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1. Introduction. Let K be a number field with ring of integers OK , discrimi-
nant DK , and Dedekind zeta function ζK . Let I +

K be the semigroup of nonzero
ideals of OK , let N : I +

K → N be the norm, let μK : I +
K → Z be the Möbius

function, and let ϕK : I +
K → N be the Euler function of K given by1

∀ a ∈ I +
K , φK(a) = Card

(
(OK/a)×)

= N(a)
∏

p|a

(
1 − 1

N(p)

)

=
∑

b|a
μK(b) N(ab−1) . (1)

For every a ∈ OK � {0}, we define N(a) = N(aOK), μK(a) = μK(aOK), and
ϕK(a) = ϕK(aOK). The functions O(·) in this paper depend only on K. For
every m ∈ I +

K , let

cm = N(m)
∏

p|m

(
1 +

1
N(p)

)
. (2)

The classical Mertens formula gives an asymptotic expansion on the average
of ϕQ, and has an extension to general number fields, see for instance Theorem

1See, for instance, [3, Sect. 2]; as usual, p ranges over prime ideals in I+
K .
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2.1. When K has a trivial class group and a finite unit group, every nonzero
ideal a is of the form aOK with |O×

K | choices of a ∈ OK � {0}. The average of
ϕK can then be rewritten as a sum over elements of OK � {0} instead of I +

K .
Recall that by Dirichlet’s unit theorem, K has a finite unit group if and only if
K = Q or K is imaginary quadratic. We assume in the remaining part of this
introduction that K is imaginary quadratic and that OK is principal. Fixing
any embedding of K into C, this allows us to state (and prove in Section 3)
a uniform version in angular sectors and with congruences of the Mertens
formula on the average of the Euler function. For all z ∈ C

×, θ ∈ ]0, 2π], and
R ≥ 0, we consider the truncated angular sector

C(z, θ,R) =
{

ρ eitz : t ∈
]

− θ

2
,
θ

2

]
, 0 < ρ ≤ R

|z|
}

. (3)

Theorem 1.1. For all m ∈ I +
K , z ∈ C

×, and θ ∈ ]0, 2π], as x → +∞, we have
∑

a∈m∩C(z,θ,x)

ϕK(a) =
θ

2
√|DK | ζK(2) cm

x4 + O(x3).

We also give a uniform asymptotic formula for the sum in angular sectors in
C of angle θ of the products of two shifted Euler functions with congruences.
When K = Q (the sectorial restriction is then meaningless), this formula
is due to Mirsky [1, Thm. 9, Eq. (30)] without congruences, and to Fouvry
[4, Appendix] with congruences. For simplicity, we give in this introduction a
version without congruences and without an error term, see Section 4, Theorem
4.1 for the general statement.

Theorem 1.2. For all z ∈ C
×, θ ∈ ]0, 2π], and k ∈ OK , as x → +∞, we have

∑

a∈OK∩C(z,θ,x)
a�=−k

ϕK(a)ϕK(a + k)

∼ θ

3
√|DK |

∏

p

(
1 − 2

N(p)2

) ∏

p | kOK

(
1 +

1
N(p)(N(p)2 − 2)

)
x6.

Theorems 1.1 and 1.2 are used in [5] in order to study the correlations of
pairs of complex logarithms of Z-lattice points in the complex line at various
scalings, when the weights are defined by the Euler function, proving the ex-
istence of pair correlation functions. We prove in op. cit. that at the linear
scaling, the pair correlations exhibit level repulsion, as it sometimes occurs in
statistical physics. A geometric application is given in op. cit. to the pair corre-
lation of the lengths of common perpendicular geodesic arcs from the maximal
Margulis cusp neighborhood to itself in the Bianchi orbifolds PSL2(OK)\H

3
R.

2. A Mertens formula with congruences for number fields. Let K be any
number field, with degree nK , number of real places r1, number of complex
places 2 r2, regulator RK , class number hK , number of roots of unity ωK , and
let

ρK =
2r1 (2π)r2 RK hK

ωK

√|DK | .
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Let us give a version with congruences of the Mertens formula for number
fields, see [3, Eq. (3)] when m = OK (with a weaker error term). We provide a
proof for lack of reference since its arguments will be useful for our next result.
The next statement is valid when nK = 1 up to replacing the error term by
O(x ln(2x)), see [4, Lemma 4.2].

