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Abstract We formulate the momentum-space Dokshitzer–
Gribov–Lipatov-Altarelli–Parisi (DGLAP) evolution equa-
tions for structure functions measurable in deeply inelastic
scattering. We construct a six-dimensional basis of struc-
ture functions that allows for a full three flavor structure and
thereby provides a way to calculate perturbative predictions
for physical cross sections directly without unobservable par-
ton distribution functions (PDFs) and without the associated
scheme dependence. We derive the DGLAP equations to first
non-zero order in strong coupling αs, but the approach can
be pursued to arbitrary order in perturbation theory. We also
numerically check our equations against the conventional
PDF formulation.

1 Introduction

The factorization of short- and long-range physics [1] in hard-
process cross sections constitutes the cornerstone of contem-
porary collider physics. While the short-range parts can be
systematically calculated by the perturbative techniques of
Quantum Chromodynamics (QCD) and electroweak theory,
the long-range physics is related to the nonperturbative struc-
ture of QCD bound states, and ultimately requires input from
experimental measurements. The typical way to describe this
long range physics is in terms of parton distribution functions
(PDFs), which can, at least at leading order, be given an intu-
itive physical interpretation as parton densities.

The typical way to proceed is to start from a perturba-
tive calculation of a cross section for a specific process.
The perturbative cross section is then split into short- and
long-distance contributions. The latter are factorized into the
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PDFs, which then become dependent on a factorization scale
μ. The dependence on μ shows up as logarithmic terms in the
coefficient functions. The dependence of the PDFs on μ leads
to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
[2–5] renormalization group equations for the PDFs. Solv-
ing the DGLAP equation, followed by setting the value of the
factorization scale to the relevant physical momentum scale
such that the logarithmic terms in the coefficient functions
remain small, performs a resummation of large logarithmic
corrections to the cross section. After this is done, one usu-
ally extracts the initial conditions for the DGLAP evolution
of the PDFs from global fits of experimental data [6].

The split of the cross sections into short- and long-distance
parts is, however, not unique at any given order in perturba-
tion theory. In addition to the dependence on the factoriza-
tion and renormalization scales, it depends on the choice of
the factorization and renormalization schemes. Formally, this
dependence is always of higher order in the QCD coupling αs

than the order of αs to which the cross section was calculated,
but it can still be numerically non-negligible. It is customary
to consider the sensitivity of the cross sections to variations
of the factorization scale μ and the coupling renormalization
scale μr as an estimate for the theoretical uncertainty due
to missing higher-order contributions. Although the change
from one factorization scheme to another can also be calcu-
lated perturbatively, its effect is rarely quantified in practice.
The standard choice is nowadays the so-called MS scheme
[7] and all the publicly available PDFs and codes to calcu-
late higher-order cross sections tend to adopt this particular
choice. As a result, the sensitivity of the cross sections to the
choice of scheme is hardly ever considered.

In addition to the choice of scheme, there is consider-
able freedom in parametrizing the initial conditions for the
DGLAP evolution of PDFs. Since the PDFs themselves are
not physical observables, different functional forms can in
fact lead to similar values for physical observables. Thus
PDF sets can often have larger errors than the experimental
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data that they have been determined from. The PDFs result-
ing from fits to data at different orders in αs or different
factorization schemes can look very different and are diffi-
cult to compare to each other in any meaningful way. Since
PDFs are not physical observables, it is not very clear to
what extent one should e.g. favor PDFs that are smooth func-
tions, and there is a continuing discussion on whether PDFs
should be positive-definite [8–11]. In the end, perturbative
QCD and DGLAP evolution make specific predictions about
the dependence of measurable cross sections on kinematical
variables. When phrased in terms of PDFs the comparison
between calculations and measurements is less direct [12],
and one might prefer to have a way to calculate the effect of
DGLAP evolution directly in terms of cross sections.

