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ABSTRACT 

Chen, Zhonghua 
Multi-organ Medical Image Analysis, Modeling, and Segmentation Exploiting 
Pre-existing Knowledge 
Jyväskylä: University of Jyväskylä, 2024, 96 p. 
(JYU Dissertations 
ISSN 2489-9003; 749) 
ISBN 978-951-39-9936-0 (PDF) 

In the field of medical image analysis (MIA), accurate segmentation of targets has 
encountered numerous challenges. Segmentation methods targeting a single 
specific object have emerged over the past few decades. But the implementation 
of segmentation methods for multiple targets is technically challenging. MIA is a 
laborious process with many stages. Current development platforms do not 
allow for multiple stages efficiently, which slows down the development process. 
The accurate segmentation of multiple targets simultaneously and the creation of 
an efficient development platform still require further research. 

This thesis expands medical image segmentation (MIS) research in three 
ways. Firstly, it develops three-dimensional (3D) flexible and deformable multi-
organ models, which are investigated using methods based on principal 
component analysis (PCA) and neural networks. The results expand the 
deformability of the multi-organ models but also address the general sparsity of 
samples in large dimensions. Secondly, existing knowledge of deformable 
models and human interaction is adapted for the simultaneous segmentation of 
multiple organs. The results demonstrate that such a technique can segment 
multiple organs quickly and accurately. The segmentation method is also stable 
or 'robust.' Thirdly, the thesis develops a software named AnatomySketch (AS) 
for implementing efficient medical imaging algorithms, enabling the 
aforementioned techniques. The software includes a flexible plug-in interface 
and a user-friendly graphical user interface (GUI), facilitating the creation and 
testing of rapid prototypes. The results show that the software bridges the gap 
between laboratory prototypes and clinical work and accelerates the 
development of imaging algorithms. 

The thesis successfully demonstrates deformable organ model construction 
and performs simultaneous segmentation of multiple organs. Additionally, the 
AS software has proven to be effective in the development of medical imaging 
algorithms. 

Keywords: Medical image analysis (MIA), statistical shape model (SSM), 
principal component analysis (PCA), stacked autoencoder (SAE), mouse micro-
CT images, user interaction, deep learning (DL), AnatomySketch (AS) 
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Monielimien lääketieteellisten kuvien analysointi, mallinnus ja segmentointi 
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Jyväskylä: Jyväskylän yliopisto, 2024, 96 s. 
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Lääketieteellisen kuva-analyysin alalla kohteiden tarkka segmentointi on vaa-
tivaa. Viime vuosikymmenien aikana kehitetyt segmentointimenetelmät ovat 
tarkoitettu pääasiassa yksittäisille kohteille. Useiden kohteiden segmentointiin 
kerralla ei edelleenkään ole sujuvia prosesseja. Lääketieteellinen kuva-analyysi 
sisältää monia vaiheita ja on työläs. Nykyiset kehitysalustat eivät mahdollista 
useiden vaiheiden tehokasta yhdistämistä, mikä hidastaa alan kehitystyötä. Täs-
tä syystä useiden kohteiden samanaikainen tarkka segmentointi sekä tehokkaan 
kehitysalustan luominen tarvitaan lisätutkimusta. 

Tämä väitöskirja laajentaa lääketieteellisen kuvan segmentoinnin tutki-
musta kolmella tavalla. Ensinnäkin työssä on kehitetty kolmiulotteisia joustavia 
ja muunneltavia monielinmalleja, joita lähestyttiin nk. pääkomponenttianalyysin 
ja neuroverkkomenetelmien avulla. Tulokset laajentavat mahdollisuuksia moni-
elinmallien muodonmuutoksille, mutta työssä myös käsitellään yleistä näytteis-
tyksen harvuuden ongelmaa. Toiseksi työssä sovitetaan vallitsevaa ymmärrystä 
muunneltavista malleista ja ihmisen vuorovaikutuksesta useiden elinten saman-
aikaiseen segmentointiin. Tulokset osoittavat, että useita elimiä voidaan segmen-
toida nopeasti ja tarkasti. Segmentointimenetelmä on myös stabiili eli ”robusti”. 
Kolmanneksi työssä on kehitetty AnatomySketch nimetty ohjelmisto tehok-
kaiden lääketieteellisten kuvantamisalgoritmien toteuttamiseen perustuen edellä 
mainittuihin tekniikoihin. Ohjelmisto sisältää joustavan plug-in-liittymän ja 
käyttäjäystävällisen graafisen käyttöliittymän, mikä mahdollistaa nopeiden pro-
totyyppien luomisen ja testaamisen. Tulokset osoittavat, että ohjelmisto kaventaa 
laboratorioprototyyppien ja kliinisen työn välistä kuilua ja nopeuttaa kuvan-
tamisalgoritmien kehitystä. 

Työ demonstroi muunneltavia elinmallien konstruoinnin sekä mallintaa 
ja segmentoitu onnistuneesti useampia elimiä yhdellä kertaa. Lisäksi 
AnatomySketch-ohjelmisto on osoittautunut toiminnallisuudeltaan tehokkaaksi 
lääketieteellisten kuvantamisalgoritmien kehityksessä. 

Avainsanat: Lääketieteellinen kuva-analyysi, tilastollinen muotomalli, pääkom-
ponenttianalyysi, pinottu autoenkooderi, hiiren mikro CT-kuvat, käyttäjävuoro-
vaikutus, syväoppiminen, AnatomySketch. 
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This chapter begins by introducing the research background. Then it presents 
research motivation for the thesis. It concludes by outlining the structure of the 
thesis. 

1.1 Research background 

In real-world scenarios, the majority of medical images are unlabeled due to their 
inherent complexity. This presents a significant challenge in accurately 
identifying various organs or tissues in clinical applications. Precise 
segmentation offers reliable shape and volumetric information, playing a crucial 
role in disease diagnosis and quantitative analysis within clinical settings. We 
will provide a more detailed introduction related to MIS in the following three 
aspects. 

1.1.1 The nature of medical image segmentation 

Medical imaging plays a crucial role in various healthcare settings. The use of 
medical imaging is irreplaceable in identifying, assessing, and documenting the 
progression of different types of diseases, as well as the response to treatment. 
For example, computed tomography (CT) and magnetic resonance imaging (MRI) 
are widely used for lesion detection in internal organs, bones, and tissues in 
humans. However, the quality of medical images is often poor, resulting in 
blurred boundaries between different regions, such as different organs. As a 
result, it can be time-consuming and labor-intensive for doctors to read medical 
images for diagnosis. Consequently, researchers are dedicating efforts towards 
developing different MIS methods to segment different regions of interest (ROIs). 
Designing segmentation methods based on the boundaries of different ROIs is a 
common trend in MIS.  

1 INTRODUCTION 
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So, what is meant by the term "boundary"? Segmentation is closely related 
to the notion of a boundary. In the context of point-sets, the boundary of a set 𝑋𝑋, 
is denoted by 𝜕𝜕𝜕𝜕. The boundary is what remains when the interior points of 𝑋𝑋 
are subtracted from its closure. Alternatively, one may define the set of boundary 
points by stating that a point 𝑥𝑥  is on the boundary of the point set 𝑋𝑋 , i.e., 𝑥𝑥 
belongs to 𝜕𝜕𝜕𝜕, if all the open neighborhoods of 𝑥𝑥 contain points both from 𝑋𝑋 and 
its complement. It is important to note that both specifications of a boundary 
assume that 𝑋𝑋 is a proper subset of some ambient point-set. 

The concept of a boundary is intuitive in the context of point-sets but 
recognizing boundaries in digital medical images presents certain challenges. If 
we consider a subset of n-dimensional space, denoted as 𝑋𝑋, the dimension of its 
boundary is (n-1). This means that the boundary of any 3D organ or anatomical 
part is a 2-dimensional (2D) surface with no thickness. Consequently, medical 
images do not provide any explicit indication of the boundary. Moreover, every 
digital image is composed of a finite set of data points, rendering the definition 
of a boundary meaningless, at best. Therefore, a segmented image object can only 
be an informed approximation of the boundary. 

The concept of a boundary in medical images can still be preserved by 
introducing a mapping from ℝ2 to the image. For instance, consider a medical 
image resembling a standard photograph, which is a plane. By introducing a 
mapping from ℝ2 to the image plane, every point in the image can be identified 
with a pair of coordinates (𝑥𝑥,𝑦𝑦) ∈ ℝ2, as shown in Figure 1. Consequently, even 
though the image plane consists of a finite set of pixels, it can still be regarded as 
a point-set, and the definition of a boundary is well-defined in this context.  

 

 

FIGURE 1 A map from ℝ2 to an image plane parametrizing the image domain with 
pairs of real numbers 

Formally such a construction is known in mathematics as a manifold. Such 
interpretation of medical images corresponds well with the clinical diagnostic 
practices. For instance, a purpose of segmenting medical images is to measure 
the size of objects, and this calls for some further structure. Image segmentation, 
i.e., finding the boundary of a ROI, is about topology. In other words, to find a 
boundary one does not need a ruler and to know of distances. But when it comes 
to measuring sizes of objects one needs a metric structure. Such metric can be 
introduced with the map 

ℝ2→ image plane,  
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by equipping ℝ2 with an inner product – meaning given any pair of points, their 
distance is also known–that provides one with the information of distances. 

Summing up, we may now conclude, MIS is formally about finding the 
boundaries of ROIs from images that are consider as maps 

ℝ𝑛𝑛→ image. 

1.1.2 Review of medical image segmentation 

MIS is a vital technique for the delineation and extraction of ROIs in medical 
research and clinical applications. MIS aids computer-aided diagnosis, the study 
of anatomy, tissue detection, and surgical planning (Elnakib et al., 2011; Norouzi 
et al., 2014; Nosrati and Hamarneh, 2016; Pham et al., 2000). It frees experts and 
practitioners from the burden of repeated, tedious, and time-consuming image-
reading tasks. Over the years, MIS has emerged as a growing subfield of MIA. 
Essentially, MIS is the process of partitioning a medical image, such as CT and 
MRI, into continuous sub-images with corresponding homogeneous 
characteristics. The objective of MIS is to extract various ROIs, each represented 
with a different label for different tasks. Typically, the implementation of MIS 
involves segmentation methods or the integration of segmentation methods with 
operating platforms. 

MIS methods can be divided into two categories based on the types of 
research routines: conventional MIS methods and deep learning (DL)-based MIS 
methods. Conventional methods have been in development for several decades. 
There are many variants that accurately segment specific anatomical structures 
in different image modalities. These methods include thresholding, region-based, 
edge-based, clustering-based, atlas-based segmentation, and model-based 
segmentation (Kang et al., 2009; L. K. Lee et al., 2015; Pham et al., 2000; Ramesh 
et al., 2021).  

Thresholding approaches involve partitioning the pixels of a medical image 
into different classes with binary values. The segmentation process implements 
by setting appropriate feature thresholds, such as grayscale. Typically, the 
number of threshold values corresponds to the groups of image pixels. During 
the thresholding segmentation process, selecting appropriate threshold values is 
crucial for achieving optimal results. As a result, numerous approaches have 
been proposed for selecting proper thresholding values over the past few 
decades. These approaches include analyzing grayscale distribution (Otsu, 1979), 
using image histograms (Li et al., 1997), constructing Gaussian mixture models 
for threshold selection (Fan et al., 2008; Z.-K. Huang and Chau, 2008), utilizing 
multilevel thresholding algorithms (Adollah et al., 2012; Maitra and Chatterjee, 
2008), performing 3D adaptive thresholding (J. Zhang et al., 2010), and 
employing wavelet-based multiscale product thresholding (Vijay et al., 2012). 
According to the principles of selecting threshold values, thresholding 
approaches can generally be classified into three categories: global thresholding, 
local thresholding, and dynamic thresholding methods (Kang et al., 2009). The 
grayscale histogram distribution of an image has a significant impact on the 
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segmentation accuracy of thresholding approaches. In practice, thresholding 
approaches demonstrate good segmentation efficacy on images with bimodal 
histograms. But they may fail to segment ROIs in a medical image without a 
bimodal histogram. Additionally, thresholding approaches do not utilize spatial 
information in an image. These two obvious limitations can lead to segmenting 
anatomical structures without meaningful anatomy, particularly in MRI images 
(Norouzi et al., 2014; Zanaty and Ghoniemy, 2016).  

According to some given criteria (Haralick and Shapiro, 1985), region-based 
methods partition an image into different regions where the pixels have the same 
or similar characteristics, such as grayscale, texture, and homogeneity criteria 
(Kang et al., 2009; Zanaty and Ghoniemy, 2016). Region-based methods can be 
mainly divided into two subcategories: (a) region growing and (b) region 
splitting and merging. Region growing technique needs to set different seeds (i.e., 
pixels) to start region growing process (Ayman et al., 2013; Wu et al., 2008). 
Region-based methods has been developed for decades after Zucker proposed 
the basic region growing technique for image segmentation for the first time 
(Zucker, 1976). In the early stage of MIS, Heinonen et al. (Heinonen et al., 1998) 
applied another region growing technique for lesion segmentation in MRI images. 
Later, Boasch et al. (Bosch et al., 2002) and Scott et al. (Scott et al., 2003) expanded 
region growing methods into several medical image modalities, such as 
ultrasound images and X-ray images. Their work has made a significant 
influence on other following variants of region growing. Region growing 
methods based on seed selection criterion are often faster when the seeds are 
chosen properly (Zanaty and Ghoniemy, 2016). However, the ways for choosing 
a seed in an image are concerned with the segmented results greatly (Adams and 
Bischof, 1994; Ayman et al., 2010). As the name implies, the region splitting and 
merging technology is that users first divide an image into various disconnected 
regions. And then users merge these regions according to the given segmentation 
criteria to obtain the segmented results. The implementation of this kind of 
method depends on the principle of quad tree (Kelkar and Gupta, 2008; Malik et 
al., 2001). But this technique is susceptible to the number of segmentations and 
clearness of anatomical boundaries (del Fresno et al., 2009; Zanaty and Asaad, 
2013). Consequently, region splitting and merging algorithms tend to consume 
significant computational resources and time due to their memory requirements.  

An image is composed of various regions made up of different pixels, such 
as gray or colored pixels. Pixels are separated by boundaries where the intensity 
values change abruptly, such as texture variations and color discontinuities 
(Kang et al., 2009). Edge-based methods utilize distinct boundary discontinuities 
to detect all edges and connect them to form different regions (Farag, 1992). Gray 
histograms and gradient-based methods, as two basic and classic edge-based 
approaches, have laid the foundation for other variants of edge-based methods 
that followed (Kaur and Kaur, 2014). Edge detection, one of the most popular 
gradient-based methods, has given rise to several well-known algorithms such 
as Prewitt edge detection (Prewitt, 1970), Sobel edge detection (O. R. Vincent and 
Folorunso, 2009), Canny edge detection (Canny, 1986), and Roberts edge 
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detection (Cherri and Karim, 1989). As edge detection has advantages for object 
recognition in high-contrast images, in 2006, Zhao et al. (Yu-Qian et al., 2006) 
proposed a new mathematical morphological edge detection algorithm for 
segmenting lungs in CT scans. This method showed better segmentation and 
denoising results. However, edge-based methods are not suitable for images with 
blurred boundaries and are vulnerable to the number of boundaries, especially 
for MRI images. 

Another well-known image segmentation method is the watershed method, 
which has been attributed to both region-based segmentation methods in some 
studies (Hamarneh and Li, 2009; Kang et al., 2009), and edge-based segmentation 
methods in others (L. K. Lee et al., 2015). However, several review studies have 
classified watershed as a separate category (Kaur and Kaur, 2014; Pham et al., 
2000; Zanaty and Ghoniemy, 2016). The watershed approach mimics the 
structure of a geographical watershed. It interprets low-intensity pixels as valleys 
and high-intensity pixels as mountain peaks. Thus, it enables segmentation of 
different regions within an image. This method is widely used in MIS because it 
can produce better division of an image. However, the disadvantage of the 
watershed method is that it is prone to generating false edges and over-
segmenting an image. 

Clustering-based methods are widely used in MIS because they can 
effectively separate pixels with similar characteristics into the same class while 
distinguishing pixels with dissimilar characteristics. These methods cluster 
pixels together based on their features, enabling them to identify and segment 
proper objects within an image. Because clustering-based methods do not require 
training data, they belong to the category of unsupervised learning methods. 
However, these methods need to iterate between segmentation and refining the 
characteristics of each cluster to improve their accuracy (Pham et al., 2000). The 
k-means algorithm (Coleman and Andrews, 1979; Dehariya et al., 2010), fuzzy C-
mean algorithm (Dunn, 1973; Jain and Sharma, 2019), and expectation 
maximization algorithm (Ravindraiah and Tejaswini, 2013; Warfield et al., 2002) 
are the three classic clustering-based methods used in MIS. One clear advantage 
of clustering-based methods is their ability to process images quickly. However, 
they do not take advantage of spatial information within an image and are 
susceptible to homogeneous noise (Norouzi et al., 2014). Furthermore, while 
clustering does not require training data, the results can be highly dependent on 
the initial parameters fed into the algorithms. This can compromise the accuracy 
of the segmentation. 

Deformable model-based methods are another common and popular 
approach in MIS. These methods partition images into different regions by 
minimizing energy functions that measure the variation within training data and 
the differences between training and testing data (Caselles et al., 1993; Kass et al., 
1988; Terzopoulos and Szeliski, 1992). Deformable models can be trained by 
using prior knowledge, such as the shape and texture of an image, to optimize 
energy functions and achieve good deformability. In medical applications, 
deformable modeling is used to delineate, segment, and extract ROIs from 



 
 

20 
 

medical images, such as the segmentation of organs and tissues, delineation of 
parametric curves or surfaces. This means that models can deform regularly 
under the influence of internal and external forces to generate object boundaries 
(Zhao and Xie, 2013). Statistical shape models (SSMs) have been proposed as a 
robust tool for segmenting and extracting ROIs in medical images, especially for 
3D ROIs (Heimann and Meinzer, 2009). The two classic methods for statistical 
shape modeling are active shape models (ASMs) (Cootes et al., 1995) and active 
appearance models (AAMs) (Cootes et al., 2001), which have greatly influenced 
other variants of SSMs. 

In conclusion, conventional MIS methods have been extensively developed 
and applied to the segmentation of various anatomical structures. For specific 
anatomical structures, there are corresponding segmentation methods, which 
significantly reduce the workload of doctors in clinical diagnoses. Figure 2 
illustrates the general types of conventional MIS methods. 

 

 

FIGURE 2 General types of conventional MIS methods 

With the rapid development of hardware and software in computer-aided 
diagnosis, the quality of medical imaging has improved dramatically (Sahiner et 
al., 2019). The advances in these techniques have promoted the development of 
DL methods (LeCun et al., 2015) for MIS. As an emerging subfield of MIS, DL 
methods for MIS have increasingly become a research hotspot. Essentially, DL 
methods have evolved from binary classification in machine learning which 
belongs to artificial intelligence. But DL methods are much more complicated 
because they are presented with deep neural networks. Intuitively, DL methods 
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are invented to simulate the learning process of humans. They extract useful 
information from various datasets such as, text, sound, images, videos, etc. in an 
unsupervised (C. Chen et al., 2020; J. Chen and Frey, 2020), semi-supervised 
(Shuai Chen et al., 2019; Nie et al., 2018), or supervised (Gu et al., 2018; R. Wang 
et al., 2022) manner. Deep neural networks, the concrete format of DL methods, 
are composed of multiple layers of neurons. Neurons are regarded as 
information processing units and connected in a certain way according to some 
mathematic rules. For MIS, DL methods such as fully convolutional network 
(FCN) (Bi et al., 2018; Roth, Oda, et al., 2018), U-net (Du et al., 2020; Siddique et 
al., 2021), and generative adversarial network (GAN) (Creswell et al., 2018; 
Goodfellow et al., 2020; Xun et al., 2022) in various studies are based on the 
convolutional neural network (CNN) (O'Shea and Nash, 2015). Research in recent 
years has shown that compared to conventional MIS methods, DL methods can 
segment ROIs in images faster and more accurately. Some examples include 3D 
MRI image segmentation based on FCN (Milletari et al., 2016), liver and spleen 
segmentation in CT images based on UNet 3+ (H. Huang et al., 2020), and tumor 
segmentation in MRI images based on GAN (Cirillo et al., 2021; Nema et al., 2020; 
Sun et al., 2020). Therefore, DL can further effectively help doctors obtain the 
desired results in clinical applications, thereby greatly reducing their workload. 
In addition, during the COVID-19 pandemic, DL methods have been widely used 
for quantitatively evaluating or extracting infected areas in patients’ lungs from 
different image modalities (Han et al., 2022). This helps doctors make faster and 
more accurate diagnoses to save more lives 

In conclusion, Zhao et al. pointed out that some segmentation methods can 
be also attribute to one of the following three categories: unsupervised (automatic) 
methods, semi-supervised (semi-automatic) methods, and supervised methods 
(Zhao and Xie, 2013). Figure 3 shows the classification of main segmentation 
methods in the domain of MIS. 

 

FIGURE 3 Classification of some popular segmentation methods in the domain of MIS 
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1.1.3 Prior knowledge 

In practical application, various MIS methods are susceptible to different types 
of noise. These noises primarily originate from different image modalities, poor 
contrast in certain regions, irregular shapes of anatomical structures, and 
complex boundaries of organs. These factors can limit methods’ performance in 
achieving accurate segmentation. However, previous studies have shown that 
incorporating prior knowledge into different MIS algorithms can result in more 
reliable and accurate results (Grau et al., 2004; Kim et al., 2005). Prior knowledge 
of medical images, such as CT or MRI images, must be further interpreted to 
enable effective segmentation. Medical images typically consist of various grey 
pixels, with intensity values that do not necessarily range from 0 to 255. Medical 
images contain multiple types of prior knowledge that can be applied in different 
segmentation methods, including texture, grayscale of pixels, volume, shape, and 
appearance (Xi et al., 2017). Additionally, there is associated geometric 
information for different regions, location and distance of anatomical structures, 
atlases of images, and deformable models in medical images (Elnakib et al., 2011; 
Heimann and Meinzer, 2009; G. Hu, 2009; Nosrati and Hamarneh, 2016; Pham et 
al., 2000). 

In the past few decades, there have been numerous studies that thoroughly 
reviewed the development and applications of MIS. Combining prior knowledge 
with these studies has played a crucial role in improving the accuracy of MIS. For 
example, the use of deformable models in medical images has been extensively 
studied (Egmentation et al., 2000; Elnakib et al., 2011; Heimann and Meinzer, 
2009; G. Hu, 2009; McInerney and Terzopoulos, 1996). Additionally, user 
interaction has been studied to improve the accuracy of segmentation 
(Olabarriaga and Smeulders, 2001). More recently, the use of deep atlas prior for 
liver and spleen segmentation has shown promising results (Huimin Huang et 
al., 2021). The incorporation of these prior knowledge approaches has 
contributed significantly to the advancement of MIS. 

In 3D MIS, SSM, as a kind of shape prior knowledge, is often used to 
segment specific individual anatomical structure. Most of the previous studies 
used SSMs to segment 

• Specific organs, e.g., the liver in the human body (Lamecker et al., 2004), 
brain regions (Shen et al., 2001), heart ventricles (Grosgeorge et al., 2013), 

• Target lesions, e.g., tumors (Wilms et al., 2012),  
• Bones, e.g., lower limbs trunk (Audenaert et al., 2019).  

However, various organs are physically and functionally related to each 
other in an image. Segmentation of individual organs oversimplifies the 
complicated human anatomy. Such methods seldom consider the interaction 
between organs, which limits the segmentation performance. The complicated 
human anatomy therefore makes the development of segmentation methods 
targeting multiple organs difficult. Although there are fewer studies on multiple 
organs than single-organ studies, more accurate and comprehensive 
segmentation methods are constantly being developed. Some literature has 
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pointed out that multi-objective modeling and analysis has attracted extensive 
attention of researchers (Leal-Taixé et al., 2017; Luo et al., 2021). The evidence is 
that the research on multi-organ segmentation has shown exponential growth 
(Cerrolaza et al., 2019), such as multi-resolution shape (Cerrolaza et al., 2011; 
Davatzikos et al., 2003), multi-organ model (Chaney et al., 2004; C. Lu et al., 2007; 
Pizer et al., 2003; Vera et al., 2011), DL model (Gibson et al., 2018; P. Hu et al., 
2017; Roth, Shen, et al., 2018; Y. Wang et al., 2019; X. Zhou et al., 2017). 

Recently, in some state-of-the-art studies, the edge information and region 
information of anatomical structures have been utilized to enhance the training 
of deep networks (Shaolong Chen et al., 2023). These shape prior knowledge can 
improve the segmentation efficiency of the network and achieve better 
segmentation results. Similarly, in some studies, organ shape prior knowledge 
has been employed to train shape-adversarial autoencoders for optimizing 
segmentation networks, thereby improving the segmentation results of the 
network (Lei et al., 2023). Furthermore, the fusion of boundary information and 
region information of lesions has also been shown to significantly improve the 
segmentation accuracy in certain research and application scenarios (Liu et al., 
2022). To date, there have been very few studies on deep learning segmentation 
networks based on shape prior knowledge, and this research gap presents a 
potential hotspot for future investigations. 

1.2 Research motivation 

Although numerous MIS methods have been applied widely in various clinical 
applications and research, there is always room for developing better methods 
for MIS, especially with the incorporation of prior knowledge. However, 
conventional MIS methods focus on the segmentation of specific anatomical 
structures, neglecting inter-organ relations (Cerrolaza et al., 2019). Furthermore, 
medical images exhibit poor quality and complicated shapes of different 
anatomical structures. These limitations can result in obtaining poor or opposite 
ROIs by parametrizing each anatomical structure independently. Therefore, 
developing appropriate approaches to segment multiple ROIs simultaneously is 
a significant challenge for researchers. However, research shows that there are 
fewer studies focusing on multi-organ analysis compared to single-organ 
analysis (Cerrolaza et al., 2019). Some famous methods were proposed to handle 
specific problems of single-organ analysis without prior knowledge of inter-
structure (Cootes et al., 1995; Gerig et al., 2001; Leventon et al., 2002; Pizer et al., 
1999). In contrast, early multi-organ segmentation methods were relatively 
simple but computationally intensive (Cates et al., 2008; Frangi et al., 2002; Pizer 
et al., 2003).  

Recently, more studies have used DL methods for multi-organ 
segmentation, which have further improved the accuracy of segmentation (Fu et 
al., 2021; Gibson et al., 2018). However, due to the complexity of multi-organ 
segmentation, research in this area needs more exploration. Ideally, multi-organ 
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segmentation can greatly improve the efficiency of obtaining multiple targets 
simultaneously in medical images, making further research in this area necessary. 
Based on this, we identify four research questions: 

1. How can we create a sophisticated deformable model for multiple organs, 
such as livers, left kidneys, right kidneys, and spleens, based on an 
improved PCA algorithm for low-contrast mouse micro-CT images? How 
can we address computational burden for a large-scale data during the 
process of model construction? 

2. Can artificial neural networks (ANNs), such as stacked autoencoder (SAE) 
networks, be used to build multi-resolution multi-organ deformable 
models with greater deformability, incorporating more non-linear 
deformation components to generate additional deformable modes? 

3. How can we leverage the shape prior knowledge of the model to achieve 
more accurate segmentation of multiple organs in medical images? Should 
we integrate an algorithm into the segmentation process for improved 
accuracy, or is human interaction a viable approach for achieving better 
performance? 

4. Given the complexity of MIA, including multi-organ segmentation, 
software that integrates various medical image processing methods plays 
a crucial role. Should we develop an extensible open-source platform with 
a user-friendly GUI that can integrate multiple methods to facilitate 
medical image processing? 

So, the motivation behind this dissertation is to provide solutions to these 
problems. 