Theorem 2.1. For every m ∈ I +
K , if nK ≥ 2, then as x → +∞, we have

∑

a∈I +
K : N(a)≤x, m|a

ϕK(a) =
ρK

2 ζK(2) cm
x2 + O

(
x

2− 1
nK

)
.

Proof. Recall (see for instance [2, Theorem 5]) that, as y → +∞, we have

Card{a ∈ I +
K : N(a) ≤ y} = ρK y + O

(
y
1− 1

nK

)
. (4)

By Abel’s summation formula, as y → +∞, we have
∑

d ∈I +
K : N(d)≤y

N(d) =
∑

1≤n≤y

nCard{d ∈ I+
K : N(d) = n} =

ρK

2
y2 +O

(
y
2− 1

nK

)
.

(5)

Furthermore, by Equation (4), we have Card{a ∈ I +
K : N(a) = y} = O(y1− 1

nK ).
This formula implies, since N((b,m)) ≤ N(m), that

∣
∣
∣

∑

b∈I +
K : N(b)≥x

μK(b)
N((b,m))
N(b)2

∣
∣
∣ = O

⎛

⎝N(m)
∑

n≥x

n
1− 1

nK

n2

⎞

⎠

= O
(
N(m) x

− 1
nK

)
. (6)

Let us denote by Sm(x) the sum on the left hand side in the statement of
Theorem 2.1. Note that by the Gauss lemma, for all m, b, c ∈ I +

K , we have
m | bc if and only if m(m, b)−1 | c. Then by Equation (1), by the change
of variable c = m(m, b)−1d, by the complete multiplicativity of the norm, by
Equation (5) with y = N((b,m))x

N(b) N(m) , since N((b,m)) ≤ N(m), and by Equation (6),
we have

Sm(x) =
∑

a∈I +
K : N(a)≤x, m|a

∑

b,c∈I +
K : bc=a

μK(b) N(c)

=
∑

b∈I +
K : N(b)≤x

μK(b)
∑

c∈I +
K : N(c)≤ x

N(b) , m|bc
N(c)

=
∑

b∈I +
K : N(b)≤x

μK(b)
∑

d∈I +
K : N(d)≤ N((b,m))x

N(b) N(m)

N(m)
N((b,m))

N(d)

=

⎛

⎝
∑

b∈I +
K : N(b)≤x

μK(b)
N((b,m))
N(b)2

⎞

⎠ ρK

2 N(m)
x2 + O

(
x

2− 1
nK

)

=

⎛

⎝
∑

b∈I +
K

μK(b)
N((b,m))
N(b)2

⎞

⎠ ρK

2 N(m)
x2 + O

(
x

2− 1
nK

)
. (7)
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By decomposing a nonzero integral ideal b into powers of prime ideals, by the
definition of the Möbius function, and by the Euler product formula for the
Dedekind zeta function, we have

∑

b∈I +
K

μK(b)
N((b,m))
N(b)2

=
∏

p �m

(
1 − 1

N(p)2

) ∏

p |m

(
1 − 1

N(p)

)

=
1

ζK(2)

∏

p |m

N(p)
1 + N(p)

.

Equations (7) and (2) hence imply Theorem 2.1. �

3. A sectorial Mertens formula. Assume in the remaining part of this paper
that K is imaginary quadratic (r1 = 0, r2 = 1), seen as a subfield of C, and
that OK is principal (hK = 1) or equivalently factorial (UFD).