We advocate in this paper in favor of an alternative to
the conventional PDF-based approach, and formulate factor-
ization directly in terms of observable quantities. A simple
choice, and the one we will adopt here, is to use structure
functions in deeply inelastic scattering (DIS). In the usual
approach the DIS structure functions Fi (x, Q2) are expressed
in terms of PDFs f j (μ2) schematically as

Fi (x, Q
2) =

∑

j

Ci j (Q
2, μ2) ⊗ f j (μ

2), (1)

where Ci j denote the scheme-dependent coefficient func-
tions, x is the Bjorken variable, and Q2 the squared momen-
tum transfer in the process. However, one can – and this we
will explicitly demonstrate in the present manuscript for a
certain choice of structure functions – also express the PDFs
in terms of structure functions,

fi (x, μ
2) =

∑

j

C−1
i j (Q2, μ2) ⊗ Fj (Q

2), (2)

where C−1
i j denote the perturbative inverse of Ci j . Taking the

Q2 derivative of Eq. (1) and using Eq. (2) then leads to a set
of DGLAP-type evolution equations,

d Fi (x, Q2)

d log Q2 =
∑

j

Pi j ⊗ Fj (Q
2), (3)

which predict the behaviour of the physical structure func-
tions as a function of the kinematic variable Q2. The main
advantage of Eq. (3) is that the evolution kernels Pi j cannot
depend on the factorization scheme nor on the factorization
scale [13]: Being physical observables, the structure func-
tions Fi are independent of these choices, and Eq. (3) then
implies that the evolution kernels must be so as well. For
example, there cannot be any μ-dependent terms, since there
are no PDFs that would compensate for the non-zero deriva-
tive. As the evolution kernels are power series in αs, at any
finite perturbative order they still depend on the renormaliza-
tion scale and scheme, though the dependence is of higher

order in αs than to which the evolution kernels were calcu-
lated.

In addition, the initial condition for the evolution in Eq. (3)
could – in the ideal case – be directly given by experimental
data at fixed Q2 and this condition would remain the same
irrespective of the perturbative order to which the evolution
kernels are calculated. This in contrast to the conventional
approach in which the PDFs at leading order (LO), next-to-
LO (NLO) and next-to-NLO (NNLO) can be mutually very
different. In practice, all necessary structure functions are
not (and never will be) available at constant Q2 and thus the
non-perturbative input must still be parametrized and fitted.
However, even then the mere fact that one works with observ-
able cross sections means that one neatly evades e.g. thorny
questions such as the one concerning the positivity of the
PDFs [8–11]. The possible evidence for the small-x resum-
mation [14,15] could also be put to a much stronger footing
in the physical-basis approach as there is no room to mimic
the genuine small-x effects through setting a x-dependent
factorization scale as e.g. done in Ref. [16].

In addition, it is reasonable to assume that physical struc-
ture functions behave smoothly, whereas the PDFs could, in
principle, have discontinuities and be even fractals. Since the
PDFs can be expressed in terms of physical structure func-
tions it follows that also all other processes e.g. at the LHC
can be directly expressed in terms of DIS structure functions,
simply substituting Eq. (2) into the expressions of cross sec-
tions. For example, one might consider the cross section of
Higgs production by gluon fusion [17]

σ(p + p −→ H + X)

=
∫

dx1dx2g(x1, μ)g(x2, μ)σ̂gg→H+X

(
x1, x2,

m2
H

μ2

)
,

(4)

where mH is the Higgs mass, g(x1, μ) and g(x2, μ) are the
gluon PDFs of the proton, and σ̂gg→H+X (x1, x2,m2

H/μ2)

denotes the collinear-renormalized partonic cross section. In
terms of structure functions,

σ(p + p −→ H + j) =
∫

dx1dx2σ̂gg→H+X

(
x1, x2,

m2
H

μ2

)

×
⎡

⎣
∑

j

C−1
g j (Q2, μ2) ⊗ Fj (Q

2)

⎤

⎦

x1

×
[
∑

k

C−1
gk (Q2, μ2) ⊗ Fk(Q

2)

]

x2

,

(5)

where the subscripts in [· · · ]x indicate the x values in the con-
volution. Here the factorization scale dependence in the par-
tonic cross section σ̂gg→H+X (x1, x2,m2