1.3 Structure of dissertation 

The rest of this dissertation is organized as follows. Chapter 2 introduces the 
experimental data used in the published articles, together with methods used in 
these different articles. Chapter 3 introduces the corresponding evaluation 
methods. Chapter 4 summarizes the four articles included in this thesis. 
Chapter 5 discusses the experimental data, methodologies, limitations and future 
directions. Chapter 6 concludes the whole thesis. 
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This chapter commences by introducing the concepts of common medical image 
modalities in Section 2.1 and elucidating the image data employed in the study 
in Section 2.2. Subsequently, the research pertaining to PCA and ANN for 
modeling is comprehensively reviewed in Sections 2.3 and 2.4, respectively. 
Furthermore, Section 2.5 presents the methodology of multi-organ segmentation 
based on a constructed model and Variational Hermite Radial Basis Function 
(VHRBF) (Brazil et al., 2010). Finally, Section 2.6 provides an in-depth description 
of the comprehensive software developed for MIA. The aim of this chapter is to 
provide the reader with a more comprehensive understanding of common 
medical image modalities and the methods employed in our study. 

2.1 Common medical imaging modalities 

The role of medical images in health monitoring and disease diagnosis has 
become increasingly significant. Medical images are generated by exposing 
mammal bodies to various media, such as X-rays, ultrasonic waves, and 
electromagnetic fields, which interact with the tissues, organs, bones inside the 
body and produce images (Webb, 2022).  

However, the quality of such medical images are not comparable to those 
of ordinary photographs, which are generated from reflected light measurements. 
Medical images rely on more advanced techniques and there are technical 
reasons why the medical images can’t be as sharp or clear as ordinary photos. 
Accordingly, the segmentation methods developed for photographing are not 
directly applicable to medical imaging. For this reason, medical images call for 
specific and tailor-made segmentation techniques. 

Next, we will take a brief view on the technical challenges of medical 
imaging techniques that explain the imaging quality. 

2 MATERIALS AND RELATED WORK 
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2.1.1 X-ray imaging 

X-rays, discovered by W. Röntgen in 1895, exhibit varying absorption properties 
in different materials based on their density (Panchbhai, 2015). X-ray imaging is 
based on the differential absorption of X-ray energy by various materials. As X-
rays pass through substances, the radiation attenuates. This is detected in the 
contrast of the resulting images. Different materials absorb X-ray energy in 
varying degrees, leading to variations in brightness and contrast in X-ray images. 
For instance, bones absorb more X-ray energy compared to paper and water, 
resulting in distinct contrast between bones and soft tissues (Maier et al., 2018; 
Miwa and Otsuka, 2017). 

X-rays are typically generated with X-ray tubes. They consist of a vacuum 
tube with a cathode and a metal anode. When the cathode is heated by a filament, 
thermal electrons are emitted and accelerated. This process involves deceleration 
and deflection, leading to the production of X-rays. Two types of X-ray radiation 
are generated: characteristic X-ray radiation, produced when electrons interact 
with inner-shell electrons of the target material, and bremsstrahlung radiation, 
caused by interactions with the target atomic nuclei (Seibert, 2004; KT Wilson et 
al., 2020; Kieran Wilson and Schaub, 2019). Modern X-ray detection systems 
convert transmitted X-rays into light and then into electronic signals, replacing 
older X-ray films (Maier et al., 2018).  

It is unavoidable X-ray images are somewhat blurry. Firstly, it is impossible 
to technically construct an ideal point source for X-rays. Consequently, as the X-
rays do not come from a single point, an X-ray image can never be completely 
sharp. Secondly, when X-rays interact with matter, they interact with the 
electrons and nuclei of the atom and with the associated electric field. This leads 
not only to absorption, but also to (elastic and inelastic) scattering causing noise 
and blurriness in the images. Furthermore, the effects are highly dependent on 
the energy of the X-rays (Boone, 2000; Maier et al., 2018).  

Figure 4 displays an X-ray image of a patient's chest1 demonstrating the 
slight inherent blurriness of X-ray images. As depicted in this figure, the rib bones 
in the chest cavity overlap with each other significantly. The distinction of 
individual bones within the highlighted region is not discernible to human eyes. 
This inherent low imaging quality of X-ray images poses considerable challenges 
in MIA. 

 

 
1 https://unsplash.com/s/photos/x-ray 
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FIGURE 4 An example of a chest X-ray 

2.1.2 Computed tomography (CT) imaging 

Based on X-ray imaging, CT technology was developed to overcome the 
limitations of conventional X-ray imaging. The 2D images obtained from X-rays 
do not preserve all spatial information of the object as they are projections from 
3D space to a plane (Maier et al., 2018; Shah et al., 2014). By taking multiple 
projections from different angles, a 3D reconstruction can be constructed, 
providing one with a sectional view of the object. This concept was the original 
motivation behind the development of CT scanning. 

The first CT system was constructed in 1971 by G. N. Hounsfield and A. 
McLeod Cormack (Cierniak and Cierniak, 2011). Subsequently, the introduction 
of spiral CT by W. Kalender et al. marked a significant advancement, offering 
faster data acquisition, shorter reconstruction times, as well as higher spatial 
resolution and quantization depth (Kalender et al., 1990). 

In recent years, significant progress has been made in CT technology 
regarding temporal and spatial resolution (Leng et al., 2015; J. Wang and 
Fleischmann, 2018). Among them, the development of dual-source CT in 2005 
represents a significant milestone (Brodoefel et al., 2008). It incorporates two X-
ray sources and detectors within a single scanner, leading to a substantial 
increase in scanning speed. Additionally, the number of slices acquired in 
parallel has also been increased, expanding the imaging field of view and 
reducing motion artifacts in the imaged object. 

As CT relies on X-ray images, evidently, it shares the same technical issues 
that result in blurry images. However, taking several projections makes it 
possible to significantly improve the image quality. That is, each projection, i.e., 
each X-ray image can be consider as a sample of the imaged object. A sufficiently 
large number of projections makes it possible to solve (with a reasonable 
accuracy) an inverse problem. The inverse problem arises because the acquired 
X-ray projections do not directly provide information about the internal structure 
in a straightforward manner (G. T. Herman, 2009). The goal of the inverse 
problem is to determine the characteristics and structure of the object that has 
generated these samples. In principle, in the context of CT imaging, the inverse 
problem can be established by assuming a non-ideal X-ray source. This means 
that the X-ray source need not be a perfect point source improving the image 
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quality. However, noise caused by scattering can further degrade the quality of 
the acquired data. Various mathematical techniques and algorithms (G. T. 
Herman, 2009; Kak and Slaney, 2001; Natterer, 2001), such as filtered 
backprojection and iterative reconstruction methods (Kak and Slaney, 2001; 
Natterer, 2001), are employed to address the inverse problem and mitigate the 
impact of noise and imperfections. The process typically involves finding a 
reconstruction algorithm that can sufficiently accurately recover the internal 
structure of the object based on the acquired projections. 

The mathematical principles underlying the reconstruction of CT images 
primarily involve the Radon transform and the Fourier slice theorem (Jiang Hsieh, 
2003; Kak and Slaney, 2001; Natterer and Natterer, 1986). The Radon transform 
states that any integrable function can be uniquely represented by integrating 
over all lines in its domain. The function integrable function can be reconstructed 
from these projections. The Fourier slice theorem establishes an equivalence 
relationship between the Fourier transform of a projection and the original 
function. It allows an estimation of the original function by computing the 
Fourier transform of the projections. Based on these principles, two main 
reconstruction methods are employed in CT imaging. The first one utilizes the 
Radon transform. It employs the Beer-Lambert law, which converts X-ray 
projections into line integrals for CT reconstruction (Seeram, 2018). The second 
method is filtered backprojection, which exploits the Fourier slice theorem to 
directly invert the projection process for CT reconstruction, without requiring 
calculations in the frequency domain (Pontana et al., 2011). 

Building upon these principles, the introduction of multi-row detectors has 
greatly facilitated the advancement of CT technology (Fischbach et al., 2003; 
Wormanns et al., 2004). This improved CT technology enables multi-slice CT 
scanning, significantly enhancing imaging speed. Additionally, cone-beam CT 
employs image intensifiers or the latest flat-panel detectors to capture objects 
with a large field of view in a single rotation (Abramovitch and Rice, 2014; Scarfe 
and Farman, 2008). Cone-beam CT finds wide applications in interventional 
imaging and other fields. However, it is important to note that object 
reconstruction algorithms rely on a rotational plane. Consequently, deviations of 
the beam from this plane tend to introduce uncertainties and artifacts in the 
reconstruction process. 

In practical usage, several factors need to be considered when constructing 
CT images (Davis and Vachhani, 2017; Maier et al., 2018): 

• Spatial resolution: Spatial resolution refers to the CT system's ability to 
distinguish small details in the image. It is influenced by factors such as 
detector pixel size, focal spot size, and reconstruction algorithms. Higher 
spatial resolution enables the visualization of fine structures. 

• Noise: CT images inherently contain noise due to the statistical 
characteristics of X-ray detection. Noise can degrade image quality and 
reduce diagnostic confidence. Techniques such as tube current 
modulation and iterative reconstruction algorithms are employed to 
reduce noise while preserving image quality (Vardhanabhuti et al., 2013). 
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• Image artifacts: Artifacts are unintended features or distortions present in 
CT images that do not accurately represent underlying anatomical 
structures. Various factors can cause artifacts, including patient motion, 
metal objects, beam hardening, and patient size. Artifacts can affect image 
interpretation and diagnosis. 

• Beam hardening: Beam hardening occurs when the X-ray beam passing 
through an object becomes harder (more penetrating) as it traverses the 
material. This can lead to cupping artifacts and inaccurate Hounsfield unit 
measurements, especially in dense objects like bones (Boas and 
Fleischmann, 2012). Correction algorithms are used to minimize the 
impact of beam hardening artifacts. 

• Scatter artifacts: Scatter artifacts are caused by X-ray photons deviating 
from their original path due to interactions with patient tissues. These 
scattered photons can reduce contrast and result in streak artifacts, 
thereby reducing image quality. Scatter correction techniques are applied 
to mitigate these artifacts (Baer and Kachelrieß, 2012). 

• Partial volume effect: The partial volume effect occurs when a voxel (3D 
pixel) contains a mixture of different tissue types, leading to inaccurate CT 
numbers and blurred tissue boundaries. High-resolution imaging, thin-
slice acquisition, and advanced reconstruction algorithms can help reduce 
the impact of partial volume effect (Pelc, 2014). 

• Metal artifacts: Metal implants or objects within the patient's body can 
cause severe artifacts in CT images. These artifacts manifest as streaks, 
dark or bright bands, and geometric distortions, making it challenging to 
assess surrounding anatomical structures. Techniques to minimize metal 
artifacts are employed to mitigate their impact. 

• Motion artifacts: Patient motion during the image acquisition process can 
result in motion artifacts, leading to structural blurring or ghosting. It can 
be caused by involuntary patient motion, respiration, or cardiac motion. 
Motion compensation techniques, such as gating or respiratory-triggered 
imaging, are used to mitigate these artifacts (Goo and Allmendinger, 2017). 

• Truncation artifacts: Truncation artifacts occur when the imaged patient 
or object extends beyond the field of view (FOV) of the CT scanner. This 
leads to data truncation, resulting in ring-like or dark bands in the 
reconstructed image. Increasing the FOV or applying advanced 
reconstruction algorithms helps minimize truncation artifacts (J Hsieh et 
al., 2004; Y. Huang et al., 2020). 

These factors highlight that CT image segmentation faces numerous 
research challenges of significant value. Achieving accurate and reliable 
segmentation of ROIs has been an ongoing research objective. From the 
principles and imaging conditions of CT, it is evident that variations in image 
quality, such as noise, artifacts, and contrast, have a substantial impact on the 
delineation accuracy of target boundaries. Limited scanner resolution leads to 
partial volume effects that result in blurring and incorrect labeling. Moreover, the 
presence of heterogeneous tissue characteristics and overlapping intensities 
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makes tissue differentiation challenging. Additionally, complex anatomical 
variations pose challenges in handling inter-patient and intra-patient differences 
using algorithms. Furthermore, the time and computational complexity 
associated with volumetric data necessitate the continuous development of 
effective real-time segmentation algorithms. These factors collectively present 
challenges for the segmentation task. Addressing these challenges requires the 
development of improved segmentation methods, which is also the primary 
focus of this thesis.  

Figure 5 shows a cross-sectional CT image of a human chest2. Compared to 
X-ray images, CT imaging offers better contrast between different organs within 
the chest cavity, particularly the boundaries separating the lungs from adjacent 
organs. This is because that CT imaging utilizes a combination of X-ray 
attenuation measurements from multiple angles to reconstruct cross-sectional 
images. The multi-angle approach allows for the differentiation of tissues with 
similar attenuation coefficients. By capturing X-ray projections from various 
angles and using sophisticated mathematical algorithms, CT imaging can 
generate enhanced contrast images between different soft tissues within the chest, 
including the lungs and adjacent organs. 
 

 

FIGURE 5 A cross-sectional CT image of a human chest 

2.1.3 Ultrasonic imaging 

In addition to the aforementioned common imaging modalities, ultrasound 
imaging is also widely used in medical diagnosis. Sound waves are generated by 
the periodic compression of molecules or atoms (Sarvazyan et al., 2013). These 
waves beyond a frequency of 20 kHz are referred to as ultrasound waves 
(Cravotto and Cintas, 2009). Ultrasound can be used for echolocation. Organisms 
like bats determine the location of objects by measuring the time between 
emitting ultrasound waves and receiving the reflected echoes. Based on this 
principle, researchers have developed sonar technology for underwater distance 
measurement and ultrasound devices for assisting clinical diagnosis. 

When sound waves propagate through an object, they scatter (Maier et al., 
2018) and experience attenuation (Powles et al., 2018). Small material 
inhomogeneities or rough surfaces can cause sound wave scattering. Internal 

 
2 https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19 
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scattering within a material can affect sound wave imaging, especially in the 
presence of rough surfaces. As the wavelength decreases and the surface 
roughness increases, the angle of reflection also increases. When sound waves 
pass through obstacles, objects, or openings, diffraction occurs, causing a change 
in the direction of the waves (Maier et al., 2018). The extent of diffraction depends 
on the wavelength, with greater diffraction effects observed as the wavelength 
increases (Piechowicz, 2011). When the wavelength is smaller than the size of the 
obstacle, object, or opening, diffraction can be considered negligible (Piechowicz, 
2011). Attenuation refers to the gradual reduction in sound wave intensity as it 
propagates through a medium. Attenuation follows an exponential decay law, 
and the attenuation coefficient, measured in decibels (dB), depends on tissue type 
and ultrasound frequency (Shriki, 2014). The attenuation coefficient comprises 
absorption and scattering components (Shriki, 2014). 

Due to the presence of boundaries between different anatomical structures 
in the human body, sound waves undergo partial reflection and transmission at 
these boundaries. The intensity of sound wave reflection is quantified by the 
acoustic impedance of the medium. When two media have equal impedances, no 
reflection occurs (Maier et al., 2018). However, significant reflection occurs when 
there is a large impedance mismatch between two media. Therefore, medical 
ultrasound is not effective for examining organs containing air, such as the lungs, 
due to the low impedance of air. This causes ultrasound waves to be reflected, 
scattered, and attenuated when passing through air-containing media, resulting 
in decreased image quality (Patey and Corcoran, 2021).  

In ultrasound imaging, there are different types of spatial resolution, 
particularly axial and lateral resolution (Alomari et al., 2015; Carovac et al., 2011). 
Axial resolution refers to the ability to differentiate structures located behind 
each other in ultrasound imaging. Higher axial resolution means the ability to 
distinguish smaller distances between two structures. Axial resolution is highly 
dependent on the ultrasound wave frequency. Lateral resolution involves the 
ability to differentiate adjacent structures within the same lateral distance. 
Lateral resolution is typically not as good as axial resolution. Additionally, 
ultrasound offers various imaging modes, including A-mode, B-mode, and M-
mode (Carovac et al., 2011). A-mode and M-mode generate 1D images, while B-
mode can be used to acquire 2D or even 3D images (Maier et al., 2018). To obtain 
2D images inside the body, ultrasound devices sample different directions of 2D 
planes in 3D space. 

Compared to other imaging techniques, medical ultrasound has the 
advantages of low cost and non-ionizing radiation (Protection, 2017; Shung, 2011). 
Other advantages include non-invasiveness, minimal discomfort, rapid image 
acquisition, and wide application in visualizing the motion and function of 
structures, organs, and blood vessels (Maier et al., 2018; Ortiz et al., 2012). 
Medical ultrasound is considered one of the safest imaging modalities available 
today and can even be used during pregnancy. However, ultrasound waves do 
have potential effects on the body, including mild heating or cavitation to some 
extent (Yoshizawa et al., 2017). Nonetheless, medical ultrasound has become the 
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preferred modality for clinical imaging and finds increasing applications in 
various diagnostic and therapeutic scenarios. 

However, like other imaging modalities, ultrasound imaging techniques 
also face technical challenges that affect the overall image quality. The 
wavelength of ultrasound waves and the inherent limitations of ultrasound 
transducers result in lower image resolution compared to CT and MRI (Hoskins 
et al., 2019). Factors such as tissue interfaces, beamforming errors, and scattering 
effects can cause image artifacts during the imaging process (Patey and Corcoran, 
2021; Szabo, 2004). Additionally, as ultrasound waves pass through different 
tissues, they experience attenuation, leading to signal loss. Signal loss can result 
in decreased image quality and limited penetration depth. Structures or tissues 
located behind highly attenuating or reflecting objects can cause shadowing or 
acoustic blocking, leading to blurred or distorted regions in the ultrasound image 
(Hoskins et al., 2019). All of these make it challenging to accurately visualize 
certain anatomical structures. 

Figure 6 displays an ultrasound image of a fetus (Ahmed, 2017). The full-
body photograph of the baby in the image is very blurry. The organs and tissues 
inside the baby cannot be distinguished. Compared to the CT image mentioned 
earlier, the image quality of medical ultrasound is poorer. This may be because 
that ultrasound waves have longer wavelengths than X-rays used in CT imaging. 
The longer wavelength results in lower spatial resolution, making it challenging 
to differentiate small structures or details within the body. And sound waves are 
prone to scattering and attenuation as they pass through different tissues. When 
there is a large impedance mismatch between two tissues, significant reflection 
occurs. This can cause ultrasound waves to be reflected, scattered, and attenuated, 
leading to decreased image quality. CT imaging, on the other hand, is not affected 
by acoustic impedance mismatch and can produce higher quality images even in 
the presence of air or gas-filled structures.  

 

 

FIGURE 6 A fetal ultrasound image 

2.1.4 Magnetic resonance imaging (MRI) 

Another commonly used medical imaging technique is MRI imaging. MRI 
systems utilize magnetic resonance to achieve non-ionizing radiation imaging of 
the human body's internal structures. Under the influence of a strong magnetic 
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field, the spin axes tend to align along the direction of the magnetic field, forming 
a net magnetization 𝑀𝑀 . Nuclear spins precess around the axis of the main 
magnetic field (Mlynárik, 2017). The precession frequency is determined by the 
Larmor frequency, which depends on the gyromagnetic ratio and the strength of 
the main magnetic field (Mlynárik, 2017). With a relatively weak radiofrequency 
(RF) field (Mlynárik, 2017), the direction of 𝑀𝑀  can be manipulated, enabling 
excitation and emission of RF waves. After excitation, 𝑀𝑀 gradually returns to its 
equilibrium position through relaxation processes while emitting signals.  

The relaxation rate depends on the tissue, as the interactions of protons with 
hindered water molecule motion are limited in large molecules or dense tissues 
(Maier et al., 2018). This means that different tissues, such as water and fat, will 
reach the end of relaxation with different speed. This results in varying receiving 
signal intensities during relaxation. Relaxation forms the basis of contrast 
between different tissues in MRI images. By analyzing the recovery and decay 
processes of longitudinal and transverse magnetization, different tissue types can 
be recognized. For more details, see (Maier et al., 2018; Serai, 2022; Vuong et al., 
2017).  

MRI offers excellent soft tissue contrast and provides a variety of 
possibilities for functional imaging, such as visualizing blood flow (Markl et al., 
2012), tissue perfusion (E. Lee et al., 2015), and diffusion processes (Le Bihan and 
Johansen-Berg, 2012). The physical basis of MRI involves nuclear magnetic 
resonance, where different contrast images are generated by adjusting the 
magnetic field and RF pulse sequences.  

In addition, the contrast of MRI images can be controlled through a variety 
of parameters, including sequence types and settings for each sequence (Maier et 
al., 2018). When selecting the contrast or weighting of specific images, the key is 
to ensure that the contrast primarily reflects changes related to one of the inherent 
characteristics of these tissues. The three main types of contrast are called by the 
names 𝑇𝑇1 -weighted, 𝑇𝑇2 -weighted, and proton density (PD)-weighted imaging 
(Maier et al., 2018; Serai, 2022). 

MRI offers unique advantages over CT, particularly in visualizing soft 
tissues and providing functional information. MRI is valuable in areas such as 
neurological imaging, musculoskeletal imaging, cardiac imaging, and evaluating 
soft tissue abnormalities. However, CT imaging utilizes X-rays, which have high 
attenuation in dense structures such as bones, resulting in strong contrast 
between different tissues. MRI relies on the magnetic properties and relaxation 
times of hydrogen protons in the body's tissues. The contrast in MRI images is 
primarily based on the differences in relaxation times between tissues. While 
MRI can distinguish between tissues with varying water content, it may not 
provide the same level of contrast as CT. Some factors, including the strength of 
the magnetic field, the size of the imaging voxel, and the imaging sequence can 
highly affect the MRI image quality. These factors may lead to severe blurriness 
in MRI images. Moreover, MRI is highly sensitive to motion artifacts, as even 
slight movements can cause blurring in the images. MRI scans typically take 
some time to acquire images. Prolonged scan times increase the likelihood of 
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motion artifacts, particularly in patients who have difficulty remaining still (Katti 
et al., 2011).  

Figure 7 displays an MRI image that includes the cervical and lumbar spine 
(Y. Zhou et al., 2017). From this figure, it can be observed that MRI imaging can 
effectively visualize the soft tissues and organs inside the human body. But it 
yields poor image quality for bones compared to CT imaging. This is due to the 
differences in relaxation times of tissues, specifically the longitudinal (𝑇𝑇1) and 
transverse (𝑇𝑇2) relaxation times. Soft tissues, such as muscles, organs, and fluids, 
have different relaxation times, allowing for good differentiation and contrast in 
MRI images. On the other hand, bones have a relatively short 𝑇𝑇1  and 𝑇𝑇2 
relaxation time, resulting in poor contrast in MRI. The high mineral content of 
bones, mainly consisting of calcium hydroxyapatite, leads to short 𝑇𝑇1 relaxation 
times, reducing the contrast between bone and surrounding tissues. Additionally, 
the fast signal decay of bone due to short 𝑇𝑇2 relaxation time limits the ability of 
MRI to clearly distinguish bone structures. These factors ultimately lead to a 
decrease in the quality of bone imaging in MRI. 

 

 

FIGURE 7 A cervical and lumbar spine MRI image 

2.1.5 Motivation for choosing CT images in our research 

To sum up, we use CT images as the subject of our research for the following 
several reasons: 

• High contrast resolution: CT images provide high contrast resolution, 
allowing for clear differentiation between different tissues and structures 
(J. Hu et al., 2004; Pauwels et al., 2013). This makes it easier to identify and 
segment specific ROIs within the image. 

• 3D imaging: CT scans provide volumetric data, allowing for 3D 
visualization of the scanned area (Salvolini et al., 2000). This is particularly 
beneficial for complex anatomical structures or regions where depth 
information is crucial for accurate segmentation. 

• Soft tissue visualization: While MRI technology has its advantages, CT 
imaging is still well-suited for visualizing soft tissues, such as organs, 
muscles, and blood vessels (Pauwels et al., 2013). It provides detailed 
information about the internal structures, making it valuable for 
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segmentation tasks that involve differentiating and delineating these 
tissues. 

• Wide availability: CT imaging is a widely used modality in medical 
imaging, and there is a substantial amount of publicly available CT image 
datasets. This availability makes it convenient for researchers to access 
and work with CT images for developing and evaluating segmentation 
algorithms. 

• Clinical relevance: CT scans are commonly used in clinical practice for 
diagnosing and monitoring various medical conditions (Hussain et al., 
2022). By using CT images for segmentation research, the findings and 
techniques developed can be more readily translated into practical 
applications and potentially improve patient care. 

• Multimodal fusion: CT images can be combined with other imaging 
modalities, such as MRI or positron emission tomography (PET), to 
enhance the segmentation accuracy (Zaidi et al., 2008; Y.-D. Zhang et al., 
2020). The fusion of multiple modalities can provide complementary 
information and improve the delineation of structures or abnormalities. 

Overall, CT images offer valuable features for MIS, including high contrast 
resolution, 3D imaging capability, and the ability to visualize soft tissues. These 
characteristics make CT a popular choice for researchers working on 
segmentation algorithms and applications in the medical field. 

2.2 Dataset used in the research 

In Articles I-III, we use 98 mouse micro-CT images for constructing multi-
resolution multi-organ models. These images are provided by the Molecular 
Imaging Centre of the University of California, Los Angeles (Stout et al., 2005; 
Suckow and Stout, 2008; H. Wang et al., 2011). The mice selected for the imaging 
experiment weigh between 15 and 30 grams. To obtain clear abdominal organs 
of mice, the university researchers inject the Fenestra LC contrast agent (ART, 
Montreal, QC, Canada) into the mice during the imaging process (Suckow and 
Stout, 2008; Willekens et al., 2009). Fenestra LC liver contrast agent is designed 
for micro-CT imaging studies in small rodent animals, particularly mice. It 
overcomes the limitation of poor soft tissue contrast in micro-CT imaging 
(Holdsworth and Thornton, 2002). Specifically, for liver imaging in small animals, 
Fenestra LC liver contrast agent exhibits superior imaging capabilities. It is an 
iodine-based lipid compound in which the iodine atoms efficiently absorb X-rays, 
resulting in higher attenuation and producing enhanced soft tissue contrast (S. 
Herman, 2004). In micro-CT images without the use of contrast enhancement, the 
contrast of soft tissues is significantly poor (H. Wang et al., 2019). Thus, 
researchers are unable to visually discern the boundaries between different 
tissues and organs. As shown in Figure 8, the left image represents a contrast-
enhanced micro-CT image, while the right image represents a non-enhanced 
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micro-CT image (H. Wang et al., 2019). It is evident from the images that the non-
enhanced tissues appear blurry, while the contrast-enhanced image greatly 
improves discernibility. The frequent use of contrast agents to enhance soft tissue 
contrast adds complexity and higher costs to experimental procedures (Yan et al., 
2017). Consequently, to balance radiation dose and CT imaging quality 
simultaneously, most image analysis studies utilize low-contrast CT images as 
research data. 

 

 

FIGURE 8 An exemplar comparison of contrast-enhanced (a) and low-contrast (b) 
mouse images 

In the process of selecting qualified mouse micro-CT images, it is necessary 
to eliminate some mouse images that contain motion artifacts, blurred edges of 
organs, and body deviations from normal postures. Wang et al. describe the 
imaging system, imaging equipment parameters, and imaging parameters of 
mice in detail in their study (H. Wang et al., 2019). Although the process of 
imaging is strictly standardized, when modeling mouse abdominal images, the 
collected image data should also be preprocessed. 

After collecting mouse micro-CT image data, we then preprocess the data. 
In the first step, we invite small animal imaging experts to manually segment the 
livers, spleens, left kidneys and right kidneys in mouse micro-CT images using 
MITK (Wolf et al., 2005) software. At the same time, imaging experts label the 
segmented organs. These labeled segmentation results serve as the gold 
standards for experimental analysis. In the second step, we use the moving cube 
algorithm (Lorensen and Cline, 1987) to convert all gold standards into 3D 
surfaces represented by points. The third step is to randomly select one of the 98 
3D surfaces as a reference template. The template is then registered to the other 
97 surfaces by using a point cloud registration method (Marani et al., 2016; Park 
and Lim, 2014). The purpose of this step is to make all 3D surfaces contain the 
same number of points, and the same point on different surfaces corresponds to 
the same anatomical location. Through the above three steps, we finally get the 
training data for model building. Figure 9 shows the preprocessing process of the 
training data. 
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FIGURE 9 Preprocessing process of training data 

By integrating the model developed in Article I with the VHRBF function 
(Brazil et al., 2010), Article III successfully achieves multi-organ segmentation of 
the abdomen in low-contrast mouse micro-CT images. The raw mouse micro-CT 
images used in the study are produced by injecting contrast agents. Therefore, in 
Article III, we add some random noise and adjust the image contrast manually. 
Figure 10 displays examples of the images generated, ranging from high-contrast 
raw data to low-contrast experimental data required for segmentation. These 
experimental data are used to conduct the segmentation experiment.  

