition). For a Lévy process X there exists a
constant β ∈ R, a Brownian motion B and an independent Poisson random measure
N on R+ × (R− {0}) such that, for each t ≥ 0 and some σ ≥ 0,

X(t) = βt+ σB(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx).

The triplet (β, σ2, ν), where σ2 is the variance function of B and ν is the Lévy
measure associated with X, is called the characteristics of X.

Next we use the Lévy measure ν introduced in Section 3 and σ ≥ 0, which is the
parameter of the Brownian motion part of X, to define two σ-finite measures

dµ(x) := σ2dδ0(x) + x2dν(x) and dm(t, x) := d(λ⊗ µ)(t, x)

,

on B(R) and B([0, T ]×R) respectively. In this thesis we assume that σ ≡ 0 which
gives us dµ(x) = x2dν(x).

We show that the measure µ is σ-finite. First we recall that a measure µ on B(R)
is called σ-finite given that there exist sets Bn ∈ B(R), such that ∪n∈NBn = R and
µ(Bn) <∞ for all n ∈ N. We set Bn = [−n, n], which means that

∪n∈NBn = ∪n∈N[−n, n] = R

and for n ∈ N we have that∫
[−n,n]\{0}

dµ(x) =

∫
[−n,n]

x2dν(x) =

∫
[−n,n]

(x2 ∧ n2)dν(x)

≤
∫
R
(n2x2 ∧ n2)dν(x) = n2

∫
R
(x2 ∧ 1)dν(x) <∞.

This gives us µ([−n, n]) <∞ for every n ∈ N.

For an E ∈ B([0, T ]× R) with m(E) <∞ we introduce
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M(E) := lim
N→∞

∫
E∩([0,T ]×{ 1

N
<|x|<N})

xdÑ(t, x),

where the limit is taken in L2. We set

Ln2 := L2

(
([0, T ]× R)n,B(([0, T ]× R)n),m⊗n).

Now let E1, ..., En ∈ B([0, T ]× R) be pairwise disjoint with m(Ei) <∞ and

fn((t1, x1), ..., (tn, xn)) := 1E1(t1, x1) · · · 1En(tn, xn),

then we define the multiple integral by

In(fn) :=M(E1) · · ·M(En).

We also note that if

fn((t1, x1), ..., (tn, xn)) = fn((tπ(1), xπ(1)), ..., (tπ(n), xπ(n)))

for all (t1, x1), ..., (tn, xn) and π ∈ Sn, where Sn is the set of all permutations
of {1, ..., n}, then the kernel fn is called symmetric. Also the symmetrisation of an
fn ∈ Ln2 is given by

f̃n((t1, x1), ..., (tn, xn)) :=
1
n!

∑
π∈Sn

fn((tπ(1), xπ(1)), ..., (tπ(n), xπ(n))).

Next we take a function

gn =
L∑
l=1

αl1El
1×···×El

n
,

where each El
1, ..., E

l
n ∈ B([0, T ] × R), with l = 1, ..., L, is pairwise disjoint and

αl ∈ R for every l = 1, ..., L. For such a function gn we get that In(gn) is well defined
by linearity. For such gn, we also have the following properties: In(gn) = In(g̃n),
where g̃n is the symmetrisation of gn, and E|In(g̃n)|2 = n!||g̃n||2Ln

2
.

Now we shall define Diag(n, s).

Definition 4.2. Diag(n, s), with n, s ∈ N, is the set of all n-cuboids with edges
(k−1

s
T, k

s
T ], where k ∈ {1, 2, ..., s} and at least two edges are the same.

We denote with Sns the set of B
((
[0, T ]×R

)n)
-measurable functions fn :

(
[0, T ]×

R
)n → R, such that fn takes only finitely many values, fn((t1, x1), ..., (tn, xn)) = 0 if

(t1, ..., tn) ∈ Diag(n, s) and fn((t1, x1), ..., (tn, xn)) = fn((s1, x1), ..., (sn, xn)) if si and
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ti belong to the same (k−1
s
T, k

s
T ] for every i = 1, ..., n. We can expand the definition

of In for such an Sns by the above properties for the symmetrisation and the multiple
integral. Our next goal is to prove the following lemma.

Lemma 4.3. For Diag(n, s), with n, s ∈ N, we have that

m
⊗n

(
Diag(n, s)× Rn

)
→ 0,

when s→∞.

Proof. We prove this lemma by taking a large enough s, for ϵ > 0, so that we have
the approximation |T

s
| < ϵ. We also note that there are

(
n
2

)
possibilities to arrange

2 equal edges of the n-cuboid and the remaining n− 2 edges can be any (k−1
s
T, k

s
T ],

with k ∈ {1, 2, ..., s}, which gives us the approximation

m
⊗n(Diag(n, s)× Rn) ≤ µ(R)n

(
n

2

)
s
(T
s

)2(
T
)n−2

=
1

s

(
n

2

)
T nµ(R)n.

