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ABSTRACT
This study explored a heathland region in Portugal, and through morphology, biogeography, and 
multilocus phylogeny, two new species of Inocybaceae are described. The first species, Inocybe 
iberilepora, belongs to “I. flocculosa group,” whereas the second species, Inocybe phaeosquamosa, 
belongs to a relatively isolated and understudied clade, distantly related to I. furfurea and allies. 
Both species are tied to a west Mediterranean distribution and ecology, associating with the local 
Cistaceae ecosystems. By characterizing these new species, our research contributes to the under-
standing of European Funga and enriches the knowledge of the genus Inocybe on a global scale.
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INTRODUCTION

Inocybe s. str. is thought to be a relatively recent genus of 
macrofungi, initiating a rapid and highly diversified evo-
lution about 52–79 million years ago (Kosentka et al.  
2013; Matheny et al. 2009; Ryberg and Matheny 2012; 
Sánchez-García et al. 2020; Varga et al. 2019). Such 
explosion in biodiversity is visible today as a rich genus, 
not only in terms of morphology or niche ecology 
(Ryberg et al. 2010), but also in number of taxa. It is 
estimated that the number of species could reach between 
3000 and 5000 within Inocybe alone (Bhunjun et al.  
2022). Taken together, this means that laborious taxo-
nomic efforts necessarily await taxonomists to formally 
and adequately describe the new taxa. In fact, in the past 
2 years, several dozens of taxa have been described in 
Europe alone (Bandini et al. 2021, 2022a, 2022b).

The western Mediterranean basin exhibits remarkably 
high biodiversity (Buira et al. 2021; Ramos Gutiérrez et al.  
2021; Vila-Viçosa et al. 2023), especially with regard to 
Cistaceae (Civeyrel et al. 2011; Coello et al. 2021), a plant 
family known for its mycorrhizal associations 
(Daskalopoulos et al. 2021; Sanz-Benito et al. 2022). 
These shrubby plants not only form exclusive associa-
tions with several fungal species but also play a crucial 
role as surrogates, synthesizing ectomycorrhizae (EcMs) 
with fungi primarily associated with arboreal plants 

(Albuquerque-Martins et al. 2019; Comandini et al.  
2006). In particular, Inocybe, among several macrofungal 
genera, is reported to be instrumental in facilitating the 
natural succession from old Cistaceae to young Quercus 
stands (Sanz-Benito et al. 2023). Another potential ben-
efit of EcMs to hosts, especially Cistaceae, is the mitiga-
tion of parasitic overexploitation by endophytic plants 
(de Vega et al. 2010).

However, the same area is still largely unexplored 
from a mycological standpoint, with a steady stream of 
novelties emerging even from well-researched genera 
(Alvarado et al. 2022, 2010; Arraiano-Castilho et al.  
2022; Garrido-Benavent et al. 2019). For a plant biodi-
versity hot spot, it is reasonable to expect that many rare 
and previously unknown species may exist in this terri-
tory, particularly within taxonomic groups that are both 
highly diverse and understudied, such as the genus 
Inocybe (Bandini et al. 2021, 2022a; Bhunjun et al.  
2022; Matheny et al. 2006, 2020).

In this study, we employed alpha taxonomy and multi-
locus molecular phylogeny to unveil two new species 
belonging to the genus Inocybe in the Inocybaceae family. 
Supplementarily, we analyzed and discussed biogeo-
graphic annotations of Inocybe iberilepora and Inocybe 
phaeosquamosa, the two species described from the 
coastal heathlands of the western Mediterranean basin.
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MATERIALS AND METHODS

Field work.—The field expeditions took place between 
January of 2021 and December of 2022. For each spe-
cies, we made two collections, each comprising several 
basidiomata in different stages of maturation, collected 
from different seasons. All macromorphological fea-
tures were scale-recorded in every collection with 
a date-GPS-calibrated 5D Mark IV camera (Canon, 
Japan), equipped with a SP 1:2.5/90 mm objective 
(Tamron, Japan). Additionally, notes concerning ecol-
ogy and organoleptics were taken for each collection. 
Processing of RAW files was performed in 
RawTherapee (Horváth accessed 29 Mar 2023), whereas 
morphometry was carried in Fiji (Schindelin et al. 2012). 
The color codes are taken from Munsell (Munsell 2009), 
and the terminology follows Kuyper (1986).

In order to preserve the taxonomically critical struc-
tures in Inocybe, basidiomata were carefully collected 
into a compartmented container. Within 1 hour after 
each field trip, specimens were processed on a ventilated 
dehydrator at 40 C (SilverCrest IAN 302447; Germany). 
Holotypes and paratypes were deposited in herbarium 
PO, at the Museum of Natural History of Porto 
University, Portugal.

Micromorphological studies.—The exsiccatae were 
rehydrated with water moisture and studied in 3% 
potassium hydroxide (KOH). All microscopic fea-
tures were independently studied—and thus vali-
dated—by two different mycologists using (i) 
a BX50 BXFLA microscope (Olympus, Japan) 
coupled with a Axiocam 305 camera (Carl Zeiss, 
Germany), through Fluar 40×/0.7 and UPlanFL 
100×/1.30 oil objectives (Olympus); and (ii) 
a DM750 microscope (Leica, Germany) coupled 
with a Axiocam ERc 5s camera (Carl Zeiss), 
through HI Plan 40×/0.65 and C Plan 100×/1.25 
oil objectives (Leica). All illustrations were drawn 
from the latter setup.

For every collection, in order to observe cystidial 
distribution and ornamentation, carefully made sections 
were studied prior to conducting localized smears. In 
order to preserve microstructure reliability, all data were 
collected within 30 minutes of initial KOH incubation.

Cystidia and basidia were assessed excluding crystals 
and sterigmata, respectively. All spores were measured 
from the stipe preparations. The dimensions of all ele-
ments assessed are denoted as length � width. The 
Q value is equivalent to the proportion of spore length 
to spore width, which is computed for each individual 

spore. The abbreviations av. and SD stand for “average” 
and “standard deviation,” respectively.