 

 

FIGURE 10 Examples of high-contrast images and low-contrast images 

2.3 Medical image modeling based on PCA 

In this section, we use the improved PCA method to solve the first problem raised 
in Section 1.2. PCA is a statistical method for data analysis. It uses mathematics 
to transform various correlated variables into a few linearly independent 
variables. The transformed variables are called principal components that can 
represent all original variables. In the process of using PCA, the information 
contained in the experimental data will be projected into the orthogonal 
subspace.The subspace is generated based on the data set for dimensionality 
reduction and storage. Therefore, in digital image processing, the main purpose 
of PCA is to reduce the large dimension of image information to the small 
dimension of the independent variables. Shlens point out that PCA is an 
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essentially mathematical process of extracting interesting information from 
massive data (Shlens, 2014). Later, PCA has been developed into one of the most 
successful data compression and storage methods. 

In the process of extracting principal components, PCA needs to perform 
singular value decomposition (SVD) on the data matrix or perform eigenvalue 
decomposition (EVD) on the covariance matrix of the data. The extracted 
principal components can represent the original data information almost without 
loss. The storage space required by these principal components is greatly reduced. 
Therefore, PCA plays a very important role in removing data redundancy, 
extracting main features, and compressing data. At the same time, each new 
variable obtained from PCA transformation is a linear combination of all original 
variables. So, PCA is a method of linear dimensionality reduction or modeling. 
In MIS research, PCA is widely used in conventional image segmentation 
methods. Its model construction for various medical images corresponds to the 
image segmentation methods based on deformable models introduced in 
Section 1.1.2. 

For MIS, conventional image segmentation methods based on deformable 
models usually need to model the target regions first. For example, in the 
modeling process, 2D or 3D deformable models are constructed using statistics-
based techniques. Then the models are registered to medical images for ROI 
segmentation (Cootes et al., 1994; Hill et al., 1993). During model building, a 
preprocessed training set of medical images is analyzed using PCA to obtain a 
mean shape model with principal deformation modes. The mean shape model 
and the principal deformation modes are linearly summed to generate new 
shapes. In addition, Tsai et al. (Tsai et al., 2003) use PCA to extract the signal 
representation of the training data to construct a segmented curve parametric 
model of implicit representation. This model can be used to segment organs in 
MRI images. But distance functions based on PCA to represent shapes have 
limitations. It can cause problems with inconsistent shape modeling frameworks. 

As mentioned in Section 1.1.2, deformable models belong to conventional 
segmentation methods. Before image segmentation, specific organs or tissues 
need to be modeled. But most of these models are unable to model multiple 
organs simultaneously. Furthermore, most models do not adequately simulate 
shape changes. And during the model building process, it is possible to 
encounter the high-dimensional-low-sample-size (HDLSS) problem (Aoshima et 
al., 2018; Hall et al., 2005).  

Therefore, to solve the HDLSS problem, we use a down-sampling-and-
interpolation strategy to down sample the points of the training data and 
interpolate the deformation components (principal components) obtained by 
PCA respectively. To build a multi-organ deformable model that can deform 
from global to local, we extend the SSM modeling method of Wilms et al. (Wilms 
et al., 2017) from 2D to 3D modeling in mouse micro-CT images. 

The steps in Article I to address the above issues include: 
Step 1 Down sample the preprocessed 𝑁𝑁 3D image data given in Section 2.2 to 

obtain training dataset. Each training dataset consists of 𝑀𝑀 points. 
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Step 2 Calculate the mean value 𝝁𝝁��⃗  of the training dataset {𝑺𝑺𝑖𝑖}𝑖𝑖=1𝑁𝑁 : 

𝝁𝝁��⃗ =  
1
𝑁𝑁
� 𝑺𝑺𝑖𝑖

𝑁𝑁

𝑖𝑖=1
(1) 

Step 3 Subtract the mean value from each training data to get the difference 
matrix, then compute a covariance as follows: 

𝐶𝐶 =  
1

𝑁𝑁 − 1
� (𝑺𝑺𝑖𝑖 − 𝝁𝝁��⃗ )(𝑺𝑺𝑖𝑖 − 𝝁𝝁��⃗ )𝑇𝑇

𝑁𝑁

𝑖𝑖=1
(2) 

Step 4 Compute the point-to-point Euclidean distance 𝑑𝑑(𝑿𝑿𝑖𝑖,𝑿𝑿𝑗𝑗)on the mean value 
model. The distances are represented by a distance matrix 𝐷𝐷. Then, select 
an appropriate distance threshold 𝜏𝜏. The values in matrix 𝐷𝐷 less than or 
equal to the threshold are converted to 1, and the values greater than the 
threshold are converted to 0. Finally, the mask matrix 𝑅𝑅 is obtained: 

𝐷𝐷 =  �
𝑑𝑑(𝑿𝑿1,𝑿𝑿1) ⋯ 𝑑𝑑(𝑿𝑿1,𝑿𝑿𝑀𝑀)

⋮ ⋱ ⋮
𝑑𝑑(𝑿𝑿𝑀𝑀,𝑿𝑿1) ⋯ 𝑑𝑑(𝑿𝑿𝑀𝑀,𝑿𝑿𝑀𝑀)

� (3) 

𝜌𝜌𝑖𝑖,𝑗𝑗 = �
1, 𝑑𝑑�𝑿𝑿𝑖𝑖,𝑿𝑿𝑗𝑗� ≤ 𝜏𝜏
0, 𝑑𝑑�𝑿𝑿𝑖𝑖,𝑿𝑿𝑗𝑗� > 𝜏𝜏 (4) 

𝑅𝑅 =  �
𝜌𝜌1,1 ⋯ 𝜌𝜌1,3𝑀𝑀
⋮ ⋱ ⋮

𝜌𝜌3𝑀𝑀,1 ⋯ 𝜌𝜌3𝑀𝑀,3𝑀𝑀

� (5) 

Step 5 The values in the covariance matrix in step 3 are dot multiplied by the 
values in the corresponding positions in the mask matrix. The improved 
covariance matrix 𝐶𝐶′ can be obtained: 

𝐶𝐶′ = 𝐶𝐶 ∙ 𝑅𝑅 (6) 

Step 6 Perform eigenvalue decomposition on the covariance matrix 𝐶𝐶′ to obtain 
eigenvalues and eigenvectors. Arrange the eigenvalues from large to 
small, and their corresponding eigenvectors are also rearranged, where 
eigenvalues are [𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆3𝑀𝑀 ], and eigenvectors are [𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉3𝑀𝑀 ]. 

Step 7 The vector 𝑺𝑺𝑖𝑖 representing one training data can be formed by a linear 
combination of eigenvectors and the mean value model: 

𝑺𝑺𝑖𝑖 =  𝝁𝝁��⃗  + 𝛼𝛼1𝑉𝑉1 +  𝛼𝛼2𝑉𝑉2 + ⋯+ 𝛼𝛼3𝑀𝑀𝑉𝑉3𝑀𝑀 (7) 

Step 8 Commonly, the eigenvectors corresponding to the first few eigenvalues 
can represent the training models with different deformable modes to the 
greatest extent: 

𝑆𝑆 =  𝝁𝝁��⃗  + 𝛼𝛼1𝑉𝑉1 + 𝛼𝛼2𝑉𝑉2 + ⋯+ 𝛼𝛼𝑙𝑙𝑉𝑉𝑙𝑙 ,    𝑙𝑙 < 3𝑀𝑀 (8) 

Step 9 Finally, we use Laplace iteration diffusion algorithm to obtain all 
deformation vectors (eigenvectors) on the image data before 
downsampling: 
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𝑥⃗𝑥𝑖𝑖(𝑛𝑛+1) =  𝑥⃗𝑥𝑖𝑖𝑛𝑛 + 
𝜃𝜃
𝐾𝐾
� �𝑥⃗𝑥𝑗𝑗𝑛𝑛 − 𝑥⃗𝑥𝑖𝑖𝑛𝑛�

𝐾𝐾

𝑗𝑗=0
(9) 

Here 𝑛𝑛 indicates the number of iterations, 𝑖𝑖 indicates the vertex index, 𝑥⃗𝑥𝑖𝑖𝑛𝑛 
indicates a deformation vector of 𝑖𝑖 -th vertex at 𝑛𝑛 -th iteration, 𝑗𝑗 =
[0, 1, … ,𝐾𝐾] indicates 𝐾𝐾 + 1 indices of neighbor vertices around vertex 𝑖𝑖, 
and 𝜃𝜃 is the smooth intensity coefficient. 

2.4 Medical image modeling based on SAE 

In Section 2.3 of this chapter, the improved PCA method is able to extract the 
main features of the images and compress medical images. A small number of 
linear combinations of main features (main eigenvectors) can construct a variety 
of deformable models with different deformation modes. Therefore, the 
improved method based on PCA is a linear modeling method. So besides 
building a linear model, is there any other way to mine the nonlinear deformation 
modes of a deformable model? In view of this, we introduce a SAE neural 
network in the research to further explore the nonlinear deformation capability 
of the multi-organ deformable model. we built a SAE neural network to solve the 
second problem raised in Section 1.2. 

As mentioned in Section 1.1.2, deformable model-based methods are widely 
used in medical image modeling and segmentation. Most PCA-based methods, 
as one of the deformable model-based methods, are used for specific organ 
modeling and segmentation. The improved PCA method in Section 2.3 can 
construct a multi-organ deformable model with deformations of various range 
levels. Compared with the globally deformable model constructed by traditional 
PCA, this method has more linear deformation modes. But these deformation 
modes are limited to the linear combination of different deformation components. 
During the PCA modeling process, if the input training data has outliers, the 
deformation performance of the constructed model will drop dramatically. 
Therefore, most PCA methods are sensitive to outliers. In addition, if the training 
data is too large and the computer memory usage increases exponentially, PCA 
modeling may fail. The deformation components of the model cannot be 
obtained (Heng Huang et al., 2008; Wilms et al., 2017). An autoencoder network 
has a simple structure, which means researchers can adjust hyperparameters 
flexibly (Andonie, 2019; Bischl et al., 2021; Feurer and Hutter, 2019; L. Yang and 
Shami, 2020). Moreover, it can learn different types of nonlinear deformation 
modes from training samples. For example, Litany et al. use a variational 
autoencoder to learn the latent deformation space of non-rigid deformable 
objects(Litany et al., 2018). This can predict and reconstruct occluded and missing 
parts of human bodies and faces (Litany et al., 2018). At the same time, Ranjan et 
al. use a convolutional grid autoencoder to capture the nonlinear changes of the 
face to reconstruct a complete face model (Ranjan et al., 2018). The drawback of 
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this approach, however, is that the meshes that make up the model need to share 
the same topology. 

To explore more nonlinear deformation modes, we stack autoencoders to 
obtain the SAE neural network. Autoencoders are a special type of unsupervised 
neural network (Baldi and Hornik, 1989; Rumelhart et al., 1986). Autoencoders 
play a huge role in automatically acquiring nonlinear features (M. Chen et al., 
2012). Its main purpose is to compress and encode the input data into meaningful 
features, and then decode them so that the reconstructed output is as similar as 
possible to the original input (Bank et al., 2020). As shown in Figure 11, a basic 
autoencoder consists of three parts which are input layer, hidden layer and 
output layer (G. Zhang et al., 2020). Assume that the number of neurons in the 
input layer and the hidden layer are 𝑚𝑚, 𝑛𝑛, (𝑚𝑚 > 𝑛𝑛), respectively. It can be seen 
from the symmetrical structure of the autoencoder that the number of neurons in 
the output layer is also 𝑚𝑚. The encoder consists of an input layer and a hidden 
layer. The decoder consists of a hidden layer and an output layer. The encoder 
uses a function 𝑓𝑓1  to transform the high-dimensional input data 𝑥𝑥 =
 {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 }𝑇𝑇 into a low-dimensional hidden representation ℎ = {ℎ1,ℎ2, … , ℎ𝑛𝑛 }. 
The function 𝑓𝑓1 is defined as: 

𝑓𝑓1(𝑥𝑥) = ℎ =  𝜎𝜎(𝑊𝑊𝑊𝑊 + 𝑏𝑏) (10) 

where 𝜎𝜎 represents the encoder’s activation function. 𝑊𝑊 is a 𝑛𝑛 × 𝑚𝑚 weight matrix, 
and 𝑏𝑏 ∈ 𝑅𝑅𝑛𝑛 is a bias vector of the hidden layer. The weight matrix 𝑊𝑊 and the bias 
vector 𝑏𝑏 parameterize the decoder. 

In the decoding stage, the decoder maps the hidden representation ℎ back 
to a reconstruction 𝑥𝑥′ =  {𝑥𝑥1′, 𝑥𝑥2′, … , 𝑥𝑥𝑚𝑚′ }𝑇𝑇 through a function 𝑓𝑓2. The function 𝑓𝑓2 
can be written as: 

𝑓𝑓2(𝑥𝑥) = 𝑥𝑥′ =  𝜎𝜎′(𝑊𝑊′ℎ + 𝑏𝑏′) (11) 

where 𝜎𝜎′ is the activation function of the decoder. 𝑊𝑊′ is a 𝑚𝑚 × 𝑛𝑛 weight matrix, 
and 𝑏𝑏′ ∈  𝑅𝑅𝑚𝑚 is a bias vector for the output layer. Likewise, the weight matrix 𝑊𝑊′ 
and the bias vector 𝑏𝑏′ parameterize the decoder. 

 

FIGURE 11 The structure of a basic autoencoder 



 
 

42 
 

In fact, autoencoders have close relationship with PCA-based methods 
(Ghojogh et al., 2021; Lempitsky, 2019). If an activation function used on each 
layer of an autoencoder is linear, the final encoding vector obtained by the 
encoder will correspond to the principal components created by PCA. Therefore, 
to obtain more useful potential nonlinear features (Hinton and Salakhutdinov, 
2006; Japkowicz et al., 2000), the activation functions 𝜎𝜎  and 𝜎𝜎′  are usually 
nonlinear, such as, typical rectified linear function (ReLU), Leaky ReLU, 
hyperbolic tangent function, and sigmoid function (Z. Yang et al., 2022; S. Zhang 
et al., 2017). Compared with PCA, nonlinear activation functions can help 
autoencoders reconstruct better results. They can also build dimensionality 
reduction models for more complex data. Interested readers can read the 
literatures (Hinton and Salakhutdinov, 2006; W. Wang et al., 2014; Y. Wang et al., 
2016) to learn more about the application of autoencoders in dimensionality 
reduction. 

After the construction of an autoencoder, the training data needs to be input 
into the autoencoder for training. During training, the network hyperparameters 
are constantly adjusted such that the autoencoder minimizes the error between 𝑥𝑥 
and 𝑥𝑥′ . Two methods of square error and cross-entropy are usually used to 
compute the reconstruction error (G. Zhang et al., 2020). Their formulas are 
defined as follows: 

Square error:  

𝐸𝐸(𝑥𝑥, 𝑥𝑥′) =  ‖𝑥𝑥 − 𝑥𝑥′‖2 (12) 

Cross-entropy: 

𝐸𝐸(𝑥𝑥, 𝑥𝑥′) = −� (𝑥𝑥𝑖𝑖 log 𝑥𝑥𝑖𝑖′ + (1 − 𝑥𝑥𝑖𝑖) log(1 − 𝑥𝑥𝑖𝑖′))
𝑚𝑚

𝑖𝑖
(13) 

Then add a regularized term 𝑅𝑅𝑅𝑅 and the adjustment factor 𝜆𝜆 to the error 
function to construct the loss function of the autoencoder. Autoencoders typically 
optimize the loss function using alternative least squares (ALS) (Takane et al., 
1977) or stochastic gradient descent (SGD) (Bertsekas and Tsitsiklis, 2000). The 
loss function is defined as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑥𝑥′) =  �� 𝐸𝐸(𝑥𝑥, 𝑥𝑥′)
𝑥𝑥𝑥𝑥𝑅𝑅𝑚𝑚

� + 𝜆𝜆 ∙  𝑅𝑅𝑅𝑅 (14) 

The research in Article II concatenates the encoding parts and decoding parts of 
multiple autoencoders respectively. The purpose of this article is to maximize the 
compression of the input data while retaining the input data information. After 
continuous testing and adjustment, we finally build a three-level SAE. As shown 
in Figure 12, a three-level SAE consists of three encoding layers and three 
decoding layers. In the figure, 𝐸𝐸  represents an encoder and 𝐷𝐷  represents a 
decoder. The corresponding 𝐷𝐷 and 𝐸𝐸 form an autoencoder. The training data is 
compressed in the three-layer encoding network to obtain a matrix 𝑀𝑀𝐹𝐹 =
 �𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ , …𝑓𝑓𝚤𝚤��⃗ , … , 𝑓𝑓𝑛𝑛���⃗ �  containing 𝑛𝑛  feature vectors, and 𝑀𝑀𝐹𝐹  can reconstruct the 
original input data through the three-layer decoding network. During the 
decoding process of feature vectors, modification for the values of feature vectors 
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can change the reconstructed data. Changes in the reconstructed data are 
reflected in the deformation of 3D models. Therefore, we can obtain different 
multi-organ deformable models by changing feature vectors. 

 

 

FIGURE 12 The architecture of our proposed three-level SAE 

2.5 Multi-organ segmentation based on shape prior knowledge 

The multi-resolution multi-organ SSM constructed in Section 2.3 can be used as 
a shape prior knowledge for MIS. In this section, we mainly introduce how 
Article III combines shape prior knowledge and a curve interpolation method to 
achieve multiple organ segmentation in mouse images. Article III attempts to 
address the third problem raised in Section 1.2. 

Practically, mice are one of the most used animals for imaging. Realizing 
automatic segmentation of mouse CT images provides important reference value 
for computer-aided clinical analysis and diagnosis. Moreover, the accurate 
segmentation of mouse organs is of great significance for the study of volume 
reconstruction (Pitiot et al., 2006), pharmacokinetics (Corot et al., 2006), organ 
anatomy (H. Wang et al., 2011), and lesion detection (Rudyanto et al., 2013). In 
fact, the CT imaging process can be affected by noise, spatial resolution, contrast, 
etc. (Zarb et al., 2010). These factors eventually lead to blurred mouse images. As 
illustrated in Figure 13, a typical mouse CT image usually cannot clearly display 
the boundaries of various organs. The boundaries between the lower part of the 
liver, the upper part of the spleen, and the upper parts of the kidneys cannot even 
be accurately identified by human eyes. One way to obtain high contrast images 
is to use contrast agents. However, the use of contrast agents will greatly increase 
the cost and complexity of mouse imaging (Lee et al., 2013), thus affecting the 
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experimental results. Some contrast agents can even be toxic to animals 
(Hasebroock and Serkova, 2009; Rogosnitzky and Branch, 2016). Therefore, to 
image large numbers of mice, contrast agents are usually not used. These factors 
pose great challenges to the segmentation of tissues and organs in images. 

 

 

FIGURE 13 A typical blurred mouse abdominal micro-CT image 

On the other hand, low-contrast images may cause the failure of 
segmentation for fully automatic segmentation methods. To obtain multiple 
organs, it is a feasible approach by incorporating human interaction and shape 
prior knowledge into the segmentation process. In Article III, we use the SSM 
constructed in Article I as shape prior knowledge for image segmentation. SSMs 
are a powerful tool for MIS. The early and well-known version of this method 
was proposed by Cootes et al., including ASMs (Cootes et al., 1995) and AAMs 
(Cootes et al., 2001). Over the past three decades, many variants have been 
developed on this basis. In many research, the point distribution model (PDM) is 
used to represent different model shapes (Cootes and Taylor, 1995; Hill and 
Taylor, 1994). Based on this, Stegmann et al. introduced how to use traditional 
PCA to construct 2D SSM in detail in their research (Stegmann and Gomez, 2002). 
Heimann et al. points out that in general, more sufficient shape information in 
the training data helps to build a more sophisticated SSM (Heimann and Meinzer, 
2009). The results obtained by segmentation are also more accurate. For more 
detailed segmentation methods based on SSMs, readers can refer to (Heimann 
and Meinzer, 2009). 

The VHRBF function used in Article III guides the deformation of SSM to 
achieve efficient segmentation results. The steps to obtain multiple organs in the 
mouse abdomen include: 

Step 1 Delineate some discrete curves (landmarks) around the rough 
boundaries of target organs in low-contrast images. The number of 
landmarks {𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝑵𝑵} 𝜖𝜖 ℝ3 is 𝑁𝑁. Other points forming a closed curve 
with the landmarks are calculated by the interpolation function 𝑓𝑓: 
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𝑓𝑓(𝑿𝑿) =  � �𝛼𝛼𝑗𝑗�𝑿𝑿 − 𝑿𝑿𝒋𝒋�3 − 3〈𝜷𝜷𝒋𝒋,𝑿𝑿 − 𝑿𝑿𝒋𝒋〉�𝑿𝑿 − 𝑿𝑿𝒋𝒋�� +  〈𝒂𝒂,𝑿𝑿〉 + 𝑏𝑏
𝑁𝑁

𝑗𝑗=1
(15) 

Where 𝑿𝑿 ϵ ℝ3 is a point in a 3D space. �𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑗𝑗 , … ,𝛼𝛼𝑁𝑁, 𝑏𝑏� 𝜖𝜖 ℝ is a set 
of 1D interpolation coefficients. [𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐, … ,𝜷𝜷𝒋𝒋, … ,𝜷𝜷𝑵𝑵,𝒂𝒂] 𝜖𝜖 ℝ3 is a set of 3D 
interpolation coefficients. 

Step 2 Give the normals {𝒏𝒏𝟏𝟏,𝒏𝒏𝟐𝟐, …𝒏𝒏𝒋𝒋, … ,𝒏𝒏𝑵𝑵} ϵ ℝ3 of all landmarks. Then solve 
the coefficients as follows to get the interpolation function 𝑓𝑓: 

� �𝛼𝛼𝑗𝑗�𝑿𝑿 − 𝑿𝑿𝒋𝒋�3 − 3〈𝜷𝜷𝒋𝒋,𝑿𝑿 − 𝑿𝑿𝒋𝒋〉�𝑿𝑿 − 𝑿𝑿𝒋𝒋�� +  〈𝒂𝒂,𝑿𝑿〉 + 𝑏𝑏
𝑁𝑁

𝑗𝑗=1
= 0 (16) 

∇𝑓𝑓(𝑿𝑿𝒋𝒋) = 𝒏𝒏𝒋𝒋 (17) 

� 𝛼𝛼𝑗𝑗
𝑁𝑁

𝑗𝑗=1
= 0 (18) 

� �𝛼𝛼𝑗𝑗𝑿𝑿𝒋𝒋 + 𝜷𝜷𝒋𝒋�
𝑁𝑁

𝑗𝑗=1
= 0 (19) 

Step 3 Scale and translate multi-organ deformable models. The center of the 
transformed deformable model coincides with the center of the target 
organs. The SSM transformation can be written as: 

𝑥𝑥𝑐𝑐 =  
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑎𝑎0
𝑙𝑙𝑥𝑥𝑎𝑎

𝑙𝑙𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑏𝑏0 (20) 

𝑦𝑦𝑐𝑐 =  
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑎𝑎0
𝑙𝑙𝑦𝑦𝑎𝑎

𝑙𝑙𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑏𝑏0 (21) 

𝑧𝑧𝑐𝑐 =  
𝑧𝑧𝑎𝑎 − 𝑧𝑧𝑎𝑎0
𝑙𝑙𝑧𝑧𝑎𝑎

𝑙𝑙𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑏𝑏0 (22) 

where 𝑿𝑿𝒂𝒂 = (𝑥𝑥𝑎𝑎,𝑦𝑦𝑎𝑎, 𝑧𝑧𝑎𝑎)  represents any point on SSM before 
transformation. 𝑿𝑿𝒄𝒄 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐)  represents any point on SSM after 
transformation. 𝑿𝑿𝒂𝒂𝟎𝟎 = (𝑥𝑥𝑎𝑎0 ,𝑦𝑦𝑎𝑎0 , 𝑧𝑧𝑎𝑎0)  is the center of SSM before 
transformation. 𝑿𝑿𝒃𝒃𝟎𝟎 = (𝑥𝑥𝑏𝑏0 ,𝑦𝑦𝑏𝑏0 , 𝑧𝑧𝑏𝑏0) is the center of target organs. 𝑙𝑙𝑥𝑥𝑎𝑎, 𝑙𝑙𝑦𝑦𝑎𝑎, 
𝑙𝑙𝑧𝑧𝑎𝑎  represent lengths of SSM before transformation in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 directions 
respectively. 𝑙𝑙𝑥𝑥𝑏𝑏 , 𝑙𝑙𝑦𝑦𝑏𝑏 , 𝑙𝑙𝑧𝑧𝑏𝑏  represent lengths of target organs in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 
directions respectively. 

Step 4 Input 𝑿𝑿𝒄𝒄 into the interpolation function 𝑓𝑓 for obtaining function’s values 
𝑓𝑓(𝑿𝑿𝒄𝒄) . The calculation process uses a multi-thread mechanism for 
acceleration. 

Step 5 At the same time, Input 𝑿𝑿𝒄𝒄 into gradient function ∇𝑓𝑓(𝑿𝑿𝒄𝒄) to obtain the 
gradient of 𝑿𝑿𝒄𝒄 . The multi-thread mechanism is used to speed up the 
calculation process as well. 

Step 6 Equation (16) shows that 𝑓𝑓(𝑿𝑿) = 0  corresponds to the delineated 
landmarks on the target organs. During the interpolation process, 
𝑓𝑓(𝑿𝑿𝒄𝒄) > 0 means that the boundary of the SSM exceeds the delineated 
curves (landmarks). The SSM needs to deform inwards close to the 
boundary of target organs. 𝑓𝑓(𝑿𝑿𝒄𝒄) < 0 means that the boundary of the 
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SSM is lower than the delineated curves. SSM needs to deform outward 
close to the boundary of target organs. The gradient of the 𝑿𝑿𝒄𝒄 represents 
the direction and speed of each movement of the SSM. The iterative 
deformation process of SSM can be written as: 

𝑿𝑿 =  𝜑𝜑(𝑿𝑿𝟏𝟏 + 𝑮𝑮) + (1 − 𝜑𝜑)𝑿𝑿𝟐𝟐 (23) 
 where 𝑿𝑿𝟏𝟏 represents any point on the SSM before the next iteration. 𝑮𝑮 

represents any gradient corresponding to the point. 𝑿𝑿𝟐𝟐 represents any 
point on the SSM after fitting the SSM to points [𝑿𝑿𝟏𝟏 + 𝑮𝑮]. This process 
represents one complete deformation of SSM. 𝑿𝑿 represents any point on 
the SSM after one deformation. 𝜑𝜑 is a weight factor. Empirically, it is set 
as 0.8.  

 Combining steps 4, 5, and 6, the SSM is constantly moving and 
deforming. The SSM adjusts to the delineated curves and tries to get as 
close to the curves as possible. Iterate steps 4, 5, and 6 to compute the 
values of 𝑓𝑓(𝑿𝑿) and the gradients of points [𝑿𝑿] on the SSM. These values 
modify the move direction and rate of SSM. When the value of 𝑓𝑓 is 0 or 
close to 0, the iteration stops. Finally, the SSM can segment the target 
organs in a mouse micro-CT image. 

Step 7 If the results of the SSM segmentation are not very accurate, human 
interaction correction is required. The operator again delineates the 
boundaries of the target organs to obtain new landmarks. Repeat steps 1 
to 6 until the SSM segments more accurate organs. 

After various tests for these steps, the method provided in Article III saves 
a lot of time for the segmentation of multiple organs. Figure 14 shows the whole 
process of VHRBF-guided multi-resolution multi-organ SSM to segment 
multiple organs in a mouse abdomen. 

 

 

FIGURE 14 VHRBF-guided SSM segmentation process for multiple organs in a mouse 
micro-CT image 
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2.6 An extensible open-source software development for medical 
image analysis 

Sections 2.3 and 2.4 focus on medical image modeling, while Section 2.5 centers 
around MIS. These techniques are all integral components of the complex process 
of developing algorithms for MIA. In this section, we primarily discuss the 
approach taken by Article IV to develop software that can be extended to support 
general MIA. The objective of Article IV is to address the fourth problem raised 
in Section 1.2. 

