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Abstract: In this study, we developed a deep learning-based 3D markerless motion capture system for
skate skiing on a treadmill and evaluated its accuracy against marker-based motion capture during
G1 and G3 skating techniques. Participants performed roller skiing trials on a skiing treadmill. Trials
were recorded with two synchronized video cameras (100 Hz). We then trained a custom model using
DeepLabCut, and the skiing movements were analyzed using both DeepLabCut-based markerless
motion capture and marker-based motion capture systems. We statistically compared joint centers
and joint vector angles between the methods. The results demonstrated a high level of agreement for
joint vector angles, with mean differences ranging from −2.47◦ to 3.69◦. For joint center positions and
toe placements, mean differences ranged from 24.0 to 40.8 mm. This level of accuracy suggests that
our markerless approach could be useful as a skiing coaching tool. The method presents interesting
opportunities for capturing and extracting value from large amounts of data without the need for
markers attached to the skier and expensive cameras.

Keywords: kinematics; motion analysis; artificial intelligence; treadmill skiing; markerless mo-
tion capture

1. Introduction

Marker-based motion capture systems have been used extensively in biomechanics
research. Infrared marker-based systems are considered an accurate method, but with some
challenges and disadvantages. Traditionally, marker-based systems are time-consuming,
often limited to laboratory environments, and require expensive equipment and high-level
expertise. It is challenging or impossible to use marker-based motion capture systems
in several cases, for example, in sports competitions or games. There are also challenges
related to the use of markers, such as soft tissue artifact and marker placement errors [1–3].
Moreover, marker-based systems show errors when compared with biplanar videoradio-
graphy [1,2]. For example, root mean squared error (RMSE) angular differences ranging
between 1.06◦ and 8.31◦ have been observed during walking and running [2].

Deep learning-based human pose estimation methods have been extensively studied
in the computer vision literature, especially during the past 10 years [4], and this provides
opportunities for applying these methods to multiple use cases like markerless motion
capture. Nowadays, several deep learning-based markerless methods provide opportuni-
ties for detecting human movements with moderate accuracy [5,6]. Markerless methods
can facilitate the understanding of human movement in different contexts, for example, in
sports biomechanics, sports medicine, injury risk assessment, and rehabilitation [7,8]. There
are several open-source pose estimation algorithms available such as OpenPose [9] and
DeepLabCut [10], and also some commercial products such as Theia3D (Theia Markerless
Inc., Kingston, ON, Canada) and Microsoft Kinect V2. Naturally, there are some challenges
with markerless methods, such as mistakes in manual labelling during model training and
issues related to the training data quantity and quality [11].
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Several studies have used markerless open-source deep learning-based methods to
perform 2D kinematic analyses using a single-camera view [12–15]. For example, high
Pearson correlations (>0.97) were found for shoulder and knee angles during static hold
arm-raises and squats when evaluated against marker-based motion capture [14]. With
multiple calibrated cameras, 2D open-source pose estimation methods can be used to
successfully detect the 3D position of human joint centers, joint angles, and segment
angles [16–20]. When compared with marker-based motion capture data, differences in
joint center locations were approximately 15–50 mm for activities such as throwing, walking,
running, and jumping [16–18]. Some differences were also found between different pose
estimation algorithms such as OpenPose, AlphaPose, and DeepLabCut during walking,
running, and jumping [17]. The characteristics of markerless video cameras were also
found to have small effects on the results [16]. In some studies, lower limb joint angles and
segment angles were primarily calculated when evaluating markerless motion analyses
against marker-based systems [18,19]. In a fully automated 3D markerless motion capture
workflow with OpenPose, lower limb joint angles were detected with mean differences
ranging between −3.9◦ and 10.5◦, and RMSEs ranging between 1.2◦ and 7.4◦ for hip,
knee, and ankle joint rotations during jumping, walking, and running [19]. In a clinical
approach, lower limb joint angles were detected with an RMSE ranging between 3.16◦

and 11.90◦ [18]. In addition, studies using the commercial markerless product Theia3D
obtained quite similar results than with open-source methods [21–23]. For example, RMSDs
were less than 2.5 cm for joint centers except the hip, and less than 5.5◦ for segment angles
when comparing Theia3D markerless to marker-based motion capture during treadmill
walking [22].