With this approximation one can see that m⊗n
(
Diag(n, s) × Rn

)
→ 0, when

ϵ→ 0.
□

From this lemma one can see that the family ∪s>0S
n
s is dense in Ln2 , which in turn

lets us extend the multiple integral into In : Ln2 → L2(FX), where FX is the natural
filtration.

Next we introduce a proposition cowering some properties for the multiple integral
([2], page 8614).

Proposition 4.4. Let fn ∈ Ln2 and fm ∈ Lm2 . Then one has that

(1) In(fn) and Im(fm) are orthogonal for any kernels fn and fm, provided that n ̸=
m,

(2) In(fn) = In(f̃n) a.s.,

(3) ∥In(f̃n)∥L2(FX) =
√
n!∥f̃n∥Ln

2
.

Before we move on we prove one lemma.

Lemma 4.5. Let

S := {Y =f(N(E1), ..., N(En)) : n = 1, 2, ...,

Ei are pairwise disjoint and f is bounded and continuous}.

Then S is dense in L2(FX).
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Proof. Let

FT := FXT ∪N = σ(N(E) : m(E) <∞) ∪N ,

where N is the family of empty sets.

We also introduce the Π-system

P := {{N(E1) ∈ A1, ..., N(En) ∈ An} : n ∈ N,
m(Ei) <∞ and Ai ∈ B(R) for every i = 1, ..., n}.

We know that the linear span of step functions

span
{ I∑

i=1

αi1pi : αi ∈ R, I ∈ N, pi ∈ P
}

is dense in L2(FT ) ([10], Theorem A.9, page 101). We also note that every step
function is a linear combination of functions 1p, where p ∈ P. This means that it
is enough to show that, for any ϵ > 0 and p = {N(E1) ∈ A1, ..., N(En) ∈ An} =
{(N(E1), ..., N(En)) ∈ A1 × · · · × An} ∈ P, there exists a f ∈ Cb, where Cb denotes
continuous and bounded functions, such that

E|1p − f(N(E1), ..., N(En))|2 < ϵ2.

We denote

µn := law(N(E1), ..., N(En)) ∈M+
1 (Rn),

which means that µn is outer regular ([3], Theorem 1.1, page 7) with respect to
open sets, that is

µn(B) = inf{µn(C) : C ⊇ B, C is open}.

Because of the outer regularity, there exists an open set G ⊇ A1 × · · · ×An, with
|µn(G)− µn(A1 × · · · × An)| < ϵ, and it is sufficient to have
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E|1{(N(E1),...,N(En))∈G} − f(N(E1), ..., N(En))|2 < ϵ2

for some f ∈ Cb to complete the proof. For G = Rn this is clear so let us assume
G ̸= Rn.

Let

Fm :=
{
x ∈ Rn : x ∈ G, d(x, ∂G) ≥ 1

m

}
,

where d(x, ∂G) = inf{d(x, y) = |x − y| : y ∈ ∂G} and ∂G denotes the boundary
of G, which means that y ∈ ∂G if and only if {x ∈ Rn : d(x, y) < ϵ} ∩ G ̸= ∅ and
{x ∈ Rn : d(x, y) < ϵ} ∩Gc ̸= ∅ for every ϵ > 0.

Next we want to apply Urysohn’s lemma on sets Fm and Gc. This means that we
need to show that Fm and Gc are closed and Fm ∩Gc = ∅. We start by showing that
Fm is closed.

If x ∈ G such that d(x, ∂G) < 1
m
, then there exists an ϵ > 0 such that d(x, ∂G) +

ϵ < 1
m
. This means that {y ∈ Rn : d(x, y) < ϵ}∩Fm = ∅, which implies that x ̸∈ ∂Fm.

On the other hand, if x ∈ G such that d(x, ∂G) > 1
m
, then there exists an ϵ > 0

such that d(x, ∂G)− ϵ > 1
m
. From this we get that {y ∈ Rn : d(x, y) < ϵ} ∩ F c

m = ∅,
which implies again that x ̸∈ ∂Fm.

Now one can see that if x ∈ ∂Fm then d(x, ∂G) = 1
m
. This implies that ∂Fm ⊂ Fm,

which in turn indicates that Fm is closed.

We also note that Gc is closed since G is by definition open. For any x ∈ Fm we
have that x ∈ G, and that is why Fm ∩Gc = ∅. Now we can apply Urysohn’s lemma
to get a function fm ∈ Cb such that fm(x) = 1 for every x ∈ Fm and fm(y) = 0 for
every y ∈ Gc.

Now to finish the proof we have to show that ∪∞m=1Fm = G. By definition of Fm
we have that ∪∞m=1Fm ⊂ G. Since G is open we have that d(x, ∂G) > 0 for every
x ∈ G. This also means that there is an M ∈ N such that d(x, ∂G) > 1

M
, which

means that x ∈ FM . From this we get that G ⊂ ∪∞m=1Fm and finally ∪∞m=1Fm = G.