Micrograph processing was done in Fiji (Schindelin 
et al. 2012) and CombineZP (Hadleys accessed 29 
Mar 2023), whereas morphometry was carried in 
Piximètre (Henriot and Cheype accessed 29 Mar 2023) 
and AxioVision 4.8 (Carl Zeiss).

DNA sequencing.—Total DNA was extracted from dry 
specimens employing a modified protocol based on 
Murray and Thompson (1980). The polymerase chain 
reactions (PCRs) (Mullis and Faloona 1987) included 35 
cycles with an annealing temperature of 54 C. The pri-
mers ITS1F, ITS4, and ITS4B (Gardes and Bruns 1993; 
White et al. 1990) were employed to amplify the nuc 
rDNA internal transcribed spacer ITS1-5.8S-ITS2 
region (ITS); LR0R, LR5 (Cubeta et al. 1991; Vilgalys 
and Hester 1990), and ITS4Brev (reverse of ITS4B) were 
used for the partial 28S nuc rDNA region (28S); and 
bRPB2-6F2 (reverse of bRPB2-6R2) and bRPB2-7R2 
(Matheny et al. 2007) were used for the sites between 
domains 6 and 7 of the rpb2 gene (encoding the second- 
largest subunit of nuclear RNA polymerase II; RPB2). 
The PCR products were checked in 1% agarose gels, and 
amplicons were sequenced with one or both PCR pri-
mers. Sequences were corrected to remove reading 
errors in chromatograms.

Bioinformatics.—For each locus, chromatograms were 
bidirectionally assembled, trimmed, and edited for 
ambiguities in CodonCode Aligner (CodonCode, 
Massachusetts). The remaining sequences completing 
the alignment were selected by BLASTing each marker 
(ITS, 28S, and RPB2) against both GenBank and UNITE 
databases. We included closely related and confidently 
identified species, representative species from closely 
related clades, and species of significant morphological 
similarity. Additionally, we included all sequences 
(excluding duplicates) belonging to the same UNITE 
1% species hypothesis (Kõljalg et al. 2013; Nilsson 
et al. 2019) as the sequences produced in this study. 
Finally, we have also included the sequences immedi-
ately adjacent to the aforementioned species hypotheses 
(excluding duplicates). The type sequences of Inosperma 
saragum, Nothocybe distincta, and Inocybe flavoalbida 
were included in the alignment as outgroups. All 
sequences used in this study can be referred to in 
TABLE 1.

The alignment was initiated with MUSCLE in MEGA 
X (Kumar et al. 2018) and manually adjusted for the 
three markers separately. Since the components within 
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ITS have variable evolution rates (Hillis and Dixon  
1991), ITS1, 5.8S, and ITS2 were split and treated as 
distinct partitions. A total of 5 partitions from 52 taxa 
and 3103 sites (43% missing data) were concatenated in 
Mesquite (Maddison and Maddison 2023) before max-
imum likelihood (ML) and Bayesian inference (BI) ana-
lyses (TABLE 2).

The substitution models for each partition were selected 
separately for ML and BI analyses based on the Bayesian 
information criterion score using ModelFinder (Chernomor 
et al. 2016; Kalyaanamoorthy et al. 2017), as seen in TABLE 

2. The ML analysis was carried out in IQ-TREE 2.2.2.6 
(Minh et al. 2020), by generating 10 000 ultrafast bootstrap 
(UFB) samples (Hoang et al. 2017) for two independent runs 
and allowing each partition to have its own evolution rate, 
resulting in a best log-likelihood of −14 763. The BI analysis 
was performed in MrBayes 3.2.7 (Ronquist et al. 2012) in 
two independent runs, each with four chains sampled every 
1000 out of 10 million generations, resulting in an average 
standard deviation of split frequencies of <0.004. Posterior 
probabilities (PPs) for BI were then calculated after setting 
the burn-in to 25%.

Table 1. Sequences used in this study.
GenBank sequence accession numbers

Classification Country Herbarium/Source Voucher/Sample ITS 28S RPB2 Study reference