Computer-aided MIA is a critical component of clinical diagnosis and 
treatment. The development of MIA algorithms is a complex process. It typically 
involves algorithm design, model training, software development, and 
performance testing. As a result, a suitable software platform is required to assist 
developers with each step of algorithm development. An effective development 
platform should feature a user-friendly graphical interface and a plug-in 
interface for algorithm integration. Over the past few decades, toolboxes and 
software programs have been developed to address these specific needs. Classic 
MIA toolboxes include itk (McCormick et al., 2014; Yoo et al., 2002), vtk 
(Schroeder et al., 2006), elastix (Klein et al., 2009; Shamonin et al., 2014), ANTS 
(Avants et al., 2009), the library pyraiaomics (Van Griethuysen et al., 2017) for 
radiomics research, and the DL framework monai3. Mainstream development 
software includes ITK-SNAP (Yushkevich et al., 2016), MITK (Wolf et al., 2005), 
Tur-gleSeg (Poon et al., 2007), Seg3D for image segmentation, DicomAnnotator 
(Dong et al., 2020) for data annotation, and SpheroidJ for analyzing imaging 
patterns (Lacalle et al., 2021), as well as MNI SISCOM (Moreau et al., 2021) and 
OIPAV (L. Zhang et al., 2019). However, these tools can be challenging to use for 
extending user-developed algorithms. In contrast, the popular 3D Slicer (Pieper 
et al., 2004) features a rich library of extension modules (Fedorov et al., 2012; 
Pinter et al., 2015), providing strong extension capabilities. Nevertheless, its 
interaction process and programming mechanism may not be user-friendly. 

Conventional MIA methods have limitations, prompting the use of DL 
algorithms to aid in computer-aided diagnosis. However, training these models 
requires large amounts of annotated data. This is time-consuming and labor-
intensive for human experts. Annotation-by-Iterative-Deep-Learning (AID) can 
alleviate these challenges. The AID process involves the following steps: 

• Annotating a small amount of training data to train the network, 
• Having the trained network automatically annotate more data, 
• Experts proofreading the annotated data and adding it to the training set 

to retrain the network. 

By continuously performing these AID steps, the network's annotating 
ability improves, and the required human effort is gradually reduced. However, 
implementing the AID process requires software platform support with 

 
3 https://monai.io/ 
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annotation functions and plug-in interfaces. The existing software with AID 
annotation function, RIL-Contour (Philbrick et al., 2019), cannot expand the plug-
in interface. Thus, it cannot be a general auxiliary tool for MIA algorithm 
development. To facilitate DL research, the network model and AID process need 
to be integrated into one software. However, currently, no software exists with 
this feature. This forces researchers to switch between different auxiliary tools, 
complicating MIA algorithm development. The lack of a GUI means that some 
algorithms can only be released in source code. This makes it challenging for 
ordinary users to understand. All these factors contribute to the complexity of 
MIA algorithm development. 

We have developed AS to address the challenges mentioned earlier. AS 
allows for data annotation, algorithm integration, and image visualization. It has 
a simple DL module interface and supports multi-touch and stylus inputs for 
image annotation. Its primary functions are a user-friendly GUI for data 
visualization and human-computer interaction, and a flexible plug-in interface 
for expanding user-developed algorithms. 

In this study, the development of the AS software is comprised of four 
modules: software design, interactive annotation and proofreading, extension 
modules, and DL support. 

Software design 
The AS GUI consists of a menu bar, data management list, user development 
module panel, and image display area (see Figure 15). It can be controlled via 
mouse/keyboard in desktop mode or stylus/touch screen in tablet mode. 
 

 

FIGURE 15 AnatomySketch interface 

In desktop mode, the layout is like MITK, ITK-SNAP, and 3D Slicer, but 
with the ability to select algorithm modules from different developers in the 
panel. This makes AS highly extensible. It can also be integrated into user 
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programs for data visualization and analysis of user interaction and data flow. 
The GUI allows overlaying of variables for image registration/segmentation 
accuracy verification. Tablet mode adds multi-touch screen and stylus operations 
for annotating ROIs. Figure 16 shows the three-layer AS software architecture 
(interaction, function, and data). The function layer coordinates other modules 
for data flow and user interaction, with blue arrows indicating data flow and red 
dashed arrows indicating command flow. 

 

FIGURE 16 The basic architecture of AS 

Interactive annotation and proofreading 
AS allows users to annotate ROIs in images using a mouse or stylus. These 
annotations can be saved as separate files or utilized as input data for user-
developed plug-in modules. Furthermore, AS includes a boundary correction 
tool constructed with free-form deformation (FFD) (Sederberg and Parry, 1986), 
which can be used to proofread AS segmentation results. With this tool, users can 
move the contour line of the 2D or 3D target area to refine the accuracy of 
segmented results. Figure 17 demonstrates the process, where the FFD method 
creates a 6x6 grid around the starting point of the contour line. The cubic B-spline 
inverse interpolation function (Tayebi et al., 2022) is then utilized to transfer the 
movement vector to the 6x6 grid vertices. Finally, the cubic B-spline interpolation 
function is applied to interpolate the deformation vector of the contour points, 
with interpolation defined as follows: 

𝑃𝑃 =  � �
3
𝑖𝑖 �

(1 −𝑚𝑚)3−𝑖𝑖𝑚𝑚𝑖𝑖 �� �
3
𝑗𝑗�

3

𝑗𝑗=0
(1 − 𝑛𝑛)3−𝑗𝑗𝑛𝑛𝑗𝑗𝑝𝑝𝑖𝑖,𝑗𝑗�

3

𝑖𝑖=0
(24) 

where the interpolated deformation vector of a contour vertex, 𝑃𝑃, is defined as a 
function of the normalized local coordinate of the dragging start point, (𝑚𝑚,𝑛𝑛), 
and the deformation vector of grid node (𝑖𝑖, 𝑗𝑗) , 𝑝𝑝𝑖𝑖,𝑗𝑗 . For more details on this 
method, please refer to (Sederberg and Parry, 1986). 
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FIGURE 17 Interactive annotation and a demonstration of proofreading principles 

Extension module 
AS has a flexible plug-in interface, as shown in Figure 18. The interface comprises 
configuration and program files. Configuration files define the extension 
module's type, input and output parameters, and GUI settings in a text format 
file. AS uses the configuration file to implement the extended interface. Program 
files are executable files or dynamic link libraries that serve as the core 
component of the algorithm, written by users. The configuration file generates 
the module interface, which calls the program file to execute the core algorithm. 
Finally, the processed results is displayed in AS image display area. 

 

 

FIGURE 18 The workflow of the extension module 

DL support 
AS can integrate DL networks, which can be developed using Pytorch, 
Tensorflow, or Keras. These networks can be compiled into executable files. 
Users can use their own Python program to train the annotation data in AS by 
calling these executable files. When AS tackles DL problems, it employs the core 
idea of using annotation, proofreading, and plug-in interface to enhance the 
algorithm development efficiency. 
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This chapter presents the evaluation methods used for the experimental results 
in the included articles. The main work of Articles I and II is to construct multi-
resolution multi-organ deformable models for mouse abdominal micro-CT 
images. To evaluate the accuracy of model construction, we introduce two 
objective evaluation metrics: generalization ability and specificity (Davies et al., 
2009). The main work of Article III is to use the constructed deformable model in 
Article I to segment livers, spleens, left kidneys and right kidneys in mouse 
abdominal images. We apply two spatial overlap-based metrics, the Dice 
coefficient (Taha and Hanbury, 2015) and averaged surface distance (ASD) (H. 
Wang et al., 2012) to evaluate the segmentation accuracy. The main work of 
Article IV is to develop an extensible open-source software platform with a 
friendly GUI and a flexible plug-in interface for integrating user-developed 
algorithm modules. We assess the software performance qualitatively from the 
aspects of convenience, time, and efficiency. 

3.1 Evaluation metrics for shape models 

The generalization ability of a deformable model measures the ability of the 
model to represent unknown samples other than the training samples. If a model 
is overfitting on training samples, it cannot represent unknown samples. In 
Articles I and II, we use a leave-one-out strategy4 to measure the generalization 
ability of the model. One sample is selected from the dataset as the generalization 
target, and other samples are used as model training data. The constructed model 
is then fitted to the chosen sample. This process is repeated until every sample in 
the dataset has been selected. Therefore, the generalization ability 𝐺𝐺𝑀𝑀  of the 
model can be defined as: 

 
4 https://www.baeldung.com/cs/cross-validation-k-fold-loo 
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𝐺𝐺𝑀𝑀 = �
1
𝑛𝑛
� �𝑥𝑥𝑀𝑀𝑖𝑖 − 𝑥𝑥𝑖𝑖�

2𝑛𝑛

𝑖𝑖=1

2
(25) 

where 𝑛𝑛 is the number of all samples (equal to shapes). 𝑥𝑥𝑀𝑀𝑖𝑖  is the constructed 
deformable model with all samples excluding sample 𝑥𝑥𝑖𝑖. 

The specificity of the model is used to measure the ability of the deformable 
model to represent the samples in the training set. A model with high specificity 
should only generate samples in the training set, or generate instances close to 
the samples in the training set. Therefore, the level of specificity is highly related 
to the success of model construction. According to the probability density 
defined by the model, we randomly generate 𝑘𝑘  samples using a deformable 
model. Each sample is compared to members in the training set. Therefore, the 
specificity 𝑆𝑆𝑀𝑀 of the model can be defined as: 

𝑆𝑆𝑀𝑀 = �
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2
(26) 

where 𝑥𝑥𝑀𝑀
𝑗𝑗  is a shape instance generated by the constructed model. 𝑥𝑥𝑗𝑗′  is the 

corresponding nearest sample in the training set. From the definition of 
generalization and specificity of the model, we know that the smaller the values 
calculated by equations (25) and (26) are, the better the model constructed is. 

3.2 Evaluation metrics for segmentation 

In 3D MIS, the accuracy of segmentation is usually represented by the spatial 
overlap ratio between the segmented results and the gold standard (expert 
segmented results). One of the concrete representations of the overlap ratio is the 
Dice coefficient (Dice, 1945). It is used most widely to measure the coincidence 
degree of 3D volume. The dice coefficient is defined as follows: 

Dice =  
2|𝑅𝑅1 ∩ 𝑅𝑅2|
|𝑅𝑅1| + |𝑅𝑅2|

(27) 

where 𝑅𝑅1 and 𝑅𝑅2 represent segmented organs and gold standard respectively. |∙| 
represents the number of voxels. ∩ represents the overlapping regions between 
𝑅𝑅1 and 𝑅𝑅2. According to the equation, the Dice coefficient is between 0 and 1. If 
Dice coefficient is 0, it means no overlapping between these two regions. If Dice 
coefficient is 1, it means complete overlapping between these two regions. The 
higher the value is, the better the segmented result is. 

Another one of the concrete representations of the overlap ratio is ASD. The 
ASD is used to measure the distance from the surface of the segmented regions 
to the surface of the gold standard. The formula of ASD is written as: 
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where 𝑛𝑛1 and 𝑛𝑛2 are the numbers of vertices on the segmented organs and gold 
standard respectively. Calculate the distances from the 𝑖𝑖 th vertex on the 
segmented organs to 𝑛𝑛2  vertices on gold standard. The minimum distance is 
denoted by 𝑑𝑑𝑖𝑖 . Likewise, calculate the distances from the 𝑗𝑗th vertex on gold 
standard to 𝑛𝑛1 vertices on segmented organs. The minimum distance is denoted 
by 𝑑𝑑𝑗𝑗. Based on the equation, the smaller the value is, the better the segmented 
result is. 

3.3 Evaluation metrics for the development of the extensible 
open-source software 

The performance of the AS software is evaluated across three key aspects: 
software prototyping, data annotation, and human-computer interaction. For 
users, convenience, fast response times, and software effectiveness stand as the 
most critical evaluation metrics. During software prototyping, AS offers a user-
friendly and flexible GUI, integrating developed DL models. This effectively 
bridges the gap between algorithm development and clinical applications, 
particularly enhancing efficiency for specific image modalities. Besides this, 
medical image annotation presents a significant challenge for DL developers. AS 
offers flexible deployment options on computers and tablets, enabling users to 
conveniently annotate images in less time. Thus data annotation facilitates DL 
model training, especially for specific tasks. 

While fully automated methods may yield faster results, they often lack 
robustness in complex clinical scenarios. Semi-automated methods, which rely 
on human-computer interaction, prove crucial in practical applications. AS 
enables users to correct annotations in real-time during DL training, leading to 
significant accuracy improvements. The concrete performance is assessed across 
four distinct applications: customized MRI image diagnosis, interactive lung lobe 
segmentation, human-AI collaborated spine disc segmentation, and AID for DL 
model training. 
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This chapter first provides a brief structure of the research. Then it provides a 
concise overview of each article in the research, including objective, method, 
results, and the authors' contributions. 

4.1 Structure of the research 

The thesis examines the construction of multi-resolution multi-organ models 
using PCA-based methods and autoencoder networks, the segmentation of 
multiple organs through model deformation, and the development of more 
efficient MIA software. The entire thesis can be divided into three parts. 

The first part of this thesis focuses on exploring the underlying mechanisms 
of multi-organ deformation models. We use the improved PCA method and SAE 
neural network to construct deformable models for mouse abdominal organs. For 
the purpose of research, we represent the organs in the image using a PDM (L. 
Lu et al., 2006). Firstly, during the modeling process using the PCA method, we 
calculate the Euclidean distances between different points to study the influence 
of point correlation on model deformation. We control modeling by selecting 
different distance thresholds, resulting in three levels of model deformation 
components ranging from global to local. Additionally, the large number of 
points required to build the model cause the HDLSS problem (Aoshima et al., 
2018; Hall et al., 2005). We apply down-sampling-and-interpolation strategy to 
solve this problem. This study is important in revealing how organ correlation 
affects the deformation of each organ. Secondly, during the modeling process 
using the SAE neural network, we explore the potential non-linear deformation 
capabilities of the constructed model. PCA-based modeling has limited 
deformation capabilities and focuses on linear deformation modes. To exploit the 
non-linear deformation capabilities of the deformable model, we use the SAE 
neural network to extract features such as distance and shape of organs. Finally, 
we select the best deformation components for representing the model's 

4 OVERVIEW OF INCLUDED ARTICLES 



 
 

55 
 

deformation. These two studies for model construction further reveals that the 
correlation and independence of organs have a significant impact on the 
deformation of the constructed model. We test these conclusions on the dataset 
of mouse micro-CT images, which lays the foundation for the next step of image 
segmentation research. 

The second part of this research focuses on the implementation of multi-
organ segmentation in mouse images. To simultaneously realize the 
segmentation of liver, spleen, left kidney and right kidney in a mouse micro-CT 
image, we introduce the multi-resolution multi-organ deformation model 
constructed by the improved PCA method in the first part. Then we register the 
model to the image by iteration. At the same time, to better guide the model 
deformation, we use VHRBF interpolation function (Brazil et al., 2010) to roughly 
delineate the boundaries of the organs in the image during the registration 
process. For achieving a more accurate segmentation results, the above steps 
need to be iterated repeatedly. This part of the research plays an important role 
for exploring how to segment multiple organs quickly and accurately in medical 
images. 

The third part of this study focuses on the development of MIA software. 
MIA is a complex process that includes a series of steps including data processing, 
data modeling, data visualization, and human-computer interaction interface 
design. Each step consumes a lot of researcher's energy. Therefore, a software 
that can help researchers quickly perform MIA, such as MIS, is essential. In this 
way, researchers can focus more on their core research work. In this part of our 
research, we develop an extensible open-source software platform, 
AnatomySketch (AS). It can flexibly integrate medical image processing 
algorithm modules developed by different users and assist users to quickly 
annotate and analyze data. Compared with previous development software, 
such as MITK (Wolf et al., 2005), AS can complete the algorithm development of 
MIA faster under the premise of ensuring the accuracy of the obtained results. 
The conclusions have been verified under four different exemplar applications, 
which means this software can provide more alternative algorithm development 
solutions for future research. 

To sum up, Articles I and II contribute to the first part of the whole study. 
Article I first uses an improved PCA method to build a multi-resolution multi-
organ model. Then we interpolate all deformation components for the 
constructed model. Compared with Article I, Article II mainly uses the SAE 
neural network to build a multi-layer deep neural network structure to train the 
organs represented by points. Features that control the deformation of different 
parts of the model are acquired during training. The parameters of the features 
are tuned to obtain multi-resolution models with various nonlinear deformations. 

Article III contributes to the second part of the whole study. Based on 
Article I, Article III incorporates VHRBF function into the multi-resolution multi-
organ deformation model. At the same time, human interaction is continuously 
imposed to iteratively register the liver, spleen, left kidney, and right kidney in 
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the abdomen of a mouse to achieve simultaneous segmentation of multiple 
organs. 

Article IV contributes to the third part of the whole study. To assist MIA 
algorithm development, Article IV develops a universal open-source software 
mostly by using C++ and python languages. The performance of the software is 
verified in different applications such as image annotation, integration of 
extensible algorithm modules and acceleration of DL training. In addition, it 
further clarifies contribution in a potential sharing and development of a user 
community.  

4.2 Article I: Multi-resolution statistical shape model for multi-
organ shape modelling 

Zhonghua Chen, Tapani Ristaniemi, Fengyu Cong, and Hongkai Wang. (2020). 
Multi-resolution statistical shape models for multi-organ shape modelling. 
In Advances in Neural Networks – ISNN 2020: 17th International Symposium on 
Neural Networks,  pp. 74-84. Springer, Cham. 
 

Objective 
PCA is widely used to build SSMs in medical images. However, the conventional 
modeling methods based on PCA suffer from the HDLSS problem. In addition, 
most PCA-based modeling methods aim at modeling a single specific organ or 
tissue. And the constructed models have limited deformation modes. Therefore, 
in this study, we aim to construct a 3D multi-organ statistical shape model with 
global-to-local deformation modes while addressing the HDLSS problem. 

Method 
In this study, the preprocessed 98 mouse abdominal multi-organ models in 
Section 2.2 were used as pre-training data. The pre-training data consists of 3D 
points and point connections:  

• We first down sampled the pre-training data to obtain the training set. The 
training set also contains 98 shape samples.  

• The mean shape of the shape samples was then calculated.  
• We calculated the difference matrix for each shape sample to the mean 

shape as well as the corresponding covariance matrix.  
• Then we computed the Euclidean distance between any two points on the 

mean shape to obtain a distance matrix and chose the maximum distance.  
• Based on the maximum distance, we selected an appropriate threshold 

and set the values greater than the threshold in the distance matrix to 0. 
Likewise, we set the values smaller than the threshold in the distance 
matrix to 1. Thus, the mask matrix was then obtained. Its size is the same 
as the covariance matrix.  
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• We multiplied the corresponding elements of covariance matrix and the 
mask matrix and performed an eigenvalue decomposition for their results. 
The eigenvectors were obtained.  

• Next, we carried out interpolation for the eigenvectors. The deformation 
components of the mean shape before down sampling were obtained. 
These components were added to the mean shape before down sampling 
to obtain a SSM which can deform from globally to locally.  

• Finally, we evaluated the deformation performance from the 
generalization ability and specificity of the constructed SSM. 

Results 
We first conducted qualitative analysis on the constructed multi-resolution 
multi-organ SSM. Figure 19 shows 9 representative deformation results of the 
SSM. As shown in Figure 19, the constructed SSM mainly contains three levels of 
deformation effects: global level, single organ level and local organ level. We 
selected the first three components from three different levels respectively to 
demonstrate the deformation ability of the constructed SSM. 𝑃𝑃𝑃𝑃𝑔𝑔1,𝑃𝑃𝑃𝑃𝑔𝑔2, and 𝑃𝑃𝑃𝑃𝑔𝑔3 
are the selected deformation components for global level. Their corresponding 
eigenvalues are 𝜆𝜆𝑔𝑔1, 𝜆𝜆𝑔𝑔2, and 𝜆𝜆𝑔𝑔3. 𝛼𝛼𝑔𝑔1,𝛼𝛼𝑔𝑔2, and 𝛼𝛼𝑔𝑔3 are the corresponding shape 
coefficients. Likewise, 𝑃𝑃𝑃𝑃𝑠𝑠1,𝑃𝑃𝑃𝑃𝑠𝑠2,  and 𝑃𝑃𝑃𝑃𝑠𝑠3  are the selected deformation 
components for single organ level. Their corresponding eigenvalues are 𝜆𝜆𝑠𝑠1, 𝜆𝜆𝑠𝑠2, 
and 𝜆𝜆𝑠𝑠3. 𝛼𝛼𝑠𝑠1,𝛼𝛼𝑠𝑠2, and 𝛼𝛼𝑠𝑠3 are the corresponding shape coefficients. And for the 
right shapes in Figure 19, 𝑃𝑃𝑃𝑃𝑙𝑙1,𝑃𝑃𝑃𝑃𝑙𝑙2,  and 𝑃𝑃𝑃𝑃𝑙𝑙3  are the selected deformation 
components for local organ level. Their corresponding eigenvalues are 𝜆𝜆𝑙𝑙1, 𝜆𝜆𝑙𝑙2, 
and 𝜆𝜆𝑙𝑙3. 𝛼𝛼𝑙𝑙1,𝛼𝛼𝑙𝑙2, and 𝛼𝛼𝑙𝑙3 are the corresponding shape coefficients. In Figure 19(a), 
the deformation components of the global level mainly control the deformation 
of the whole mean shape, including multiple organs simultaneously. In Figure 
19(b), the deformation components at the single organ level mainly control the 
deformation of one organ in the mean shape, such as individual liver, spleen, and 
kidney. However, the deformation components at the local organ level in Figure 
19(c) mainly control the small local deformation of one organ, such as the local 
deformation of the kidney and spleen. 
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FIGURE 19 Demonstration of representative deformation results of three levels in the 
constructed SSM 

We also quantitatively analyzed the constructed SSM from model’s 
generalization ability and specificity. In this study, deformations at the global 
level, single organ level, and local organ level constitute a multi-resolution 
deformable model. The deformation modes at the global level corresponds to the 
traditional SSM deformation modes. They were used as the control group in this 
study. We computed the averaged generalization errors and specificity errors of 
the constructed SSM at three different levels, respectively. As shown in Figure 20, 
the averaged generalization errors, and averaged specificity errors at the three 
levels are all within 1.00 mm. From the global level to the local organ level, the 
generalization errors and specificity errors of the model are gradually decreased. 
This shows that multi-organ SSM with multi-resolution is more accurate for 
organ boundary registration. At the same time, it verified that the constructed 
SSM has better generalization ability and specificity than the traditional SSM. In 
addition, for the constructed SSM, the generalization errors and specificity errors 
at the local organ level are less than or equal to 0.3 mm. These errors are much 
lower than the generalization errors and specificity errors of the traditional SSM 
(global organ level). And they are close to the pixel resolution of 0.2 mm in mouse 
micro-CT images. 
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FIGURE 20 Generalization ability and specificity of the constructed SSM 

Errors in Article I 
In Figure 3 of Article I, there is an ambiguity regarding the deformation 
components, eigenvalues, and deformation coefficients representing the 
constructed SSM. Therefore, a correction is made in this paper. Errors in Article 
I are given in Table 1.  

TABLE 1 Corrections to variables in Figure 3 of Article I 

Type of variables Current variables Correct variables Figure 
Deformation component 𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, and 𝑃𝑃𝑃𝑃3  𝑃𝑃𝑃𝑃𝑔𝑔1,𝑃𝑃𝑃𝑃𝑔𝑔2, and 𝑃𝑃𝑃𝑃𝑔𝑔3.  3(a) 
Deformation component 𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, and 𝑃𝑃𝑃𝑃3  𝑃𝑃𝑃𝑃𝑠𝑠1,𝑃𝑃𝑃𝑃𝑠𝑠2, and 𝑃𝑃𝑃𝑃𝑠𝑠3.  3(b) 
Deformation component 𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, and 𝑃𝑃𝑃𝑃3  𝑃𝑃𝑃𝑃𝑙𝑙1,𝑃𝑃𝑃𝑃𝑙𝑙2, and 𝑃𝑃𝑃𝑃𝑙𝑙3.  3(c) 
Eigenvalue 𝜆𝜆1, 𝜆𝜆2, and 𝜆𝜆3  𝜆𝜆𝑔𝑔1, 𝜆𝜆𝑔𝑔2, and 𝜆𝜆𝑔𝑔3.  3(a) 
Eigenvalue 𝜆𝜆1, 𝜆𝜆2, and 𝜆𝜆3  𝜆𝜆𝑠𝑠1, 𝜆𝜆𝑠𝑠2, and 𝜆𝜆𝑠𝑠3.  3(b) 
Eigenvalue 𝜆𝜆1, 𝜆𝜆2, and 𝜆𝜆3  𝜆𝜆𝑙𝑙1, 𝜆𝜆𝑙𝑙2, and 𝜆𝜆𝑙𝑙3.  3(c) 
Shape coefficient 𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3  𝛼𝛼𝑔𝑔1,𝛼𝛼𝑔𝑔2, and 𝛼𝛼𝑔𝑔3.  3(a) 
Shape coefficient 𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3  𝛼𝛼𝑠𝑠1,𝛼𝛼𝑠𝑠2, and 𝛼𝛼𝑠𝑠3.  3(b) 
Shape coefficient 𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3  𝛼𝛼𝑙𝑙1,𝛼𝛼𝑙𝑙2, and 𝛼𝛼𝑙𝑙3. 3(c) 

 

Authors contributions in this article 
Zhonghua Chen and Hongkai Wang proposed the method. Zhonghua Chen 
conducted the data analysis and wrote the original manuscript. Hongkai Wang 
and Tapani Ristaniemi revised and supervised the manuscript. Fengyu Cong 
supervised the manuscript. 
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4.3 Article II: Construction of multi-resolution multi-organ shape 
model based on stacked autoencoder neural network 

Zhonghua Chen, Hongkai Wang, Fengyu Cong, and Lauri Kettunen. (2022) 
Construction of multi-resolution multi-organ shape model based on stacked 
autoencoder neural network. In 2022 14th International Conference on Advanced 
Computational Intelligence (ICACI), pp. 62-67. IEEE. 
 

Objective 
Deformable model-based MIS methods contribute to the segmentation of 
anatomical structures dramatically. Most of the conventional modeling methods 
are realized based on PCA. However, most of PCA-based methods are linear. 
This means that the deformation modes of a deformable model are generated 
linearly. The combination of linear deformation components generates different 
shapes. But linear modeling methods oversimplify the complex of human 
anatomy. They may not adequately represent the true deformation patterns of 
organs and tissues. Therefore, in this study we aim to explore more nonlinear 
deformation modes of deformable models by using a SAE neural network. 

Method 
Autoencoders efficiently compress data and extract nonlinear features of data 
during encoding. During the decoding process, autoencoders show good 
performance for data recovery and image reconstruction. Based on this, in this 
study, we still used 98 abdominal mouse micro-CT images preprocessed in 
Section 2.2 as training data. Each training sample consists of 752 3D points. For 
constructing a multi-level SAE, we concatenated the encoding and decoding 
layers of three autoencoders respectively. Then, the concatenated encoding and 
decoding layers were combined. After numerous tests and adjustments, we 
finally chose a three-level SAE with three autoencoders. The number of neurons 
in each layer in encoding part is 2256, 1000, 200, 30. Likewise, the number of each 
layer in decoding part is 30, 200, 1000, 2256. The decoding part and the encoding 
part are symmetrically in the three-level SAE. 98 training data were input to train 
the built SAE network. We continuously optimized the parameters of the SAE 
network to obtain a better SAE network qualitatively. Next, the mean shape of 
the training data was input into the SAE network to extract 30-dimensional 
features. The 30-dimensional features were continuously modified and decoded 
simultaneously. Finally, a multi-organ model with multiple nonlinear 
deformation modes was obtained. 