Given a Z-lattice �Λ in the Euclidean space C (that is, a discrete (free
abelian) subgroup of (C,+) generating C as an R-vector space), we denote by
F �Λ any fundamental parallelogram for �Λ with smallest possible diameter, and
by covol �Λ = Vol(C/�Λ) and diam �Λ the area and diameter of F �Λ. Note that
every element m ∈ I +

K is a Z-lattice in C with

covolm = N(m)covolOK
= N(m)

√
|DK |

2 and

diamm =
√

N(m) diamOK
= O

(√
N(m)

)
(8)

since m, being principal, is the image of OK under a similitude of ratio
√

N(m).
With the notation of Equation (3), note that for every z′ ∈ C

×, we have

z′C(z, θ,R) = C(zz′, θ, R |z′| ) . (9)

Proof of Theorem 1.1. Let z ∈ C
×, θ ∈ ]0, 2π], and y ≥ 1. By a sector version

of the Gauss counting argument,2 since Area(C(z, θ, y)) = θ
2 y2 and by Formula

(8), we have

Card (OK ∩ C(z, θ, y)) =
Area(C(z, θ, y))

covolOK

+ O
(

diamOK
(y + diamOK

)
covolOK

)

=
θ

√|DK | y2 + O(y) .

2This proof takes into account the varying lattices as needed in the proof of Lemma 4.5.

For every ε > 0, and A ⊂ C, let NεA be the closed ε-neighbourhood of A in C. Let �Λ
be a Z-lattice in C, λ0 ∈ C, Λ = λ0 + �Λ, and δ = diam �Λ. Let C = C(z, θ, y) and Aδ =

Area(Nδ(∂C)). If y ≤ δ, then Aδ = O(δ2) since C is contained in a disc of radius δ.
If y ≥ δ, then ∂C is contained in the union of a circle of radius y and two segments
of length y, hence Aδ ≤ π(y + δ)2 − π(y − δ)2 + 2(y + 2δ)(2δ) = O(δy). Therefore, if
Az,θ,y = Λ ∩ C and Bz,θ,y =

⋃
a∈Az,θ,y

a + F �Λ, then Area(Bz,θ,y) = Card Az,θ,y AreaF �Λ
and

∣
∣ Area(Bz,θ,y)−Area C

∣
∣ ≤ Aδ = O(δ(y+δ)). Thus, Card Az,θ,y = Area C

covol �Λ
+O

(
δ (y+δ)
covol �Λ

)

for a function O(·) that is uniform in �Λ and λ0.
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Since the map z′ �→ |z′|2 = N(z′) takes only integral values on OK , by Abel’s
summation formula, as y → +∞, we have

∑

d∈OK∩C(z,θ,y)

|d|2 =
∑

1≤n≤y2

n Card{d ∈ OK ∩ C(z, θ, y) : |d|2 = n}

=
θ

2
√|DK | y4 + O(y3) . (10)

For all x ≥ 1 and b ∈ I +
K , let us fix b,m, (b,m) ∈ OK � {0} such that

b = bOK , m = mOK , and (b,m) = (b,m)OK . Since for every c ∈ OK � {0},
we have m | bc if and only if m

(b,m) | c, by the change of variable c = m
(b,m) d, by

Equation (9) and by Equation (10) applied with y = x|(b,m)|
|m| |b| , if

Sb =
∑

c∈I +
K , a∈m∩C(z,θ,x): bc=aOK

N(c),

we have

Sb =
∑

c ∈ O K�{0}, a∈m∩C(z,θ,x) : bc=a

|c|2 =
∑

c ∈ O K�{0} : bc ∈ C(z,θ,x), m | bc

|c|2

=
∑

d ∈ O K�{0} : d ∈ C
(

z(b,m)
m b

, θ, x|(b,m)|
|m| |b|

)

N(m)

N((b,m))
|d|2

=
θ N((b,m))

2
√|DK | N(m) N(b)2

x4 +O

(
x3

N(b)3/2

)
.

Let us denote by Sm,z,θ(x) the sum on the left hand side in the statement of
Theorem 1.1. Then by Equation (1), we have

Sm,z,θ(x) =
∑

a∈m∩C(z,θ,x)

ϕK(aOK) =
∑

a∈m∩C(z,θ,x)

∑

b,c∈I +
K : bc=aOK

μK(b)N(c)

=
∑

b∈I +
K : N(b)≤x2

μK(b) Sb

=

⎛

⎝
∑

b∈I +
K : N(b)≤x2

μK(b)
N((b,m))
N(b)2

⎞

⎠ θ

2
√|DK | N(m)

x4 + O(x3) .