I. aurantiobrunnea Italy STU F-0001816 OP164016 OP164016 — Bandini et al. (2022a)
I. botaurina Germany FR FR-0246008 MK929259 — — Bandini et al. (2019a)
I. brijunica Croatia PUL F27673 NR_172782.1 NG_075311.1 MT878449.1 Mešić et al. (2021)
I. deianae France STU F-0901538 OK057117 — — Bandini et al. (2022b)
I. flavoalbida Australia TENN 067000 KJ729873 NG_057225 KJ729932 Matheny et al. unpubl.
I. flocculosa Germany STU F-0901628 OK057165 OK057165 — Bandini et al. (2022b)
I. flocculosa Norway WTU PBM2392 — AY380375 AY337375 Matheny (2005)
I. furfurea France G 00053152 MG012472 — — Bandini et al. (2019b)
I. gansuensis China HMJAU 2012150 KY402221 KY402217 KY402219 Fan and Bau (2020)
I. glabripes Germany STU F-0900979 MW845881 MW845881 — Bandini et al. (2021)
I. iberilepora Portugal PO PO-F2272 OQ690007 OQ690007 OR360833 This study
I. iberilepora Portugal PO PO-F2712 OQ690008 — — This study
I. minimispora Austria STU F-0901264 MW845934 MW845934 — Bandini et al. (2021)
I. mycenoides Germany STU F-0901647 OK057156 OK057156 OK078899 Bandini et al. (2022b)
I. neorufula Italy STU F-0901445 MT101876 MT101876 — Bandini et al. (2020)
I. nitidiuscula USA TENN 062537 — — MH577476 Matheny et al. unpubl.
I. phaeoleuca Hungary GB EL297-08 KJ399958 KJ399958 — Larsson et al. (2014)
I. phaeosquamosa Portugal PO PO-F2346 OQ690006 OQ690006 OR360834 This study
I. phaeosquamosa Portugal PO PO-F2713 OQ690005 — — This study
I. psammobrunnea France LIP LIL-89226 MW845926 — — Bandini et al. (2021)
I. queletii USA WTU PBM 935 — AY380390 AY337397 Matheny (2005)
I. rivierana Austria STU F-0901249 NR_174866 MW845910 — Bandini et al. (2021)
I. rufescens Australia PERTH 08318468 NR_152370 NG_057261 KM406231 Matheny et al. unpubl.
I. rufobrunnea Netherlands L 0053539 MZ667616 — — Bandini et al. (2022b)
I. rufuloides Australia PERTH 08305978 JN035291 — MH577442 Matheny et al. unpubl.
I. rufuloides Germany STU F-0901442 MT101878 — — Bandini et al. (2020)
I. saragum India CAL 1360 KY440103 KY549133 KY553249 Latha and Manimohan (2017)
I. somae Germany STU F-0901580 OK057157 OK057157 OK078902 Bandini et al. (2022b)
Inocybe sp. Canada EcM OTU97 JX630893 — — Timling et al. (2012)
Inocybe sp. Canada Soil OTU955 KC965941 KC965941 — Timling et al. (2014)
Inocybe sp. Canada Soil OTU2479 KF297126 KF297126 — Timling et al. (2014)
Inocybe sp. Croatia Soil TUE003033 UDB02073561 — — Tedersoo et al. (2014)
Inocybe sp. Italy MCVE 21547 JF908222 — — Osmundson et al. (2013)
Inocybe sp. Italy MCVE 3665 JF908112 — — Osmundson et al. (2013)
Inocybe sp. Italy Soil TUE002696 UDB02018119 — — Tedersoo et al. (2014)
Inocybe sp. Italy Soil TUE000394 UDB03628993 — — Tedersoo et al. (2014)
Inocybe sp. Italy EcM G3489 UDB026553 — — Tedersoo et al. (2014)
Inocybe sp. Italy Soil TUE002612 UDB01996910 — — Tedersoo et al. (2014)
Inocybe sp. Italy EcM Inoc4 GQ469523 — — Iotti et al. (2010)
Inocybe sp. Morocco Soil TUE000623 UDB03650314 — — Tedersoo et al. (2014)
Inocybe sp. Morocco Soil TUE000620 UDB03650179 — — Tedersoo et al. (2014)
Inocybe sp. Morocco Soil TUE000617 UDB03650151 — — Tedersoo et al. (2014)
Inocybe sp. USA TENN 063941 — — MH577457 Matheny et al. unpubl.
I. tarda Germany STU F-0901730 NR_185445 OP164094 — Bandini et al. (2022a)
I. tigrina Germany STU F-0901532 NR_174869 MW845933 — Bandini et al. (2021)
I. tjallingiorum Netherlands L 0053540 MW845929 — — Bandini et al. (2021)
I. variispora Spain SMG-GME 980504-01 MT101872 — — Bandini et al. (2020)
I. venerabilis Germany STU F-0901605 NR_176174 OK057198 — Bandini et al. (2022b)
I. cf. violaceoalbipes USA TENN 062462 — — MH577486 Matheny et al. unpubl.
I. woglindeana Germany STU F-0901435 NR_185414 MT101882 — Bandini et al. (2020)
I. zethi Netherlands STU F-0901456 NR_184511 ON003440 — Bandini et al. (2022c)
N. distincta India CAL 1310 NR_173156 NG_057278 KX171345 Latha et al. (2016)

Note. Vouchers in bold indicate type material. Under column “Herbarium/source,” the initials refer to herbaria according to Index Herbariorum, except when in 
italic (then referring to the isolation source).
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The visualization and production of the final trees were 
carried out in FigTree 1.44 (Rambaut 2006–2018) and 
Inkscape 1.3 (http://www.inkscape.org). The aligned parti-
tions and the respective trees produced in this study can be 
found in TreeBASE (study ID TB2:S30312) and as a nexus 
file in Supplementary Material (SUPPLEMENT 1).

Finally, the tool PlutoF (Abarenkov et al. 2010) was used 
to gather relevant environmental metadata from the 
selected sequences. Such metadata were then imported 
into dataframes with pandas (pandas development team  
2020) and plotted with PyGMT (Uieda et al. 2023) in order 
to assess the newly described species’ biogeography.

RESULTS

Phylogeny.—The tree in FIG. 1—derived from ML 
topology—outlines the multilocus phylogeny (ITS1 
+5.8S+ITS2+28S+RPB2) involving all taxa included 
in this study. The ML and BI analyses resulted in 
nearly identical tree topologies (see TB2:S30312 and 
SUPPLEMENT 1), with robust overall UFB and PP 
support for most nodes. The nodes denoting less 
support originate from distant taxa included for 
morphological comparison with I. iberilepora and 
I. phaeosquamosa (grayed out branches in FIGS. 1 
and 2). The three genera of Inocybaceae used in our 
tree—Inosperma, Nothocybe, and Inocybe—received 
strong basal node support (UFB = 0.94). This allows 
us to infer that the new species described in this 
study diverged from each other at a relatively early 
node during Inocybe evolution (UFB = 0.95, 
PP = 0.99; annotated with a cyan-filled arrow in 
FIGS. 1 and 2).