H/μ2) appears only
as logarithmic fractions log

(
m2

H/μ2
)
. Similarly, the factor-
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ization scale dependence in the inverse coefficient functions
C−1
g j (Q2, μ2) appears in terms log

(
Q2/μ2

)
. It is shown in

Ref. [18] that the explicit μ dependence vanishes and terms
log
(
Q2/m2

H

)
are left behind. Indeed this is required by the

fact that the the physical cross section σ(p+ p −→ H + j)
cannot depend on an arbitrary factorization scale. This means
that in Eq. (5) one does not have to specify an exact relation
between the μ2 and the physical scales Q2 and m2

H . This
is an advantage of the physical basis, compared to the usual
PDF-based approach, where one has to choose the value of
the factorization scale, which typically is set as Q2 = μ2.

The notion of a physical basis is already quite an old one: it
was first discussed in the 1980’s [19] and has thereafter resur-
faced in different contexts [13,18,20–24] (see also discussion
in Refs. [25,26]). Whereas the existing literature on the sub-
ject is restricted to special cases or case studies, the novelty of
the present paper is that we present a full dimension-six phys-
ical basis of structure functions which corresponds to PDFs
with three active parton flavors. In principle, this constitutes
a basis that would allow for a global analysis of world DIS
and collider data. We present the evolution kernels directly
in momentum space – though at this stage only at the first
non-zero order in αs.

The structure of the paper is the following. In Sect. 2 we
outline the underlying idea of the physical basis in a sim-
plified case by first working out an example with no flavor
separation. In particular, we show how the inversion of the
coefficient functions, as in Eq. (2), works directly in momen-
tum x , as opposed to Mellin space. In Sect. 3 we present the
evolution equations that include the flavor separation as well.
Finally, we draw our conclusions in Sect. 4 outlining the steps
towards higher-order corrections and a global analysis.

2 Evolution of a two-observable physical basis

To highlight the underlying idea of the physical-basis
approach, let us first consider a toy model of two indepen-
dent observables. We choose these two to be the DIS structure
functions F2 and FL accounting only for the massless quark
singlet [27],

�(x, μ2
f ) =

∑

q

[
q(x, μ2

f ) + q(x, μ2
f )
]
, (6)

and the gluon PDF g(x, μ2
f ). We do not yet take a specific

value for the is the factorization scale μ f at this point. In
this approximation, we can write the structure functions F2

and FL up to the first two non-trivial orders in αs in terms of
PDFs as,

1

ē2
q

F2(x, Q2)

x
=
{
C (0)
F2� + αs(μ

2
r )

2π

×
[
C (1)
F2� − log

(
μ2

f

Q2

)
C (0)
F2� ⊗ Pqq

]}
⊗ �(x, μ2

f )

+ 2n f
αs(μ

2
r )

2π

[
C (1)
F2g

− log

(
μ2

f

Q2

)
C (0)
F2� ⊗ Pqg

]

⊗ g(x, μ2
f ) , (7)

1

ē2
q

FL(x, Q2)

x
= αs(μ

2
r )

2π

{
C (1)
FL� + αs(μ

2
r )

2π

×
[
C (2)
FL� − log

(
μ2

f

Q2

)
C (1)
FL� ⊗ Pqq

− 2n f log

(
μ2

f

Q2

)
C (1)
FLg

⊗ Pgq

]}
⊗ �(x, μ2

f )

+ 2n f
αs(μ

2
r )

2π

{
C (1)
FLg

+ αs(μ
2
r )

2π

×
[
C (2)
FLg

− log

(
μ2

f

Q2

)
C (1)
FL� ⊗ Pqg

− log

(
μ2

f

Q2

)
C (1)
FLg

⊗ Pgg

]}
⊗ g(x, μ2

f )

+
(

αs(μ
2
r )

2π

)2 [
b0 log

(
μ2
r

Q2

)]

×
[
C (1)
FL� ⊗ �(x, μ2

f ) + 2n f C
(1)
FLg

⊗ g(x, μ2
f )

]
.