The proof then proceeds exactly as in the proof of Theorem 2.1. �

4. A sectorial Mirsky formula. We keep assuming that K is imaginary qua-
dratic with OK principal. We now give a uniform asymptotic formula for the
sum in angular sectors of the products of shifted Euler functions with congru-
ences. For all m ∈ I +

K , z ∈ C
×, θ ∈ ]0, 2π], k ∈ OK , and x ≥ 1, let

Sm,z,θ,k(x) =
∑

a∈m∩C(z,θ,x) : a�=−k

ϕK(a)ϕK(a + k) . (11)
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Theorem 4.1. There exists a constant CK > 0 such that for all m ∈ I +
K and

k ∈ OK , there exists cm,k ∈ ]0, 1[ such that for all z ∈ C
×, θ ∈ ]0, 2π], and

x ≥ 1, we have∣
∣
∣ Sm,z,θ,k(x) − θ cm,k

3
√|DK | x6

∣
∣
∣

≤ CK

(
(1 +

√
N(k) )x5 + N(k)x4 + N(k) ln(N(k))x2 ln(2x)

)
.

We will prove Theorem 4.1 at the end of this section after giving a number
of lemmas required for the proof. We fix k ∈ OK and m = mOK ∈ I +

K , and
we define h = kOK , which is a possibly zero integral ideal. We start by giving
the first definition and a simpler formula for the constant cm,k that appears in
the statement of Theorem 4.1. We define

cm,k =
∑

b,c∈I +
K

(b,c) | h, (c(b,m),m(b,c)) | hb

μK(b)μK(c)
N ((c(b,m), m(b, c)))
N(b)2 N(c)2 N(m) (12)

and c′
m = inf

k∈OK

cm,k.

Lemma 4.2. The series in Equation (12) defining cm,k converges absolutely.
We have cm,k < 1 and c′

m > 0. Furthermore, we have

cm,k =
1

N(m)

∏

p
(p,m) | h

(
1 − N((p,m))

N(p)2

) ∏

p

(
1 − κm,h(p) κ′

h(p) N((p,m))
N(p)2

)
,

(13)
where

κm,h(p) =
{(

1 − N((p,m))
N(p)2

)−1

if (p,m) | h,
1 otherwise,

and κ′
h(p) =

{
1 − 1

N(p) if p | h,
1 otherwise.

(14)

In the special case m = OK , Equation (13) becomes

cOK ,k =
∏

p

(
1 − 1

N(p)2

)∏

p | h

⎛

⎜
⎝1 −

(
1 − 1

N(p)2

)−1 (
1 − 1

N(p)

)

N(p)2

⎞

⎟
⎠

∏

p � h

⎛

⎜
⎝1 −

(
1 − 1

N(p)2

)−1

N(p)2

⎞

⎟
⎠

=
∏

p

(
1 − 1

N(p)2

)∏

p | h

(
1 − N(p) − 1

N(p)(N(p)2 − 1)

)

×
∏

p

(
1 − 1

N(p)2 − 1

)∏

p | h

(
1 − 1

N(p)2 − 1

)−1

=
∏

p

(
1 − 2

N(p)2

)∏

p | h

(
1 +

1
N(p)(N(p)2 − 2)

)
. (15)
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Theorem 1.2 in the introduction follows from Theorem 4.1 and the above
computation.

Proof. Let us prove that uniformly in x ≥ 1, we have
∑

b,c∈I +
K : max(N(b),N(c))≥x,

(b,c) | h, (c(b,m),m(b,c)) | hb

N((c(b,m), m(b, c)))
N(b)2 N(c)2 N(m)

= O
(

1√
x

)
. (16)

This implies, by taking x = 1, that the first claim of Lemma 4.2 is satisfied
since the Möbius function has values in {0,±1}. Let us denote by Zm,h(x) the
above sum. Since N((c(b,m), m(b, c))) ≤ N(m(b, c)), Equation (16) follows from
the inequalities