Inocybe iberilepora shows affinity to the clade of 
I. aurantiobrunnea (UFB = 1, PP = 1; highlighted orange 
in FIG. 1). The latter is reflected by the ≈ 3.5% difference 
in the ITS+28S sequenced regions and ≈ 6% in ITS alone 
(see TB2:S30312). With robust support (UFB = 0.99, 
PP = 1), our results demonstrate that the holotype and 
paratype of I. iberilepora sit well within the UNITE’s 1% 
species hypothesis (SH1959469.09FU), represented in 
FIG. 1 by Inocybe sp. TUE000620 and Inocybe sp. Inoc4, 
with ≥99.8% ITS similarity. However, falling just outside 
the 1% species hypothesis (≥1.6% differences in the ITS 

region) are sequences UDB02073561, UDB03650151, and 
GenBank JF908222 (FIG. 1). The latter set of sequences 
show at least 10 stable base pair (bp) differences toward all 
other I. iberilepora sequences, which, together with their 
well-supported nodes, restrains us from considering them 
part of the same species (FIG. 1). All of the above, includ-
ing I. iberilepora, belong to the same broader clade as the 
relatively distant I. flocculosa and I. tigrina (UFB = 0.97, 
PP = 0.94; highlighted yellow in FIG. 1). The same results 
are supported by the individual analysis of the more 
conserved 28S and RPB2 genes, despite the lower node 
values and somewhat incoherent topology in the 28S tree 
(FIG. 2a, b).

Contrarily to I. iberilepora, Inocybe phaeosquamosa 
stands relatively far from any confidently known taxa 
(FIG. 1). It is well placed (UFB = 1, PP = 1), without 
stable bp differences (and always >99.7% ITS similarity), 
within UNITE’s 1% species hypothesis (SH1368099. 
09FU), together with soil sequences UDB03650314, 
UDB02018119, UDB03628993, UDB01996910, and 
UDB026553 (FIG. 1). There are several closely related 
but well-separated sequences (UFB = 0.98, PP = 0.98; 
FIG. 1) belonging to two or three undescribed species 
from Italy and Canada, with at least 31 bp differences 
(≥4.4%) in the ITS region (highlighted dark pink in FIGS. 
1 and 2). All these share an early node (UFB = 0.92, 
PP = 0.97; FIG. 1) with the clade of I. furfurea, 
I. rufescens, and I. rivierana (highlighted light pink in 
FIGS. 1 and 2). Although the node support is relatively 
low, the analysis of the RPB2 gene alone suggests a closer 
phylogenetic affinity between I. phaeosquamosa and an 
Australian sequence labeled Inocybe cf. violaceoalbipes 
than it does with I. rufescens (UFB = 0.71, PP = 0.53; 
FIG. 2b). Similarly, when analyzing the 28S gene alone, 
I. rufescens appears to be less closely related to 
I. phaeosquamosa compared with I. rivierana (FIG. 2a). 
However, due to the absence of common sequenced 
regions between I. cf. violaceoalbipes and the pair 
I. furfurea/I. rivierana (TABLE 1), their exact position 
relative to I. phaeosquamosa remains uncertain, resulting 
in low node confidence and a ML/BI discrepancy in tree 
topology (UFB = 0.58; FIG. 1).

Table 2. Partitions and respective models used for phylogenetic analysis.
Selected models

Partition No. of taxa No. of sites No. of informative sites for IQ-TREE for MrBayes Substitution rate (ML)*

ITS1 46 407 152 TPM2u+F+G4 HKY+F+G4 2.70
5.8S 47 154 1 TNe K2P 0.05
ITS2 47 350 147 HKY+F+I+G4 HKY+F+I+G4 2.54
28S 26 1406 87 K2P+I+G4 K2P+I+G4 0.32
RPB2 16 786 147 K2P+G4 K2P+G4 0.83

*Normalized to the weighted average of 1, where the weights are the lengths of each partition divided by the final concatenation length.
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Figure 1. Phylogeny from concatenated data (ITS1+5.8S+ITS2+28S+RPB2) with topology derived from ML. Node support is represented 
by circle size and color, and by UFB (ML) and PP (BI) values, respectively. Dashed black-filled arrow indicates Inocybe s. str. lineage; cyan- 
filled arrow indicates split between I. iberilepora and I. phaeosquamosa lineages. Grayed-out branches indicate distant clades with 
morphologically similar species to I. iberilepora and I. phaeosquamosa. Every leaf in bold signify a type record. Asterisks (*) mark the 
vouchers sequenced in this study. Orange and yellow indicate I. iberilepora’s inner and outer clades, respectively. Dark and light pink 
indicate I. phaeosquamosa’s inner and outer clades, respectively. Blue highlights species newly described in this study.
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TAXONOMY

Inocybe iberilepora Fachada & Bandini, sp. nov.                                                                         
FIG. 3

MycoBank MB848093
Etymology: Referring to the striking resemblance to 

the local Iberian hare’s fur.

Diagnosis: Inocybe iberilepora is characterized by its 
gray-mottled, fibrillose-(sub)lanose pileus, plumpish- 
fusiform, often (sub)capitate hymenial cystidia, and 
poorly metuloid and catenate caulocystidia. It prefers 
acidic soils, associating with heathland Cistus and Pinus 
species.

Figure 2. Phylogeny from isolated genes 28S (a) and RPB2 (b), represented by ML topology and polar layout with proportionally 
transformed branches. Node support is represented by circle size and color, and by (ML) and PP (BI) values, respectively. Dashed black- 
filled arrow indicates Inocybe s. str. lineage; cyan-filled arrow indicates split between I. iberilepora and I. phaeosquamosa lineages. 
Grayed-out branches indicate distant clades with morphologically similar species to I. iberilepora and I. phaeosquamosa. Every leaf in 
bold signify a type record. Asterisks (*) mark the vouchers sequenced in this study. Orange and yellow indicate I. iberilepora’s inner and 
outer clades, respectively. Dark and light pink indicate I. phaeosquamosa’s inner and outer clades, respectively. Blue highlights species 
newly described in this study.
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Figure 3. Inocybe iberilepora. a, b, and c. Basidiomata (holotype). d. Basidiospores (paratype). e. Pleurocystidia (paratype). f. Collection 
locality (paratype). g. Microscopical characters (holotype). Ca = caulocystidia; Cpa = cauloparacystidia; Ch = cheilocystidia; Pa = 
paracystidia; Pl = pleurocystidia; Sp = spores. h. Caulocystidia and cauloparacystidia (paratype).
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Typification: PORTUGAL. Sesimbra, Faúlha 
(WGS84 coordinates: 38.478707, −9.085062, elevation 
121 m), with Cistus salviifolius, Pinus pinaster 20 m 
away, 1 Jan 2021, leg. Vasco Fachada (holotype PO- 
F2272, isotype private herbarium [priv. herb.] V.F. 
VF010121IR1). GenBank: ITS+28S = OQ690007; RPB2 
= OR360833.

