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ABSTRACT
The task of looking for optimal allocation of resources in an economy is fraught with
a number of severe restrictions. This is manifested in the complexity of the technical
implementation of the solution even in the case of a low dimension of the problem.
In this paper, we consider two approaches, analytical and numerical, for deriving the
dynamical optimal allocation of resources in a three-sector economy and show that
the use of modern artificial intelligence (AI) technologies such as genetic algorithms
(GA), can be useful for expanding the range of effective tools and new contributions
to this problem.

KEYWORDS
Optimal control; nonlinrear dynamics; economic growth; balanced economy;
genetic algorithms

1. Introduction

Studying the optimal behavior of economic systems with a multi-level structure of
interaction between its elements is a cornerstone task of economic science and an
important component for decision-making in a real economy. The complexity of the
structure and interactions within the economy, as well as external shocks lead to ap-
pearance of complex dynamics in the economic system both locally (in industries) and
at the global level — intersectoral, country-level and world-wide. Particular interest
is the task of analyzing and forecasting economic growth at all mentioned levels and
the associated optimal allocation of resources between sectors of the economy. The re-
lated literature discusses various aspects of this task, primarily economic mechanisms
that generate economic growth and make an impact on it. Starting from the pioneer-
ing work of Solow (Nobel Prize, 1987) [1], who introduced the one-sector model of
economic growth, the new growth theory is an important part of modern economics.
Following main paradigm in this field, Phelps [2] and Uzawa [3] derived the optimal
economic growth rule for the one-sector and two-sector Solow models, respectively.
A great contribution was made by Romer [4], who, among other things, considered
a three-sector economy under the influence of technological progress. Ngai et. al. [5]
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explored the factors affecting structural changes in the economy, as well as the pos-
sibility of balanced economic growth in the face of such changes in a multisectoral
model. Kolemayev [6,7] proposed an optimal rule for the dynamical allocation of la-
bor and investment in a three-sector model, considering the conditions of economic
equilibrium.

Economic growth tends to be uneven across different sectors of the economy. There-
fore, although significant progress has been made in understanding the economic condi-
tions and mechanisms of growth in the economy, from a technical point of view, solving
the dynamical problem of optimal allocation of resources between sectors under con-
ditions of balanced growth remains a challenging task. In this paper, we demonstrate
application of analytical and numerical approaches to a dynamical problem of the op-
timal allocation of resources [6,8], using an example of a three-sector economy. The
analytical approach makes it possible to obtain a closed-form solution to the problem
that satisfies an important economic restriction — the material balance condition. At
the same time, the technical complexity of solution forces us to restrict ourselves to
exploring low-dimensional models and fairly simple functional forms of control vari-
ables. The usage of numerical methods contributes helps to avoid these shortcomings
of the analytical procedure; however, it also leads to the material balance condition
being not satisfied. The pros and cons of each approach are demonstrated using several
numerical experiments with various functional forms of control variables. Thus, both
analytical and numerical approaches face a number of serious limitations.

To overcome these difficulties, new tools are needed, for instance, genetic algorthms
(GAs), which are not sensitive both to the dimension and computational complexity of
the problem and the model functional forms. The goal of a GA is to identify the best
possible solution to a problem by replicating the process of evolution in nature [9]. The
algorithm searches through the space of potential solutions and stores the potential
solutions in a “chromosome-like” data structure. A chromosome in GA represents a
possible solution for the optimization problem [9]. The search for the best solution is
iterated across generations, beginning with a population that is usually random [10].
Several chromosomes from the current generation are chosen based on their fitness and
then modified depending on operators like reproduction, combination, mutation, etc. to
build the new generation in each generation after the capacity of the entire population
has been assessed. The solutions often evolve in a way that causes the population of
solutions to “converge” towards the optimal solution with each generation. We show
how GAs might be used for deriving optimal solution with a wider class of functions
for the control variables and handling the difficulties associated with non-polynomial
computational complexity of the problem. That allows us to refine the optimal solution
and better match the model with real life.