Results 
We fed the mean model of the training data into the trained three-level SAE 
network. The model was encoded by three encoding layers to obtain a 30-
dimensional feature vector 𝐹⃗𝐹 = {𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹30}. We chose 0.1 as an offset unit. 
Then we selected one value from 𝐹⃗𝐹 for numerical modification and kept the other 
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values unmodified. The modified feature vectors are reconstructed into different 
multi-resolution multi-organ models through decoding layers. We found during 
decoding that modifications in some values controlled similar shape changes. 
Therefore, we picked out some representative modified values to demonstrate 
the constructed model. Figure 21 shows 17 representative organ models 
reconstructed with modified values. Columns 1, 3, and 5 in Figure 21 are mean 
models. Columns 2, 4, and 6 are reconstructed models. Deformed regions of the 
reconstructed models are circled. From the figure, the modifications of values 𝐹𝐹4, 
𝐹𝐹7, 𝐹𝐹11, and 𝐹𝐹15 correspond to the deformation of a liver. Modifications of values 
𝐹𝐹2, 𝐹𝐹3, 𝐹𝐹6, and 𝐹𝐹13 correspond to the deformation of a spleen. Modifications of 
values 𝐹𝐹7, 𝐹𝐹15, 𝐹𝐹30 correspond to deformation of the right kidney. Modifications 
of values 𝐹𝐹13 , 𝐹𝐹14 , 𝐹𝐹25 , and 𝐹𝐹30  correspond to deformation of the left kidney. 
However, modifications of values 𝐹𝐹8 , 𝐹𝐹26  can control the relative positions of 
organs in models. As a comparison, we also show the deformation effect of the 
multi-resolution multi-organ SSM constructed in Article I. As shown in Figure 22, 
columns 1 and 4 are mean models 𝝁𝝁 . {𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, … ,𝑃𝑃𝑃𝑃10 }  are deformation 
components. {𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆10 } are the corresponding eigenvalues. {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼10 } 
are the deformation coefficients. The deformation modes of the multi-organ 
model in Figure 22 are mainly manifested on the liver and spleen. But these 
deformation modes can also be almost all achieved by three-level SAE. We 
qualitatively analyzed Figures 21 and 22 and found that three-level SAE can be 
constructed with more different kinds of nonlinear deformation modes. These 
modes include deformations at the global level, the single organ level, the local 
organ level, and the organ relative position level, etc. The organ model thus 
constructed in this study has richer deformation effects. 

 

 

FIGURE 21 Different deformations of the constructed model corresponding to different 
30-dimensional features 
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FIGURE 22 Different deformations of a multi-resolution multi-organ SSM constructed in 
Article I 

We also quantitatively analyzed the constructed model by using 
generalization ability and specificity. Figure 23 compares the three-level SAE 
modeling effect and the SSM modeling effect. Figure 23(a) shows that in terms of 
generalization error, the modeling errors of traditional global multi-organ SSM 
and multi-resolution SSM are respectively 0.5 and 0.3 mm. But the SAE modeling 
error is about 1.5 mm. Figure 23(b) shows that, in terms of specificity error, the 
modeling errors of traditional global multi-organ SSM and multi-resolution SSM 
are around 0.3 mm. The modeling error of SAE is still around 1.5 mm. From this 
analysis, we know although SAE is simple in principle and easy to operate, it 
may be inferior to the modeling methods based on PCA. It is also possible that 
during the training process of SAE, the hyperparameter adjustment is 
unreasonable and the error becomes larger. These challenges require further 
verification in the future.  

Authors contributions in this article 
Zhonghua Chen and Hongkai Wang proposed the method. Zhonghua Chen 
conducted the data analysis and wrote the original manuscript. Hongkai Wang 
and Lauri Kettunen revised and supervised the manuscript. Fengyu Cong 
supervised the manuscript. 
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FIGURE 23 Modeling error comparison between SAE and PCA-based method 

4.4 Article III: Low-dose mouse micro-CT image segmentation 
based on multi-resolution multi-organ shape prior knowledge 
model 

Zhonghua Chen, Hongkai Wang, Fengyu Cong, and Lauri Kettunen. (2022). 
Low-dose mouse micro-CT image segmentation based on multi-resolution multi-
organ shape prior knowledge model. In 2022 International Conference on 
Computers, Information Processing and Advanced Education (CIPAE), pp. 349-
353. IEEE. 

 

Objective 
Multi-organ segmentation is a difficult problem in medical image processing. 
Automatically segmenting multiple organs in mouse micro-CT images is 
challenging due to poor image quality. Images often have blurred edges and low 
contrast between organs, making it hard to develop fully automatic segmentation 
methods. As a result, manual interaction is often necessary to improve 
segmentation accuracy. In this study, we propose a new human interactive 
segmentation method to accurately segment multiple organs in mouse 
abdominal micro-CT images. Our method uses a deformable model guided by a 
small amount of human interaction. The goal is to achieve accurate segmentation 
of multiple organs in these challenging images. 
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Method 
In this study, we used 98 micro-CT images of mice that were collected in Section 
2.2 as our experimental subjects. To establish the gold standard, small animal 
imaging specialists segmented the livers, spleens, left and right kidneys. We then 
introduced random noise and reduced contrast to create low-quality, low-
contrast images. The operators used these low-contrast images to delineate 
landmarks at the edges of the organs, which were then used to generate the full 
contour of these organs using VRHBF interpolation. We imported a multi-
resolution multi-organ SSM that had been constructed in Article I and used the 
delineated organ contours to guide the SSM’s deformation. By doing so, we were 
able to limit excessive deformation of the SSM, allowing it to reflect the actual 
shape of the organs more accurately. The SSM was continually adjusted and 
deformed under the guidance of the contours until a satisfactory result was 
obtained. This process was repeated multiple times by adding additional 
landmarks and generating new contours until the results were achieved. 

Results 
To test the segmentation, we randomly selected 7 images from a set of 98 low-
contrast mouse micro-CT images. We compared the results of the traditional 
global resolution SSM and this proposed method. The accuracy of the 
segmentation was evaluated using the Dice value and ASD. In addition, we 
assessed the method’s stability by testing significant differences in segmentation 
result when different users performed subjective operations. 

We began by analyzing the results of the two segmentation methods 
qualitatively. Figure 24 provides a comparison of the segmented results obtained 
by the two methods. Each row in the figure represents a randomly selected test 
image. The gold standard is shown in Figure 24(a). Figure 24(b) and Figure 24(c) 
respectively depict the segmented results of our proposed method and the 
traditional global resolution SSM method. Upon comparing the two methods, we 
observed that the segmented results obtained from our proposed method were 
superior to those of the traditional global resolution SSM and closer to the gold 
standard. 

 

 

FIGURE 24 Comparison of segmented results between the proposed and traditional 
global resolution SSM methods 
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We also performed a quantitative analysis and comparison of the two 
segmentation methods. We calculated the Dice values and ASD values of the 
obtained results, as shown in Figure 25. To measure the significance of 
differences in the segmentation results, we employed the 𝑡𝑡 -test. The figure 
indicates that our proposed method achieved a higher Dice value and a lower 
ASD value for each organ. Additionally, we observed significant differences in 
the segmentation of spleens and kidneys. These results collectively demonstrate 
the superiority of our proposed method over the traditional global resolution 
SSM method. 

We also performed a quantitative analysis to evaluate the robustness of our 
method. Figure 26 displays the differences in segmented results obtained by 
different operators when using our proposed method. The 𝑡𝑡 -test reveals no 
significant differences in the results, indicating the robustness of our proposed 
method. 

 

 

FIGURE 25 Comparison of segmentation accuracy between the proposed and the 
traditional global resolution SSM methods 

 

FIGURE 26 Evaluation of the proposed method based on different operators 

The proposed method was evaluated on a computer equipped with an Intel 
Core i7 CPU and 16 GB of memory. User interaction time varied between 30 
seconds and 1 minute, while the VHRBF interpolation time ranged between 2 to 
3 seconds. The model registration and segmentation time varied from 15 to 25 
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seconds. The entire image segmentation process was completed within 1 to 1.5 
minutes. These results demonstrate that the proposed method meets the 
requirement for practical interactive segmentation with reasonable waiting time. 

Authors contributions in this article 
Zhonghua Chen and Hongkai Wang proposed the method. Zhonghua Chen 
conducted the data analysis and wrote the original manuscript. Hongkai Wang 
and Lauri Kettunen revised and supervised the manuscript. Fengyu Cong 
supervised the manuscript. 

4.5 Article IV: AnatomySketch: An extensible open‑source 
software platform for medical image analysis algorithm 
development 

Mingrui Zhuang, Zhonghua Chen, Hongkai Wang, Hong Tang, Jiang He, Bobo 
Qin, Yuxin Yang, Xiaoxian Jin, Mengzhu Yu, Baitao Jin, Taijing Li, and Lauri 
Kettunen. (2022). AnatomySketch: An extensible open-source software platform 
for medical image analysis algorithm development. Journal of Digital Imaging, 
35, 1623-1633. 
 

Objective 
Developing MIA algorithms is complex and challenging. The process involves 
several steps, such as requirement analysis, algorithm design, coding, testing, 
data visualization, human-computer interaction, and GUI construction, which 
require significant resources. Existing development tools do not effectively 
integrate these steps, particularly for DL algorithms that require a software 
platform capable of annotating training data and facilitating user interaction. To 
address this issue, we aim to build an open-source software platform with a 
friendly GUI and a convenient, extensible plug-in interface that facilitates 
algorithm integration and development. This platform can integrate multiple 
steps in the algorithm development process, helping developers improve 
development efficiency. 

Method 
The AS software is primarily implemented using C++ and Python. To begin, we 
have developed a user-friendly GUI for the AS software, which includes a menu 
bar at the top, a data management list, and a user development module panel on 
the left-hand side. On the right-hand side, there is a display window that shows 
three different image planes. AS software is available for both desktop computers 
and tablets. The software design supports a range of input devices, including 
mouse, keyboard, stylus, and touch screen. Secondly, in the display window, we 
have included interactive annotation and proofreading functions for images. 
Users can use a stylus or mouse to annotate ROIs in the image. These annotations 
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can be used as training data to train network models or saved separately on the 
computer disk. We have also integrated a flexible plug-in interface in AS, which 
allows users to integrate their own developed programs into AS. They can use 
AS to call their own programs to process and display the image. Importantly, AS 
can help users to annotate training data and train DL models efficiently. 

Results 
In this study, we have presented four different applications in MIA. These 
applications include the diagnosis of MRI images, segmentation of lung lobes, 
segmentation of spinal discs, and the annotation for DL models. For MRI image 
diagnosis, we developed a plug-in module that analyzes intrahepatic tumors and 
created a GUI-based software prototype. Physicians used our prototype to 
delineate ROIs with greater precision in 2D or 3D medical images. The GUI 
interface of the software prototype is shown in Figure 27. The blue outline 
represents the ROI boundary, and the green area include the extracted targets. 

 

 

FIGURE 27 An example of a user-defined extension module for target analysis in MR 
images 

To segment lung lobes in CT images, we collaborated with two engineers 
from a company who developed a lobe annotation plugin. The annotated lung 
lobes were then used to train the lung segmentation network. Figure 28 displays 
the GUI interface of the lobe annotation plugin. Each lung lobe image annotation 
took less than 20 minutes. With the support of a stylus, the engineers were able 
to annotate 100 lung lobes within three days, significantly reducing the time 
required compared to other software. 
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FIGURE 28 An example of a user-developed plugin module for lung lobe annotation in 
CT images 

To demonstrate the performance of AS for intervertebral disc segmentation, 
we integrated a user-developed DL model via a plug-in interface. Figure 29 
illustrates the results of calling a dense V-Net model (Gibson et al., 2018) in AS to 
segment the intervertebral disc. In Figure 29(a), without manual annotation, the 
dense V-Net cannot accurately segment the herniated disc. In Figure 29(b), AS 
and the dense V-Net were used to manually correct the image, resulting in more 
accurate segmentation of the herniated part of the intervertebral disc. Although 
both MITK and 3D Slicer can annotate images, they require a network connection 
for data processing, which can be inconvenient and raise privacy concerns. 
Furthermore, existing software tools lack efficient proofreading of the 
segmentation results of DL models. 

 

 

FIGURE 29 An example of manual proofreading. The red areas are ground truths 

The most significant core function of AS software is to facilitate an efficient 
AID process. To demonstrate this, we used a DeepSnake network (Peng et al., 
2020) to segment abdominal organs in CT images. Experts initially trained the 
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network by annotating the outlines of organs in a small set of training images. 
The trained network then segmented more contours for other images, which 
were subsequently corrected using FFD tools. The rectified images were then 
added to the network to further optimize it. Figure 30 displays the segmentation 
results of the initial network and the rectified network. The initial network  
training data in Figure 30 contained 600 CT slices, while the rectified network 
contained 1800 CT slices. As shown in Figure 30, correcting the network leads to 
more accurate results. 

 

 

FIGURE 30 AID annotation results of two exemplar CT slices 

Authors contributions in this article 
Mingrui Zhuang developed software, conducted experiments, tested data, and 
contributed to manuscript writing. Zhonghua Chen developed the function 
module of statistical shape model segmentation of the software, conducted 
experiments, tested data, and contributed to manuscript writing. Hongkai Wang 
proposed the method, revised, and supervised the manuscript. Hong Tang 
revised and supervised the manuscript. Jiang He processed and tested data. 
Bobo Qin processed and tested data. Yuxin Yang processed and tested data. 
Xiaoxian Jin processed and tested data. Mengzhu Yu processed and tested data. 
Baitao Jin processed and tested data. Taijing Li processed and tested data. Lauri 
Kettunen revised and supervised the manuscript. 
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In this chapter, we discuss the whole research including the used dataset, the 
methods, outcomes, and limitations of each study, as well as potential directions 
for future research in this thesis.  

5.1 Mouse data 

Mice share many similarities with humans in terms of genetics (Bryda, 2013), 
anatomy and organ systems (Rosenthal and Brown, 2007), and disease 
mechanisms (Tassone et al., 2012). Consequently, mice play a crucial role as 
valuable models for investigating human biology and disease. For this reason 
they are commonly used animals in biomedical research. The utility of mice 
extends to various areas, including the evaluation of drug candidate efficacy, 
safety, and pharmacokinetics (Festing and Wilkinson, 2007), tumor imaging 
(Heskamp et al., 2015), cardiovascular research (Wessels and Sedmera, 2003), 
neuroimaging (Mezzanotte et al., 2017; Xiong et al., 2021), as well as drug 
development (Sharpless and DePinho, 2006; Weissleder and Ntziachristos, 2003). 
In vivo mouse imaging holds great significance in facilitating these studies. In 
medical physics studies, the utilization of micro-CT imaging has become 
pervasive for visualizing internal organs of small animals. For such reasons, in 
Articles I and II we used enhanced-contrast mouse micro-CT images to construct 
different deformable models.  

However, in the real world most of the CT images acquired have low 
contrast. Therefore, in Article III we also employed corresponding low-contrast 
images for multiple organ segmentation. Practically, the utilization of low-
contrast mouse micro-CT images for MIA in research may bring about several 
benefits and challenges:  

• These low-contrast images simulate real-world scenarios where 
distinguishing subtle boundaries between tissues or structures create a 
challenge. By working with low-contrast images, the robustness and 

5 DISCUSSION  
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accuracy of segmentation algorithms in clinical-like scenarios can be 
evaluated (Clark and Badea, 2021). But the lower contrast levels in the 
images introduce additional complexity to the segmentation process, 
requiring more sophisticated algorithms and techniques to achieve 
accurate results (Schoppe et al., 2020). This is to say, MIA based on low-
contrast mouse micro-CT images still remains a big challenge in research. 

• The outcomes of segmentation algorithm presented in Article III perform 
well on low-contrast mouse micro-CT images. This suggests, the 
algortihms are potential to be applied and tested in more general clinical 
settings. Algorithms that accurately segment low-contrast structures of 
mice should perform better when applied to imaging humans, which 
share the same challenges.  

• In addition, mouse micro-CT images serve as a valuable benchmark for 
algorithm development and validation (Girard et al., 2016). They provide 
a standard for comparing different segmentation techniques and assessing 
their performance in challenging scenarios.  

• Generation of low-contrast images involves reducing the contrast agent 
concentration or adjusting imaging parameters. This can help minimize 
resource usage and potential animal welfare concerns. Researchers can 
optimize existing data without the need for additional contrast agents, 
thus promoting a more efficient and ethical use of experimental resources 
(Kagadis et al., 2010).  

• Unfortunately, the decreased contrast may lead to reduced accuracy and 
increased segmentation errors (Baiker et al., 2010). It is crucial to strike a 
balance between realistic image simulation and maintaining an acceptable 
level of image quality for reliable segmentation results. The quality of true 
low-contrast images is highly dependent on acquisition parameters, such 
as exposure settings and reconstruction algorithms (Altunbas et al., 2006). 
These parameters may vary and introduce inconsistencies in image 
quality. 

5.2 Methods 

To address research question 1 raised in the introduction section, Article I 
develops an improved-PCA method for constructing a multi-organ multi-
resolution SSM based on enhanced-contrast mouse micro-CT images. The 
improved-PCA method incorporates improved statistical measures to handle 
noisy and outlier data, resulting in more reliable shape models. It can capture 
both global and local shape variations by considering the entire shape 
distribution as well as local shape deformation modes. We find that this 
flexibility allows for a more comprehensive representation of shape variations, 
compared to traditional PCA methods (Cootes et al., 2001; Stegmann and Gomez, 
2002).  
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In addition, we find the improved-PCA method efficiently computes shape 
models by exploiting the eigenvalue decomposition of the modified covariance 
matrix. This makes it computationally efficient, enabling the analysis of large 
datasets by avoiding the HDLSS problem (Aoshima et al., 2018; Hall et al., 2005). 
Compared to the method for constructing 2D multi-organ multi-resolution SSMs 
(Wilms et al., 2017), the improved-PCA method can efficiently generate 3D multi-
organ multi-resolution SSMs for mouse micro-CT images.  

To address research question 2, Article II proposes a SAE neural network to 
create deformable models with more non-linear deformation modes. We find 
SAE can capture non-linear deformation modes, allowing for more flexible 
representation of complex shape variations when compared with PCA methods 
(Z. Chen et al., 2020; Cootes et al., 2001; Stegmann and Gomez, 2002). The 
autoencoder architecture of the SAE facilitates unsupervised learning and feature 
extraction, reducing the need for labeled training data and expert-defined 
features (P. Vincent et al., 2010). The SAE learns directly from the data, allowing 
for the discovery of intricate shape patterns and reducing the reliance on 
predefined statistical assumptions.  

To address research question 3, Article III uses human interaction to guide 
the constructed SSM of Article I to simultaneously segment the livers, spleens, 
left and right kidneys in mouse micro-CT images. The incorporation of prior 
knowledge played a crucial role in the study. We find that the segmentation 
process can be guided towards more accurate and anatomically plausible results 
as compared to traditional PCA methods (Cootes et al., 2001; Stegmann and 
Gomez, 2002). CT images often suffer from noise, artifacts, and intensity 
variations (Davis and Vachhani, 2017; Maier et al., 2018). Incorporating prior 
knowledge helps in compensating for these issues and enhancing the robustness 
of the segmentation algorithm. The prior knowledge provides one with 
contextual information about the expected shape and appearance of structures of 
CT images. By incorporating the constructed shape model, human interaction 
can result in more informed decisions during segmentation, leading to improved 
outcomes (Heimann and Meinzer, 2009).  

Multi-organ modeling and segmentation are two of essential analysis in 
MIA. To address research question 4, Article IV develops the AS software which 
facilitates the realization of these two approaches. Some existed tools, such as itk 
(McCormick et al., 2014; Yoo et al., 2002), vtk (Schroeder et al., 2006), MITK (Wolf 
et al., 2005), have limited extension for user-developed algorithms compared to 
the developed AS software. Likewise, at present, the 3D Slicer (Pieper et al., 2004) 
fails to achieve convenient interaction with users and user-friendly programming 
mechanism. The AS software has a user-friendly GUI interface and a flexible and 
extensible interface, making it convenient for users to develop algorithms for 
visual analysis.  
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5.3 Methods limitations and future directions 

However, the methods employed to address the four research questions have 
some limitations.  

For research question 1, the improved-PCA method relies on the 
assumption that shape variations can be adequately represented by linear 
combinations of principal components. However, in scenarios where shape 
variations exhibit significant non-linearities (Z. Chen et al., 2022; Heimann and 
Meinzer, 2009; Nolte et al., 2016), the linear approximation of PCA may not 
capture the full complexity of the data. This limitation can result in suboptimal 
representation of shapes with intricate deformations, such as livers and spleens. 
In addition, the improved-PCA method heavily relies on the quality and quantity 
of training data. Insufficient or biased training data can lead to limited model 
generalization and reduced accuracy in capturing shape variations (Cerrolaza et 
al., 2019). Moreover, the method assumes that shape variations across different 
instances are independent and identically distributed, which might not hold true 
in certain datasets with complex shape relationships. 

For research question 2, one significant limitation of the SAE network is the 
risk of overfitting, especially when the network architecture becomes excessively 
complex or when the training dataset is limited. In addition, the high capacity of 
the SAE to learn intricate patterns and non-linear deformations can result in 
models that are overly specific to the training dataset and fail to generalize well 
to unseen data (P. Vincent et al., 2010). As compared to improved-PCA method 
(Z. Chen et al., 2020), this may result in poor construction of deformable models. 
And they are prone to the chosen dataset, network architecture and 
hyperparameters. Another limitation of the SAE is the lack of interpretability of 
their learned representations. While the SAE excels at automatically learning 
feature representations, the resulting latent space may not have direct and 
intuitive semantic meanings. This makes it challenging to interpret and extract 
meaningful insights from the learned deformations (Shen et al., 2017). This 
limitation can hinder the understanding of the underlying mechanisms of shape 
variations. 

For research question 3, the effectiveness of incorporating prior knowledge, 
however, relies on the availability and accuracy of the prior information. If the 
prior knowledge is incomplete, inaccurate, or not representative of the specific 
imaging conditions or anatomical variations, it can adversely affect the 
segmentation accuracy. In addition, incorporating prior knowledge often 
involves an initial registration step to align the prior model with the target image 
as introduced in Section 2.5. Any errors or misalignments introduced during the 
registration process can propagate and lead to inaccurate segmentations. 
Ensuring robust and accurate registration techniques is crucial to mitigate this 
limitation. The effectiveness of the shape prior knowledge in segmenting organs 
or tissues relies on the assumption that the target image shares similar 
characteristics with the training data. If the imaging conditions, anatomical 
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variations, or disease states differ significantly from the training data, the 
segmentation accuracy may be compromised. Generalizing the method to handle 
novel cases with different imaging characteristics remains a challenge. While the 
improved-PCA method can handle shape variations, it may face challenges in 
accurately segmenting anatomical structures with intricate shapes, irregular 
boundaries, or overlapping regions. Incorporating prior knowledge alone may 
not fully address these complexities, and additional techniques may be necessary 
to improve segmentation accuracy. 

For research question 4, the current version of AS is not yet mature, and 
more functions need to be upgraded to meet user needs. Moreover, the growth 
of plug-in modules also increases the difficulty of AS community maintenance. 
The availability of user support, documentation, and an active community of 
developers and users is crucial for the success and continuous improvement of 
AS. If the AS platform lacks a strong user community or sufficient resources for 
support and updates, users may also face challenges in troubleshooting issues or 
accessing new features and improvements. 

To address these limitations, future research can focus on: 

• Explore constructing multi-resolution multi-organ models of different 
organisms using the improved PCA-based method. It is important to 
evaluate the modeling accuracy of various models to determine the 
method's universality. 

• To generate a wider range of nonlinear deformation modes, we can collect 
more medical images for training the network. We can also adjust the 
network structure and parameters to improve its modeling performance. 

• Adversarial learning techniques, such as GANs (Yi et al., 2019; Zhou et al., 
2023), can be explored to improve the generation of realistic and diverse 
shape variations. By introducing adversarial training, shape models can 
better capture the complex and subtle interplay between shape variations 
and improve the generalization capability. 

• We can explore hybrid approaches that combine improved-PCA with 
other segmentation techniques, such as deep learning or graph-based 
methods, to better handle complex anatomical structures. 

• Another way is to integrate multiple sources of prior knowledge, such as 
anatomical atlases or probabilistic models, to improve segmentation 
accuracy. 

• AS software is useful for developing MIA algorithms. For future 
development, expanding the software's functions, upgrading the software, 
and maintaining the software community are essential considerations. 
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This thesis first describes two different approaches to construct multi-resolution 
multi-organ models for MIA. The first approach is an improved PCA-based 
modeling method that aims to build a 3D SSM with multiple levels of resolution. 
This method also addresses the HDLSS problem that is commonly encountered 
in PDMs. The results of this approach show that the proposed method has higher 
modeling accuracy compared to the traditional PCA-based approach. 

The second approach described in the thesis is the use of a simple but 
efficient SAE neural network to construct deformable models. This approach 
aims to mine more non-linear deformation modes. It demonstrates stronger 
modeling ability compared to the traditional PCA-based approach in terms of 
generating deformation modes. 

The thesis also presents a method for simultaneously segmenting multiple 
organs in low-contrast mouse abdominal images using the constructed multi-
resolution multi-organ SSM. In this method, the SSM acts as shape prior 
knowledge in the image segmentation process. The method uses human 
interaction to guide SSM deformation. It obtains more accurate segmentation 
results compared to the global resolution SSM approach. The proposed method 
is also robust and not affected by different user operations. 

The last part of this thesis describes the development of AS, a software that 
accelerates the creation of MIA algorithms. The method for building the multi-
resolution multi-organ SSM has been integrated into this software as a semi-
automated organ segmentation function module. 

In summary, this paper offers valuable contributions to the efficient 
modeling and segmentation of multiple organs in medical images. Additionally, 
it provides researchers with a user-friendly, open-source software tool called AS, 
which can aid in the development of MIA algorithms. The potential benefits of 
these contributions are promising for future clinical diagnoses. 
  

6 SUMMARY OF THE DISSERTATION 
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YHTEENVETO (SUMMARY IN FINNISH) 

Tämä väitöskirja esittelee kaksi lähestymistapaa moniresoluutioisten monielin-
mallien luomiseen lääketieteellisen kuva-analyysin tarpeisiin. Ensimmäinen lä-
hestymistapa on pääkomponenttianalyysista jatkokehitelty mallinnusmenetel-
mä, jonka tavoite on resoluutioltaan monitasoinen kolmiulotteinen tilastollinen 
muotomalli. Menetelmä on vastaus pistejakomallissa yleisesti ilmenevään näyt-
teistyksen harvuuteen suurissa dimensioissa. Tulokset osoittavat, että ehdotettu 
menetelmä mahdollistaa paremman mallinnustarkkuuden perinteisiin pääkom-
ponenttianalyysiin pohjautuviin menetelmiin nähden. Toinen lähestymistapa 
käyttää yksinkertaista mutta tehokasta pinottua autoenkooderi hermo- eli neu-
roverkkoa muuttuvien mallien rakentamiseen. Tavoitteena on mahdollistaa laa-
jempia epälineaarisia muodonmuutoksia ja näitä vastaavia moodeja. Tulokset 
muodonmuutoksen moodeista osoittavat mallinnuskyvyn paranevan pinottuun 
autoenkooderiin perustuvaan menetelmään verrattuna. 

Väitöskirja esittelee myös lähestymistavan useiden elinten samanaikaiseen 
segmentointiin kontrastiltaan heikkojen hiiren vatsakuvista työssä kehitettyä 
moniresoluutioisen monielinten tilastollisen muotomallin avulla. Tilastollista 
muotomallia käytetään erityisesti ennalta tunnetun tiedon hyödyntämiseen ku-
vien segmentoinnissa käyttäjän vuorovaikutusen tukemana. Menetelmällä saa-
vutetaan tarkempia segmentointeja globaalin resoluution tilastollisen muoto-
mallin verrattuna. Ehdotettu menetelmä on myös robusti eikä se ole altis käyt-
täjän toimenpiteille. Väitöskirjan viimeinen osa esittelee AnatomySketch ohjel-
miston kehitystä, jota käytetään lääketieteellisten kuvantamisen analyysi algorit-
mien kehittämiseen. Moniresoluutioinen monielinten tilastollinen muotomalli 
on integroitu ohjelmistoon puoliautomatisoituna segmentoinnin funktiomoduu-
lina. 