Description: Pileus 12–30 mm wide, at first (sub) 
campanulate or hemisperical, with age hemispherical- 
convex, without or with low large umbo, margin at first 
incurved, later decurved, young and sometimes also 
older basidiomata with sometimes fugacious remnants 
of a whitish velipellis; color usually mottled and there-
fore sometimes contrasting light grayish-brown to 
dark brown (Mu 10 YR 4/2–4/4, 3/3–3/6; 7.5 YR 3/2), 
sometimes somewhat paler at the center; surface at first 
finely tomentose, later coarsely tomentose or fibrillose, 
sometimes sublanose, at the margin sometimes effaced; 
young basidiomata with remnants of a whitish cortina. 
Lamellae somewhat crowded (ca. 45–65, l = 1), 
adnexed to almost broadly adnate, straight to (sub) 
arched, hardly with ventricose portion, edge minutely 
fimbriate, at first whitish later brownish to brown with 
or without faint grayish tinge. Stipe 11–25 × 5–8 mm; 
stocky, cylindrical straight, with gently enlarged base; 
densely and entirely covered with whitish tomentum 
but only very faintly pruinose at apex, giving whitish 
appearance in early stages, later longitudinally striate, 
red-brown beneath the tomentum, often retaining 
whitish base in maturation. Context white in stipe, 
grayish in pileus, smell subspermatic, taste indifferent. 
Color of exsiccata brownish gray.

Spores 8.5–12 μm (av. 10.0 μm, SD 0.7 μm) � 4.8– 
6.7 μm (av. 5.6 μm, SD 0.3 μm); Q = 1.4–2.1 (av. 1.8, SD 
0.1) (n = 178 of 2 collections [coll.]); smooth, ellipsoid 
to sometimes (sub)phaseoliform or (sub)amgydaloid 
with gentle suprahilar depression, apex often (sub) 
conical, sometimes clearly obtuse. Basidia 19–38 � 6– 
10 μm; generally tetrasporic, rarely bisporic. 
Pleurocystidia 48–82 μm (av. 63 μm, SD 9 μm) � 11– 
17 μm (av. 14 μm, SD 2 μm); Q = 3.4–5.7 (av. 4.5, SD 
0.6) (n = 33 of 2 coll.); mostly plump-fusiform to 
almost “sac-shaped,” sometimes (sub)clavate, rarely 
(sub)cylindrical, frequently (sub)capitate with faint 
gelatinous “cap”; without or with only short neck, 
with short pedicel or without pedicel, and then some-
times with rounded base, often without crystals, but 
occasionally quite crystalliferous; occasionally filled 
with pale amorphous content; walls rather thin up to 
1.0 (≤1.7) μm thick at the apex, pale yellowish-greenish 
with 3% KOH. Cheilocystidia very much like pleuro-
cystidia, only somewhat shorter in average, intermixed 
with numerous colorless, (sub)clavate, thin-walled 

paracystidia; 36–66 μm (av. 52 μm, SD 7 μm) � 12– 
18 μm (av. 15 μm, SD 1 μm); Q = 2.4–5.0 (av. 3.6, SD 
0.6) (n = 29 of 2 coll.). Caulocystidia 24–84 μm (av. 
44 μm, SD 13 μm) � 7–19 μm (av. 10 μm, SD 2 μm); 
Q = 2.1–7.9 (av. 4.4, SD 1.2) (n = 48 of 2 coll.); poorly 
metuloid without crystals and hard to define, only 
present at the apex as thick-walled (sub)clavate or 
(sub)cylindrical terminal cells, arising from catenate 
hyphoid structures, which in turn are present on the 
entire stipe length, walls up to 0.5 µm thick, pale 
yellowish-greenish with 3% KOH; intermixed with 
some colorless, shorter (sub)clavate, thin-walled cau-
loparacystidia. Pileipellis a clearly layered cutis, with 
a subpellis of dark brown incrustating pigment (cells 
≤20 μm wide), and a more hialine suprapellis but with 
very faint zebra-like incrustations (cells ≤12 μm wide). 
Clamp connections present, abundant in pileipellis and 
conspicuous in caulocystidia.

Habitat and known distribution: The two occasions 
this species was observed by us were in rather isolated 
and exposed sandy clearings, having Cistus salviifolius as 
the apparent mycorrhizal partner (FIG. 3f). Other 
farther and less likely associated plant species were 
Pinus pinaster and Halimium sp. (Cistaceae). The avail-
able records suggest that I. iberilepora favors the months 
of December and January.

The holotype and paratype sequences of I. iberilepora 
are nearly identical (<0.2%, or 1 bp difference) to an 
Italian sequence obtained from a Pinus pinea root 
(GenBank GQ469523) and a Moroccan soil sequence 
taken from amongst Cistus spp. and Pinus pinaster 
(UDB03650179). The molecular results, supported by 
the biogeographic data, prompt us to believe that 
I. iberilepora is a Mediterranean species associated 
with pine and rockroses from acidic heathlands (FIG. 4).

Other specimen examined: PORTUGAL. Sesimbra, 
Faúlha (WGS84 coordinates: 38.479083, −9.085333, ele-
vation 123 m), with Cistus salviifolius, Halimium sp., 
and Thymus vulgaris, nearest Pinus 25 m away, 18 
Dec 2022, leg. Vasco Fachada (paratype PO-F2712, iso-
paratype priv. herb. V.F. VF181222IS2). GenBank: ITS 
= OQ690008.