Cross-country skiing and especially skate skiing is a complex movement involving
both lower and upper body muscles and skiing equipment. To date, studies have focused
on the biomechanics of skiing when skiers need to quickly modify skiing techniques at
different speeds and on different terrains [24]. It would be of interest to study whether a
markerless system would be accurate enough to analyze and provide feedback on a skier’s
skiing technique.

This study presents a DeepLabCut-based method that can be used for the 3D kinematic
analysis of skate skiing on a treadmill. The method was used to determine joint centers and
joint angles. The aim of this study was to compare our markerless motion capture system
with a marker-based system in terms of skate skiing on a treadmill. It was hypothesized
that our markerless motion capture system would be able to detect the joint centers and
joint angles with about the same level of accuracy as previous similar studies, i.e., mean
differences less than 50 mm for joint centers and mean differences between −5◦ and 5◦ for
joint angles.

2. Materials and Methods
2.1. Participants and Experimental Protocol

Data from 13 female [Age: 21.7 ± 4.6 years] and 19 male [Age: 20.6 ± 7.5 years]
athletes roller skiing with the G3 skating technique on a skiing treadmill were used to train
the markerless model. The athletes were part of the Finnish junior national teams in cross-
country skiing, biathlon and Nordic combined, and some were part of Vuokatti-Ruka sport
academy. The athletes provided their consent to use their skiing videos in the development
of the markerless models. Training data were collected during the athletes’ normal training
sessions. The angle of the skiing treadmill ranged between two and three degrees, and the
speed ranged between 12 and 30 km per hour in the training sessions. Two 20 s videos
were recorded with two cameras from each athlete.

A total of 10 experienced skiers who were familiar with roller skiing on a skiing
treadmill (5 females [Age: 21.0 ± 3.1 years; height: 1.73 ± 0.49 m; weight: 63.9 ± 7.3 kg] and
5 males [Age: 24.4 ± 10.7 years; height: 1.85 ± 0.69 m; weight: 81.0 ± 4.1 kg]) volunteered
in the evaluation study and provided written informed consent. The participants used
the same pair of roller skis (Marwe, Skating 620 XC, wheel No. 0) and poles of suitable
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length (Swix, Triac 3.0). Each participant had a single testing session, which included a
static calibration where the participant stood still on the skiing treadmill to make sure that
all markers were visible, and that the systems were working correctly. Then, the participant
performed four roller skiing trials with the G1 skating technique (two for both sides),
and three roller skiing trials with the G3 skating technique. The G1 skating technique is
“a skating form of the diagonal stride technique of classic skiing, in which the leg and
arm are employed diagonally, with a single pole-push with each contra-lateral leg-push
in a skating-like fashion” [25]. With the G3 skating technique, the skier performs “one
double-pole together with every leg push” [25]. Each roller skiing trial started when the
skier struck the treadmill with the ski pole to enable the systems to be synchronized, and
then included at least thirty seconds of skiing. G1 trials included about 20 skiing cycles, and
G3 trials included at least 15 skiing cycles. A skate skiing cycle includes each leg pushing
once. A G1 cycle includes one impact of the poles, and G3 cycle includes two impacts of
the poles. The roller skiing trial protocol is shown in Table 1.

Table 1. Protocol of roller skiing trials, including the skiing technique, speed of treadmill, and angle
of treadmill for each trial. Note that for G3, treadmill speeds differed for males (m) and females (f).

Trial Skiing Technique Speed of Treadmill (km/h) Angle of Treadmill (deg)