(8)

In these expressions μr denotes the renormalization scale, n f

is the number of massless flavours, b0 is the first coefficient
in the QCD β function,

b0 = 11CA − 4TRn f

6
, CA = 3, TR = 1/2, (9)

and ē2
q is the average quark charge,

ē2
q ≡ 1

nf

∑

q

e2
q , (10)

where eq denotes the electric charge of quark q. The LO
splitting functions are given by

Pqq(z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (11)

Pqg(z) = TR

[
z2 + (1 − z)2

]
, (12)

Pgg(z) = 2Nc

[
1 − z

z
+z(1−z)+ z

(1−z)+

]
+b0δ(1 − z) ,

(13)

Pgq(z) = CF
1 + (1 − z)2

z
, (14)

where Nc = CA = 3, CF = (N 2
c − 1)/(2Nc), and the plus

function is defined as

∫ 1

x
dz

f (z)

(1 − z)+
=
∫ 1

x
dz

f (z) − f (1)

1 − z
+ f (1) log(1 − x).

(15)

123



   84 Page 4 of 12 Eur. Phys. J. C            (2024) 84:84 

We work in this paper at the first non-zero order in αs, mean-
ing that for each physical observable we take the first term of
the coefficient function, F2 ∼ α0

s and FL ∼ α1
s . For the two-

observable basis these first non-zero coefficient functions are

C (0)
F2�

(z) = δ(1 − z) , (16)

C (1)
FL�(z) = 2CFz , (17)

C (1)
FLg

(z) = 4TRz (1 − z) . (18)

The symbol ⊗ denotes the usual convolution

f ⊗ g ≡
∫ 1

x

dz

z
f (z)g

(
x

z

)
. (19)

At this point one would typically differentiate Eqs. (7)
and (8) with respect to the scale μ2

f to derive the DGLAP

equation satisfied by the PDFs. One would then set μ2
f to

express the physical the structure functions in terms of the
evolved PDFs. Here our emphasis is slightly different: we
want to derive an evolution equation for the Q2 dependence
of the structure functions by differentiating with respect to
Q2. Before doing that we must invert the leading non-zero
order part of the relations Eqs. (7) and (8) and express the
quark singlet and gluon PDFs in terms of the structure func-
tions F2 and FL. The result of this exercise is

�(x, μ2
f ) = 1

ē2
q
F̃2(x, Q

2) , (20)

g(x, μ2
f ) = 1

nf ē2
q

(
CgF̃ ′

2
⊗ F̃ ′

2 + CgF̃2
⊗ F̃2

+ CgF̃ ′′
L

⊗ F̃ ′′
L + CgF̃ ′

L
⊗ F̃ ′

L

+ CgF̃L
⊗ F̃L

)
, (21)

where

F̃2(x, Q
2) ≡ F2(x, Q2)

x
, (22)

F̃L(x, Q2) ≡ 2π

αs(μ2
r )

FL(x, Q2)

x
, (23)

F̃ ′
2,L(x, Q2) ≡ x

d

dx
F̃2,L(x, Q2) , (24)

F̃ ′′
L(x, Q2) ≡ x2 d2

dx2 F̃L(x, Q2) , (25)

and

CgF̃ ′
2
(z) ≡ CF

4TR
δ(1 − z) , (26)

CgF̃2
(z) ≡ − CF

2TR
δ(1 − z) , (27)

CgF̃ ′′
L
(z) ≡ 1

8TR
δ(1 − z) , (28)

CgF̃ ′
L
(z) ≡ − 1

4TR
δ(1 − z) , (29)

CgF̃L
(z) ≡ 1

4TR
δ(1 − z) . (30)

The evolution equations now follow by taking the Q2

derivative in Eqs. (7) and (8), and then using Eqs. (20) and
(21),

d

d log Q2

[
F2(x, Q2)

x

]

= αs(μ
2
r )