Taxonomic notes: Inocybe iberilepora is character-
ized by its mottled gray-brown and dark brown, 
coarsely fibrillose to (sub)lanose pileus. The red-
dish-brown stipe is entirely covered by pale tomen-
tum made of catenate cells, which seldom produce 
thick-walled cystidia near the apex. Importantly, it is 
a species with frequently subcapitate hymenial cysti-
dia (FIG. 3e, g). The latter feature can help to sepa-
rate I. iberilepora from all the similar species 
discussed below.
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Phylogenetically, I. aurantiobrunnea is the closest 
known species to I. iberilepora (FIG. 1). However, the 
former is easily separated by its intensely yellow-orange 
lamellae, larger spores, and mostly (sub)cylindrical 
hymenial cystidia (Bandini et al. 2022a; Esteve- 
Raventós et al. 2003).

Although I. iberilepora’s stipe is entirely covered by 
catenate cellular structures, these did not seem to us like 
true caulocystidia for the most part, with only a few 
longer and thicker-walled cystidia-like cells near the 
apex (FIG. 3h). Therefore, this differentiates it from 
species belonging to section Splendentes Singer, such 
as I. phaeoleuca (Bandini et al. 2019c; Kuyper 1986).

In addition, I. iberilepora could be mistaken for 
I. venerabilis (Bandini et al. 2022b) and I. woglindeana 
(Bandini et al. 2020); however, both these species pos-
sess an abundant velipellis, larger spores, and prefer 
calcareous soils. A comparison with I. woglindeana 
could not be complete without mentioning its sister 
species, I. variispora, which can be separated by its 
lack of velipellis, its longer spores, and its cystidia with 
a well-developed pedicel, and being not so plumpish as 
in I. iberilepora (Bandini et al. 2020; Fernández Sasia  
2002).

Furthermore, the (sub)lanose pileus of 
I. iberilepora can bear similarity toward species 
such as I. rufuloides (Bandini et al. 2020; Bon 1984; 
Lantieri 2004) and I. deianae (Bandini et al. 2022b; 
Brugaletta et al. 2019; Eyssartier 2007). Even so, 
these species tend to present much coarser lanosity 
or even squamulosity on their pileus surface; besides, 

both species have larger spores than I. iberilepora 
(Bandini et al. 2020, 2022b; Bon 1984; Brugaletta 
et al. 2019; Eyssartier 2007; Lantieri 2004).

Conversely, the studied collections of I. iberilepora 
have always shown a somewhat fibrillose pileus surface, 
which separates it from the usually much smoother 
pileus of I. tarda, a common and frequently misidenti-
fied species. Moreover, the latter also has larger spores 
and prefers calcareous soils (Bandini et al. 2022a; 
Kühner 1955; Marchetti and Franchi 2008; Poirier  
2012).

Although there are a number of other species that 
may resemble I. iberilepora, these can usually be sepa-
rated macroscopically by their reddish pilei and ecolo-
gically by their calciphilous tendency, such are the cases 
of I. neorufula (Bandini et al. 2020; Esteve-Raventos 
et al. 2011), I. rufobrunnea (Bandini et al. 2022b; Favre  
1955; Kuyper 1986), and I. psammobrunnea (Bandini 
et al. 2021; Bizio et al. 2017; Bon 1990; Ludwig 2017; 
Poirier 2002). In collections of unclear morphology and 
ecology, I. iberilepora can be distinguished from 
I. rufobrunnea by its smaller spores (Bandini et al.  
2022b; Favre 1955; Kuyper 1986) and from I. neorufula 
by its somewhat longer spores (Bandini et al. 2020; 
Esteve-Raventos et al. 2011).

Inocybe phaeosquamosa Fachada & Bandini, sp. 
nov.                                             FIG. 5.
MycoBank MB848090

Diagnosis: Inocybe phaeosquamosa produces small 
but stocky basidiomata, with quite dark and somewhat 

Figure 4. Biogeographic annotation of I. iberilepora and I. phaeosquamosa within the western Mediterranean basin. Plotted 
coordinates of known occurrences, together with the ecological data. Markers filled with a single color represent sequences from 
ectomycorrhizae.
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Figure 5. Inocybe phaeosquamosa. a and b. Basidiomata (holotype). c. Basidiomata (paratype) d. Basidiospores (paratype). 
e. Cheilocystidia (paratype). f. Caulocystidia (paratype). g. Microscopical characters (holotype). Ca = caulocystidia; Cpa = caulopar-
acystidia; Ch = cheilocystidia; Pa = paracystidia; Pl = pleurocystidia; Sp = spores. h. Pleurocystidia (paratype).

10 FACHADA ET AL.: INOCYBE IBERILEPORA & INOCYBE PHAEOSQUAMOSA



scaly pileus, pruinosity only on the upper third of the 
stipe, large pleurocystidia, and very small spores. Such 
combination of characters sets it apart from other 
known Inocybe species.

Etymology: Referring to the dark scaly look.
Typification: PORTUGAL. Sesimbra, Faúlha 

(WGS84 coordinates: 38.481500, −9.086444, elevation 
115 m), among Cistus crispus and Halimium cf. umbel-
latum on sandy soil, few Quercus suber and Pinus pina-
ster nearby, 6 Jan 2022, leg. Vasco Fachada (holotype 
PO-F2346, isotype priv. herb. V.F. VF060122IS2). 
GenBank: ITS+28S = OQ690006; RPB2 = OR360834.