1 G1 8 5
2 G1 6 8
3 G1 8 5
4 G1 6 8
5 G3 12 f/14 m 2
6 G3 18 f/20 m 2
7 G3 24 f/26 m 2

2.2. Motion Capture Systems and Laboratory Configuration

This study was conducted at the Skiing Laboratory of the University of Jyväskylä
in Vuokatti, which is equipped with a 2.7 m × 3.5 m skiing treadmill (RL3500E, Rodby
Innovation AB, Vänge, Sweden). In this study, we used two motion capture systems concur-
rently. Marker-based data were captured using an infrared 8-camera marker-based motion
capture system (100 Hz, Vicon, Oxford, UK) and NEXUS 2.8.1 software (Vicon, Oxford,
UK). The cameras were positioned around the skiing treadmill on the ceiling at a height of
about 2.5 m. In addition, the Skiing Laboratory was equipped with video cameras (LILIN,
Taiwei, New Taipei City, Taiwan) and a Coachtech online measurement and feedback
system [26]. In this study, two video cameras capable of capturing 1280 × 720 resolution
videos at 100 Hz were used for markerless motion capture. Videos were recorded using
the Coachtech system. A sampling frequency of 100 Hz was used in both motion cap-
ture systems, as this was the maximum rate possible for the video cameras. The video
cameras were positioned to the right side (Cam0, perpendicular to skiing direction) and
right obliquely (Cam1, 45 degrees to skiing direction) from the skiing treadmill. Cam0 was
at a height of 1.05 m and a distance of 2.00 m from the skiing treadmill. Cam1 was at a
height of 2.5 m and a distance of 1.90 m from the skiing treadmill. The Skiing Laboratory
configuration and both system’s camera placements are shown in Figure 1.
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Figure 1. Skiing Laboratory configuration, camera placements, and coordinate system configuration.

2.3. Markerless Model Development

A total of 64 videos from both markerless video cameras were used in the development
of the markerless model. Markerless 3D models were developed using DeepLabCut, which
is an open-source pose estimation method based on transfer learning with deep neural
networks [10]. Two-dimensional models were trained for both video cameras separately
using DeepLabCut, and pixel coordinates were later transformed to global 3D coordinates
using the Direct Linear Transformation (DLT) algorithm [27]. Training images were selected
randomly from the videos using DeepLabCut’s frame extraction method and imgaug
algorithm. From each video, 15–20 images were selected, and about 1000 images per
camera were used to train each 2D model. The images were manually labeled using
DeepLabCut’s graphical user interface. Manually labeled markers were placed on the joint
centers of the wrist, elbow, shoulder, hip, knee, and ankle. In addition, the tip of the skiing
boot was labeled to reflect toe position. In the 2D models, only the right side of the skier
was detected, as well as the right pole and right roller ski. Examples of the output of both
2D models are shown in Figure 2.

The labeled images were then used to train deep neural networks. Labeled images
were collected and divided randomly into a 95% training and 5% test split using DeepLab-
Cut’s training set creation method and imgaug algorithm. DeepLabCut’s default network
configuration parameters were used. ResNet50 models for both video cameras were initial-
ized with weights trained on ImageNet, and the cross-entropy loss between the predicted
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score map and the ground truth score map was minimized using stochastic gradient de-
scent. The deep neural networks were trained with 700,000 iterations, and after training, the
2D models were evaluated using the 5% test split. The mean training error was 1.80 pixels
(approximately 0.61 cm), and the mean test error was 2.27 pixels (approximately 0.77 cm)
for the model of Cam0. The mean training error was 2.10 pixels (approximately 0.72 cm),
and the mean test error was 2.63 pixels (approximately 0.89 cm) for the model of Cam1.
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Figure 2. Examples of images labeled by our 2D models: (a) from Cam0 and (b) from Cam1.

2.4. System Calibration Procedure

Both motion capture systems were calibrated before the measurements. The same
origin and axis directions were used for both systems. The configuration of the coordinate
system is shown in Figure 1. The origin was defined at the left side of the skiing treadmill.
The x-axis (black in Figure 1) was defined as the latitudinal axis of the treadmill, the y-axis
(gray in Figure 1) as the longitudinal axis of the treadmill, and the z-axis (black dashed line
in Figure 1) as perpendicular to the treadmill, pointing upward.

With the markerless system, a calibration procedure was performed using an alu-
minum calibration cube that was 2 m long in each dimension. The calibration cube was
placed on the skiing treadmill with one corner placed at the origin. The placements of the
calibration cube and origin are shown in Figure 3. Eight points were selected, marked,
and measured from the calibration cube. The selected points were used as calibration
points resulting in eight known 3D coordinates. These calibration points were manually
digitized from both markerless video cameras. Using these calibration coordinates, both
video camera’s x- and y-coordinates were transformed to global 3D coordinates using the
DLT algorithm [27].
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For the marker-based system, the coordinate system was defined by placing a Vicon
L-Frame on the treadmill, allowing the coordinate system origin and axis directions to be
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defined. The marker-based system calibration was performed using Vicon NEXUS 2.8.1
software.