Väitöskirjan voi yhteenvetona todeta esittelevän uusia tehokkaita mene-
telmiä monielinmallinnukseen ja -segmentointiin lääketieteellisen kuvantamisen 
tarpeisiin. Lisäksi työ tarjoaa avoimeen lähdekoodiin perustuvan käyttäjäystä-
vällisen ohjelmistotyökalun kuvantamisen algoritmien kehittämiseen tulevai-
suuden kliinisen diagnostiikan tarpeisiin.  
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Abstract. Statistical shape models (SSMs) are widely used in medical image 
segmentation. However, traditional SSM methods suffer from the High-
Dimension-Low-Sample-Size (HDLSS) problem in modelling. In this work, we 
extend the state-of-the-art multi-resultion SSM approach from two dimension 
(2D) to three dimension (3D) and from single organ to multiple organs. Then 
we proposed a multi-resolution multi-organ 3D SSM method that uses a 
downsampling-and-interpolation strategy to overcome HDLSS problem. We al-
so use an inter-surface-point distance thresholding scheme to achieve multi-
resolution modelling effect. Our method is tested on the modelling of multiple 
mouse abdominal organs from mouse micro-CT images in three different reso-
lution levels, including multi-organ level, single organ level and local structure 
level. The minimum specificity error and generalization error of this method are 
less than 0.3 mm, which are close to the pixel resolution of mouse CT images 
(0.2 mm) and better than traditional principal component analysis (PCA) meth-
od. 

Keywords: Multi-resolution multi-organ SSM, PCA, HDLSS, Mouse micro-
CT image, Liver, Spleen, Left kidney, Right kidney, Geodesic distance, Euclid-
ean distance. 

1 Introduction 

In the last three decades, SSM approaches have been used as one of the most im-
portant methods to segment and register organs for medical image analysis [4]. The 
applications of SSMs includes but not limit to the following fields: 1) Medical image 
segmentation and registration [2, 3, 7]. 2) Clinical diagnosis and treatment [1, 11]. 3) 
Analysis of organ contraction [10].  

Due to the complexity of medical images, SSMs of 3D organs are playing an in-
creasingly important role in medical image segmentation. To represent 3D organ 
shapes, landmarks are sampled from the organ surface. However, a challenging prob-
lem of 3D SSM construction is that the number of training samples is small while the 



number of landmarks is large [12]. To fully capture the great variability of 3D shape, 
the traditional PCA modelling method needs to provide a large number of representa-
tive training samples to achieve a good modelling effect, which usually requires a lot 
of labor and is even impossible to complete. This problem is later called High-
Dimension-Low-Sample-Size (HDLSS) problem, which leads to insufficient and 
inaccurate expression of the model. 

In order to solve the HDLSS problem, Wilms et al. [16] proposed a multi-
resolution statistical shape model with the traditional PCA method based on local 
distance constraints in 2017, and they used this method to construct a 2D multi-
resolution SSM of human hand shape and cardiopulmonary shape. The method is an 
important extension of the traditional SSM method, which can be used to obtain sta-
tistical deformation models of objects at different resolution levels. In addition, it 
makes the resulting models achieve better generalization and specificity based on 
fewer training samples. However, one limitation of this method is that it takes up a lot 
of memory and is not suitable for cases where there are many sampling points. There-
fore, Wilms et al. only modelled simple 2D shapes in their study. Unfortunately, the 
3D shape vectors of multiple organs usually contain thousands or even tens of thou-
sands of sampling points. Moreover, since multiple organ shape modelling usually 
requires more sampling points than single organ, this method is not applicable to mul-
ti-organ modelling as well. These drawbacks limit the application of this method to 
multi-organ 3D shape modelling. 

In this article, we propose a solution to extend the multi-resolution SSM approach 
to 3D shape modelling of multiple organs with large number of surface points. Our 
methods combines 3D object surface downsampling with Laplace diffusion equation 
to construct multi-resolution multi-organ 3D SSM. We obtain deformation compo-
nents in three resolution levels, which are the "multi-organ level", "single organ level" 
and "local structure level". The models obtained from the above three resolution lev-
els are compared quantitatively with the traditional PCA modelling methods in terms 
of model generalization and specific performance, and we obtain better modelling 
performance than the traditional methods. 

2 Materials and Methods 

2.1 Description of Mouse Micro-CT Data 

The multi-organ shape training samples of mouse micro-CT images are taken from 
the Molecular Imaging Centre of the University of California, Los Angeles [14, 15]. 
During the imaging process, mice are injected with liver contrast agent Fenestra LC 
(ART, Montreal, QC, Canada) for clear imaging of abdominal organs. The weights of 
the tested mice range from 15 to 30 grams, and the data are selected according to the 
following principles for modelling: (1) Boundaries of the abdominal organs of the 
mouse: livers, spleens, and kidneys are clear. (2) There are no motion artefacts in the 
CT images of mice. (3) There are no cases where the livers, spleens and kidneys of 
the mice deviate from the normal shape. Mice are imaged in a multi-mode indoor 



prone position that provides anesthesia and heating [13]. Although the imaging room 
limits the possible postures of the mice, these postures are not strictly normalized. The 
random body bending postures in the left, right, and backward directions are included 
in the data set. The imaging system is MicroCAT II Small Animal CT (Siemens Pre-
clinical Solutions, Knoxville, TN). Equipment acquisition parameters for imaging: 
exposure setting 70 kVp, 500 mAs, 500 ms and 360 step rotation, 2.0 mm aluminum 
filter. In the image acquisition process, an improved Feld Kamp process is used to 
reconstruct the image so that the isotropic voxel size is 0.2 mm, the image matrix size 
is 256 × 256 × 496, and the pixel resolution is 0.2 mm. 

In this study, 98 mouse micro-CT images are collected as training samples for 
model construction. Small animal imaging experts are invited to segment the 3D re-
gions of livers, spleens, left kidneys, and right kidneys from the images, and then use 
the moving cube algorithm [6] to convert the segmented label maps to mesh surfaces. 
On this basis, one of the 98 sample surfaces is selected as the template surface, and 
the point cloud registration algorithm [8, 9] is used to register the template to all other 
training samples, so that different samples have the same number of mesh vertices, 
and each vertex corresponds to the same anatomical position in different samples, 
thus completing the preparation of all training data. Fig.1 illustrates the entire training 
data preparation process. 

 
Fig. 1. The construction process for preparing the training data of the mouse multi-organ shape 
model 

2.2 Description of Algorithms 

The Construction of Multi-Resolution SSM.  
1. Given d (d = 3) dimensional mouse abdominal multi-organ training mod-

els where contains points, each point 
=  is distributed on the surface of the training model. Then calcu-



late the average model of the training models, the calculation formula is shown in 
formula (1): 

  (1) 

2. After normalization, the covariance matrix of the coordinates of different dimen-
sional points is calculated, and the calculation formula is shown in formula (2): 

                    (2) 

3. Calculate the point-to-point geodesic distance  on each model surface, 
and use rule (3) to set the values of the two sides of the covariance matrix  sym-
metrical to 0: 

   (3) 

where  and are the standard deviations of the i-th and j-th dimensions, respec-
tively, and is the threshold given in the experiment according to the relevant rules, 

so that a simplified symmetric matrix . 

4. Since is not positive semi-definite and cannot be implemented eigenvalue de-
composition, it is necessary to use the approximation method [5] to find an approx-
imate positive semi-definite matrix  replacing  with formula (4): 

 

                                     (4) 

  

5. Calculate the eigenvector matrix of  and the corresponding eigenvalue ma-
trix , as shown in formula (5):   

  (5) 

     where the eigenvector set included in is represented as , and the eigenvalue 
vector on the diagonal of is represented as . 
6. When different values of distance threshold are selected in equation (3), the mod-

el will show different deformation capabilities locally; when , 
the constructed model is the traditional SSM; when , the physical coordinate 
points on all training samples lose their relevance, and the constructed model can-
not be deformed, which has no practical significance. By defining a series of 
thresholds , a multi-resolution scheme is defined to obtain a set 
of shape models that vary from global to local. However, 
these models are highly dependent and redundant, and do not constitute a single 
shape space. Therefore, it is necessary to retain global information to combine 



them into a subspace, so that the feature vectors provided by the local SSM can op-
timally represent more local information. Based on step 1 to 5, the algorithm for 
constructing a multi-resolution shape model is derived as follows: 

    Suppose that there are training model data matrices , 
the thresholds of geodesic distance on each model surface are . 
Calculate the average model of the training models. And define the 
distance matrix on the average model. Assuming that the iteration index ranges 
from to in the calculation process, where represents the number of models, the 
deformation coefficient of the local SSM is defined as , and the deformation com-
ponent corresponding to the coefficient is defined as . 

When , it means that there is only one shape model space, and the multi-
organ statistical shape model can be obtained by directly using the traditional PCA 
method; when , it means that there are multiple shape model spaces, and these 
model spaces need to be combined for singular value decomposition. The decomposi-
tion process is as follows: 

                            (6) 

  (7) 

where represents singular value decomposition and calculates the transform 
base , . Then, calculate the covariance matrix after spatial transfor-
mation: 

  (8) 

  (9) 

, where , finally calculate the 

uncorrelated basis vectors and the corresponding feature values: 

  (10) 

where represents eigenvalue decomposition. And the multi-resolution multi-
organ SSM  is represented as follows: 

                                      (11) 



Multi-Resolution Multi-Organ SSM.  
In order to extend this method to the construction of 3D multi-organ models with a 
large number of sample points, the idea adopted in this study is to first downsample 
the vertices on the model surface. Then we extend the method of Wilms et al. to train 
the down-sampled 3D point sets to obtain a multi-resolution model shape. Finally, we 
interpolate the deformation vectors of the down-sampled vertices to generate defor-
mation vectors of all vertices on the entire surface. 

Fig.2 shows the idea of this improved method, where Fig.2 (a) shows the down-
sampled vertices (marked in red) on the surface of the organ. There are a total of 3759 
vertices in four kinds of organs (livers, spleens, left kidneys, right kidneys) in this 
study, and 375 vertices are obtained after 10 times down sampling, which can be used 
to construct a model in a computer with 16G memory. Fig.2 (b) shows the defor-
mation vectors (represented by black arrows) on the down-sampled vertices of this 
model, and Fig.2 (c) shows the deformation vectors on all vertices by interpolating the 
deformation vectors of down-sampled vertices over the entire model surface, The 
interpolation method used is the Laplace iteration diffusion algorithm of the surface: 

   (12) 

where represents the number of iterations, is the vertex index, represents the 
deformation vector of the i-th vertex coordinate at the n-th iteration, 

represents  indexes of neighbor vertices around vertex , represents 
the smooth intensity coefficient. At the beginning of the iteration ( ), first set the 
deformation vector of the down-sampled vertices to the modeled feature vec-
tor , and set the deformation vector of the other vertices to 0; during the iteration 
process, keep the deformation vectors of down-sampled vertices always to be , 
and the deformation vectors of other vertices are calculated by formula (12). In order 
to obtain the desirable interpolation effect, through repeated testing, the maximum 
number of iterations is set to 1000, and the value of is set to 0.8. It can be seen from 
Fig.2 (c) that after interpolation, the deformation vectors on a small number of down-
sampled points smoothly spread to the entire model surface. According to this meth-
od, the whole deformation components of the shape model are obtained by interpolat-
ing all vertices on the model surface, and the overall deformation of the model is fur-
ther realized according to the interpolation results. It should be noted that although the 
deformation vectors are obtained by interpolation instead of by training all vertices, in 
the case of limited memory, this method can obtain reasonable deformation vectors 
for a large number of vertices of multiple organs. After observation and quantitative 
measurement (see this in Results section), the modelling results are better than the 
traditional global shape model. 
     In addition to the interpolation algorithm described above, the selection of the 
resolution in Wilms et al. method is also improved in this study to make it more ap-
plicable to multiple organs. Because the original algorithm of Wilms et al. did not 
specifically consider the problem of modelling multiple organs, but only imposed 
geodesic distance constraints on the range of the local deformation to generate multi-
resolution models under different distance constraints. However, in the case of multi-



organ modelling, a simple geodesic distance cannot properly describe the distance 
relationship between two points belonging to different organs. For example, if the 
Euclidean distance between a point at the bottom of a lung and another point at the 
top of the liver is very close, these two points should have strong correlation in terms 
of common deformation because of the bottom of the lung and the top of the liver 
always coincide with each other. But according to the principle of the geodesic dis-
tance constraint in the Wilms et al. Algorithm, these two points belong to different 
organs, and the geodesic distance will be farther, so that the correlation between them 
in a model becomes smaller and does not meet the deformation regulation of adjacent 
organs. Based on the above considerations, this study uses Euclidean distance instead 
of geodesic distance as a constraint. The approach is as follows: 
      Based on the local deformed multi-organ SSM constructed in steps 1 to 6, the 
distances of surface vertices are calculated by combining the modified Euclidean 
distance between different organs with the geodesic distance expressed in equation 
(3). This article specifies that the geodesic distance of points on different organ mod-
els is infinite, and the Euclidean distance of points on different organ models can be 
calculated. Given a model vector containing target calibration points, and 

, where represents the number of 
landmarks of the i-th model, . Define the undirected graph , 

 represents the vertices of the undirected graph,
,  is the direct neighbour-

hood of point on target . The weight of edge is represented by the 
Euclidean distance between two points: 

   (13) 

    The geodesic distance  between two points on the target surface can be 
estimated by the shortest path in . There is no connection relationship between 
different targets in , so the distance between points on different targets is infinite. 
     Define the second fully connected undirected graph , and the edge 
weights represent the Euclidean distances of the scaled translation: 

   (14) 

     Use , represents the shortest distance in . Combine equation (13) 
with (14), It can be seen from the two equations that on the same target, when

, ; when , 
. On the same target surface, assumed that the energy required from 

point to point is equal to , and the coefficient represents the energy 
ratio of moving the same distance in the embedding space , which also means the 
relative viscosity of the space, represents the energy required to overcome the adhe-
sion force to leave the target surface. No matter moving on the target surface or mov-
ing in the embedding space, the merged distance of two points in is a 
path with minimum energy. Therefore, the shortest path of the combined fully 
connected graph  can be obtained with edge weights equation (15): 



  (15) 

We set the ratio of the distance threshold to 0.99 and 0.5 respectively, and we can 
get two shape models with different resolutions. Since the geodesic distance between 
organs is defined as infinity, σ = 0.99 retains the deformation of a single organ very 
well, and each deformation component in the obtained model corresponds to a certain 
deformation mode of a single organ. On the other hand, based on the definition of 
Euclidean distance, when σ = 0.5, the common deformation between vertices is lim-
ited to local areas of the organ, and the deformation components of the obtained mod-
el correspond to deformation modes of the local area of the organ. 

In summary, we combine the traditional global model ( , the traditional 
PCA modeling method), the single organ level model ( ) and the local organ 
level model ( ) with formulas (6)-(11). A 3D SSM based on prior knowledge is 
obtained which is suitable for modelling multiple organs, and the deformation com-
ponents contained in this model divided into three resolution levels, that is, global 
level(multi-organ level), single organ level and local structure level. This modelling 
method well reflects the different levels of deformation in a multi-organ combination 
system and describes the deformation of multiple organs better than traditional global 
models. 

 
Fig. 2. Schematic diagram of improved method based on downsampling training and defor-
mation vectors interpolation. (a) Down-sampled vertices; (b) Deformation of the down-sampled 
vertices; (c) The interpolated deformation vectors of all vertices on the surface. 

3 Results 

Fig.3 shows the modelling effect of the deformation components of the multi-
resolution multi-organ shape model constructed by the method in this article. Due to 
the limited space of this article, the model of each resolution level only shows the 
results of the first three deformation components on the average shape model. Defor-
mation components are denoted by , and , respectively. , , are the 
corresponding eigenvalues, and , , the shape coefficients of the multi-
resolution multi-organ SSM, are set as the weights of model deformation. For each 



resolution level, the first row show the average models (the average models of the 
three resolution levels are the same), and the second to fourth rows show the defor-
mation results of the average model with the first three deformation components. Fig. 
3 (a), 3 (b) and 3 (c) show the different shapes when the shape coefficient of a com-
ponent takes different values, and the parts with obvious deformation are circled in 
the right column. From Fig.3 (a), we can see that the organ deformations reflected by 
different components all occur together among multiple organs. For example, re-
flects the change in the distance between the left lower lobe of the liver and the 
spleen, which is most likely caused by the size change of the stomach between 
them. reflects the closeness between the anterior half of the spleen and the left 
kidney, and  reflects the change in the distance between the liver and the two kid-
neys. Fig.3 (b) reflects the deformation of a single organ level, in which 

, and correspond to the deformation of the livers, left kidneys and 
spleens, respectively. Fig.3 (c) Reflects the local deformation of each organ, such 
as reflects the deformation of the left lower lobe of the liver, reflects the de-
formation of the anterior half of the spleen, reflects changes in the anterior curva-
ture of the right kidney. When local deformation is performed, other parts of the same 
organ keep unchanged. These results show that the method in this study can effective-
ly model the deformation of organs at different resolution levels. 
      In addition to the above qualitative observation of model deformation modes, two 
quantitative indicators of generalization and specificity [4] are also used to evaluate 
the accuracy of model construction in the study. 
      The generalization of the model is used to measure the model's ability to represent 
new shapes (that is, shapes not included in the training samples). Generalization can 
be measured by using Leave-One-Out (LOO) method: assuming there are training 
samples, one sample is left as the test sample , and the other  samples

 are used to train the model , and then fit through the deformation 
of , and calculate the average distance between the fitting result and  as the fit-
ting error . This process is repeated  times (ie = ), and then set the aver-

age error of  times as a measure of model generalization ability, the 
smaller the value of  is, the better the model generalization ability is. 
       The specificity of the model is used to measure the model's ability to represent its 
own training samples. The specificity of the SSM can be tested by randomly generat-
ing shape samples: when we get the model based on training samples, the shape 
coefficient vectors of  group models is randomly generated based 
on the normal distribution, where the mean value of the normal distribution is 0, and 
the standard deviation is the standard deviation obtained by eigenvalue decomposition 
of PCA method. Based on each randomly generated coefficient , generate its corre-
sponding 3D shape, and find a sample whose surface distance is closest to this shape 
in the training sample set, and set this surface distance as the error of the jth random 

sample. Then calculate the average error  of  random samples as a meas-
ure of model specificity, the smaller the value of  is, the better the model specificity 
ability is. 



 
Fig. 3. Deformation components in multi-resolution multi-statistical shape model. (a) Defor-
mation components at the global resolution level; (b) Deformation components at the single-
organ resolution level; (c) Deformation components at the local structure level of the organ.  

 
Fig. 4. Quantitative performance evaluation of multi-resolution multi-organ model (a) General-
ization error (b) Specificity error 

      In order to reflect the improvement effect of the multi-resolution model on the 
generalization error and the specificity error , this experiment calculates the re-
sults of and at different resolution levels, as shown in Fig.4. Both for generaliza-
tion error and specificity error, the mean value and standard deviation of the three 



model errors from global resolution level to local structure resolution level are within 
1.0 mm. When the model changes from global level to local structure level, the mean 
value and variance of the errors are gradually decreasing, which indicates that the 
multi-organ model with local structure level is more accurate for the boundary regis-
tration. This means that the multi-resolution multi-organ model constructed in this 
paper has better generalization and specificity than the global model constructed by 
traditional PCA method. Encouragingly, even for generalization errors, the minimum 
mean value of the multi-resolution multi-organ model has reached about 0.3 mm, 
which is close to the minimum mean value of the specificity error of 0.25 mm. More 
importantly, it is also close to the pixel resolution of mouse CT images of 0.2 mm, 
and is lower than the average specificity error of the traditional global model of 0.31 
mm. 

4 Conclusion 

This article proposes a multi-resolution multi-organ shape prior knowledge model 
construction method and uses it to model multiple abdominal organs of mouse micro-
CT images. Compared to the recently proposed state-of-the-art 2D multi-resolution 
SSM method by Wilms et al., our method solves the shortcomings of memory occu-
pation and thus extend the method to 3D space. On the other hand, this work extend 
the method to multi-organ modelling and can be used for modelling the inter-subject 
shape changes of multi-organ, single organ and local structure levels. This method 
surpasses the traditional PCA modelling method in terms of both generalization and 
specificity. It should be pointed out that although this work builds a model based on 
the abdominal organs of mouse, the method in this study is also applicable to the mul-
ti-organ modelling of human or other animal bodies. The model constructed in this 
work lays the foundation of shape prior knowledge for further multi-organ image 
segmentation. 
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Abstract— The construction of statistical shape models 
(SSMs) is an important method in the field of medical image 
segmentation. Most SSMs are constructed by using traditional 
modeling methods based on principal component analysis 
(PCA), which cannot fully present the true deformation ability 
of models. To solve the insufficient deformation ability of SSMs, 
we propose a stacked autoencoder (SAE) neural network to 
construct a multi-resolution multi-organ shape model based on 
mouse micro-CT images, which can express more linear and 
non-linear deformations than SSMs based on PCA. The main 
advantage of this method is that the SAE neural network is 
simple and flexible and it can learn more deformation modes 
from training data. We have quantitatively compared the 
modeling performance of this method with the constructed 
SSMs based on PCA in terms of model generalization and 
specificity.     

Index Terms— statistical shape model, principal component 
analysis, mouse micro-CT images, stacked autoencoder neural 
network, multi-resolution multi-organ shape model 

I. INTRODUCTION 
The construction of statistical shape models (SSMs) is an 

important segmentation method in the field of medical image 
segmentation. The applications of medical image 
segmentation methods focus on the segmentation of biological 
tissues and organs. Some applications consist of liver 
segmentation for volume measurement [1], breast tumor 

segmentation for diagnosis [2], bone localization and 
segmentation [3], and automatic heart segmentation for 
treatment [4], etc. In the past few decades, SSM methods have 
been employed to construct segmentations for single specific 
organs, especially for research purposes. Only a few other 
modeling methods focused on the segmentation of multiple 
organs. The most important approach in constructing SSMs is 
the principal component analysis (PCA) based on eigenvalue 
decomposition [5]. Given a set of medical images, such as 
computed tomography (CT) images, PCA approaches are 
used to calculate the deformation components and 
corresponding deformation coefficients. Thereafter the 
deformation components are added to the mean shape of these 
medical images to obtain a traditional standard SSM. Based 
on this rationale, various techniques have been proposed to 
improve the calculation of deformation components. Many 
other features of images are added to the PCA process to 
construct more representative models for images: they include 
different variants based on active shape models [6] and active 
appearance models [7] proposed by Cootes et al. Later in 2009 
Tresadern et al. [8] combined an MRF-based local shape 
model with a PCA-based global shape model for modeling 
and locating deformable objects. Wilms et al. [9] expanded 
this work to construct a two-dimensional (2D) multi-
resolution multi-organ model for the segmentation of 2D CT 
images. 

Although PCA-based shape modeling methods have been 
used widely in medical image segmentation and many 
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different improved variants have been proposed in the last 
three decades, each modification can only be used in a specific 
application. Their performance may degrade dramatically 
when there are outliers in the data of the training models. Due 
to the limited deformation ability of linear SSMs, some non-
linear PCA methods have been proposed to represent 
variations of bending and rotation in a more natural fashion 
[10, 11, 12]. Furthermore, when there are large amounts of 
three-dimensional (3D) training models, the computer's 
memory requirements increase exponentially, which leads to 
the failure of model construction [9, 13]. 

On the other hand, in recent years autoencoder-based 
shape modeling approaches have been proposed. They can 
learn latent non-linear deformations of shape models and 
represent more refined expressions in deformation models. In 
2018, Litany et al. used a variational autoencoder to learn the 
latent space of objects with non-rigid deformations to 
reconstruct missing parts of objects [14]. At the same time, 
Ranjan et al. proposed to use convolutional mesh 
autoencoders learning non-linear variations for the 
construction of 3D faces [15].  

A trained autoencoder network is simple for model 
construction and it only needs to save a few trained network 
parameters compared with PCA-based methods. In this paper, 
we have stacked autoencoder networks to build an SAE neural 
network that is used to construct a multi-resolution multi-
organ shape model based on abdominal mouse micro-CT 
images. We have compared the models obtained from the 
SAE neural network with traditional global SSMs and local 
SSMs in terms of model generalization and specificity 
performance. 

II. MATERIALS AND METHODS  

A. Mouse Micro-CT Data 
In this study, we have collected micro-CT images of 98 

mice from the Molecular Imaging Centre of the University of 
California, Los Angeles. For neural networks, sufficient 
training data should be provided to train the network. 
Practically, there are certain challenges in the collection of 
medical images, and 98 mouse images can be regarded as 
large sample data in the domain of medical image analysis. 
The detailed operating rules of mouse micro-CT imaging and 
the parameter settings of imaging equipment are described in 
our previous study [16]. 

After we have collected 98 mouse micro-CT images, we 
need to preprocess these images to obtain the final training 
data. The specific process is as follows: (1) We invited small 
animal imaging experts to manually segment 98 mouse micro-
CT images to obtain labels of the liver, spleen, left kidney, and 
right kidney. (2) Next, these labels have been converted into 
multi-organ surface meshes with the moving cube algorithm 
[17]. (3) After this, we chose a multi-organ surface mesh from 
the meshes as a reference template and used the point cloud 
registration method [18, 19] to register it to the other 97 
meshes. Finally, each mesh has the same number of points and 
each point on the mesh corresponds to the same anatomical 
position. (4) We performed the same downsampling on all 

points on every mesh to obtain point cloud data that can be 
trained by the network. 

B. Methods 
1) Description of autoencoder network  

An autoencoder network is an unsupervised neural 
network that learns input data and reconstructs the input data 
to the greatest extent. Normally, the simplest autoencoder has 
three layers: an input layer, a hidden layer, and an output layer. 
The number of nodes in the output layer is the same as the 
input layer. Since the input data is lossy and relevant during 
compression and decompression, the autoencoder network 
can learn compression and decompression functions that 
contain specific features of the data and can be used for data 
dimensionality reduction and feature extraction. In practical 
applications, an autoencoder network must try to obtain the 
most important features that can represent the input data.  

An autoencoder consists of an encoder ϕ, and a decoder Ψ, which can be defined as follows: 

ϕ: X→F 
                                           Ψ: F→X                                         (1) 

ϕ, Ψ = argminϕ,Ψ‖X - (Ψ∘ϕ)X‖2 
where argmin represents obtaining minimum values of ϕ, Ψ 
simultaneously. 

In the simplest case, given one hidden layer, the encoder 
stage of an autoencoder takes the input ܴ߳ݔௗ = ܺ and maps it 
to ℎ ∈ ܴ௣ =  :ܨ

                                    h = σ(Wx + b),                                        (2) 
 
where ℎ  is referred to as code, latent variables, or latent 
representation, σ is an element-wise activation function such 
as a sigmoid function or a rectified linear unit, ܹ is a weight 
matrix, and ܾ is a bias vector.  

The decoder stage of the autoencoder maps ℎ  to the 
reconstruction ݔᇱ of the same shape ݔ: 

                                   x'=σ'(W'h+b'),                                          (3) 
 
where ߪᇱ is also an element-wise activation function, ܹᇱ is a 
weight matrix and ܾᇱ is a bias vector.  

Autoencoders are trained to minimize reconstruction 
errors which are often referred to as the "loss": 

L(x,x') = ฮx-x'ฮ2
= ฮx - σ'(W'൫σ(Wx + b)൯ + b')ฮ2

(4) 
 

The basic structure of an autoencoder network is shown in 
Fig. 1. The first column is the input layer, the middle column 
is a hidden layer and the last column is the output layer, +1 
indicates an offset constraint condition added to the 
corresponding layer. 

2) Multi-resolution shape modeling based on SAE neural 
network 

A stacked autoencoder (SAE) neural network is composed 
of multiple networks connected in series. In this paper, the 
purpose of using the SAE neural network to train input mesh 
data is to extract high-dimensional features of the data layer 



by layer and to reduce the dimension of the input data layer by 
layer. Therefore, the SAE neural network transforms high-
dimensional mesh data into a series of low-dimensional 
feature vectors. Finally, these low-dimensional feature vectors 
are decompressed to reconstruct mesh data approximately 
equal to the input mesh data. In the process of decompressing 
features and restoring data, if we regularly modify high-
dimensional feature parameters, we can see that the 
reconstructed data change regularly, which is also reflected in
the deformation of 3D models.