Description: Pileus 15–28 mm wide, soon expanded 
straight, often with a wavy margin in age; usually with-
out or with low large umbo, margin soon uplifted; 
young basidiomata with faint remnants of a pale grayish 
velipellis; color dark chestnut brown, up to blackish 
brown, darker at the center (Mu 7.5 YR 3/2–3/4, 
10 YR 3/3–3/6), sometimes paler at the umbo because 
of the velipellis; surface entirely minutely subsquamu-
lose to squamulose with very small squamules, at the 
center sometimes somewhat warty; cortina remnants 
faint or not detected. Lamellae moderately crowded 
(ca. 35–60, l = 1–3), somewhat thickish, adnate, (sub) 
ventricose, edge fimbriate, first beige, later light cara-
mel-brown. Stipe 15–30 × 3–6 mm; cylindrical, robust, 
only slightly swollen at base; faintly pruinose in upper 
third, longitudinally striate white on a reddish brown 
background, often whitish at the base due to the myce-
lium. Context whitish with bluish tinge, especially in the 
pileus and the cortex; smell and taste indistinct. Color of 
exsiccata dark brown.

Spores 6–9.5 μm (av. 7.6 μm, SD 0.6 μm) � 3.8–5.9 
μm (av. 4.9 μm, SD 0.4 μm); Q = 1.2–1.9 (av. 1.6, SD 0.1) 
(n = 120 of 2 coll.); smooth, (sub)ellipsoid, (sub)amyg-
daloid, mostly without suprahilar depression but some-
times faint in side view, apex (sub)obtuse to (sub)acute. 
Basidia 18–30 × 6.0–10.0 μm, generally tetrasporic. 
Pleurocystidia 42–83 μm (av. 60 μm, SD 11 μm) � 10– 
17 μm (av. 13 μm, SD 2 μm); Q = 2.9–6.8 (av. 4.7, SD 
0.9) (n = 56 of 2 coll.); common but not abundant; 
mostly (sub)utriform, also subcylindrical, rarely subla-
geniform, often with rather long neck, with short ped-
icel, apex crystalliferous, walls usually thin at ventral 
part (≈ 1 μm) and up to 2.5 μm thick at the apex, 
occasionally strongly thickened or coalescing toward 
the apex (≤4 μm), pale yellowish-greenish with 3% 
KOH. Cheilocystidia 30–72 μm (av. 46 μm, SD 10 μm) 
� 11–18 μm (av. 14 μm, SD 2 μm); Q = 2.2–4.5 (av. 3.4, 
SD 0.7) (n = 22 of 2 coll.); more variously shaped than 
pleurocystidia and only occasionally similar, usually 
shorter (neck), slightly wider and with thinner wall at 
neck; often with yellowish intracellular content in KOH, 

intermixed with numerous colorless, (sub)clavate, thin- 
walled paracystidia. Caulocystidia 34–84 μm (av. 57 μm, 
SD 11 μm) � 7–19 μm (av. 13 μm, SD 3 μm); Q = 2.4– 
7.1 (av. 4.4, SD 1.0) (n = 43 of 2 coll.); common only at 
the extreme stipe apex, uncommon and scattered along 
the rest of the upper third, not found in middle and 
lower portions of the stipe; usually (sub)lageniform or 
(sub)utriform, with short, sometimes slightly con-
stricted apex, sometimes somewhat contorted, apex 
without or with only few small crystals, walls up to 1.5 
(–2.5) μm thick at the apex, pale yellowish-greenish with 
3% KOH; intermixed with thin- to slightly thick-walled, 
oblong, (sub)clavate cauloparacystidia. Pileipellis com-
posed of an epicutis of occasional uplifted tufts (scales), 
with strongly dark-brown-pigmented incrustations in 
3% KOH; terminal cells creatively and weirdly shaped, 
often bifurcated. Clamp connections present in all tis-
sues, abundant in pileipellis.

Habitat and known distribution: The two occa-
sions this species was observed by us were in the 
months of December and January, in sandy soil 
among Cistus crispus and Halimium cf. umbellatum, 
appearing to be associated with Cistaceae and shar-
ing habitat with Entoloma cistophilum. Nonetheless, 
a few individuals of Pinus pinaster and Quercus suber 
in the vicinity could not be fully excluded as poten-
tial partners in situ. Supporting the Cistus partner-
ship hypothesis, one of the environmental sequences 
(UDB026553) belonging to I. phaeosquamosa, from 
Pantelleria (Strait of Sicily), was produced from an 
EcM sample belonging to Cistus salviifolius. Other 
environmental samples similarly indicate soil acidity 
and Cistus preference. Inocybe phaeosquamosa is only 
known from the coastal heathlands of the western 
Mediterranean basin (FIG. 4).

Other specimen examined: PORTUGAL. Sesimbra, 
Faúlha (WGS84 coordinates: 38.481556, −9.086389, ele-
vation 114 m), among Cistus crispus and Halimium cf. 
umbellatum, few Quercus suber and Pinus pinaster 
nearby, 18 Dec 2022, leg. Vasco Fachada (paratype 
PO-F2713, isoparatype priv. herb. V.F. VF181222IP1). 
GenBank: ITS = OQ690005.

Taxonomic notes: Inocybe phaeosquamosa can be 
found on the acidic heathlands of the Mediterranean 
basin. It is characterized by its dark, scaly pileus often 
covered with a light gray velipellis, and a reddish ochre 
stipe that is pruinose only near the apex. Microscopically, 
it comprises long pleurocystidia and very small spores, 
setting it apart from most species (FIG. 5).

Nevertheless, small spores are a trait equally shared 
by I. glabripes and I. minimispora. These two taxa can be 
macroscopically separated from I. phaeosquamosa by 
their lighter and smoother pilei, together with their 
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ecological preference for rich-basic soils. In the case that 
habit and habitat information is not available, the 
slightly smaller spores in I. minimispora and narrower 
in I. glabripes may aid in diagnosis. However, the deci-
sive diagnosing microscopic feature is the much longer 
pleurocystidia of I. phaeosquamosa (Bandini et al. 2021; 
Ferrari 2006; Kuyper 1986; Lange 1917; Ricken 1915 
(1980); Stangl 1989).