2.5. Data Collecting and Processing

In the evaluation study, markerless data were captured using the Coachtech system
with two video cameras. Videos were analyzed using the developed 2D models, and mark-
erless data were filtered using a 4th order low-pass Butterworth filter (cut-off frequency,
12 Hz). The synchronization of the videos was ensured using the strokes of the pole on
the treadmill from the beginning of each trial. The pixel coordinates were transformed to
global 3D coordinates with the DLT algorithm. These 3D coordinates were further filtered
with a 4th order low-pass Butterworth filter (cut-off frequency, 6 Hz). The filtering and
coordinate transformation were performed using Matlab (v2021b, MathWorks, Inc., Natick,
MA, USA).

Marker-based data were captured using a modified marker set comprising 39 individ-
ual passive reflective markers on the participant and 12 markers on the skiing equipment:
three markers on both roller skis and three markers on both poles. The marker set is shown
in Appendix A. The recorded data were labeled and visually verified using Vicon NEXUS
2.8.1 software. Marker trajectory data gap filling and marker-based data filtering with
a 4th order low-pass Butterworth filter (cut-off frequency, 6 Hz) were performed using
Vicon NEXUS 2.8.1 software. The joint centers of the wrist, elbow, knee, and ankle were
computed from the mid-points of the lateral and medial markers. The shoulder joint center
was computed from the mid-points of the anterior and posterior shoulder markers. The
hip joint center was calculated using the method described by Bell et al. (1989) [28]. Toe
markers were placed on top of the skiing boots due to the movement of the skiing boots
and roller skis during skiing, so the toe marker positions slightly differed from the points
detected by the markerless system. The toe marker placements for both systems are shown
Figure 4. Static calibrations were used to determine the difference in each participant’s
right toe placement between systems, and this was considered before statistical analysis.
The joint center calculation and defining displacements of the right toe placement between
systems were performed using Matlab.
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in the red circle. The markerless toe marker is indicated by the yellow circle, and the marker-based
marker appears as a gray circle. (b) Marker-based toe marker placement viewed from a different
direction.

From each skiing trial, 10 skiing cycles were selected and time normalized. The skiing
cycles were defined using the right pole markers. The start of each skiing cycle was defined
as the point at which the right pole touched the treadmill. To compare the performance of
the markerless and marker-based systems, the 3D Euclidean distances of each right-side
joint center and toe placement at each time point were calculated. In addition, the vector
angles at the elbow, shoulder, hip, knee, and ankle were calculated from both systems to
describe the movements of skiing. The elbow angle was defined as the supplement of the
angle between the two 3D vectors connecting the elbow position to the wrist and shoulder
positions. The hip angle was defined as the supplement of the angle between the two 3D
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vectors connecting the hip position to the shoulder and knee positions. The knee angle was
defined as the supplement of the angle between the two 3D vectors connecting the knee
position to the hip and ankle positions. These are thus a simplified proxy for the elbow,
hip, and knee flexion angles. The shoulder angle was defined as the angle between the
two vectors connecting the shoulder position to the elbow and hip positions. The shoulder
angle thus reflects the angle between the upper arm and the upper body. The ankle angle
was defined as the complement of the angle between the two vectors connecting the ankle
position to the knee and toe positions. The ankle angle is thus a simplified proxy for the
ankle plantar/dorsiflexion angle. All angles were calculated using Matlab.

2.6. Statistical Analysis

The systems were compared using Bland–Altman analyses [29]. For the joint centers
and toe placements, the mean difference (bias), standard deviation (SD) and 95% limits
of agreement (LoA) were calculated with a one-sample t-test. For the vector angles, the
bias, SD, and LoA were calculated with a paired-sample t-test. Additionally, for the vector
angles, the root mean squared errors (RMSE), Pearson correlations (r), and intra-class
correlation coefficient (ICC) were computed to indicate validity between systems. For
the Pearson correlations, coefficients were interpreted with values of <0.30, 0.30–0.50,
0.50–0.70, 0.70–0.90, and >0.90 representing negligent, low, moderate, high, and very high
correlations, respectively [30]. The ICCs for absolute agreement were estimated based on a
single measurement and two-way mixed effects model. The ICCs were used to indicate the
agreement, with values of <0.50, 0.50–0.75, 0.75–0.90, and >0.90 representing the quality
thresholds for poor, moderate, good, and excellent validity, respectively [31]. The statistical
analyses were performed using SPSS 28.0.1.1 (IBM Corporation, Armonk, NY, USA), and
the significance level was set at p ≤ 0.05.