2. Problem statement

We consider a problem of controlling three-sector economy formulated by Kolemayev
[6]. The three sectors are production of raw materials, sector 0; production of invest-
ment goods, sector 1; and production of final consumption goods, sector 2. All three
sectors are using labor (Lj) and capital (Kj) as inputs to production. Labor is per-
fectly mobile across the sectors. Total labor force is growing at the constant rate ν,
and is allocated to the sector j, j = 0, 1, 2, at every point in time. It could be costlessly
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reallocated among the three sectors:

L0(t) + L1(t) + L2(t) = L(t). (1)

Capital, in contrast, is sector specific. Capital in a sector j accumulates due to invest-
ment Ij allocated to this sector, and depreciates with the sector-specific rate µj . If
it is desired to increase capital in a sector, the only way is to increase investment in
this sector. If less capital is needed in a sector, investment could drop below the level
necessary to compensate for depreciation, allowing the stock of capital to decrease over
time. Transferring already installed capital between sectors is, in contrast, impossible:

K̇j = −µjKj + Ij , Kj(0) = K0
j j = 0, 1, 2. (2)

Production functions in all three sectors take the form of Cobb-Douglas function,
with sector-specific productivity levels Aj and sector-specific capital intensities (expo-
nent at the capital) αj :

Xj = Fj(Kj , Lj) = AjK
γj

j L
1−γj

j , (3)

All production in the sector 1, X1, is used for investment in the three sectors of the
economy:

X1(t) = I0(t) + I1(t) + I2(t). (4)

Usage of the raw materials produced in sector 0, X0, is governed by the materials
balance equation:

X0(t) = a0X0(t) + a1X1(t) + a2X2(t). (5)

A share a0 < 1 of the sector 0 production is used by the sector itself; the rest is
demanded by the sectors 1 and 2, proportionally to their outputs. This notation is
equivalent to writing the production function in each sector as the following Leontieff
function F l = min (X0/a1, X1) (in the materials and capital-labor aggregate pair),
with the capital-labor aggregate being the Cobb-Douglas function X1 = Kγ1L1−γ1

described above. It is assumed that some of the materials could remain unused and
could be costlessly disposed of. The economy is controlled by affecting the shares of
labor and investment allocated to each sector at every point in time. While the amount
of allocated labor affects the level of production immediately, investment is reflected
only in the derivative of the sector’s capital, and thus of the sector’s output.

Next, we formulate the problem in per capita units, where sector-specific capitals
(Kj) and outputs (Xj) at each time are divided by the total amount of labor available

at this time: xj = Xj

L , kj = Kj

L . Denoting the shares of total labor allocated to the

sector j as θj =
Lj

L and the shares of investment as sj =
Ij
X1

, the three static constraints
connecting the shares and productions in the sectors could be written as:

θ0 + θ1 + θ2 = 1, (6)

s0 + s1 + s2 = 1, (7)
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(1− a0)x0 − a1x1 − a2x2 ≥ 0. (8)

Similarly, the capital accumulation equations and production functions are written as:

k̇j = − (µj + ν) kj + sjx1, kj(0) =
K0

j

L0
j = 0, 1, 2, (9)

xj = Ajk
αj

j θ
1−αj

j . (10)

Here, µj+ν is the depreciation rate of per capita capital. With ν positive, new workers
are born at each moment in time; in order to supply them with the same amount of
capital as the already living workers, extra investment equal to νkj is needed.

With these changes in notation, the optimization problem could be written as max-
imizing the consumer’s per capita welfare:

max
sj ,θj

∫ T

0
x2(t)e

−δtdt, j = 0, 1, 2, (11)

i.e. discounted consumption (δ > 0) integrated over the interval [0, T ], by controlling
the time-varying labor and investment shares θj and sj . Relations (6)–(10) are the
constraints of this problem. By economic logic, all six shares must be positive. This,
together with positive initial capital, guarantees non-negative values of capital and
output at all points in time.

Next, we consider two ways to solve of the optimal control problem: analytical and
numerical approaches. In addition, we explain advantages of GAs in overcoming a
number difficulties of solving.

2.1. Analytical solution

We use the Pontryagin maximum principle. Let us write Hamiltonian:

H = e−δtx2 +

2∑
j=0

γj (− (µj + ν) kj + sjx1)

+ ξ (1− (θ0 + θ1 + θ2)) + η (1− (s0 + s1 + s2))

+ ζ ((1− a0)x0 − a1x1 − a2x2) ,

(12)

where γj are co-state variables (price of the capital in j sector), ξ, η, ζ are multipliers.
From the first order conditions (FOCs):

∂H
∂θj

= 0,
∂H
∂sj

= 0, γ̇j = − ∂H
∂kj

. (13)

and after making the following assumptions:

µ0 = µ1 = µ2, θ1 = b1t+ b0, s1 = (b1t+ b0)
α1 , (14)
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we obtain the following:

k0(t) =
(1− α1)α0

(1− α0)α1

θ0
θ1

k1(t), k2(t) =
(1− α1)α2

(1− α2)α1

θ2
θ1

k1(t), (15)

where k1(t) =

(
A1((µ1+ν)(1−α1)(b1t+b0)−b0)

(µ1+ν)2(1−α1)

) 1

1−α1

is solution of (9) for j = 1 and

k1(0) = k01; γ0 = γ1 = γ2 = γ = η =
(1−a0)

∂x2
∂θ2

(
∂x0
∂θ0

+a1
∂x1
∂θ1

)
∂x1
∂θ1

(
(1−a0)

∂x0
∂θ0

+a2
∂x2
∂θ2

) ; ξ =
(1−a0)

∂x0
∂θ0

∂x2
∂θ2

(1−a0)
∂x0
∂θ0

+a2
∂x2
∂θ2

;

ζ =
∂x2
∂θ2

(1−a0)
∂x0
∂θ0

+a2
∂x2
∂θ2

; b0, b1 are optimal parameters. Using (6) and materials balance

(8), when the LHS of (8) equals to 0, we can get the optimal allocation of labor shares:

θ2 =
(1− a0)A0Γ0 (1− θ1)

(
k1(t)
θ1

)α0

− a1A1
k1(t)

θ
α0−1
1

(1− a0)A0Γ0

(
k1(t)
θ1

)α0

+ a2A2Γ2

(
k1(t)
θ1

)α2
, (16)

θ0 = 1− θ1 − θ2, (17)

where Γ0 =
(
(1−α1)α0

(1−α0)α1

)α2

, Γ2 =
(
(1−α1)α2

(1−α2)α1

)α2

. Using (9) for j = 0, 2 we can obtain the

the optimal allocation of investment shares:

s2 =
Γ

1

α2

2

θ1

(
Γ

1

α0

0

(
θ̇0θ1 − θ0θ̇1

)
+ Γ

1

α2

2

(
θ̇2θ1 − θ2θ̇1

)) ·

[(
Γ

1

α0

0 θ2

(
θ̇0θ1 − θ0θ̇1

)
−
(
Γ

1

α0

0 θ0 + θ1

)(
θ̇2θ1 − θ2θ̇1

))
s1 + θ1

(
θ̇2θ1 − θ2θ̇1

)]
,

s0 = 1− s1 − s2.
(18)

We show the obtained result (see Figs. 1-3) using the following economically justified
parameter values:

δ = 0.0015;

ν = 0.01; L = 10; T = 10;

µ0 = 0.1; µ1 = 0.1; µ2 = 0.1;

K0
0 = 142.68; K0

1 = 54.48; K0
2 = 213.46; (19)

A0 = 1.1; A1 = 1.15; A2 = 1;

α0 = 1/4; α1 = 2/5; α2 = 1/2;

a0 = 0.2; a1 = 0.45; a2 = 0.35.
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Figure 1. Analytical solution: capital (Kj) and output (Xj)
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Figure 2. Analytical solution: labor (Lj) and investment (Ij).
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Figure 3. Analytical solution: share of the labor (θj) and investment (sj).

As we can see, from a mathematical point of view, the optimal dynamical allocation
of resources encounters restrictions on functional forms of control variables θj and sj ,
caused, on the one hand, by the considered economic logic of the problem, and, on the
other hand, by the admissible dimension of the economy. Next, we show how to take
into account these restrictions by numerical approach.

2.2. Numerical solution

It is very difficult to completely solve an optimal problem in which all control variables
are governed only by optimality conditions. In particular, this problem entails looking
for a stable manifold of the saddle-type stationary point in a 6D space. Therefore, we
resorted to a numerical solution of the problem, postulating specific functional forms
of some control variables θj and sj , and generally disregarding the material balance
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equation. We only require that the excess materials stay non-negative throughout the
solution.

In order not to consider constraints (6) and (7) directly, we introduce the
parametrization:

θ0 = (cosϕ1 sinϕ2)
2

θ1 = (sinϕ1 sinϕ2)
2

θ2 = (cosϕ2)
2


s0 = (cosϕ3 sinϕ4)

2

s1 = (sinϕ3 sinϕ4)
2

s2 = (cosϕ4)
2

(20)

Then (11) could be written as

max
ϕj

∫ T

0
x2e

−δtdt, (21)

where ϕj ∈ [0, π/2], j = 1, 4.
We use numerical simulations for the following economically justified parameter

values:

δ = 0.0015;

ν = 0.01; L = 10; T = 10;

µ0 = 0.1; µ1 = 0.3; µ2 = 0.1;

K0
0 = 3; K0

1 = 1; K0
2 = 1; (22)

A0 = 1.1; A1 = 1.15; A2 = 1;

α0 = 1/4; α1 = 2/5; α2 = 1/2;

a0 = 0.2; a1 = 0.45; a2 = 0.35.