From here one can see that by dominated convergence

lim
m→∞

fm(x) = 1G(x).
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This means that for every ϵ > 0 there is an mϵ ∈ N such that

E|1{(N(E1),...,N(En))∈G} − fmϵ(N(E1), ..., N(En))|2 < ϵ2,

which completes the proof.
□

4.2. Itô’s decomposition. Now we have the necessary definition for multiple inte-
grals, so we can move forward to Itô´s decomposition. For a multiple Wiener integral
of nth degree denoted by In we get the following theorem ([12], Theorem 2, page 257):

Theorem 4.6. For the space L2(FX) and Ln2 := L2(Rn,m⊗n) it holds that

L2(FX) = ⊕∞
n=0In(L

n
2 ).

Before we can prove this theorem we need some lemmas, which we present next.

Lemma 4.7. Let

R := {N(E1)
p1 · · ·N(En)

pn : n ∈ {1, 2, ...}, pi ∈ {0, 1, 2, ...},
Ei ∈ [0, T ]× R are pairwise disjoint with λ⊗ ν(Ei) <∞}.

Then R is a total family in L2(FX).

Proof. First we notice that every element of R has a finite norm and thus belongs to
L2(FX). Lemma 4.5 gives us that

S = {Y =f(N(E1), ..., N(En)) : n = 1, 2, ...,

Ei are pairwise disjoint and f is bounded and continuous}

is dense in L2(FX). This means that it is enough to show, that if F ∈ S, with
E(FY ) = 0 for every Y ∈ R, then F = 0 a.s. We will show this only for n = 1, which
means that F = f(N(E)). Let σ1 denote the distribution of N(E) and assume, for
all p = 0, 1, 2, ..., that

E(FN(E)p) =

∫
R
f(x)xpdσ1(x) = 0.(7)
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We first show that the integrals do exist. Because σ1 is a Poisson distribution
with parameter λ, we have that

∫
R
e|2tx|dσ1(x) =

∞∑
k=0

e2k
λk

k!
e−λ =

∞∑
k=0

(e2λ)k

k!
e−λ <∞.

Combining this with Hölder’s inequality we get that, for t ∈ R,

∫
R
e|tx||f(x)|dσ1(x) ≤

(∫
R
|f(x)|2dσ1(x)

) 1
2
(∫

R
e2|tx|dσ1(x)

) 1
2
<∞,

which shows that the integrals exist.

By using Lebesgue’s dominated convergence theorem and equation (7), we get that

∫
R
f(x)eitxdσ1(x) =

∞∑
k=0

∫
R
f(x)

1

k!
(it)kxkdσ1 = 0,

for all t ∈ R. This gives us that F = f(N(E)) = 0 a.s. by the uniqueness theorem
for Fourier transforms.

□

Now we have another lemma to prove.

Lemma 4.8. Let

P := {N(E1) · · ·N(En) : n = 1, 2, ...,

Ei ∈ B([0, T ]× R) are pairwise disjoint with (λ⊗ ν)(Ei) <∞}.

Then P is a total family in L2(FX).

Proof. By Lemma 4.7 it is enough to show that, for any Y ∈ R, we have that Y be-
longs to the closed linear span of P . For Y we assume the form Y = N(E1)

p1 · · ·N(En)
pn ,

with n ∈ {1, 2, ...}, pi ∈ {1, 2, ...} andEi ∈ B([0, T ]×R) are pairwise disjoint with (λ⊗
ν)(Ei) < ∞. We take a subdivision {Fi}, i = 1, ..., s of {Ei}, i = 1, ..., n, such that
(λ ⊗ ν)(Fi) < ϵ, where ϵ > 0, and E := ∪ni=1Ei = ∪si=1Fi. From here we get the
expression
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Y = N(E1)
p1 · · ·N(En)

pn =
∑

N(Fi(1))
j1 · · ·N(Fi(r))

jr a.s.,

with i(1) < i(2) < ... < i(r).

We know that N(Fi) ∈ {0, 1, 2, ...}, which gives us

Y ≥
∑

N(Fi(1)) · · ·N(Fi(r)) ≡ Yϵ.

Now, since there are
(
n
2

)
possibilities to arrange 2 equal elements over n positions

and the remaining n− 2 positions can hold any value out of {1, 2, ..., s}, we get that

P (Y ̸= Yϵ) ≤
(
n

2

) s∑
i=1

(λ⊗ ν)(Fi)2
( s∑
i=1

(λ⊗ ν)(Fi)
)n−2

≤
(
n

2

)
ϵ(λ⊗ ν)(E)n−1.

This means that Yϵ → Y in probability as ϵ → 0. Consequently we can take
a sequence (ϵn)n∈N, such that ϵn → 0 as n → ∞, so that Yϵn → Y for almost
every ω. Since we also have that 0 ≤ Yϵn ≤ Y and Y ∈ L2(FX), we can see that
||Yϵn − Y ||L2 → 0 and therefore the lemma is proved.