The dark and squamulose pileus of I. phaeosquamosa 
can make it mistakable for a number of species. One of 
them is I. botaurina, a hygrophilous species fruiting with 
Salix spp. that has much larger spores (Bandini et al.  
2019a). Likewise, the pileus of I. furfurea can be squamu-
lose, but it is usually paler in color and the spores are 
larger on average; moreover, this species prefers basic 
soils (Bandini et al. 2019b; Gminder 2010; Kühner 1955; 
Kuyper 1986; Schwobel and Stangl 1982; Zitzmann 2002).

With slightly less pronounced pileus squamulosity, 
there are I. neorufula, I. rivierana, and the polymorphic 
I. tigrina. These can be distinguished from 
I. phaeosquamosa by never developing such dark tones 
on the cap, and by their larger spores and more alkaline 
habitats (Bandini et al. 2020, 2021; Esteve-Raventos 
et al. 2011). Additionally, I. neorufula tends to present 
reddish colors (Bandini et al. 2020; Esteve-Raventos 
et al. 2011), whereas I. rivierana possesses peculiar 
cystidia with undate walls (Bandini et al. 2021).

There a few other species that may be confused with 
I. phaeosquamosa, but they all have considerably 
smoother pilei and larger spores. These species include 
I. tarda (Bandini et al. 2022a; Kühner 1955; Marchetti 
and Franchi 2008; Poirier 2012), I. tjallingiorum 
(Bandini et al. 2021; Kuyper 1986; Stangl 1989), and 
I. zethi (Bandini et al. 2022c).

Lastly, several dark-colored species are found within 
section Splendentes Singer, for instance, I. phaeoleuca. 
These species, however, are characterized by a pruinose 
stipe in their entire length and are thus easily distin-
guished from I. phaeosquamosa (Bandini et al. 2019c; 
Kuyper 1986).

DISCUSSION

In this study, we describe two new species within the 
genus Inocybe. The studied specimens of both species 
were found 5 km inland from the North Atlantic Ocean, 
on semixeric heathlands with sandy soil—generally 
acidic with occasional pockets of calcareous bedrock— 
dominated by Erica spp., Ulex spp., and various 
Cistaceae, with Quercus suber and Pinus pinaster com-
mon as well. The same acidic and plant ecology was 
found from other western Mediterranean sequences 

deposited in UNITE and PlutoF. The combination of 
the morphological, molecular, and biogeographic char-
acters make these species recognizable and distinct from 
any other known Inocybe taxa.

With regard to phylogeny, the partition analysis of ITS1 
+5.8S+ITS2+28S+RPB2 reveals that the two species belong 
to different early split branches of Inocybe evolution 
(FIG. 1). Whereas I. iberilepora clearly falls to the 
I. flocculosa clade, I. phaeosquamosa, on the other hand, 
appears to belong to a relatively unknown and isolated 
clade, with its probable closest known relatives found in 
the distant group of I. furfurea/I. rivierana. Both in terms of 
early branching and in terms of near-leaf resolution, the 
RPB2 gene proved to be more informative than 28S 
(TABLE 2 and FIG. 2).

Within the Mediterranean context, the western 
basin is exceptionally diverse when it comes to the 
Cistaceae present in northern Morocco and the 
Iberian Peninsula (Civeyrel et al. 2011; Coello et al.  
2021; Guzmán and Vargas 2005). Just last year, 
I. mecoana from Portugal and Malta (Bandini et al.  
2022a) and I. velatipusio from Spain (Muñoz et al.  
2022) were described from the western 
Mediterranean coasts. More new species are expected 
from these understudied and rich biomes.

In the case of I. phaeosquamosa, there is evidence 
that it can form EcMs with Cistus (FIG. 4). Although 
our own I. iberilepora observations are even more 
suggestive of a partnership with Cistus (FIG. 3f), 
there are data supporting its association with Pinus 
(FIG. 4). Whether these specific mutualisms are 
exclusive or preferential is something we cannot 
answer with this study, but it is not uncommon for 
macrofungi to exhibit symbiotic flexibility toward 
different plant species, including Cistaceae (Águeda 
et al. 2008; Comandini et al. 2006; Molina et al.  
1992). Regardless, the ability for Inocybaceae to 
associate with Cistaceae is well established 
(Comandini et al. 2006; Daskalopoulos et al. 2021; 
Martín-Pinto et al. 2006). Further investigations, 
including both field and in vitro experiments, are 
necessary in order to conclusively identify Inocybe 
species exclusively associated with Cistaceae stands 
and those playing transitional roles in ecosystem 
succession (Sanz-Benito et al. 2023).

In the UNITE database, Inocybe alone boasts an 
extensive collection of over 275 000 soil DNA 
sequences, spanning various continents and latitudes 
(Kõljalg et al. 2013; Nilsson et al. 2019). However, 
we found I. iberilepora and I. phaeosquamosa 
sequences only from the western Mediterranean 
region (FIG. 4), which suggests a potential case of 
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endemism in this area. Judging from the number of 
sequences, I. phaeosquamosa seems to be more pre-
valent than I. iberilepora, which in turn appears to 
belong to a complex of yet undescribed species 
(FIG. 1). The closest sequences to these species 
were predominantly Mediterranean, with an intri-
guing exception of three Canadian records related 
to I. phaeosquamosa (GenBank JX630893, 
KC965941, KF297126). This finding piques our curi-
osity about the interactions Inocybe species may have 
toward endemic Cistaceae in North America, such as 
in the genus Hudsonia (Malloch and Thorn 1985; 
Massicotte et al. 2010), and their potential relation-
ship with Mediterranean counterparts.

The taxonomic characterization of these species, as 
well as their broader biogeographic relationships, 
remains puzzling and warrants further studies by 
Inocybe systematists. Continued research will be crucial 
in unraveling the complexities of these species and their 
distribution patterns.
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