3. Results

A total of 70 trials with 700 skiing cycles were compared between the markerless and
marker-based systems: 40 trials with the G1 technique and 30 trials with the G3 technique.
The results from the participants’ right sides are reported below.

3.1. Joint Centers and Toe Placements

The results of the comparisons between the systems for joint centers and toe place-
ments are shown in Table 2.

Table 2. Mean difference, standard deviation, and 95% limits of agreement for joint centers and toe
placements.

Detected Point Skiing Technique Mean Difference (Bias) [mm] ±SD [mm] 95% LoA Lower/Upper

Wrist
G1 40.3 30.1 40.4/40.5
G3 38.3 22.6 38.1/38.5

Elbow
G1 33.6 28.9 33.3/33.8
G3 29.5 17.5 29.4/29.7

Shoulder
G1 26.6 19.7 26.4/26.8
G3 24.0 14.1 23.9/24.1

Hip G1 31.9 14.9 31.8/32.0
G3 31.3 16.1 31.2/31.5

Knee
G1 30.5 16.6 30.4/30.7
G3 30.2 20.2 30.0/30.4

Ankle
G1 31.5 17.0 31.4/31.6
G3 32.4 22.9 32.2/32.6

Toe
G1 40.8 21.3 40.6/41.0
G3 39.4 29.7 39.1/39.7
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For all participants, the mean difference ranged from 24 to 41 mm at the wrist, elbow,
shoulder, hip, knee, and ankle joint centers and toe positions. For both techniques, the
smallest systematic differences and LoA were observed at the shoulder joint center (G1:
26.6 mm; G3: 24.0 mm) with standard deviations of 19.7 mm (G1) and 14.1 mm (G3). The
wrist joint center and toe placement displayed the largest systematic differences with the
highest standard deviation and LoA with both techniques. The elbow, hip, knee, and ankle
joint center mean differences were typically larger than those at the shoulder but smaller
than that at the wrist or toe with their standard deviation and LoA following the same
trend.

For both techniques, the mean (black) ± SD (gray, shaded area) time-series differences
in the joint centers and toe placements are shown for a single participant in Figure 5. Two
trials were selected from both techniques, so 20 time-normalized skiing cycles are included
for each.
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3.2. Joint Vector Angles

The results of the comparisons between the systems for joint vector angles are shown
in Table 3.

Table 3. Mean difference, standard deviation, 95% limits of agreement, RMSE, Pearson correlation,
and intra-class correlation coefficient for joint vector angles.

Angle Skiing
Technique

Mean
Difference
(Bias) [deg]

±SD [deg] 95% LoA
Lower/Upper

RMSE
[deg]

r
Pearson

Correlation
p-Value

ICC [Mean (95%
Confidence
Interval)]

Elbow
G1 0.99 7.16 0.94/1.06 7.23 0.96 <0.001 0.96 (0.95/0.96)
G3 0.60 5.69 0.55/0.66 5.72 0.97 <0.001 0.97 (0.96/0.97)

Shoulder
G1 3.69 3.84 3.66/3.72 5.33 0.94 <0.001 0.92 (0.87/0.97)
G3 2.71 3.76 2.68/2.74 4.64 0.96 <0.001 0.97 (0.95/0.98)

Hip G1 1.08 4.06 1.05/1.12 4.21 0.94 <0.001 0.94 (0.92/0.95)
G3 0.74 3.48 0.72/0.78 3.56 0.97 <0.001 0.97 (0.96/0.97)

Knee
G1 1.15 3.06 1.13/1.18 3.27 0.96 <0.001 0.95 (0.93/0.97)
G3 0.82 2.89 0.80/0.85 3.01 0.96 <0.001 0.96 (0.95/0.97)