□

We prove one more lemma before we move on to the proof of the Itô’s decompo-
sition.

Lemma 4.9. Let P ⊆ H0 ⊆ H, P total in H and H0 be a closed subspace of H.
Then H0 = H.

Proof. Let us assume that X ∈ H \H0 with ||X|| = 1 and X ⊥⊥ H0. This means that
X ⊥⊥ P , because P ⊆ H0. This would mean that P is not total in H, so such an X
cannot exist and therefore H = H0. □

4.3. Proof of Theorem 4.6. Now we are prepared to prove Itô’s decomposition
by showing that L2(FX) = ⊕∞

n=0In(L
n
2 ). Since ⊕∞

n=0In(L
n
2 ) ⊆ L2(FX) are Hilbert

spaces, it is enough to show that ⊕∞
n=0In(L

n
2 ) is closed and for any f ∈ L2(FX),

with f ⊥⊥ g for every g ∈ ⊕∞
n=0In(L

n
2 ), we have that f = 0 a.s. Because of Lemma

4.8 and Lemma 4.9, it suffices to show that ⊕∞
n=0In(L

n
2 ) is closed and P ⊆ ⊕∞

n=0In(L
n
2 ).

First we show that In(L
n
2 ) is closed. We note that Ln2 is closed and the subspace

of symmetric functions is also closed. Now since we have the isometry

∥In(f̃n)∥L2(FX) =
√
n!∥f̃n∥Ln

2
,
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we get that the subspace In(L
n
2 ) of L2(Ω) is also closed.

Next we show that this leads to ⊕∞
n=0In(L

n
2 ) being closed. Let H := (Hn)

∞
n=0 be a

sequence of separable Hilbert spaces. We equip this space with the norm

||(Xn)
∞
n=0||H := (

∞∑
n=0

||Xn||2Hn
)
1
2

and inner product

⟨(Xn)
∞
n=0, (Yn)

∞
n=0⟩H :=

∞∑
n=0

⟨Xn, Yn⟩Hn .

We also note that (Xn)
∞
n=0 ∈ H if and only if ||(Xn)

∞
n=0||H <∞. Let ((Xk

n)
∞
n=0)

∞
k=1 be

a Cauchy sequence in H. This means that for every ϵ > 0 there exists a kϵ ∈ N such
that ||(Xk

n)
∞
n=0 − (X l

n)
∞
n=0||H < ϵ for every k, l ≥ kϵ. Now to show that H is closed,

which infers that ⊕∞
n=0In(L

n
2 ) is closed, we need to show that ((Xk

n)
∞
n=0)

∞
k=1 has a limit

in H.

Now let ϵ > 0 and kϵ ∈ N such that ||(Xk
n)

∞
n=0− (X l

n)
∞
n=0||H < ϵ for every k, l ≥ kϵ.

This means that ||Xk
n0
−X l

n0
||Hn0

≤ ||(Xk
n)

∞
n=0 − (X l

n)
∞
n=0||H < ϵ, for every k, l ≥ kϵ,

and since Hn0 is a separable Hilbert space, we also know that Xn0
:= limk→∞Xk

n0

in Hn0 . From this and ϵ2 ≥
∑∞

n=0 ||Xk
n − X l

n||Hn ≥
∑N

n=0 ||Xk
n − X l

n||Hn we get

that
∑N

n=0 ||Xk
n − X l

n||Hn →
∑N

n=0 ||Xk
n − Xn||Hn when l → ∞. Now we see that

for every N ≥ 0 and k ≥ kϵ we have that
∑N

n=0 ||Xk
n − Xn||Hn ≤ ϵ2, and with

N → ∞ we get that
∑∞

n=0 ||Xk
n − Xn||Hn ≤ ϵ2 for every k ≥ kϵ. We also have that

(Xk
n)

∞
n=0 ∈ H and (Xk

n −Xn)
∞
n=0 ∈ H, which means that (Xn)

∞
n=0 ∈ H. This gives us

that (Xk
n)

∞
n=0 → (Xn)

∞
n=0, when k →∞, in H.

Now for the final part we define L̃n2 as the space of functions, such that if fn ∈ Ln2 ,
then x1 · · ·xnfn ∼= f̃n ∈ L̃n2 . We also denote

∥fn∥Ln
2

=

∫
(0,T ]×R

· · ·
∫
(0,T ]×R

|fn(t1, ..., tn, x1, ..., xn)|2x21 · · · x2n

× d(λ⊗ ν)(t1, x1) · · · d(λ⊗ ν)(tn, xn)

=

∫
(0,T ]×R

· · ·
∫
(0,T ]×R

|f̃n(t1, ..., tn, x1, ..., xn)|2d(λ⊗ ν)(t1, x1) · · · d(λ⊗ ν)(tn, xn)

=∥f̃n∥L̃n
2
,

which means that ⊕∞
n=0In(L

n
2 ) = ⊕∞

n=0Ĩn(L̃
n
2 ). We also have that Ĩn(1E1×···×En) =

Ñ(E1) · · · Ñ(En) = (N(E1) − c1) · · · (N(En) − cn) with ci := EN(Ei). This shows
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that Ĩn(1E1×···×En) is a linear combination of terms Y ∈ P , where P is as in Lemma
4.8. The proof is completed by showing that P ⊆ ⊕∞

n=0Ĩn(L̃
n
2 ) with an induction over

n.