2π

[
C (0)
F2�

⊗ Pqq ⊗ F̃2 + 2C (0)
F2�

⊗ Pqg⊗

×
(
CgF̃ ′

2
⊗ F̃ ′

2 + CgF̃2
⊗ F̃2 + CgF̃ ′′

L
⊗ F̃ ′′

L

+ CgF̃ ′
L

⊗ F̃ ′
L + CgF̃L

⊗ F̃L

)]
, (31)

d

d log Q2

[
FL(x, Q2)

x

]

=
(

αs(μ
2
r )

2π

)2 [
C (1)
FL� ⊗ Pqq

+ 2n f C
(1)
FLg

⊗ Pgq − b0C
(1)
FL�

]
⊗ F̃2

+ 2

(
αs(μ

2
r )

2π

)2 [
C (1)
FL� ⊗ Pqg

+ C (1)
FLg

⊗ Pgg − b0C
(1)
FLg

]

⊗
(
CgF̃ ′

2
⊗ F̃ ′

2 + CgF̃2
⊗ F̃2 + CgF̃ ′′

L
⊗ F̃ ′′

L

+ CgF̃ ′
L

⊗ F̃ ′
L + CgF̃L

⊗ F̃L

)
. (32)

By setting the renormalization scale equal to the momentum
transfer, μ2

r = Q2, and using the LO renormalization group
equation,

μ2
r

d αs(μ
2
r )

d μ2
r

= −
(
b0

2π

)
α2
s (μ

2
r ), (33)

the equation for FL can be written as,

d

d log Q2

[
2π

αs(Q2)

FL(x, Q2)

x

]

=
(

αs(Q2)

2π

)[
C (1)
FL� ⊗ Pqq + 2n f C

(1)
FLg

⊗ Pgq

]
⊗ F̃2

+ 2

(
αs(Q2)

2π

)[
C (1)
FL� ⊗ Pqg + C (1)

FLg
⊗ Pgg

]

123
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⊗
(
CgF̃ ′

2
⊗ F̃ ′

2 + CgF̃2

⊗ F̃2 + CgF̃ ′′
L

⊗ F̃ ′′
L + CgF̃ ′

L
⊗ F̃ ′

L + CgF̃L
⊗ F̃L

)
.

(34)

These forms of the equations demonstrate the general idea
of the inversion procedure. However, they now contain up to
three convolution integrals. Since the coefficient and splitting
functions appearing in them are known analytically, these can
be reduced to one by analytically performing part of the con-
volution integrals. The final, explicit forms of the evolution
equations for F2 and FL read

d F2(x, Q2)

d log Q2 = αs(Q2)

2π
x
{
P2-o.
F2 F̃2

⊗ F̃2 + P2-o.
F2 F̃L

⊗ F̃L

+P2-o.
F2 F̃ ′

L
⊗ F̃ ′

L

}
, (35)

d

d log Q2

(
FL(x, Q2)

αs(Q2)
2π

)
= αs(Q2)

2π
x
{
P2-o.
FL F̃2

⊗ F̃2

+P2-o.
FL F̃L

⊗ F̃L + P2-o.
FL F̃ ′

L
⊗ F̃ ′

L

}
, (36)

where the kernels are defined by

P2-o.
F2 F̃2

(z) ≡ CF

[
δ(1 − z) − (1 − z) + 1 + z2

(1 − z)+

]
, (37)

P2-o.
F2 F̃L

(z) ≡ 1

4
δ(1 − z) + 1

2
, (38)

P2-o.
F2 F̃ ′

L
(z) ≡ −1

4
δ(1 − z) , (39)

P2-o.
FL F̃2

(z) ≡ CF

[
4Nc − 8TRnf + 2

(
4TRnf

3
− Nc

)
1

x

+ 2

(
CF + Nc − Nc

b0

3

)
z + 4

(
4TRnf

3
− Nc

)
z2

+ 4 (2Nc − CF − 2TRnf ) z log (z)

+ 4 (CF − Nc) z log (1 − z)

]
, (40)