Next, we demonstrate of solving the optimal control problem by two numerical exper-
iments making some assumptions for ϕj .

2.3. Numerical experiments

First, suppose ϕj = const, ϕj ∈ [0, π/2]; then θj and sj are constant. In Figs. 4-5, the
results of numerical simulations are presented.
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Figure 4. First numerical experiment: capital (Kj) and output (Xj).
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Figure 5. First numerical experiment: quality of the control.

Second, suppose ϕj = ϕj1 + (ϕj2 − ϕj1)
t
T , ϕji ∈ [0, π/2], j = 1, 4, i = 1, 2; then θj

and sj are time-varying functions. This corresponds to a more realistic situation in
the economy under consideration. The optimal capital trajectories, presented in Fig. 6,
exhibit the basic feature of the solution implied by the finite nature of the problem. At
time T , the remaining capital represents a pure wasted resource. That is why the total
amount of capital accumulated in this economy increases from the initial value of 5 to
≈ 9.5 around t = 6, and declines to ≈ 6.25 at t = T = 10. The selected initial point
that we have selected has too much K1; the stock of capital in the sector 1, therefore, is
continuously de-accumulated over time. Decline of K1 is achieved by a significant drop
of the share of labor dedicated to sector 1, θ1 (Fig. 7(a)). Share of investment going
to the sector 1, s1, continues to grow over time (Fig. 7(b)); however, this still leads
to declining production of investment goods, X1 (Fig. 6(b)). The objective function
is given as integral over discounted consumption X2. It may explain a decline of X2

in the latter part of the sample because a consumption at t = T = 10 is valued
by the planner less than consumption at t = 6, for instance. As, in contrast to the
X1, X2 is generally growing over time, it is not surprising that the behavior of θ2
is opposite to the of θ1: θ2 is growing continuously. Investment into sector 2, on the
other hand, is declining over time. This is explained by the fact that in our calibration
capital intensity of the consumer goods sector is very high, leading to high capital
productivity. In addition, the desire to “eat up” most of the capital by t = T = 10
forces the agents to continuously decrease investments into the sector 2, leading to a
significant drop of K2 by the time economy ends (Fig. 6(a)). The sector 0 of materials
production plays a function of supporting consumer goods. Therefore, X0 is generally
behaving in a similar fashion as X2, first increasing and then declining. As fluctuations
in the level of X0 are significantly lower than those in X2, labor allocation θ0 is also
less volatile than θ2. In Fig. 8, dynamics of the labor and investment is shown. Finally,
note that the material balance is fluctuating in positive territory (Fig. 9(b)), i.e. LHS
of (8) is more than 0.

It should be noted that the numerical optimization methods do not always allow
solving the problem (9)–(11) in a general formulation for a balanced economy. In ad-
dition, the brute-force numerical solving of this problem is becoming very complex as
we try to improve the accuracy. This can be illustrated as follows — if we approxi-
mate the function s(t) piecewise-constantly, discretizing both the time and level by
n intervals in (0, T ), then the number of combinations grows with n as power n. As
the problem is non-polynomial complex, checking all possible variants takes too long
time so a heuristic suboptimal strategy is to be used instead. We choose GAs that
are often used in such a case. Moreover, we turn to this tool of artificial intelligence
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Figure 6. Second numerical experiment: capital (Kj) and output (Xj).
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Figure 7. Second numerical experiment: share of the labor (θj) and investment (sj).
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Figure 8. Second numerical experiment: labor (Lj) and investment (Ij).
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Figure 9. Second numerical experiment: quality of the control.
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technologies to use, among other things, additional opportunities to refine the optimal
solution under binding condition of the material balance.

2.4. Genetic algorithms: additional advantages

The decision variables of the problem described in (11) are θj and sj for j = 0, 1, 2.
The choice of θj and sj can be done in different ways, for example they can be assigned
to be constant in the simplest case. Depending on how close we expect to come to the
optimal solution, the functions θj and sj can be chosen to be more and more complex,
for example, in the form of polynomial expansion. Thus, we can look for the solution
in the form of quadratic polynomials:

θj(t) = bj + cjt+ djt
2,

sj(t) = ej + fjt+ gjt
2.