For n = 1 we see that Ĩ1(1E1) = Ñ(E1) = N(E1) − c1 which gives us that
N(E1) ∈ ⊕∞

n=0Ĩn(L̃
n
2 ). Next we assume that N(E1) · · ·N(En−1) ∈ ⊕∞

n=0Ĩn(L̃
n
2 ) for n−

1, with n ≥ 2, as an induction hypothesis. Also Ĩn(1E1×···×En) = Ñ(E1) · · · Ñ(En) =
(N(E1)−c1) · · · (N(En)−cn) = N(E1) · · ·N(En)+C, where C is a linear combination
of terms Y = N(Ei1) · · ·N(Eij) ∈ P with j = 1, ..., n − 1 and ik ∈ {1, 2, ..., n}, with
i1, ..., ij being pair-wise different. When we apply the induction hypothesis to this we

get that C ∈ ⊕∞
n=0Ĩn(L̃

n
2 ), and since Ĩn(1E1×···×En) ∈ ⊕∞

n=0Ĩn(L̃
n
2 ), we also get that

N(E1) · · ·N(En) ∈ ⊕∞
n=0Ĩn(L̃

n
2 ). This means that P ⊆ ⊕∞

n=0Ĩn(L̃
n
2 ) which completes

the proof.

5. General orthogonal decomposition of the Lévy-Itô space in terms of an
orthonormal basis

In this section we examine another orthogonal decomposition for the Lévy-Itô
space. We will derive this decomposition, which will be more similar to the orthogo-
nal decomposition from Section 3, using Itô’s decomposition from Theorem 4.6.

First we note that we have a change of setting in this section, where we are oper-
ating on a finite time interval t ∈ [0, 1] and otherwise use the notation from Section
4.1. In this section we also only consider functions of the form F = h(X1) ∈ L2(FX)
while constructing the orthogonal decomposition. Now we prove the following lemma.

Lemma 5.1. The space L2(R,B(R), µ) is separable.

Proof. We recall that a space is called separable if it contains a dense, countable sub-
set. Every open set G ⊂ R can be represented as a countable union of open intervals
of the form (a, b), for a, b ∈ Q. This means that the countable set

G := {G ⊂ R : G = ∪ni=1(ai, bi), where ai, bi ∈ Q for all i ∈ {1, 2, ..., n}}

is a dense subset of the family of all open sets of R. This means that, for any open
B ⊂ R and ϵ > 0, one has a set G ∈ G for which µ(B −G) ≤ ϵ. Now we get that

S := {
n∑
i=1

αi1Gi
: Gi ∈ G, αi ∈ Q, n ∈ N} ⊆ L2(R, µ)

is countable. Next we note that the measure µ is outer regular.

Since any Borel function f : R → R, with
∫
R |f |

2dµ < ∞, can be split into
negative- and non-negative parts we can assume for the following part of our proof
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that f ≥ 0. From the Proposition 2.31 we get that there exists a series of step func-
tions (hn)n∈N such that

0 ≤ hn → f on R.

Since f and hn, n ∈ N, are measurable, we can modify each

hn =
∑Kn

i=1 α
(n)
i χ

A
(n)
i
,

where Kn ∈ N, α(n)
1 , ..., α

(n)
k ∈ R and A

(n)
1 , ..., A

(n)
n ∈ B(R), into

fn =
∑Kn

i=1 α
(n)
i χ

A
(n)
i \D(n)

i
+
∑Kn

i=1 δ
(n)
i χ

D
(n)
i
,

where D
(n)
i := {x ∈ A(n)

i : hn(x) > f(x)} and δ(n)i := inf
x∈D(n)

i
f(x). This means

that 0 < fn(x) ≤ f(x), for all x ∈ R. Now by Dominated Convergence ([7], Theorem
6.5.2, page 89) we have that

limn→∞
∫
R |fn − f |

2dµ = 0,

which is well defined since

|fn − f |2 ≤ 2(|fn|2 + |f |2) ≤ 4|f |2 ∈ L1(R, µ).

Now we recall that fn are step functions for all n ∈ N, so they can be represented
in the form fn =

∑Nn

l=1 βl1Bl
. Also since µ is outer regular there exists for every ϵ > 0

an open Cϵ
l ⊇ Bl such that

µ(Cϵ
l \Bl) <

ϵ
2Nn

.