Zm,h(x) ≤
∑

b,c∈I +
K : max(N(b),N(c))≥x

N((b, c))
N(b)2 N(c)2

≤
∑

b,c∈I +
K : N(b)≥x

N((b, c))
N(b)2 N(c)2

+
∑

b,c∈I +
K : N(c)≥x

N((b, c))
N(b)2 N(c)2

= 2
∑

b,c∈I +
K : N(b)≥x

N((b, c))
N(b)2 N(c)2

≤ 2
∑

a,b′,c′∈I +
K

N(a) N(b′)≥x

N(a)
N(ab′)2 N(ac′)2

= 2
∑

c′∈I +
K

1
N(c′)2

∑

a∈I +
K

1
N(a)5/2

∑

b′∈I +
K

N(a) N(b′)≥x

1
N(b′)3/2 (N(a) N(b′))1/2

≤ 2 ζK(2) ζK

(
5
2

)
ζK

(
3
2

)
1√
x

.

The proof of Equation (13) that we now give is similar to Fouvry’s proof
of Equation (21) in [4, Appendix].

For every b ∈ I +
K , let χb : I +

K → {0, 1} be the characteristic function of the
set of elements c ∈ I +

K such that (c, b) | h. Let us define a map ψb : I +
K → I +

K

by

ψb : c �→
(
c,

m

(b,m)
(b, c)

)
. (17)

Note that the assertion (c(b,m),m(b, c)) | b h is equivalent to ψb(c) | b
(b,m) h.

For every b ∈ I +
K , let χ∗

b : I +
K → {0, 1} be the characteristic function of the

set of elements c ∈ I +
K such that the above divisibility assertion is satisfied.

Let us finally define a map C∗ : I +
K → R (which depends on m and h) by

C∗ : b �→
∑

c∈I +
K

μK(c)
N(c)2

χb(c) χ∗
b(c) N(ψb(c)) . (18)

By the absolute convergence property, Equation (12) then becomes

cm,k =
1

N(m)

∑

b∈I +
K

μK(b)
N(b)2

N((b,m)) C∗(b) . (19)
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In order to transform the series C∗(b) defined by Formula (18) into an Eulerian
product and in order to analyse it, we will use the following two lemmas.

Lemma 4.3. For every b ∈ I +
K , the maps χb, χ∗

b, and ψb on I +
K are multi-

plicative.

Proof. We have ψb(OK) = OK and χb(OK) = χ∗
b(OK) = 1. Let I, J ∈ I +

K be
coprime.

The equality (IJ, b) = (I, b)(J, b) and the fact that (I, b) and (J, b) are
coprime imply that χb(IJ) = χb(I)χb(J).

In order to prove the multiplicativity of the map ψb, we write

ψb(IJ) =

(
IJ,

m

(b,m)
(b, IJ)

)
=

(
I,

m

(b,m)
(I,b)(J,b)

)(
J,

m

(b,m)
(I,b)(J,b)

)
.

Since I is coprime to (J, b) and since J is coprime to (I, b), we obtain as wanted
the equality ψb(IJ) = ψb(I)ψb(J).

Finally, the multiplicativity property χ∗
b(IJ) = χ∗

b(I)χ∗
b(J) of the function

χ∗
b is a consequence of the multiplicativity of the map ψb and of the fact that

ψb(I) and ψb(J) are coprime. �

Lemma 4.4. For every prime ideal p and every b ∈ I +
K , we have

ψb(p) =
{
p if p | b,
(p,m) otherwise, and χb(p) χ∗

b(p) = 1 ⇔
⎧
⎨

⎩

p | (b, h)
or
p � b and (p,m) | h.

Proof. The first formula follows from the definition of ψb(p) (see Formula (17))
by considering the three cases

• p | b,
• p � b and p | m, and
• p � b and p � m.

The second formula follows from the first one, from the definitions of χb(p)
and χ∗

b(p), and from the fact that χb(p) χ∗
b(p) = 1 if and only if χb(p) =

χ∗
b(p) = 1, by considering the two cases

• p | b and
• p � b. �

The arithmetic function c �→ μK(c)χb(c) χ∗
b(c) N(ψb(c)) being multiplica-

tive by Lemma 4.3 and the complete multiplicativity of the norm, and vanish-
ing on the nontrivial powers of primes, the series defining C∗(b) in Formula
(18) may be written as an Eulerian product

C∗(b) =
∏

p

(
1 − χb(p) χ∗

b(p) N(ψb(p))
N(p)2

)
=

∏

p
χb(p) χ∗

b(p)=1

(
1 − N(ψb(p))

N(p)2

)
.