Ankle
G1 −2.47 4.31 −2.51/−2.44 4.96 0.82 <0.001 0.77 (0.59/0.86)
G3 −2.03 4.23 −2.07/−1.99 4.69 0.84 <0.001 0.80 (0.68/0.86)

Good levels of agreement were observed between the markerless and marker-based
results. The Pearson correlations showed high to very high agreement between systems
with the highest agreement in the elbow (0.97) and hip (0.97) angles for the G3 technique.
The lowest Pearson correlations were observed for ankle angles with r-values of 0.82 and
0.84. The Pearson correlations were statistically significant (p < 0.001) for all joint vector
angles and for both techniques. The ICC values also showed good to excellent validity
between systems with the highest agreements in the elbow (0.97), shoulder (0.97), and hip
(0.97) angles for the G3 technique. The lowest ICCs were observed for ankle angles with
values of 0.80 and 0.77.

The mean differences in joint vector angles ranged between −2.47 and 3.69 degrees.
The lowest systematic differences were observed at the elbow (<1◦), but the standard
deviation was the largest (>5◦). For hip and knee angles, good agreement was observed
with low mean differences (<1.1◦) and a low standard deviation (<4◦). The largest mean
differences were observed for shoulder angles, most notably with the G1 technique with a
mean difference and standard deviation of 3.69◦ ± 3.84◦.

RMSE values ranged between 3.01 and 7.23 degrees for the joint vector angles. The
lowest RMSE values were observed at the knee (<3.5◦). For hip and knee angles, quite good
agreement was observed with RMSE values < 5◦. The largest RMSE values were observed
for elbow angles (>5◦).

For both skating techniques, time-normalized markerless (blue) and marker-based
(red) joint vector angles and mean (black) ± SD (gray, shaded area) time-series differences
for a single participant (P03) from a single skiing trial are shown in Figure 6. For both
techniques, two trials and 20 skiing cycles are included.
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4. Discussion

This study presents an evaluation of a 3D markerless motion capture system for skate
skiing on a treadmill, focusing on the skier’s right-side joint centers and joint vector angles.
Our markerless motion capture system was able to detect 3D kinematics with a good level
of agreement relative to the marker-based motion analysis, most notably for the joint vector
angles (Table 3).
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Our markerless motion capture system can correctly detect joint centers during skate
skiing (Table 2). The mean differences and standard deviations were generally lower with
the G3 skating technique compared to with the G1 technique, which is probably because
the markerless model was developed using videos from the G3 skating technique. It is note-
worthy that during the skiing cycle, the accuracy of the markerless method varied slightly,
even for the same participant (Figure 5). These results are in line with earlier studies, where
the joint centers were detected using open-source markerless methods and marker-based
systems during throwing, jumping, walking, and running [16–18]. Quite similar results
were observed in an earlier study in detecting joint centers using OpenPose, AlphaPose,
and DeepLabCut during walking, running, and jumping, with mean differences between
14 and 58 mm [17]. Similar results were also obtained in another previous study, where
joint centers were detected using OpenPose with multiple synchronized video cameras
during walking, countermovement jumping, and ball throwing, with mean absolute errors
(MAE) of less than 30 mm in 80% of the trials [16]. Compared to a commercial markerless
product, Theia3D, the results of joint center detection are also quite similar to those obtained
with open-source markerless methods. For example, Theia3D detected lower limb joint
centers with a root mean square of the 3D distances (RMSD) between 20 and 30 mm during
countermovement jumping [21]. In another study, Theia3D detected lower and upper limb
joint centers with average 3D Euclidean distances between 11 and 36 mm [22].

In the present study, the elbow, shoulder, hip, and knee joint vector angles consistently
demonstrated very high levels of agreement between the markerless and marker-based
systems, while the ankle joint vector angles demonstrated high levels of agreement (Table 3).
These findings demonstrate that our 3D markerless motion capture system can correctly
reproduce the movements of skate skiing. Additionally, the calculated joint vector angles
differ slightly between systems during the skiing cycle (Figure 6), because joint center
detection varies between systems (Figure 5). Our joint angle results are quite similar to those
of previous studies using open-source markerless methods and commercial markerless
products [19,23,32]. For example, joint angles have been detected using OpenPose during
jumping, walking, and running with higher mean differences (between −3.9◦ and 10.5◦)
but lower standard deviations (between 1.8◦ and 4.4◦) than in this study [19]. In another
study, lower limb joint angles during gait in clinical patients were detected using Theia3D
with RMSDs generally less than 6◦ [23]. Upper limb joint angles have been detected during
static postures and basic movements (holding boxes) using Microsoft Kinect V2 with MAEs
from 2.5◦ to 12.9◦ and using the Captiv system (L7000) with MAEs from 1.9◦ to 14.9◦ when
compared to a goniometer [32]. The results of our study are therefore in line with those of
previous studies related to open-source markerless methods and commercial markerless
products.