(23)

Here, a real-value coded chromosome is used. When high precision is required and
the search scope is large, real-value coding is frequently utilized because binary coding
would be inefficient [11]. The chromosome is defined as a vector consisting of the below
variables (bj cj dj ej fj gj), where j = 0, 1, 2. There are 18 genes in the chromosome,
respectively. In general, the initial solutions are chosen randomly and have a significant
impact on the success of genetic algorithms. As the initial solution bj , cj , dj , ej , fj and
gj for j = 0, 1, 2 are randomly selected from the range [−∞,+∞], so the function of
θj(t) and sj(t) will be defined by random generated genes. And then, equations (9) and
(10) are integrated numerically to get the consumption as the function of time. Finally,
the fitness function of the initial solution can be calculated and assessed. Normally, in
genetic algorithm, the objective function is employed as a fitness function. It should
be noticed that when the constraints (6), (7), or (8) are not met, the solutions are
infeasible. Therefore, the following penalty functions have been introduced

PL(1) =

√
(1− (θ0 + θ1 + θ2))

2,

PL(2) =

√
(1− (s0 + s1 + s2))

2,

PL(3) = max{0, − ((1− a0)x0 − a1x1 − a2x2)}.

(24)

For each of the penalty functions, a weight value can be defined in order to highlight
which of the constraints ((6), (7) or (8)) are more crucial for us. During the search
process, the algorithm tries to set the penalty values equal to zero to optimize the
objective function. If we denote the objective function (11) as obj (θj(t), sj(t)), the
fitness function takes the following form:

fitness (θj(t), sj(t)) = obj (θj(t), sj(t))− w1PL(1)− w2PL(2)− w3PL(3). (25)

Depending on the fitness values, the parent chromosomes must then be chosen for
the subsequent iterations so that GA operators can be applied to create the offspring.
When no better solutions are discovered after a predetermined number of iterations,
the iterations should be stopped.
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3. Conclusion

In this paper, we consider various techniques for solving the problem of dynamical
optimal allocation of resources in a three-sector economy. At the beginning, we pre-
sented analytical solution. Then, we used numerical optimization method and GAs to
obtain numerical solution and to demonstrate rich opportunities of modern artificial
intelligence techniques which could facilitate deriving the optimal solution. We got the
following results. Firstly, an analytical solution for the problem of optimal allocation
of resources in the three-sector balanced economy was obtained using the optimal con-
trol method. The analytical approach has some constraints, in particular, a special
class of functions is chosen, and special assumptions are made regarding the model
parameters. Secondly, a numerical experiment was carried out for two types of control
functions and the optimal allocation of resources was obtained using a numerical opti-
mization algorithm. In this case, an unbalanced economy was considered. We believe
that the usage of GA can help to overcome a number of difficulties associated with the
functional form of model’s control variables, such as their non-linearity, dimensional-
ity, and need to strictly adhere to the condition of material balance among economic
sectors.

4. Future challenges

As already mentioned, both approaches implemented at this moment are fraught with
difficulties. Solving fully the optimal control problem as T → ∞ implies looking for a
stable manifold of the stationary point. Numerical solution which postulates arbitrary
parametrized nonlinear function as a trajectory of one or more control variables and
then attempts to optimize over the parameters could miss the truly optimal trajectory,
if the assumed class of function cannot approximate the optimal solution. We next plan
to solve for the optimal trajectory in the optimal control problem as T → ∞ using
the method of backward integration [12]. At the same time, we want to utilize neural
networks in order to find the best nonlinear function of the control variables on [0, T ]
interval [13,14]. Given that neural networks are capable of fitting a very wide class of
nonlinear functions and are not restricted to a few parameters, we hope that such a
solution would resemble the true optimum even more. Then, by letting T in the neural
network method above as large as possible, we plan to compare the optimal control
solution which is valid at infinite horizon with the initial phase of the neural network
solution. As turnpike theorems in economics show, the finite time problem’s solution
should resemble an infinite horizon solution while the model time is sufficiently far
from the horizon T . Finally, to expand the range of tools and to compare the effec-
tiveness of the techniques used, one can additionally consider applying evolutionary
computation [15–18] for maximizing welfare as a function of parameters which index
control functions θj and sj in various classes of functions, and the optimizing over
feasible indexing parameter regions.
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