P2-o.
FL F̃L

(z) ≡
[
CF

2
+ Nc

b0

3

]
δ(1 − z)

+
[
CF − 2Nc + 2Nc

1

z
+ (4Nc − CF)z

+ 2Ncz
2 − 2Ncz (1 − 4z) log (1 − z)

]
, (41)

P2-o.
FL F̃ ′

L
(z) ≡ 2Ncz (1 − 2z) log (1 − z) . (42)

Here the superscript 2-o. refers to the two observable phys-
ical basis in which we are working. The derivatives appearing
in Eqs. (31) and (34) have been removed by partial integra-
tions. However, after partially integrating the second deriva-
tives, one first derivative still remains.

We note that we could also arrive with Eqs. (35) and (36)
by setting μ2

r = μ2
f = Q2 already in Eqs. (7) and (8), taking

the log Q2 derivative, and using the LO DGLAP equations
for PDFs,

dq(x, Q2)

d log Q2 = αs(Q2)

2π

(
Pqq ⊗ q + Pqg ⊗ g

)
, (43)

dg(x, Q2)

d log Q2 = αs(Q2)

2π

(
Pgq ⊗ � + Pgg ⊗ g

)
. (44)

However, the derivation presented above highlights the fact
that it is not in fact necessary to choose a specific value for the
factorization scale. In fact, Eqs. (35) and (36) really are equa-
tions for the dependence of physical quantities on a physical
scale, and do not depend on the factorization scale. The inde-
pendence on the factorization scheme in the physical basis, as
opposed to the conventional approach, would explicitly show
up when including terms that are one order higher in αs.

The mathematical structure of Eqs. (35) and (36) differ
from the usual DGLAP equations for PDFs by the pres-
ence of derivatives of the structure functions on the r.h.s.
To demonstrate that this slight difference is not a problem in
practice, we have also solved them numerically using stan-
dard techniques. To be able to compare to existing DGLAP
parametrizations, we have calculated the initial conditions for
the structure functions at Q2 = 2.0 GeV2 through Eqs. (7)
and (8) at the first non-zero order in αs, using several avail-
able LO PDF sets including only light quarks i.e. PDFs in
the 3-flavour scheme. The Q2 evolution using Eqs. (35) and
(36) is then performed by utilizing the ordinary differen-
tial equation (ODE) solver from the GNU Scientific Library
[28]. The PDF sets used in this work are from the CTEQ
(CT14lo_NF3 [29]), MSTW (MSTW2008lo68cl_nf3
[30]) and NNPDF (NNPDF30_lo_as_0118_nf_3 [31])
collaborations, taken from the LHAPDF library [32]. In
these leading order PDF sets, the scale-dependence of the
quark-singlet and gluon PDFs obey the DGLAP equations in
Eqs. (43) and (44) and the result of solving the Q2 depen-
dence through our Eqs. (35) and (36) will, in fact, be identical
to the one from using the evolved PDFs to compute F2 and FL

via Eqs. (7) and (8). Thus, at leading order, the comparison
merely provides us a way to check our analytical results and
their numerical implementation, while the scheme depen-
dence of PDFs would only show up at higher order in αs.
The computed Q2 dependences of F2 and FL are shown in
Fig. 1. The results are shown separately for the three different
PDF sets used to construct the initial condition for the Q2

evolution. In the case of CT14 and MSTW2008 we find an
excellent agreement between the results obtained by using the
DGLAP evolved PDFs and by directly evolving the structure
functions. For the NNPDF3 PDF set the results clearly devi-
ate in the x � 10−6 region. We believe, however, that this is a
numerical problem with NNPDF30_lo_as_0118_nf_3:
we have checked that this particular set of PDFs also fails to
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Fig. 1 The Q2 dependence of
F2 (left) and FL (right) using the
physical-basis approach (curves)
compared with the usual
PDF-based approach (markers).
The comparisons in the
upper-most panels correspond to
the CT14lo_NF3 PDFs, in the
middle panels to the
MSTW2008lo68cl_nf3 PDFs,
and in the lower-most panels to
the
NNPDF30_lo_as_0118_nf_3
PDFs

satisfy the Q2 independence of the momentum sum rule,

d

dQ2

∫ 1

0
dx x

[
g(x, Q2) + �(x, Q2)

]
= 0 . (45)

By substituting g and � from Eqs. (20) and (21) we have
checked that our implementation of the evolution does fulfill
the momentum sum rule.