The results of this evaluation study are highly promising, and the differences between
systems typically fell within the known uncertainties of marker-based motion capture. The
development process of the markerless model influences the system’s accuracy because
the training images were labeled by a human and may thus include errors of judgement.
In addition, the number, placements, and characteristics of the video cameras can affect
the accuracy of a markerless motion capture system. However, marker-based systems also
have inherent errors, which are mainly due to skin artifact. In previous studies, errors of
up to ~8◦ have been reported when comparing marker-based motion capture to biplanar
videoradiography for ankle joint rotations during walking and running [2], and knee
flexion/extension angles during jumping [1]. Additionally, one previous study reported
marker displacements of up to ~20 mm due to the effects of soft tissue artefacts at the knee
during stair ascent using 3D fluoroscopy and a marker-based system [3]. It is noteworthy
that the accuracies of marker-based systems also vary during the detected cycles (walking,
running, jumping, and throwing) [1–3].

The differences observed in this study generally fall within the known challenges of
marker-based motion capture, and it seems that our markerless motion capture system
could be used especially as a skiing coaching tool. Cross-country skiing is developing



Bioengineering 2024, 11, 136 12 of 16

all the time, with new modifications of subtechniques such as the “double-push” skating
technique [33]. Race speeds have also increased, and this increases the importance of
both skiing technique and skiing equipment [24]. Our markerless motion capture system
presents interesting opportunities for cross-country skiing technique research and coaching.
The markerless system combined with Coachtech system provides the results automat-
ically [26], so changes in skiing technique could be viewed during training. There are
several possibilities for using the markerless system from the coaching perspective. For
example, the system provides possibilities for analyzing several parameters connected to
technique in addition to joint angles, like body position and forward lean. Typically, the
coach provides some instructions to the skier to change the skiing technique during training.
With this markerless system, it can be determined whether the athlete has modified their
skiing technique accordingly. In addition, it can be monitored how these technique changes
influence, for example, the skiing economy and/or maximal skiing performance. In addi-
tion, this approach provides opportunities for capturing large amounts of skiing technique
data. In the future, we could develop markerless models for other skating techniques (G4
and G5) and classic skiing.

Previous studies have provided information about propulsive forces during skiing [34,35].
In addition, the analysis of propulsive forces is important in the biomechanics of cross-
country skiing, because it significantly affects the skiing speed. In the future, our markerless
motion capture system could be used simultaneously with force sensors, for example, with
the recently developed force measurement roller skis [36]. Thus, a more comprehensive
analysis of the biomechanics of cross-country skiing could be obtained without additional
equipment or markers.

In conclusion, we present and validate a markerless motion capture system that is low
cost and easy to use for researchers and coaches. This markerless motion capture system
could be used as a real-time coaching tool to monitor and improve skiing techniques.
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Appendix A

The marker set that was used in the evaluation study is shown in Table A1.
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Table A1. Names, definitions, and positions for markers.

Marker Name Definition Position on Participant/Skiing Equipment

OFFSET Right back Anywhere over the right scapula

LSHO Left shoulder On the acromioclavicular joint

LSHF Left shoulder front Humerus lesser tubercle

LSHB Left shoulder back Same position as LSHF on the posterior side

LUPA Left upper arm On the upper lateral 1/3 surface of the left arm (placed asymmetrically
with RUPA)

LELB Left elbow On the lateral epicondyle

LELBM Left elbow medial On the medial epicondyle

LFRM Left forearm On the lower lateral 1/3 surface of the left forearm (placed
asymmetrically with RFRM)

LWRA Left wrist marker A

At the thumb side of a bar attached to a wristband on the posterior of the
left wrist, as close to the wrist joint center as possible. Loose markers can

be used, but for better tracking of the axial rotations, a bar is
recommended.