Fig. 2 shows the multi-resolution shape modeling process 
based on SAE neural network. E represents a compression 
network (i.e., an encoder) and D represents a decompression 
network (i.e., a decoder). Each combination of E and D is an 
autoencoder network introduced in section 1).

This study uses an SAE neural network with three 
autoencoder networks. The training data for the first level Eଵ
and Dଵ is the shape vector of meshes described in section A. 
After training, Eଵ compresses the shape vector set into a 
shorter feature vector set ሬሬሬ⃗ܨ ଵ = {݂⃗ଵ,ଵ, ݂⃗ଵ,ଶ, … , ݂⃗ଵ,ெ}, where ܯ is 
the number of training meshes, and the subscript ݅, ݆ of ݂⃗௜,௝
represents the j-th sample of the i-th level. The ⃗ܨଵ obtained 
from the first level network is used as the training sample of 

the second level network to obtain the training results of ܧଶ
and ܦଶ . The second level network generates a further 
compressed feature vector set ଶܨ⃗ = {݂⃗ଶ,ଵ, ݂⃗ଶ,ଶ, … , ݂⃗ଶ,ெ}. Then⃗ܨଶ is used to train the third level network (i.e., ଷܧ and  ଷ). Asܦ
a result, the vector lengths of ⃗ܨଵ ଶܨ⃗ , , and ⃗ܨଷ decrease 
gradually, which means the compression ratio gradually 
increases. From the perspective of shape characteristics, the 
resolution of the shape deformation should gradually 
transition from a global model to a local part of the model, 
thus forming a multi-resolution training method.

The SAE neural network used in this research encounters 
the problem of too large model data. Each 3D training mesh
contains 3759 surface sampling points and the shape vector of 
a mesh contains 11277 dimensions, which takes up a lot of 
memory and causes a computational burden for SAE neural 
network training. Due to the limitation of the memory capacity 
of the computer used in this study, the points of each training 
mesh are downsampled to 752 as described in section A. Then 
the down-sampled model vertices are trained by the SAE 
neural network, and the generated deformation vectors are 
interpolated through the Laplace iteration diffusion algorithm 
(5) to obtain deformation vectors of 3759 vertices of a mesh.
                            Xሬሬ⃗ i(n+1)= Xሬሬ⃗ in + λ

M
∑ (Xሬሬ⃗ jn - Xሬሬ⃗ in)m

j=0                  (5)
where ݊ represents the number of iterations, ݅ is the vertex 
index, ⃗ݔ௜೙ represents the deformation vector of the i-th vertex 
at the n-th iteration, ݆ = 0,1, … ,݉ represents m+1 indexes of 
neighbor vertices around vertex ݅ , λ represents the smooth 
intensity coefficient.

In terms of the SAE neural network parameters set, we try
to select the appropriate number of nodes in the hidden layer,
and output layer as well as the number of levels in the SAE 
neural network by changing different parameter values in this 
study. After that, we determine to use a three-level SAE neural 
network in this study. The number of input nodes of the first 
level encoder is 752 × 3 = 2256 (i.e., the number of points of 
down-sampled mesh multiplied by the spatial dimension), and 
the corresponding number of output nodes is 1000. The 
number of input and output nodes of the second level encoder 
is 1000 and 200, respectively. The number of input and output 
nodes of the third level encoder is 200 and 30, respectively. 
Finally, the shape model including multiple organs is 
represented by the 30-dimensional feature vector ݂⃗ଷ , which is 
the output of the third level encoder.

3) Shape fitting and generation with SAE neural network
Based on the trained three-level SAE neural network, we 

can do multi-organ shape fitting and generation for new 
mouse micro-CT images. As shown in Fig. 3 (a), the shape 
vectors of multiple organs are input to a three-level SAE 
neural network. Through the process of three compressions 
and three decompressions, a new shape is reconstructed as the 
fitting result of the input shape. According to the principle of 
the SAE neural network, the output shape should be as similar 
as possible to the input shape, and the error between them 
indicates the fitting error. The smaller the fitting error is, the 
better the training performance of the SAE neural network is. 
In this paper, we calculate the average surface distance [20] 

Fig. 1.  Basic structure of an autoencoder network.

Fig. 2.  The overall structure of a three-level SAE network with 3 
autoencoder networks.



between the constructed model and a training mesh to evaluate 
the modeling performance [21] of our method. If an input 
shape is one of the training samples, the fitting error reflects 
the specificity of the SAE neural network; if an input shape is 
not included in the training sample set, the fitting error reflects 
the generalization of the SAE neural network.

Fig. 3 (b) shows the shape generation process based on the 
three-level decoder. If a randomly selected feature vector ݂⃗ଷ is
input to the network, the corresponding output shape can be 
obtained; if the training performance of the network is 
effective, the output shape should correspond to the true 
anatomical shape. Further, if the mean shape of the training 
meshes is input to the three-level SAE neural network, the 
feature vector ݂⃗ଷതതതcorresponding to the mean shape can be 
obtained. And if any value in any dimension of ݂⃗ଷതതതis modified, 
the deformation effect of the mean shape can be constructed, 
thus realizing the construction of the multi-resolution shape 
model for multiple organs.

III. RESULTS

A. Multi-resolution Shape Modeling Results Based on SAE 
Neural Network 
According to the shape generation method in the previous 

section, we take the 30-dimensional feature vector ݂⃗ଷഥ of the 
mean shape as the basis and make the unit size, which deviates 
from the average value, to be 0.1 by changing the value of 
each dimension in the study. At last, deformation results of the 
mean shape corresponding to 30 dimensions are obtained. we 
have found that in the process of controlling the deformation 
of the 30-dimensional components, some of the deformation 
laws of the model show a certain similarity. Therefore, in Fig.
4, 17 representative deformation components are selected, 
where ݅)௜ܨ = 1,2,3,4,6,7,8,11,13,14,15,16,18,19,25,26,30)
represents the i-th deformation component of the third level in 
the SAE neural network. The first, third, and fifth columns are 
the mean models, and the second, fourth, and sixth columns 
are the deformation models reconstructed by adjusting these 
deformation components in this network. Some areas of the 
reconstruction model that have obvious deformation are 
circled. As Fig. 4 shows, in the reconstruction of the multi-
organ shape model, different deformation components in the 
third level of the SAE neural network control the deformation 
of different areas of the model. Such as 

components ଻ܨ,ସܨ ଵଵܨ, ଵହܨ , can control liver deformation, 
components ଶܨ ଷܨ, ଺ܨ, ଵଷܨ, can control spleen deformation, 
components ܨ଻ ଵହܨ , ଷ଴ܨ , can control right kidney 
deformation, components ܨଵଷ ଵସܨ , ଶହܨ ,  ଷ଴can control leftܨ ,
kidney deformation, and the components ଼ܨ ଶ଺ܨ , , etc. can 
control the relative position changes of certain organs. Each 
deformation component of constructing a multi-organ model 
not only controls the deformation of a certain organ, but also 
affects the changes in the shape and position of multiple 
organs. In the constructed model, there is not only a single 
organ with obvious local deformations, but also multiple 
organs with obvious global deformations, which shows a 
multi-resolution deformation effect.

B. Comparison of SAE Neural Network and SSM Modeling 
In the previous study, we used a modified traditional PCA 

method to construct traditional global SSM and multi-
resolution SSM for the mouse micro-CT images and obtained 
global and local deformation modes [16]. On this basis, we 
further compare the model constructed by the SAE network in 
this study with the multi-resolution model constructed in the 
previous study. We quantitatively analyze the generalization 
and specificity of the models constructed by these two 
different approaches, based on the average surface distance 
errors of the constructed model and each training data.

For comparison, Fig. 5 shows the traditional PCA method 
to construct a global SSM for realizing the global deformation 
effect. The first and fourth columns are the mean models, 
which are represented by ૄ. The deformation components are 
represented by ܲܥଵ ଶܥܲ , and ܲܥଷ . λ୧(݅ = 1,2, … ,10) is the 
eigenvalue obtained by implementing eigenvalue 
decomposition on the covariance matrix of training sample 
points, which corresponds to the deformation component. ߙ௜(݅ = 1,2, … ,10) is the model coefficient, which is set as the 
weight of the deformation model. Comparing Fig. 4 and Fig.
5, we can find that almost all the deformation models 
constructed by PCA methods can also be constructed by using 
SAE neural network. However, the multi-organ deformation 
model reconstructed by SAE neural network has more 
deformation modes than that constructed by PCA methods. 

In this study, the SAE neural network is mainly used to 
reconstruct the mouse abdomen multi-organ model. As a 
comparison, the traditional global SSM and multi-resolution 
SSM are introduced to further analyze the accuracy of these 

Fig. 3.  Shape fitting and shape generation using the SAE neural 
network. (a) Shape fitting; (b) Shape generation. Fig. 4.  Multi-organ model reconstructed by SAE neural network. 



three modeling methods. It can be seen from Fig. 6 (a) that in 
terms of generalization, the modeling error of the traditional 
global multi-organ SSM and multi-resolution model are 
smaller than that of the SAE neural network. Especially for 
the multi-resolution model, the error is around 0.3 mm, while 
the modeling error of the SAE neural network is about 1.5 
mm. In Fig. 6 (b), in terms of specificity, the modeling errors 
of the traditional global multi-organ SSM and the multi-
resolution model have reached the level of 0.3 mm and 0.2 
mm, respectively, but the modeling error of the SAE neural 
network is still around 1.5 mm. According to the analysis, 
although the principle of the SAE neural network is simple 
and easy to implement, it is still inferior to the linear SSM 
construction method based on the PCA method. We also find 
that the number of hidden layers, the number of nodes, and the 
sparseness of the SAE neural network may cause the training 
error to become larger, which needs to be verified in future 
work.

IV. CONCLUSION

The method proposed in this paper is more concise and 
feasible, and the model constructed by it can express much 
richer deformation modes. The SAE neural network is simpler 
than PCA-based methods in terms of algorithm complexity. 
But the deformation successfully reflects multi-resolution 
changes in shapes. Moreover, SAE neural network is a new 
type of multi-resolution modeling method based on shape 

prior knowledge and is easy to implement. SAE neural 
network has potential application for multi-resolution organ 
segmentation as the multi-resolution features are important for 
the shape modeling of multiple organs. The advantages of the 
proposed method are that the constructed diverse deformation 
components consist of nonlinear and linear modeling 
characteristics. For example, the deformation components
obtained by SAE neural network are much more than that of 
PCA-based methods. Likely, the model built by SAE neural 
network consists of much more local deformation components 
which can change the local shape of an organ in detail.
Although the error rates of generalization and specificity of 
the SAE neural network are still a little bit higher, the
excellent nonlinear multi-resolution modeling characteristics 
deserve further improvement and optimization. On the other 
hand, SAE neural network is a nonlinear modeling method, 
which is more suitable for simulating nonlinear shape space 
with a manifold distribution. In theory, it can obtain a more 
accurate modeling effect than traditional linear modeling 
methods. Furthermore, SAE neural network modeling method 
has multi-resolution characteristics not shared by traditional 
methods, which means SAE neural network modeling method 
performs better theoretically.
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Abstract—Automatic segmentation of computed 
tomography (CT) images of mice is a step toward computer-
assisted preclinical image analysis. Due to the low image quality 
of micro-CT images, fully-automatic methods may not achieve 
robust segmentation. For this reason, human interventions are 
needed to achieve higher segmentation accuracy. In this paper, 
we propose a human interactive segmentation method 
incorporating anatomical prior knowledge for multiple 
abdominal organs in mouse micro-CT images. The method 
automatically fits a multi-organ shape model to the user-
sketched partial boundary contours. Segmentation accuracy is 
validated by comparing the proposed method against existing 
shape models. The robustness of our proposed method was 
evaluated with different users. Finally, the results suggest the 
proposed method generates accurate segmentation with good 
robustness. 

Keywords—mouse micro-CT images, statistical shape model 
(SSM), human interaction, Variational Hermite Radial Basis 
Function (VHRBF), multi-resolution multi-organ shape model 

I. INTRODUCTION 
The imaging of small animals plays an important role in 

preclinical drug development and cancer research. Among 
various small animal imaging, computed tomography (CT) is 
the most widely used anatomical imaging approach. Many 
functional imaging techniques, such as positron emission 
tomography (PET), and single-photon emission computed 
tomography (SPECT), use CT images as anatomy references. 
Mice are one of the most commonly used small animals in 
preclinical research. Internal organ segmentation in mouse 

micro-CT images is important for lesion localization, organ 
morphometric measurements, anatomical structure modeling 
and simulation, and the research of organ-level 
pharmacokinetics. 

However, in mouse micro-CT images the contrast between 
soft tissues is poor. This is a limitation. In the process of 
imaging, to minimize the X-ray dose, shorter exposure time or 
limited projection angles are usually employed. But in mouse 
micro-CT images these result in blurred edges of soft tissues 
or organs. Although a variety of soft-tissue contrast agents are 
available, the use of contrast agents can increase the 
complexity and cost of experiments. Sometimes, they even 
affect the experimental results. Therefore, contrast agents are 
not used in imaging a large number of mice. This implies 
challenges to the segmentation of soft tissues and organs. 

Due to the low soft-tissue contrast in mouse micro-CT 
images, human intervention and organ shape prior knowledge 
are needed to achieve robust and accurate segmentation. As a 
growing subfield of image analysis, the study of medical 
image segmentation based on statistical shape models (SSMs) 
has become an important tool in medical image analysis. In 
medical applications, SSMs delineate regions of interest (ROI) 
accurately. Different shape models, be they active shape 
models (ASMs) [1], or active appearance models (AAMs) [2] 
lay the foundations for more feasible segmentation. As later 
variant shape models are constructed with more shape 
information and improved algorithms. A systematic review of 
variants of ASMs and AAMs for three-dimensional (3D) 
medical image segmentation concluded that more detailed 



shape information contributed to better shape segmentation 
[3].

The most detailed SSM models are designed to segment
specific organs, tissues, or anatomical structures [4-6]. There 
exists a classic and well-known method for building SSMs [7]
with a point distribution model (PDM) representing a shape 
appearance [8]. In a subsequent study, it was found that a 
priori knowledge of the shape of bones and the angles between 
joints can facilitate the segmentation of single regions [9]. 
Furthermore, a priori knowledge of shape, especially on the 
weights assigned to points in the PDM is one of the most 
critical factors in achieving a correspondence between points 
and target edges in CT images [10]. Currently, more generic 
SSMs have been developed to segment anatomical structures 
with severe shape abnormality or missing, such as finding 
effects between the reference model and specific heart 
individual through remodeling transformation [11], 
segmenting limbs in CT images by updating and refining the 
model with newly segmented training samples [12].

Another challenge is the so-called High-Dimension-Low-
Sample-Size (HDLSS) problem in model construction [13]. 
As a traditional method, principal component analysis (PCA), 
especially the variants based on it, has become popular for the 
segmentation, registration, or reconstruction of different 
anatomical structures. While PCA-based methods have been 
applied to more complex anatomies, such as liver, lung, bone, 
brain structure, or even the whole human skeleton, a large 
number of training samples is needed and should be pre-
processed [14]. Fortunately, to some extent, the local distance 
constraints for points in SSMs can solve the HDLSS problem 
[15]. Furthermore, it is not easy to collect and provide more 
than hundreds of medical images for training an SSM. Manual 
segmentation of hundreds of medical images is a very time-
consuming task. There is either not enough prior knowledge 
about the training shape to build an SSM based on traditional 
PCA. Likely, the local segmentation of an organ is inaccurate, 
if there is not enough information on the shape available.

In this study, we combine our existing multi-resolution 
multi-organ shape model [16] with Variational Hermite 
Radial Basis Function (VHRBF) [17] for multiple organ 
segmentation in low-contrast mouse micro-CT images.  The 
original mouse micro-CT images are obtained from mice 
injected with contrast agents. The training data was generated
by adding some random noise and by changing manually the 
contrast of the original images. The use of VHRBF followed 
by the SSM deformation results in an effective segmentation 
process. We evaluate the segmentation accuracies of several
organs, both qualitatively and quantitatively, in terms of the 
multi-resolution multi-organ shape model and traditional 
shape model. The robustness of the proposed method was also 
evaluated by several users.

II. METHOD

A. Experimental data
Fig. 1 is an example of the abdominal organs in a typical 

low-dose mouse micro-CT image. As can be observed, the 
boundaries between the abdominal organs, the liver, spleen, 
left kidney, and right kidney, are difficult to distinguish. Only 
the upper boundaries of the liver (i.e., the connection with the 
bottom of the lungs) and the lower boundaries of the kidneys 
(i.e., the connection with the fat in the abdomen) are roughly
observable by the eye. The low-quality image with grayscale 

information does not yield enough information to complete 
the segmentation of multiple organs. However, a priori
knowledge of the shape of organs makes it possible to 
complete the incomplete local boundaries in the image to 
come up with a better estimate of the desired segmentation. 
The multi-resolution multi-organ shape model constructed in 
[16] is created for this purpose.

The low-contrast mouse micro-CT images used in this 
study contain abdominal organs that are difficult even for
human experts to accurately delineate. However, to evaluate 
the accuracy of the segmentation, it is necessary to know the 
actual regions of the organs in the image. To tackle this 
problem, we first exploit the high-contrast images generated
in our previous study. (They are micro-CT images obtained 
from mice injected with contrast agents.) In these images the 
boundaries of abdominal organs are distinguishable, and
experts segmented and labeled the organs from high-contrast 
images. Next, we decreased the contrast of the labeled organs 
and added some noise to come up with low-contrast images 
suitable for the algorithm testing (as shown in Fig. 2).  Finally, 
we compared the segmentation results with the golden
standards of experts to evaluate the accuracy of our methods. 
The source, amount, and acquisition parameters of the images 
used in this study are the same as in the references [16, 18,
19].

B. Algorithm
Since the boundaries in the low-contrast images are 

blurred, we introduce user interaction to control the shape 
model [16] to segment desired targets. In this study, a 
specialized user interface was developed to allow users to 
draw discrete edges with a computer mouse (Fig. 3 (b) ). 
Exploiting the edges inserted by the user, the VHRBF
interpolation algorithm [17] generates the curves bounding
organs, see Fig. 3 (c) and Fig. 3 (d). The segmentation speed 
is greatly improved when users first manually segment the 
organs. An unavoidable problem is that the VHRBF algorithm 
shows good segmentation performance for objects with 
smooth surfaces, while it is not ideal for objects with non-
smooth surfaces.

Fig. 1.  A typical low-contrast micro-CT image of mouse abdomen.

Fig.  2.  Generation of low-contrast mouse micro-CT images



Step 1: In the process of human interaction, the control 
points of boundaries are collected from the region of interest 
(ROI) in low-contrast images. The normal vectors of all 
control points are calculated at the same time, as well as the 
interpolation coefficients , 

. The interpolation function, f X = 
αj X-Xj 3

-3 βj, X-Xj X-Xj + a, X + bN
j=1 , can be 

obtained as follows:

αj X-Xj
3
-3 βj, X-Xj X-Xj + a, X +bN

j=1 =0          (1)  

f Xj =nj                                  (2)

αj
N
j=1 =0                                  (3)                            

αjXj+βjN
j=1 =0                               (4)                

where represents a 3D coordinate, is a 3D coordinate of 
the control point j of ROI, and is the corresponding normal 
vector.

Step 2: Perform coordinate transformation and center shift 
on the deformation model of ROI, so that the center of the 
deformation model coincides with the center of ROI. The 
deformation model includes the displacement direction as 
well as the amplitude of each point. The center point of the 
deformation model is first shifted to coincide with the center 
of the corresponding ROI. Then the following transformation 
is made.

xc=
xa-xa0

lxa
lxb+xb0                                 (5)

yc=
ya-ya0

lya
lyb

+yb0
                                (6)

zc=
za-za0

lza
lzb+zb0                                  (7)

where Xa= xa, ya, za and Xc= xc, yc, zc are the 
coordinates before and after transformation, respectively,
Xa0= xa0, ya0

, za0 is the center of the deformation model 

before the transformation, Xb0= xb0, yb0
, zb0 is the center of 

ROI, are the lengths of the deformation model in
x, y, and z directions before the coordinate transformation, and 

are the lengths of ROI in the x, y, and z directions, 
respectively.

Step 3: Substitute the coordinate Xc= xc, yc, zc obtained 
in step 2 into the interpolation function to obtain the 
corresponding function values. We use a multithreading 
mechanism to perform parallel acceleration processing for 
solving the interpolation function value.

Step 4: Insert Xc= xc, yc, zc into (2) and solve it to obtain 
the gradient of function at the point. The process of solving 
the gradient can be accelerated with a multithreading 
mechanism and parallel processing.

Step 5: As shown by (1) in step 1, the value f Xj =0 of the 
interpolation function corresponds to the control point on 
the edge of ROI. Consequently, the positive and negative 
values of the interpolation function in step 3 specify whether 
the deformation model surface approaches the control points
outside or inside the ROI. In step 4, the gradients of the 
interpolation points correspond with the speed and orientation 
of each move of the deformation model.

Step 6: The deformation equation is as follows:

                     X=φ(X1+G)+ 1-φ X2                         (8)

here, is the coordinate of the interpolation point on the 
deformation model before the next iteration. is the gradient 
vector field of interpolation points on the deformation model. 

  is the coordinate of the point obtained by fitting the 
deformation model to X1+G. is the coordinate of the point 
on the model after deformation. is the weight factor, which 
is 0.8.

Controlled by steps 3, 4, and 5, we use (8) to continuously 
move and deform the deformation model. The size of the 
deformation model is adjusted according to the delineated area 
of ROI during the first deformation. Steps 3, 4, and 5 are used 
to iteratively calculate the function values and the gradients of 
interpolation points. Thereafter, the model is modified with 
these changes bringing the boundary of the model close to that 
of the ROI. On the boundary points, function gets a value of
zero. Once the iteration stops, a 3D image is generated from 
the ROI. 

Step 7: If the coordinates obtained depart significantly 
from the boundary points of the target organs, an additional
manual interactive correction will take place. The end-user 
may add more boundary control points, and then re-run steps 
1 to 6 until the users are satisfied with the accuracy of the edge 
match.

III. RESULTS ANALYSIS

In this study, we chose the high-contrast mouse micro-CT 
images segmented by experts as the golden standard. To 
simulate a true segmentation process of multiple organs, we 
first convert the high-contrast images to grayscale ones. The 
grayscale values of these images containing contrast agents 
are reduced to match with images without agents. As a result,
we got low-contrast mouse micro-CT images (as shown in 
Fig. 2). From the low-contrast images, we randomly selected
7 images for segmentation tests.

To compare the difference in segmentation accuracy 
between the multi-resolution model and the traditional global 
resolution model, we invoke the VHRBF [17] interpolation 
method to guide these two models to segment the livers, 
spleens, and kidneys, respectively. We compare and evaluate 
the segmentation accuracy of these models in terms of Dice 

Fig.  3. The workflow of low-contrast mouse micro-CT image segmentation 
based on multi-resolution multi-organ shape model. (a) The input CT image; 
(b) Partial edge contours drawn via minor amount of user interaction; (c) 
The VHRBF interpolation result based on partial user contours in the coronal 
slice view; (d) Surface rendering of the VHRBF interpolation method based 
on partial user contours; (e) The multi-resolution multi-organ shape priori
model; (f) The segmentation result.



value and average surface distance (ASD) [20] of the 
segmented results. The method used in this study involves 
user interaction. In order to evaluate the influence of 
subjective operations from different users, we invite two 
operators (A and B) to conduct interactive segmentation tests 
on the above 7 images. We also use the Dice value and ASD
value to evaluate the segmented results of A and B.

Fig. 4 shows the segmentation effect of the multi-
resolution multi-organ model and the traditional global 
resolution model. Fig. 4 exemplifies two representative test 
images. Each row corresponds to a test image. Fig. 4 (a) is 
manually labeled results from a high-contrast CT image (i.e., 
from the golden standard), Fig. 4 (b) is the segmentation 
results of the multi-resolution multi-organ model, and Fig. 4
(c) is the segmentation results of the traditional global 
resolution model. We find that the segmentation results of the 
multi-resolution multi-organ model are closer to the golden
standard than the traditional global resolution model, thanks 
to the better generalization of the multi-resolution model in 
shape modeling.

In Fig. 5, we compare the segmentation accuracy of the 
multi-resolution multi-organ model and the traditional global 
resolution model and use the t-test to measure the difference. 
Asterisks above the horizontal lines of the histograms indicate 
significant differences between the two data, and no asterisks 
indicate no significant differences. One asterisk indicates the 
significance level at which the P-value of the test function is 
between 0.05 and 0.1. Two asterisks indicate the significance 
level at which the P-value of the test function is between 0.01 
and 0.05, and three asterisks indicate the significance level at 
which the P-value of the test function is less than 0.01.

When using the multi-resolution multi-organ model and 
the traditional global resolution model to segment the liver, 
spleen, and the kidney, the Dice value and ASD value of each 
organ show that the segmentation accuracy of the multi-
resolution multi-organ model outperforms the traditional 
global resolution model, see Fig. 5 (a) and (b). Fig. 5 (a) shows 
that there is no significant difference in the Dice value of 
livers, left kidneys, and right kidneys for both models, but 
there is a difference in the spleen segmentation. In contrast, 
Fig. 5 (b) shows that between the models there is no 
significant difference in the ASD value of the liver, spleen, 
and left kidney. However, there is a difference in the 
segmentation of the right kidney.

Fig. 6 shows the differences in segmentation performed by 
different operators using the multi-resolution multi-organ 

model. As Fig. 6 (a) shows, there is no significant difference 
in the Dice value of each segmented organ from different 
operators. Fig. 6 (b) also shows that the difference in the 
segmentation results of different operators in terms of ASD 
value is small. Correspondingly, the evaluation of 
segmentation results suggests that the methods proposed in 
this study are robust.

From Fig. 5 and Fig. 6 we conclude that the multi-
resolution multi-organ model used in this study yields an 
advantage compared to the traditional global resolution model 
in terms of segmentation accuracy. The result can be 
explained by the better shape-fitting ability of the multi-
resolution multi-organ model. We also evaluated this 
deformation ability in our previous study [16]. Although the 
algorithm proposed in this study requires a bit of manual 
interaction, there are no significant differences between the 
users in the two-subject test. The main reason for this is the 
limited amount of user interaction needed. In addition, each 
operator only inserts a small number of edges. The edges and 
their positions are clear, implying that the sketches drawn by 
users are close to each other. In this study, the user interaction 
only plays a guiding role for the model registration, while the 
actual segmentation is completed by models automatically, 
thus minimizing the uncertainty caused by different operators.

Although the method in this study performs well in terms 
of user stability, we still find it has a limited segmentation 
accuracy for mouse micro-CT images. The Dice values for the 
liver, left kidney and right kidney are above 0.6, while the 
Dice value for the spleen is below 0.5. The main factor that 
affects the segmentation accuracy is the image quality. 
Compared with the clinical diagnostic CT of humans, the soft 
tissue contrast of mouse micro-CT images is not on the same 
level. This results in poorer segmentation accuracy. Even so, 
the multi-resolution multi-organ segmentation algorithm 
proposed in this study still achieves higher accuracy than the 
traditional global resolution model used for human CT image 
segmentation, confirming the effectiveness of our methods.

In this study, the method proposed was tested on a 
computer with an Intel Core i7 CPU with 16GB memory. The 
user interaction process took from 30 seconds to 1 minute, the 
VHRBF interpolation process required 2.6 seconds, and the 
shape model registration and segmentation took 15-25 

Fig.  4. The comparison of segmentation results in multi-resolution model
and the traditional global resolution model. Each row is a representative
test image. (a) Golden standard; (b) Segmentation results of the multi-
resolution model; (c) Segmentation results of the traditional global
resolution model.

Fig. 5.  Comparison of segmentation accuracy of multi-resolution multi-
organ model and traditional global resolution model. (a) Dice value
comparison; (b) ASD value comparison.

Fig.  6.  Algorithm evaluation based on different operators. (a) Dice value
comparison; (b) ASD value comparison.



seconds. The whole image segmentation process ran in a total 
of 1 to 1.5 minutes. This meets the requirements of an 
interactive segmentation method with a reasonable short 
waiting time. 