We combine this with the fact that every open set can be approximated as a
countable union of open intervals to get a Gϵ

l ∈ G for which Gϵ
l ⊆ Cϵ

l and

µ(Cϵ
l \Gϵ

l ) <
ϵ

2Nn
.

Now all of this gives us a gn =
∑Nn

l=1 γl1Gϵ
l
∈ S, where γl is chosen such that

|βl − γl| ≤ ϵ
Nn

, so that

∫
R
|fn − gn|2dµ =

∫
R
|
Nn∑
l=1

βl1Bl
− γl1Gϵ

l
|2dµ ≤

∫
R

( Nn∑
l=1

|βl1Bl
− γl1Gϵ

l
|
)2

dµ

≤
∫
R

( Nn∑
l=1

|βl||1Bl
− 1Gϵ

l
|+ |1Gϵ

l
||βl − γl|

)2

dµ.
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Now with Mn = maxl=1,...,Nn |βl| we get that

∫
R
|fn − gn|2dµ ≤

∫
R

( Nn∑
l=1

|βl||1Bl
− 1Gϵ

l
|+ |1Gϵ

l
||βl − γl|

)2

dµ

≤
∫
R

( Nn∑
l=1

Mn|1Bl
− 1Gϵ

l
|+ |1Gϵ

l
||βl − γl|

)2

dµ

≤
∫
R

(
ϵ+

Nn∑
l=1

Mn|1Bl
− 1Gϵ

l
|
)2

dµ

=ϵ2 + 2ϵ

∫
R

( Nn∑
l=1

Mn|1Bl
− 1Gϵ

l
|
)
dµ+

∫
R

( Nn∑
l=1

Mn|1Bl
− 1Gϵ

l
|
)2

dµ

≤ϵ2 + 2ϵMnϵ+M2
n

(
Nn

ϵ

Nn

)2

= ϵ2 + 2ϵMnϵ+M2
nϵ

2.

This in turn implies that S is dense in L2(R, µ).
□

Next we recall that a Hilbert space is separable if and only if there exists a count-
able orthonormal basis. When we equip H := L2(R,B(R), µ) with the inner product
⟨f, g⟩H :=

∫
R fgdµ, for f, g ∈ H , we get a Hilbert space. This with the fact that

L2(R,B(R), µ) is separable gives us that there exists a countable orthonormal basis
(Dj)j∈J .

Let fn ∈ L2(Rn, µn) and F = g(X1) ∈ L2(Ω), where (Xt)t∈[0,1] is the Lévy pro-
cess, which gives us g ∈ L2(R,PX1) and E|g(X1)|2 < ∞. Because of [2] (page
8615) we can let fn((t1, x1), ..., (tn, xn)) = f̄n(x1, ..., xn). We also assume that f̄n
is symmetric. This means that g(X1) =

∑∞
n=0 In(f̄n(x1, ..., xn)1

⊗n
(0,1]). We also note

that (Dj1 ⊗ · · · ⊗ Djn)(x1, ..., xn) = Dj1(x1) · · ·Djn(xn), where j1, ..., jn ∈ J and
(Dj1 ⊗ · · · ⊗Djn)j1,...,jn∈J is a countable orthonormal basis of L2(Rn, µn). We also set
αj1,...,jn :=

∫
Rn(f̄nDj1 · · ·Djn)dµ

n(x1, ..., xn). Now we can formulate the decomposi-
tion we want to prove in this section.

Theorem 5.2. For F = h(X1) ∈ L2(FX) we have an orthogonal decomposition
of the form

F =EF +
∞∑
n=1

∑
j1,...,jn∈Jn

αj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])

=EF +
∞∑
n=1

∑
j1≤...≤jn∈Jn

κj1,...,jnαj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1]),
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where κj1,...,jn is the number of different orderings of j1, j2, ..., jn.

Proof. Using the orthonormal basis we get that

f̄n =
L2(Rn,µn)

∑
(j1,...,jn)∈Jn

(Dj1 ⊗ · · · ⊗Djn)

∫
Rn

(f̄nDj1 · · ·Djn)dµ
n(x1, ..., xn).

Now we want to show that

In(f̄n1
⊗n
(0,1]) =L2

∑
(j1,...,jn)∈Jn

αj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1]),

where αj1,...,jn =
∫
Rn(f̄nDj1 · · ·Djn)dµ

n(x1, ..., xn).

Since f̄n are symmetric, we get for a permutation π ∈ Sn that

αj1,...,jn =

∫
Rn

(f̄n(x1, ..., xn)Dj1(x1) · · ·Djn(xn))dµ
n(x1, ..., xn)

=

∫
Rn

(f̄n(xπ−1(1), ..., xπ−1(n))Dj1(xπ−1(1)) · · ·Djn(xπ−1(n)))dµ
n(x1, ..., xn)

=

∫
Rn

(f̄n(x1, ..., xn)Dj1(xπ−1(1)) · · ·Djn(xπ−1(n)))dµ
n(x1, ..., xn)

=

∫
Rn

(f̄n(x1, ..., xn)Djπ(1)
(x1) · · ·Djπ(n)

(xn))dµ
n(x1, ..., xn)

= αjπ(1),...,jπ(n)
,

which means that αj1,...,jn is symmetric.