3 Evolution of a six-observable physical basis

In this section we repeat the same steps as in Sect. 2, but now
considering a more complete setup which corresponds to a
full flavor separation of PDFs in three-flavour scheme. In this
case the partonic degrees are the gluon, together with u, u, d,
d and s = s quark PDFs. We will thus need a set of six linearly

independent DIS structure functions to set up a proper basis.
As already in our simpler example, FL and F2 give access to
the gluons and quark singlet. This is complemented by the
third neutral current structure function F3, which is sensitive
to the valence quarks. For flavor separation one needs charged
current structure functions, where we choose FW−

2 , FW−
3 to

give access to positively and negatively charged (anti)quarks
separately. Finally, to separate strange from down quarks, we
need a process that differentiates between quark generations
in the final state. For this we choose FW−

2c , which corresponds

to FW−
2 with a tagged charm quark in the final state. At the

leading CKM matrix element level this is only sensitive to
s. Thus our basis of six structure functions consists of the
neutral-current structure functions FL, F2 and F3 plus the
charged-current structure functions FW−

2 , FW−
3 , and FW−

2c ,
corresponding to the W−-boson exchange. To first non-zero
order in αs, the expressions for these structure functions in
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terms of PDFs read [19,33,34],

F2(x, Q
2) = x

∑

q

e2
q

[
q(x, Q2) + q(x, Q2)

]
, (46)

F3(x, Q
2) = 2

∑

q

(L2
q − R2

q)
[
q(x, Q2) − q(x, Q2)

]
,

(47)

FW−
2 (x, Q2) = 2x

[
u(x, Q2) + d(x, Q2) + s(x, Q2)

]
,

(48)

FW−
3 (x, Q2) = 2

[
u(x, Q2) − d(x, Q2) − s(x, Q2)

]
, (49)

FW−
2c (x, Q2) = 2xs(x, Q2) , (50)

FL(x, Q2) = αs(Q2)

2π
2x

nf∑

q

e2
q

∫ 1

x

dz

z

×
[
CFz

[
q

(
x

z
, Q2

)
+ q

(
x

z
, Q2

)]

+ 4TRz (1 − z) g

(
x

z
, Q2

)]

≡ αs(Q2)

2π
x
[
C (1)

FL F̃2
⊗ F̃2(Q

2)

+2nf ē
2
qC

(1)
FLg

⊗ g(Q2)
]

, (51)

where we have already equated the renormalization and fac-
torization scale with Q2. Here, Lq = T 3

q − 2eq sin2 θW and
Rq = −2eq sin2 θW , where θW denotes the Weinberg angle
and T 3

q is the third component of the weak isospin. The struc-

ture function coefficient functionsC (1)

FL F̃2
= C (1)

FL� , andC (1)
FL�

and C (1)
FLg

were defined in Eqs. (17) and (18).
Experimental constraints for most of these structure func-

tions are available e.g. from the HERA collider [35–37] and
neutrino DIS experiments [38–42], and more are expected
from future DIS experiments [43,44]. However, similarly to
the case of global analyses of PDFs, further constraints e.g.
from the LHC will presumably be ultimately required to have
a good control over all of them. Note that it is not necessary
for the experimental data to be given precisely for one of
the structure functions in our basis: because we have a full
basis different measured cross sections can be expressed in
terms of the basis structure functions, such the reduced cross
section in terms of FL and F2.