IV. CONCLUSION 
This study combines VHRBF and the multi-resolution 

multi-organ model in an innovative way to segment multiple 
organs simultaneously. We deform the multi-resolution multi-
organ model to segment targets in images with a limited 
number of user interactions. Accordingly, we obtain multiple 
organs simultaneously in low-contrast mouse micro-CT 
images. In addition, we get better segmentation accuracy than 
the traditional global resolution model. On the one hand, 
combining user interaction with a priori knowledge of the 
multi-resolution multi-organ model enables successful 
segmentation for organs with severely missing boundaries. On 
the other hand, the user tests suggest the stability of the 
proposed method is very good, indicating that the algorithm is 
robust. In the next stage, we will consider introducing the 
segmentation of organs with clear boundaries such as lungs 
and bones in mouse micro-CT images. In addition, we will try 
to locate low-contrast organs collaboratively in the abdomen 
with high accuracy. 

ACKNOWLEDGMENT 
We thank the Molecular Imaging Center of the University 

of California, Los Angeles for providing 98 mouse micro-CT 
images to support our work. We also thank the general 
program of the National Natural Science Fund of China (No. 
81971693, 81401475), the Science and Technology 
Innovation Fund of Dalian City (2018J12GX042), the 
Fundamental Research Funds for the Central Universities 
(DUT19JC01), and the scholarships from China Scholarship 
Council (No. 201806060163). 

 
[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape 

models – their training and application,” Comput. Vis. Image. Und. vol. 
61, pp. 38-59, 1995. 

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance 
models,” IEEE Trans. Pattern. Anal. Mach. Intell. vol. 23, no. 6, pp. 
681-685, June 2001. 

[3] T. Heimann, H. P. Meinzer, “Statistical shape models for 3D medical 
image segmentation: a review,” Med. Image. Anal. vol. 13, pp. 543-
563, 2009. 

[4] H. Lamecker, T. Lange, and M. Seebass, “Segmentation of the liver 
using a 3D statistical shape model,” 2004. 

[5] R. Huang et al., “A locally constrained statistical shape model for 
robust nasal cavity segmentation in computed tomography,” 2016 
IEEE 13th International Symposium on Biomedical Imaging (ISBI), 
2016, pp. 1334-1337. 

[6] D. Shen, E. H. Herskovits, and C. Davatzikos, “An adaptive-focus 
statistical shape model for segmentation and shape modeling of 3-D 
brain structures,” IEEE Trans. Med. Imaging. vol. 20, no. 4, pp. 257-
270, April 2001. 

[7] M. B. Stegmann and D. D. Gomez, “A brief introduction to statistical 
shape analysis,” 2002. 

[8] L. Lu, X. Zhang, Y. Zhao, and Y. Jia, “Ear recognition based on 
statistical shape model,” First International Conference on Innovative 
Computing, Information and Control - Volume I (ICICIC'06), 2006, 
pp. 353-356. 

[9] D. Kainmueller, H. Lamecker, S. Zachow, and H. C. Hege, “An 
articulated statistical shape model for accurate hip joint segmentation,” 
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. pp. 6345-6351, 2009. 

[10] J. H. Noble, R. H. Gifford, R. F. Labadie, and B. M. Dawant, 
“Statistical shape model segmentation and frequency mapping of 
cochlear implant stimulation targets in CT,” Med. Image. Comput. 
Comput. Assist. Interv. vol. 15, pp. 421-428, 2012. 

[11] X. Albà et al., “An algorithm for the segmentation of highly abnormal 
hearts using a generic statistical shape model,” IEEE Trans. Med. 
Imaging. vol. 35, pp. 845-859, March 2016. 

[12] E. A. Audenaert et al., “Cascaded statistical shape model based 
segmentation of the full lower limb in CT,” Comput. Methods. 
Biomech. Biomed. Engin. vol. 22, pp. 644-657, May 2019. 

[13] M. Aoshima et al., “A survey of high dimension low sample size 
asymptotics,” Aust. N. Z. J. Stat. vol. 60, pp. 4-19, March 2018. 

[14] C. R. Henak, A. E. Anderson, J. A. Weiss, “Subject-specific analysis 
of joint contact mechanics: application to the study of osteoarthritis and 
surgical planning,” J. Biomech. Eng. vol. 135, pp. 1-26, February 2013. 

[15] M. Wilms, H. Handels, J. Ehrhardt, “Multi-resolution multi-object 
statistical shape models based on the locality assumption,” Med. 
Image. Anal. vol. 38, pp. 17-29, May 2017. 

[16] Z. Chen, T. Ristaniemi, F. Cong, and H. Wang, “Multi-resolution 
statistical shape models for multi-organ shape modelling,” Lect. Notes. 
Comput. Sci. vol. 12557, pp. 74–84, November 2020. 

[17] E. Brazil, I. Macedo, M. C. Sousa, L. D. figueiredo, L. Velho, 
“Sketching variational hermite-rbf implicits,” SBIM. Eurographics 
Association, pp. 1-8, 2010. 

[18] C. E. Suckow, D. B. Stout, “MicroCT liver contrast agent enhancement 
over time, dose, and mouse strain,” Mol. Imaging. Biol. vol. 10, pp. 
114-120, 2008. 

[19] H. Wang, D. B. Stout, A. F. Chatziioannou, “Estimation of mouse 
organ locations through registration of a statistical mouse atlas with 
micro-CT images,” IEEE Trans. Med. Imaging. vol. 31, pp. 88-102, 
January 2012. 

[20] H. Wang et al., “MARS: a mouse atlas registration system based on a 
planar x-ray projector and an optical camera,” Phys. Med. Biol. vol. 57, 
pp. 6063-6077, October 2012. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
 

IV 
 
 

ANATOMYSKETCH: AN EXTENSIBLE OPEN-SOURCE 
SOFTWARE PLATFORM FOR MEDICAL IMAGE ANALYSIS 

ALGORITHM DEVELOPMENT 
 
 
 
 

by 
 

Mingrui Zhuang, Zhonghua Chen, Hongkai Wang, Hong Tang, Jiang He, Bobo Qin, 
Yuxin Yang, Xiaoxian Jin, Mengzhu Yu, Baitao Jin, Taijing Li, and Lauri Kettunen 

2022 
 

Journal of Digital Imaging, 35, 1623–1633 
 

https://doi.org/10.1007/s10278-022-00660-5  
 
 

Reproduced with kind permission by Springer. 
 
 

https://doi.org/10.1007/s10278-022-00660-5


Vol.:(0123456789)1 3

Journal of Digital Imaging 
https://doi.org/10.1007/s10278-022-00660-5

ORIGINAL PAPER

AnatomySketch: An Extensible Open-Source Software Platform 
for Medical Image Analysis Algorithm Development

Mingrui Zhuang1 · Zhonghua Chen1,2 · Hongkai Wang1,3  · Hong Tang1 · Jiang He1 · Bobo Qin1 · Yuxin Yang1 · 
Xiaoxian Jin1 · Mengzhu Yu1 · Baitao Jin1 · Taijing Li1 · Lauri Kettunen2

Received: 10 October 2021 / Revised: 7 May 2022 / Accepted: 18 May 2022 
© The Author(s) 2022

Abstract
The development of medical image analysis algorithm is a complex process including the multiple sub-steps of model 

training, data visualization, human–computer interaction and graphical user interface (GUI) construction. To accelerate the 

development process, algorithm developers need a software tool to assist with all the sub-steps so that they can focus on the 

core function implementation. Especially, for the development of deep learning (DL) algorithms, a software tool supporting 

training data annotation and GUI construction is highly desired. In this work, we constructed AnatomySketch, an extensible 

open-source software platform with a friendly GUI and a flexible plugin interface for integrating user-developed algorithm 

modules. Through the plugin interface, algorithm developers can quickly create a GUI-based software prototype for clinical 

validation. AnatomySketch supports image annotation using the stylus and multi-touch screen. It also provides efficient tools 

to facilitate the collaboration between human experts and artificial intelligent (AI) algorithms. We demonstrate four exemplar 

applications including customized MRI image diagnosis, interactive lung lobe segmentation, human-AI collaborated spine 

disc segmentation and Annotation-by-iterative-Deep-Learning (AID) for DL model training. Using AnatomySketch, the gap 

between laboratory prototyping and clinical testing is bridged and the development of MIA algorithms is accelerated. The 

software is opened at https:// github. com/ DlutM edimg Group/ Anato mySke tch- Softw are.

Keywords Medical image analysis · Image annotation · User interaction · Algorithm development · Deep learning

Background

Nowadays, computer-assisted medical image analysis (MIA) 

algorithms are increasingly used in disease diagnosis and 

treatment. The development of MIA algorithms is a complex 

process involving algorithm design, model training, software 

implementation and performance testing. To speed up the 

development, researchers need a convenient software plat-

form to assist with different sub-step of the process. Ideally, 

the platform should include a graphical user interface (GUI) 

for user interaction and data visualization, as well as a plugin 

interface for user-developed algorithm integration. Many 

software tools have been established to meet these needs. 

Several code libraries were developed to help with algo-

rithm implementation, such as the classical itk [1, 2], vtk [3], 

elastix [4, 5], ANTS [6] and the recently published libraries 

for radiomics (e.g. pyradiaomics [7]) and deep learning (e.g. 

monai1). GUI-based software tools were also developed for 

image segmentation (e.g. ITK-SNAP [8], MITK [9], Tur-

gleSeg [10], Seg3D), data annotation (DicomAnnotator 

[11] and Pair2) and the analysis of specific imaging modali-

ties (e.g. SpheroidJ [12], MNI SISCOM [13] and OIPAV 

[14]). Few of these tools are extensible for user-developed 

algorithms including deep neural networks. The 3D Slicer 

[15] software has powerful extension capabilities and a rich 
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library of extension modules [16, 17], but its programming 

mechanism and interaction workflow are relatively complex 

for junior programmers.

In recent years, deep learning (DL) algorithms are 

increasingly used in clinical applications. To alleviate the 

heavy burden of data annotation for DL model training, the 

procedure of Annotation-by-iterative-Deep-Learning (AID) 

becomes popular. In the AID workflow, the human experts 

first annotate a small set of training data which are used for 

training a preliminary annotation network. The preliminary 

network is then used to automatically annotate more training 

data with imperfect accuracy. Next, the human expert proof-

read the network-annotated data to ensure the annotation 

accuracy, and the proofread data are supplemented to the 

training set to retrain a more accurate annotation network. 

As this process is repeated, the network becomes more and 

more accurate; thus, fewer and fewer human effort is needed 

for data annotation. To support the AID workflow, a soft-

ware platform with convenient annotation/proofreading tools 

and a plugin interface for the annotation network model is 

necessary. Philbrick et al. developed the RIL-Contour [18] 

software with AID function which supports multiuser col-

laboration and network model version management. How-

ever, this software only focuses on data annotation; it is not a 

general assistance tool for the entire algorithm development 

workflow.

Besides the needs of a software assisting the classical 

MIA algorithm development, the recently trend of DL algo-

rithm research also requires a software platform to integrate 

neural network models and the AID workflow. Due to the 

lack of such a platform, researchers tediously switch between 

different assistance tools, making the development process 

complicated and slow. Moreover, without a GUI-based plat-

form, many algorithms are published as command-line tools 

or even source codes that are unfriendly to clinical users.

In response to the existing needs, we developed a soft-

ware platform named AnatomySketch for fast MIA algo-

rithm integration and GUI-based software prototyping. 

AnatomySketch (AS) offers convenient tools for data anno-

tation, image visualization and algorithm integration, so 

that the algorithm developers can focus on core function 

development and rapidly produce a software prototype for 

algorithm demonstration and testing. Compared to the exist-

ing software tools, AnatomySketch has an easier interface 

for DL model integration and more convenient supports for 

multi-touch and stylus-based image annotation. The software 

is developed with the following key features:

 (i) A convenient GUI for data visualization and human–
computer interaction. AnatomySketch has a concise 

interface for multi-modality and multi-dimensional 

image visualization. It also incorporates a library of 

basic processing tools for medical images and graph-

ical models to save the time of basic processing func-

tion implementation. To support the development of 

semi-automated algorithms and the annotation of 

training data, AnatomySketch provides simple work-

flow for data annotation mouse, shortcut keys, stylus 

and multi-touch screen. It also facilitates a simple 

correction of the automatic segmentation with an 

inbuilt contour editing method.

 (ii) Flexible plugin interface for user-developed algo-
rithms. With a flexible plugin interface, the software 

allows the users to integrate their algorithms (includ-

ing DL models) as extension function modules. This 

feature facilitates rapid prototyping of GUI-based 

software for specific clinical applications, making 

the evaluation and demonstration of novel algo-

rithms easier and faster. By combining the DL model 

plugins with the annotation tools, the AID workflow 

can be realized to speed up DL model training.

The following sections will introduce the detailed soft-

ware feature and demonstrate exemplar applications of fast 

software prototyping and AID workflow realization.

Method

Software Design and Architecture

AnatomySketch is designed with a concise GUI consisting 

of a menu bar (on the top), a data list for data property man-

agement (on the top-left), a customizable widget panel for 

user-developed function modules (on the bottom-left) and 

a display area (on the right) with three orthogonal section 

windows and one three-dimensional (3D) view window. The 

design philosophy of the GUI is being simple, intuitive and 

familiar to the MIA researchers. The GUI has two operation 

modes, namely the desktop mode for mouse and keyboard 

interaction and the tablet mode for stylus and touch screen 

interaction.

The desktop mode has a classical layout (Fig. 1a) similar 

to the well-known MITK, ITK-SNAP and 3D Slicer. Dis-

tinctively, the layout has a customizable widget panel for 

user-developed algorithms on the bottom-left (Fig. 1b). A 

drop list (Fig. 1c) on top of the panel allows the selection 

of algorithm modules, and the panel layout changes accord-

ing to the selected algorithm. The algorithm-specific panel 

layout is defined via a configuration file specifying the posi-

tions and appearances of the control widgets (including drop 

Fig. 1  a AnatomySketch interface. b The function module panel. c 

An example of the drop list of user-defined function modules, mostly 

segmentation methods in this case, including deep network models. d  
An example of calling the software GUI (the highlighted line of code) 

to visualize intermediate variables.

◂
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menu, text box, press button and explanatory text). Details 

of the layout definition will be introduced in the “Extension 

Module” section.

To assist with data visualization during algorithm debug-

ging, we also allow the desktop mode GUI to be called as an 

inline function of the user programs (e.g. Python, MATLAB 

or C +  + code). This feature is especially useful for accept-

ing user interaction during the algorithm workflow or for 

inspecting the intermediate variables of the data flow. The 

intermediate variables can be images, graphical shape mod-

els and user-annotations. It is possible to overlay multiple 

variables in the display window to check the accuracy of 

image segmentation and/or registration. Figure 1d shows a 

line of Python code (namely the “Open_In_AS” function) 

calling the GUI for intermediate image inspection. This 

Python code is available on the website of AnatomySketch.

The tablet mode is developed to take advantage of the 

multi-touch screen and the stylus (if available) for efficient 

annotation of region boundaries. This mode can be acti-

vated by clicking expansion button on the top-right of the 

display windows. The clicked window is enlarged as a pal-

ette for stylus sketching. As shown in Fig. 3a, the operator 

can use the stylus with one hand to drawn contours and 

scribbles, and meanwhile use the other hand to zoom, pan 

or rotate the image via the multi-touch screen.

The architecture of the AS software is shown in Fig. 2. 

The software architecture is composed of three layers 

including the interaction layer, the function layer and the 

data layer. The blue and green arrows denote the data and 

command paths between the modules, respectively. As 

the core of the software, the function modules coordinate 

all the other modules to handle data processing and user 

interactions.

Interactive Annotation and Proofreading

As shown in Fig. 3b, AnatomySketch supports the annota-

tion of anatomical landmarks, bounding boxes, edge con-

tours, curves, scribbles and object regions using the mouse 

or the stylus. All the annotations can be accessed by the 

user-developed plugin modules as inputs. The annotations 

can also be exported into computer discs as separate files 

for offline algorithm training.

AnatomySketch also provides a convenient boundary 

correction tool for proofreading the segmentation results 

of automatic algorithms. This tool is implemented based 

on the free-form deformation (FFD) method [19]. It allows 

the user to drag the inaccurate boundary towards the cor-

rect position (as shown in Fig. 4). We applied both 2D and 

3D versions of the FFD method for adjusting 2D contours 

and 3D surfaces, respectively.

FFD is a point-controlled contour deformation method. 

After the user dragging operation, a 6 × 6 grid is con-

structed around the starting point of the dragging. The 

mouse/stylus motion vector (yellow arrow in Fig. 4) is 

first extrapolated to the 6 × 6 grid vertices by solving an 

inverse interpolation function of the cubic B-spline. Then, 

the deformation vectors of contour points are interpolated 

by solving the cubic B-sample interpolation function,

Fig. 2  The architecture diagram of the software platform

Fig. 3  Interactive data annota-

tion. a The tablet mode layout 

supporting stylus sketching and 

multi-touch gestures. b Multiple 

annotation tools are provided by 

the software
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where p is the interpolated deformation vector of a contour 

vertex, (m, n) is the normalized local coordinate of the drag-

ging start point, and pi,j is the deformation vector of grid 

node (i, j) . The readers are referred to [19] for more details 

of the method.

Extension Module

AnatomySketch provides a flexible plugin interface for the 

integration of user-developed algorithms. Figure 5a shows 

the workflow of the extension modules. A configuration file 

and a program file simply form the plugin interface of the 

software. The configuration file is a text-format definition 

file specifying the extension module type, input and output 

parameters and the GUI design. The software will read this 

definition file and realize the extension interface accordingly. 

The program file is the user-programmed executable (exe) 

file or a dynamic link library (dll) of the core algorithm 

function. Figure 5b shows an example of the configuration 

file for thresholding segmentation. The configuration file is 

imported into the software to create the customized widget 

panel (Fig. 5c). The program file is invoked by clicking the 

“Calculate” button on the widget panel. To transfer input 

and output data between the software and the program file, 

a loose coupling mechanism is adopted. The software first 

(1)p =
3∑

i=0

(
3

i

)
(1 − m)

3−imi

(
3∑

j=0

(
3

j

)
(1 − n)

3−jnjpi,j

)
writes the input data (i.e. image arrays, polygonal meshes or 

annotations) into the computer disc, then the user program 

imports them for computation and writes the outputs to the 

computer disc. Finally, the software gets the output results 

from the disc and updates the GUI display.

On the AnatomySketch website, several quick-start tem-

plates of the configuration files and program files are pro-

vided. The developers can publish their algorithm modules 

on the website to promote the usage of their works.

Deep Learning Support

Thanks to the flexible plugin interface, deep neural networks 

can be integrated into the software as plugin modules. The 

developer needs to create a Python-based program file to get 

input data from the software and calls the network model to 

process the data. The network can be developed using any 

DL platform (e.g. PyTorch, TensorFlow or Keras) and com-

piled as an executable file to be called by the user-created 

Python program. The outputs of the network are written into 

the hard drive and then imported into the software via the 

plugin interface.

In AnatomySketch, the AID workflow is realized by 

combining the annotation tools, the proofreading tools and 

the plugin modules. Rich annotation tools of AnatomyS-

ketch are used for labelling the primary training data, then a 

user-defined Python program is called to train the network 

and use the trained model to label more images. During the 

proofreading, the 2D and 3D FFD tools are used to correct 

Fig. 4  Proofreading of the 

automatic segmentation result. 

The inaccurate boundary can 

be dragged towards the correct 

position (the dashed curve) 

using the stylus or the mouse
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the segmentation errors. The entire AID workflow is custom-

ized as a plugin module with a widget panel supporting itera-

tive training and proofreading. Video 1 attached to this paper 

demonstrates the AID support features of AnatomySketch.

Results

In this section, we will demonstrate the examples of using 

AnatomySketch for fast plugin module development and 

software prototyping. We will also show examples of 

human-AI collaborated image segmentation and AID-based 

data annotation. These examples demonstrate the conveni-

ence of integrating DL models or interactive algorithms into 

our software, while such integration can be time consuming 

or even infeasible for the existing tools.

Software Prototyping

In the first example, AnatomySketch was used in a medi-

cal research project for analyzing intratumoral susceptibil-

ity signal intensities (ITSS) in enhanced T2 angiography of 

hepatocellular carcinoma. Because this study uses special 

MRI pulse sequences for ITSS imaging, customized soft-

ware needs to be developed for the data analysis. As a col-

laborator of this study, our group took only 1 day to develop 

a plugin module and created a GUI-based software prototype 

for the ITSS MR image analysis. With our software proto-

type, the doctors contoured the region of interest (ROI) in a 

few interleaved axial slices and interpolated the 3D surface 

from the 2D contours. The proofreading tool was used to 

adjust the 3D surface to precisely fit the tumour boundary. 

The software automatically removed the MR imaging arte-

fact and extracted the high-ITSS voxels via thresholding. 

The algorithm parameters such as ITSS threshold can be 

adjusted in the customized widget panel. Figure 6 shows the 

software GUI. The blue contour represents the ROI bound-

ary and the green pixels represent extracted high-ITSS vox-

els. This tool has been used in a series of published studies 

[20–23]. Although the development of this module is simple 

and straightforward in the AS platform, similar extension 

may require time-consuming software recompilation in some 

existing tools (e.g. for MITK and ITKsnap).

In another example, AnatomySketch was used to anno-

tate lung lobes in CT images for training a lobe segmen-

tation network of commercial software. Engineers from a 

local company created an interactive lung lobe annotation 

plugin for AnatomySketch. The contours of lung fissures are 

manually sketched in a few coronal slices and a complete fis-

sure surface was interpolated from the contours using radial 

basis function (RBF) interpolation. The proofreading tools 

of AnatomySketch were used to adjust the interpolated fis-

sure surfaces. Figure 7 shows the GUI of the plugin module; 

VIDEO 2 attached to this paper exhibits the working pro-

cess of this plugin module. Using this module, the annota-

tion of five lung lobes took less than 20 min per image. 

Two engineers from the company annotated 100 CT images 

in 3 days, thanks to the stylus support of our software. In 

contrast, stylus interaction is not specially optimized in any 

other existing tool.

Deep Learning Supports

Through the plugin interface, user-developed deep network 

models are integrated into AnatomySketch as extension 

modules. As shown in the example of Fig. 8, a dense V-Net 

model [24] was trained to segment the intervertebral disc 

and the surrounding nerves and vessels from lumbar CT 

images. Due to the lack of enough training data, the net-

work occasionally produced inaccurate segmentation at the 

fuzzy boundary of the herniated discs (Fig. 8a). Thanks to 

the 3D FFD proofreading tool, a human expert was able to 

correct the inaccurate segmentation within 5 min per image 

(Fig. 8b). In this way, the AI model and human expert col-

laborate with each other to achieve efficient and accurate 

segmentation of anatomical objects with weak boundaries. 

As a comparison, none of the existing medical image pro-

cessing tools facilitate such efficient and direct proofreading 

of the DL segmentation results. Both MITK and 3D Slicer 

provide the AI-assisted annotation plugins, but they require 

Internet connection to the NVIDIA AI-Assisted Annotation 

Server for data transfer, which is inconvenient for the appli-

cations without Internet connections or with data privacy 

concerns.

Another example of human-AI interaction is the realiza-

tion of AID workflow. We trained a DeepSnake network 

[25] to segment abdominal organs from CT images. The 

network generates 2D contours surrounding the target 

organs and deforms the contours to fit the organ bounda-

ries. We first used a small set of expert-labelled training 

images to train a preliminary network, then used the pre-

liminary network to generate the organ contours of more 

images. The automatically generated contours are proof-

read by human experts using the 2D FFD tool of Anato-

mySketch, and the images with proofread contours are 

supplemented to the training set to finetune the network. 

Figure 9 displays the predicted contours of the preliminary 

and retrained models for two representative slices, respec-

tively. It is obvious that the retrained network (trained with 

Fig. 5  The extension module. a The workflow of the extension mod-

ule. b An example of the configuration file. c The widget panel gener-

ated by AnatomySketch according to the configuration file of (b)

◂
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Fig. 6  An example of user-defined extension module for ITSS analysis in MR images

Fig.7  An example of user-developed plugin module for lung lobe annotation in CT images
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about 1800 slices of 15 CT series) yields more accurate 

contour prediction than the preliminary network (trained 

using about 600 slices of five CT series).

Discussions

AnatomySketch is developed with the goal of accelerating 

MIA algorithm development and bridging the gap between 

laboratory research and clinical application. The software 

is designed to meet many specific needs of MIA algorithm 

development:

 (i) Software prototyping. During the past decade, many 

MIA algorithms were developed as command-line 

tools due to the difficulty of GUI construction. This 

problem also hampers the promotion of DL-based 

algorithms. Many DL models are published as source 

codes that cannot be tested by clinical users. Anato-

mySketch tackles this problem with a flexible plugin 

interface. As demonstrated in the examples of Figs. 6 

and 8, the prototyping of a new software tool for spe-

cial image modality (e.g. the ITSS MR) or specific 

application task (e.g. the segmentation of lumbar disc 

herniation) took less than 1 day. With a friendly GUI, 

the promotion of new MIA algorithms in the clinical 

environment becomes faster and more convenient.

 (ii) Data annotation. The fast popularization of deep 

learning techniques proposes strong needs for data 

annotation. AnatomySketch provides annotation 

Fig. 8  An example of 3D 

FFD proofreading. a The pink 

area in white contour is the 

automatic segmentation result 

of V-Net model. The red area 

and the white contour depict the 

under-segmented part. b Human 

expert proofreading result (the 

adjusted white contour) using 

the FFD tool

Fig. 9  AID annotation results of two exemplar CT slices, showing that the retrained network yield more accurate results than the preliminary 

network. The ground truth comes from human expert manual labelling
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tools and the tablet mode for efficient image anno-

tation. It also realizes the AID workflow for itera-

tive annotation and training. An AID workflow is 

developed for abdominal organ segmentation based 

on the DeepSnake network. Thanks to the flexible 

plugin interface, AnatomySketch is versatile enough 

for realizing task-specific AID workflow based on 

different network models.

 (iii) Human–computer interaction. Because fully auto-

matic algorithms may not guarantee robustness in 

complex clinical scenario, semi-automatic algo-

rithms with human guidance and corrections become 

practical choices. As shown in the example of Fig. 7, 

the plugin module interpolates the lung fissure sur-

faces using human-annotated curves as the guidance. 

Figure 9 demonstrates another example in which 

human interaction is introduced to correct the DL 

model output. AnatomySketch supports both input 

guidance and posterior correction to the DL models, 

facilitating flexible human-AI collaboration for clini-

cal image analysis.

When comparing AnatomySketch with existing MIA 

software tools, we find that some key features of Anato-

mySketch have been integrated into the existing tools. The 

extension module is also available in the Slicer software 

[15, 16]. The integration of DL models has been realized by 

the MITK NVIDIA clara plugin3 and the RIL-contour soft-

ware [18]. The AID workflow is also supported by the RIL-

contour software. However, these software tools were only 

designed to assist with a certain step of the entire algorithm 

development workflow. The advantage of AnatomySketch 

is the supporting of the complete workflow, including data 

visualization, image annotation, algorithm integration and 

software prototyping.

As a newly established software, the number of user-

developed plugin modules for AnatomySketch is still grow-

ing, especially for specific clinical applications. We will 

keep maintaining the web community to help the developers 

sharing their plugin modules and gain potential users from 

universities and hospitals. We also plan to add online crowd-

sourcing tools for multi-rater annotation and proofreading. 

Moreover, because AnatomySketch is increasingly used by 

the doctors who do not share the medical images, we will 

incorporate federated learning [26] ability for multi-centre 

model training without sharing confidential medical data. 

A plugin module will be developed to allow AS software 

to communicate with multi-centre client databases and to 

invoke models for inference. In this scenario, physicians at 

each centre can use the tools provided in AS to annotate 

images and invoke network models with AS interface.

Conclusion

We developed a medical image analysis software platform 

named AnatomySketch to assist with MIA algorithm devel-

opment. The software is specially designed for efficient image 

annotation and convenient integration of user-developed  

algorithm modules including deep neural networks. The AID 

workflow can also be realized to accelerate the training of DL 

models. For the next step, we will construct a web community  

for sharing user-developed extension modules and incorporate 

federated learning to facilitate mutual learning between DL  

models from multi-centres.
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