We consider the case n = 1 and J = N. By using the finite additivity of I1 we get
that

∑
j∈J

αjI1(Dj ⊗ 1(0,1]) =L2 − lim
L→∞

L∑
j=1

αjI1(Dj ⊗ 1(0,1])

=L2 − lim
L→∞

I1

( L∑
j=1

αjDj ⊗ 1(0,1]

)
.



38

From the fact that
∑L

j=1 αjDj −→
L→∞

∑
j∈J αjDj = f1 in L2(R × (0, 1], µ ⊗ λ), we

get that

∑
j∈J

αjI1(Dj ⊗ 1(0,1]) = I1(f11(0,1]).

Now we investigate the case n ∈ N. Here we assume that j1 ≤ ... ≤ jn and
k1 ≤ ... ≤ kn are different, i.e. there exists l ∈ {1, ..., n} such that jl ̸= kl. Now by ap-
plying the polarization formula, which states that ab = 1

4
[(a+b)2−(a−b)2] for a, b ∈ R,

and the isometry from Section 4, which gives us ∥In(f̃n)∥2L2(FX) =
√
n!∥f̃n∥2Ln

2
, we get

for symmetric functions f̃ , g̃ ∈ L2(Rn, µn) that

EIn(f̃n)In(g̃n) =
1

4
E
[
[In(f̃n) + In(g̃n)]

2 − [In(f̃n)− In(g̃n)]2
]

=
1

4

[
E[In(f̃n + g̃n)]

2 − E[In(f̃n − g̃n)]2
]

=
1

4
n!
[ ∫

R
· · ·

∫
R
(f̃n + g̃n)

2dµn(x1, ..., xn)

−
∫
R
· · ·

∫
R
(f̃n − g̃n)2dµn(x1, ..., xn)

]
=
n!

4

[ ∫
R
· · ·

∫
R
(f̃n + g̃n)

2 − (f̃n − g̃n)2dµn(x1, ..., xn)
]

=
n!

4

∫
R
· · ·

∫
R
4f̃ng̃ndµ

n(x1, ..., xn)

=n!

∫
R
· · ·

∫
R
f̃ng̃ndµ

n(x1, ..., xn).

By using this property, we get that

EIn

(
Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1]

)
In

(
Dk1 ⊗ · · · ⊗Dkn ⊗ 1⊗n(0,1]

)
=EIn

(
(Dj1 ⊗ · · · ⊗Djn)

s ⊗ 1⊗n(0,1]

)
In

(
(Dk1 ⊗ · · · ⊗Dkn)

s ⊗ 1⊗n(0,1]

)
=n!

∫
R
· · ·

∫
R
(Dj1 ⊗ · · · ⊗Djn)

s(Dk1 ⊗ · · · ⊗Dkn)
sdµn(x1, ..., xn)

=n!
1

n!

1

n!

∑
π∈Sn

∑
σ∈Sn

∫
R
· · ·

∫
R
Djπ(1)

· · ·Djπ(n)
Dkσ(1)

· · ·Dkσ(n)
dµn(x1, ..., xn),
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in which

∫
R
· · ·

∫
R
Djπ(1)

· · ·Djπ(n)
Dkσ(1)

· · ·Dkσ(n)
dµn(x1, ..., xn) =

n∏
l=1

∫
R
Djπ(l)

Dkσ(l)
dµ.

Here we note that when jπ(l) ̸= kσ(l), we have that
∫
RDjπ(l)

Dkσ(l)
dµ = 0. Since

j1 ≤ ... ≤ jn and k1 ≤ ... ≤ kn are different we get that at least one factor in∏n
l=1

∫
RDjπ(l)

Dkσ(l)
dµ is equal to 0. This gives us that

EIn

(
Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1]

)
In

(
Dk1 ⊗ · · · ⊗Dkn ⊗ 1⊗n(0,1]

)
= 0.

From here we get that

In(f̄n1
⊗n
(0,1]) =L2

In

( ∑
(j1,...,jn)∈Jn

(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])

×
∫
Rn

(f̄nDj1 · · ·Djn)dµ
n(x1, ..., xn)

)
=In

( ∑
(j1,...,jn)∈Jn

(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])αj1,...,jn

)
=

∑
(j1,...,jn)∈Jn

In(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])αj1,...,jn

=
∑

j1≤...≤jn

κj1,...,jnαj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])

where κj1,...,jn is the number of different orderings.