(20)
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By Equations (19) and (20), and by Lemma 4.4, we have

cm,k =
1

N(m)

∑

b∈I +
K

μK(b)

N(b)2
N((b,m))

∏

p � b, (p,m) | h

(
1 − N((p,m))

N(p)2

) ∏

p | (b,h)

(
1 − 1

N(p)

)
.

Let us define Γm,h =
∏

p : (p,m) | h
(
1 − N((p,m))

N(p)2

)
, so that

cm,k =
Γm,h

N(m)

∑

b∈I +
K

1

N(b)2

× μK(b) N((b,m))
∏

p
p | b, (p,m) | h

(
1 − N((p,m))

N(p)2

)−1 ∏

p
p | (b,h)

(
1 − 1

N(p)

)
.

This equation writes cm,k as a series Γm,h

N(m)

∑
b∈I +

K

f(b)
N(b)2 where f : I +

K → R

is a multiplicative function, which vanishes on the nontrivial powers of prime
ideals. By Eulerian product, we have therefore proved Equation (13).

Let us now prove that 0 ≤ cm,k < 1. Note that for every prime ideal p, we
have

1 ≤ κm,h(p) ≤ 2 and
1
2

≤ κ′
h(p) ≤ 1 . (21)

In particular, all the factors of the two products over p in Equation (13) belong
to [0, 1[ , hence 0 ≤ cm,k < 1

N(m) ≤ 1.
Let us finally prove that c′

m > 0. For every prime ideal p, let us define

wp = κm,h(p) κ′
h(p) N((p,m))

N(p)2 . By Formula (14), if N(p) = 2, we have

wp =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 if p | h and p | m,
1/6 if p | h and p � m,
1/2 if p � h and p | m,
1/3 if p � h and p � m.

In particular, 1 − wp ≥ 1
2 if N(p) = 2. By the inequalities (21) and Equation

(13), we have

cm,k ≥ 1
N(m)

∏

p

(
1 − N((p,m))

N(p)2

) ∏

p: N(p)≥3

(
1 − 2 N((p,m))

N(p)2

) ∏

p: N(p)=2

1
2
.

The term on the right hand side is a positive constant independent of k.
Therefore, we have c′

m = infk∈OK
cm,k > 0. This concludes the proof of

Lemma 4.2. �
Now that we understand the constant cm,k , we continue towards the proof

of Theorem 4.1 by giving an asymptotic formula (uniform in k) for the sum

S̃(x) =
∑

a∈m∩C(z,θ,x) : a�=−k

ϕK(a)
N(a)

ϕK(a + k)
N(a + k)

. (22)
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Lemma 4.5. Uniformly in m ∈ I +
K , k ∈ OK , z ∈ C

×, θ ∈ ]0, 2π], and x ≥ 1,
we have

S̃(x) =
θ cm,k√|DK | x2 + O(x) + O (ln(2x) ln(1 + N(k)) ) . (23)

Proof. For all nonzero elements a and b in the factorial ring OK , we denote by
(a, b) any fixed choice of gcd of a and b, and by [a, b] any fixed choice of lcm
of a and b.

By Equation (1) and as the norm N is completely multiplicative, for every
a ∈ OK � {0}, we have

ϕK(a)
N(a)

=
1

|O×
K |

∑

b∈OK�{0}: b | a

μK(b)
N(b)

.

Let x ≥ 1. Applying twice this equality, since N(b) ≤ N(a) when b | a and
|c| ≤ |a| + |k| when c | a + k, we have by Fubini’s theorem

S̃(x) =
1

|O×
K |2

∑

a∈m∩C(z,θ,x) : a�=−k

∑

b∈OK�{0} : b | a

μK(b)
N(b)

∑

c∈OK�{0} : c | a+k

μK(c)
N(c)

=
1

|O×
K |2

∑

b∈OK�{0} : |b|≤x

μK(b)
N(b)

×
∑

c∈OK�{0} : |c|≤x+|k|

μK(c)
N(c)

∑

a ∈ m ∩ C(z, θ, x) : a �= −k
b | a, c | a + k

1 . (24)

Let b, c ∈ OK�{0}. The system of congruences

⎧
⎨

⎩

a ≡ 0 mod m
a ≡ 0 mod b
a ≡ −k mod c

has a solution

a in OK �{0} with |a| ≤ x and a �= −k if and only if there exists n ∈ OK �{0}
with a = b n, |n| ≤ x

|b| , n �= −k
b , and
{

bn ≡ 0 mod m
bn ≡ −k mod c .