LWRB Left wrist marker B

At the little finger side of a bar attached to a wristband on the posterior
of the left wrist, as close to the wrist joint center as possible. Loose

markers can be used, but for better tracking of the axial rotations, a bar is
recommended.

RSHO Right shoulder On the acromioclavicular joint

RSHF Right shoulder front Humerus lesser tubercle

RSHB Right shoulder back Same position as RSHF on the posterior side

RUPA Right upper arm On the lower lateral 1/3 surface of the right arm (placed asymmetrically
with LUPA)

RELB Right elbow On the lateral epicondyle approximating the elbow joint axis

RELB Right elbow On the lateral epicondyle

RFRM Right forearm On the lower lateral 1/3 surface of the right forearm (placed
asymmetrically with LFRM)

RWRA Right wrist marker A
At the thumb side of a bar attached symmetrically with a wristband on

the posterior of the right wrist, as close to the wrist joint center as
possible

RWRB Right wrist marker B
At the little finger side of a bar attached symmetrically with a wristband

on the posterior of the right wrist, as close to the wrist joint center as
possible

RPSI Right PSIS Right posterior superior iliac spine (immediately below the sacroiliac
joints, at the point where the spine joins the pelvis)

RASI Right ASIS Right anterior superior iliac spine

LPSI Left PSIS Left posterior superior iliac spine (immediately below the sacroiliac
joints, at the point where the spine joins the pelvis)

LASI Left ASIS Left anterior superior iliac spine

LTHI Left thigh Over the lower lateral 1/3 surface of the left thigh

LKNE Left knee On the flexion–extension axis of the left knee

LTIB Left tibia Over the lower 1/3 surface of the left shank

LANK Left ankle On the lateral malleolus along an imaginary line that passes through the
transmalleolar axis
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Table A1. Cont.

Marker Name Definition Position on Participant/Skiing Equipment

LHEE Left heel On the calcaneus at the same height above the plantar surface of the foot
as the toe marker

LTOE Left toe Over the second metatarsal head, on the mid-foot side of the equinus
break between forefoot and mid-foot

RTHI Right thigh Over the upper lateral 1/3 surface of the right thigh

RKNE Right knee On the flexion–extension axis of the right knee.

RTIB Right tibia Over the upper 1/3 surface of the right shank

RANK Right ankle On the lateral malleolus along an imaginary line that passes through the
transmalleolar axis

RHEE Right heel On the calcaneus at the same height above the plantar surface of the foot
as the toe marker

RTOE Right toe Over the second metatarsal head, on the mid-foot side of the equinus
break between forefoot and mid-foot

LKNEM Left knee medial Left medial femur condyles

RKNEM Right knee medial Right medial femur condyles

LANKM Left ankle medial Left medial malleolus

RANKM Right ankle medial Right medial malleolus

LSKI1 Left Ski 1 On the front side of the binding of the left roller ski, on the left edge, on
the front side of LSKI2

LSKI2 Left Ski 2 On the front side of the binding of the left roller ski, on the left edge, on
the back side of LSKI1

LSKI3 Left Ski 3 On the front side of the binding of the left roller ski, on the right edge,
placed asymmetrically with LSKI1

RSKI1 Right Ski 1 On the front side of the binding of the right roller ski, on the right edge,
on the front side of RSKI2

RSKI2 Right Ski 2 On the front side of the binding of the right roller ski, on the right edge,
on the back side of RSKI1

RSKI3 Right Ski 3 On the front side of the binding of the right roller ski, on the left edge,
placed asymmetrically with RSKI1

LPOLE1 Left Pole 1 At the top of the left pole, below the handle of the pole

LPOLE2 Left Pole 2 In the middle of the left pole, below LPOLE1

LPOLE3 Left Pole 3 At the bottom of the left pole, below LPOLE2

RPOLE1 Right Pole 1 At the top of the right pole, below the handle of the pole

RPOLE2 Right Pole 2 In the middle of the right pole, below RPOLE1

RPOLE3 Right Pole 3 At the bottom of the left pole, below RPOLE2
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