This decomposition together with Theorem 4.6 gives us that for F ∈ L2(FX) we
have an orthogonal decomposition of the form

F =EF +
∞∑
n=1

∑
j1,...,jn∈Jn

αj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])

=EF +
∞∑
n=1

∑
j1≤...≤jn∈Jn

κj1,...,jnαj1,...,jnIn(Dj1 ⊗ · · · ⊗Djn ⊗ 1⊗n(0,1])

□
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6. Connections to compensated-covariation stable families of martingales

Di Tella and Engelbert show in their article [5], that a version of the chaotic repre-
sentation property, formulated using iterated integrals, applies on certain families of
square integrable martingales. They introduce the notion of compensated-covariation
stability of these families and use it as a requirement for the families they define the
CRP on. Their main theorem ([5], Theorem 5.8, page 20) is a more general result than
the chaotic representation property for the Teugels martingales, explored by Nualart
and Schoutens. After the proof of the main theorem, they use it to prove another
theorem focused on Lévy processes ([5], Theorem 6.8, page 25). This application has
a close resemblance to other decompositions explored in this thesis.

6.1. Compensated-covariation stable families. In this section, just like in the ar-
ticle of Di Tella and Engelbert, we are going to assume a finite time interval [0, T ] for
the square integrable martingales. We start by defining the compensated-covariation
process of square integrable martingales starting at zero X(α), X(β) ∈ {X(α), α ∈ A}:

X(α,β) := [X(α), X(β)]− ⟨X(α), X(β)⟩.

Now we can define the compensated-covariation stability of a family of square
integrable martingales ([5], Definition 4.1, page 12).

Definition 6.1. A family of square integrable martingales X := {X(α), α ∈ A}
is called compensated-covariation stable given that for all α, β ∈ A the compensated-
covariation process X(α,β) belongs to X .

We also note that for α1, ..., αm ∈ A, with m ≥ 0, the process X(α1,...,αm) is defined
recursively by

X(α1,...,αm) := [X(α1,...,αm−1), X(αm)]− ⟨X(α1,...,αm−1), X(αm)⟩.

Also, if X is a compensated-covariation stable family, then X(α1,...,αm) ∈ X for
every α1, ..., αm ∈ A.

We define the family K for X = {X(α), α ∈ A} by

K :=
{ m∏
i=1

X
(αi)
ti , αi ∈ A, ti ∈ [0, T ], i = 1, ...,m;m ≥ 2

}
.
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Now we define what it means for the CRP to hold for a compensated-covariation
stable family ([5], Definition 3.6, page 8).

Definition 6.2. The chaotic representation property (CRP) holds for a compen-
sated-covariation stable family X = {X(α), α ∈ A} on the Hilbert space L2(Ω,F ,P)
if the linear space of terminal variables of iterated integrals from the space of iterated
integrals generated by X is equal to L2(Ω,F ,P).

Now we are prepared to formulate the main result of Di Tella and Engelbert ([5],
Theorem 5.8, page 20):

Theorem 6.3. Let X = {X(α), α ∈ A} be a compensated-covariation stable family
of square integrable martingales. If ⟨X(α), X(β)⟩ is deterministic for every α, β ∈ A
and the family K is a total family in L2(Ω,FX ,P), then the CRP holds for X .

6.2. Application on Lévy processes. We apply Theorem 6.3 on Lévy processes to
see the connection between this theorem and the other decompositions introduced in
this thesis.

From the characteristics of X, given by the Lévy-Itô decomposition, we derive a
measure

µ := σ2δ0 + ν,

where δ0 denotes the Dirac measure in the origin. Now we can introduce the
decomposition for Lévy processes derived from Theorem 6.3 ([5], Theorem 6.8, page
25) using martingales (X(f1), ..., X(fn)), n ≥ 1, introduced in [5] ((39), page 22).

Theorem 6.4. Let X be a Lévy process with the characteristics (β, σ2, ν) and
I = {fn, n ≥ 1} be a complete orthogonal system in L2(µ). Then the associated fam-
ily X = XI has the CRP on L2(Ω,FX ,P) and the following decomposition holds:

L2(Ω,FX ,P) = R
⊕ ∞⊕

n=1

⊕
(j1,...,jn)∈Nn

In(fj1 , ..., fjn),

where In(fj1 , ..., fjn) denotes the linear space of n-fold iterated integral for f1, ..., fn ∈
I, with respect to (X(f1), ..., X(fn)), n ≥ 1.
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[9] Geiss, S.: Gaussian Hilbert spaces. Department of Mathematics, University of Innsbruck, Jan-

uary 11, 2011.
[10] S. Geiss, J. Ylinen: Decoupling on the Wiener Space, Related Besov Spaces, and Applications

to BSDEs. Memoirs of the American Mathematical Society. Number 1335, July, 2021.
[11] S. He, J. Wang, J. Yan: Semimartingale Theory and Stochastic Calculus. Science Press and

CNC Press, Inc. 1992.
[12] Ito, K.: Spectral Type of the Shift Transformation of Differential Processes With Stationary

Increments. Transactions of the American Mathematical Society. Volume 81, Number 2, March,
1956, pp. 253-263.

[13] D. Nualart, W. Schoutens: Chaotic and predictable representations for Lévy processes.
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