(25)

When (b, c) � k, no solution exists.
Assume that (b, c) | k. Since b

(b,c) is invertible modulo c
(b,c) , we denote by

b
(b,c) a multiplicative inverse of b

(b,c) modulo c
(b,c) . Then the system (25) is

equivalent to
{

b
(b,m)n ≡ 0 mod m

(b,m)
b

(b,c)n ≡ − k
(b,c) mod c

(b,c)

⇔
{

n ≡ 0 mod m
(b,m)

n ≡ − k
(b,c)

b
(b,c) mod c

(b,c) .
(26)

Recall that a system of two congruences
{

n ≡ α0 mod α
n ≡ β0 mod β

with unknown

n ∈ OK , where α, β, α0, β0 ∈ OK and α, β �= 0, has a solution if and only if
α0 − β0 ≡ 0 mod (α, β). Furthermore, if this congruence condition is satisfied,



Sectorial Mertens and Mirsky formulae

that is, if there exist n0,m0 ∈ OK such that α0 − β0 = βm0 − αn0, then n is
a solution if and only if

n − α0 − αn0 ∈ αOK ∩ βOK = [α, β]OK .

This is equivalent to asking n to belong to the translate
Λα,β,α0,β0 = α0 + αn0 + �Λα,β of the Z-lattice �Λα,β = [α, β]OK . Applying
this with α = m

(b,m) , β = c
(b,c) , α0 = 0, and β0 = − k

(b,c)
b

(b,c) , since the elements
b

(b,c) and b
(b,m) are both coprime with

(
m

(b,m) ,
c

(b,c)

)
, the system (26) has a

solution if and only if the following divisibility condition holds

(
m

(b,m)
,

c

(b, c)

)
| k

(b, c)
b

(b, c)
⇔

(
m

(b,m)
,

c

(b, c)

)
| k

(b, c)

⇔
(

m

(b,m)
,

c

(b, c)

)
| k

(b, c)
b

(b,m)
⇔ (m(b, c), c(b,m)) | k b .

Thus Equation (24) becomes, using Equation (9),

S̃(x) =
1

|O×
K |2

∑

b,c ∈O K�{0}: |b|≤x, |c|≤x+|k|
(b,c) | k, (m(b,c),c(b,m)) | k b

μK(b)μK(c)

N(b) N(c)

∑

n∈Λα,β,α0,β0∩C(b−1z, θ, x/|b|)
n �=− k

b

1.

Let b and c be as in the index of the first sum above. Using Footnote 2
with Λ = Λα,β,α0,β0 , Formula (8) for the second equality and the equation
N([α, β]) = N(α) N(β)

N((α,β)) for the last one, we have, uniformly in b, c,m ∈ OK � {0},
k ∈ OK , z ∈ C

×, θ ∈ ]0, 2π], and y ≥ 1,

Card(Λα,β,α0,β0 ∩ C(b−1z, θ, y))

=
θ

2 covol �Λα,β

y2 + O

(
diam �Λα,β

(y + diam �Λα,β
)

covol �Λα,β

)

=
θ

√|DK | N
([

m
(b,m) ,

c
(b,c)

]) y2 + O

⎛

⎜
⎜
⎝

1
√

N
([

m
(b,m) ,

c
(b,c)

]) y + 1

⎞

⎟
⎟
⎠

=
θ N((m(b, c), c(b,m)))
√|DK | N(m) N(c)

y2 + O

(
N((m(b, c), c(b,m)))1/2

N(m)1/2 N(c)1/2
y + 1

)

.
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Using this, we have

S̃(x) =
θ x2

√|DK |
∑

b,c ∈OK�{0} : |b|≤x, |c|≤x+|k|
(b,c) | k, (m(b,c),c(b,m)) | k b

μK(b)μK(c) N((m(b, c), c(b,m)))
|O×

K |2 N(b)2 N(c)2 N(m)

+ O

⎛

⎝x
∑

b,c ∈OK�{0}

N((m(b, c), c(b,m)))1/2

|O×
K |2 N(b)3/2 N(c)3/2 N(m)1/2

⎞

⎠

+ O

⎛

⎜
⎜
⎝

∑

b,c ∈OK�{0}
|b|≤x, |c|≤x+|k|

1
N(b) N(c)

⎞

⎟
⎟
⎠ . (27)

By Equation (16) (replacing therein x by x2), completing the first sum
of the above equation with the indices b, c ∈ OK � {0} such that |b| > x or
|c| > x+ |k| introduces an error of the form O( 1

x ) (uniformly in m ∈ OK �{0},
k ∈ OK , and x ≥ 1). A computation similar to the one done for Equation
(16) gives that the second sum in Equation (27) is actually bounded by the
constant ζK( 3

2 )2 ζK( 5
2 ). The third sum is3 a O (ln(2x) ln(2x + |k|)), hence a

O(x) + O(ln(2x) (ln(1 + N(k)))) since we have ln(u + v) ≤ ln u + ln v for all
u, v ≥ 2.

By the definition of the constant cm,k in Equation (12), this proves Equation
(23), hence concludes the proof of Lemma 4.5. �

Proof of Theorem 4.1. For all a, k ∈ OK with a �= 0, we have

N(a + k) = N(a)
∣
∣
∣1 +

k

a

∣
∣
∣
2

≤ N(a)

(

1 + 2

√
N(k)
N(a)

+
N(k)
N(a)

)

,

and similarly N(a + k) ≥ N(a)
(
1 − 2

√
N(k)
N(a) + N(k)

N(a)

)
. Let us define the maps

f± : [1,+∞[ → R by t �→ t2 ± 2
√
N(k) t3/2 + N(k) t. Their derivatives are

f ′
±(t) = 2t ± 3

√
N(k) t1/2 + N(k) and

f−(N(a)) ≤ N(a) N(a + k) ≤ f+(N(a)). (28)

Let z ∈ C
×, θ ∈ ]0, 2π], and x ≥ 1. For all n ∈ N � {0}, let

bn =
∑

a∈m∩C(z,θ,x ): N(a)=n, a�=−k

ϕK(a)
N(a)

ϕK(a + k)
N(a + k)

,

so that by Equation (22), we have S̃(x) =
∑

1≤n≤x2 bn.

3Indeed, the method of proof of Equation (10) shows that for y ≥ 1, we have∑
a∈O K�{0}:|a|≤y N(a)−1 = O(ln(2y)).



Sectorial Mertens and Mirsky formulae

By the definition (11) of the sum Sm,z,θ,k(x) and the inequalities (28), by
Abel’s summation formula, by applying twice Lemma 4.5, and since cm,k ≤ 1
by Lemma 4.2, we have

Sm,z,θ,k(x) ≤
∑

1≤n≤x2

bn f+(n)

=

⎛

⎝
∑

1≤n≤x2

bn

⎞

⎠ f+(x
2) −

x2∫

1

⎛

⎝
∑

1≤n≤t

bn

⎞

⎠ f ′
+(t) dt

=

(
θ cm,k√|DK | x2 +O(x) + O (ln(2x) ln(1 + N(k)))

)

×
(
x4 + 2

√
N(k)x3 + N(k)x2

)

−
x2∫

1

(
θ cm,k√|DK | t +O(t1/2) + O (ln(2t) ln(1 + N(k)))

)

×
(
2t + 3

√
N(k) t1/2 + N(k)

)
dt

=
θ cm,k

3
√|DK | x6

+O
(
(1 +

√
N(k) )x5 + N(k)x4 + N(k) ln(N(k))x2 ln(2x)

)
.

Replacing f+ by f− gives the same minoration to Sm,z,θ,k(x), hence Theorem
4.1 follows. �
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