We can write Eqs. (46)–(50) in a matrix form,

⎛

⎜⎜⎜⎜⎜⎝

F2

F3

FW−
2

FW−
3

FW−
2c

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

xe2
d xe2

d xe2
u xe2

u 2xe2
s

2Ad −2Ad 2Au −2Au 0
0 2x 2x 0 2x
0 −2 2 0 −2
0 0 0 0 2x

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

d
d
u
u
s

⎞

⎟⎟⎟⎟⎠
,

(52)

where we have defined Aq ≡ L2
q − R2

q in order to simplify
the notation. The determinant of the matrix on the right-hand
side is non-zero, so it is invertible and we can express the
quark PDFs in terms of F2, F3, FW−

2 , FW−
3 and FW−

2c :

xd(x, Q2) = 1

Aue2
d + Ade2

u

[
AuF2(x, Q

2) + e2
u

2
xF3(x, Q

2)

− Au(2e2
u + e2

d) − Ade2
u

4
FW−

2 (x, Q2)

− Au(2e2
u − e2

d) + Ade2
u

4
xFW−

3 (x, Q2)

+ Au(e2
d − 2e2

s ) − Ade2
u

2
FW−

2c (x, Q2)

]
, (53)

xd(x, Q2) = 1

4
FW−

2 (x, Q2) − 1

4
xFW−

3 (x, Q2) − 1

2
FW−

2c ,

(54)

xu(x, Q2) = 1

4
FW−

2 (x, Q2) + 1

4
xFW−

3 (x, Q2) , (55)

xu(x, Q2) = 1

Aue2
d + Ade2

u

[
Ad F2(x, Q

2) − e2
d

2
xF3(x, Q

2)

− Ad(2e2
d + e2

u) − Aue2
d

4
FW−

2 (x, Q2)

+ Ad(2e2
d − e2

u) + Aue2
d

4
xFW−

3 (x, Q2)

]
,

(56)

xs(x, Q2) = xs(x, Q2) = 1

2
FW−

2c (x, Q2) . (57)

For the gluon PDF we obtain the same expression as in two
observable basis

g(x, Q2) =
∫ 1

x

d z

z
δ(1 − z)

×
{

CF

4TRnf ē2
q

[
x

z

d

d x
z

− 2

]
F2
( x
z , Q

2
)

x
z

+ 1

8TRnf ē2
q

[
x2

z2

d [2]
d
( x
z

)2 − 2
x

z

d

d x
z

+ 2

]

× FL
( x
z , Q

2
)

x
z

αs(Q2)
2π

}

≡ 1

nf ē2
q

{
CgF̃ ′

2
⊗ F̃ ′

2 + CgF̃2
⊗ F̃2 + CgF̃ ′′

L
⊗ F̃ ′′

L

+ CgF̃ ′
L

⊗ F̃ ′
L + CgF̃L

⊗ F̃L

}
, (58)

where F̃L, F̃ ′′
L and F̃ ′

2,L are given in Eqs. (23)–(25), and
the coefficient functions are defined in Eqs. (26)–(30). By
taking derivatives of Eqs. (46)–(51) with respect to log Q2
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we arrive with evolution equations for the structure functions
F2, F3, FW−

2 , FW−
3 , and FW−

2c :

dF2(x, Q2)

d log Q2 = αs(Q2)

2π
x

[
Pqq ⊗ F̃2 + 2

nf∑

q

e2
q Pqg ⊗ g

]
,

(59)

dF3(x, Q2)

d log Q2 = αs(Q2)

2π
Pqq ⊗ F3 , (60)

dFW−
2 (x, Q2)

d log Q2 = αs(Q2)

2π
x
[
Pqq ⊗ F̃W−

2 + 6Pqg ⊗ g
]

,

(61)

dFW−
3 (x, Q2)

d log Q2 = αs(Q2)

2π

[
Pqq ⊗ FW−

3 − 2Pqg ⊗ g
]

,

(62)

dFW−
2c (x, Q2)

d log Q2 = αs(Q2)

2π
x
[
Pqq ⊗ F̃W−

2c + 2Pqg ⊗ g
]

,

(63)

where F̃W−
2 (x, Q2) ≡ FW−

2 (x, Q2)/x and F̃W−
2c (x, Q2) ≡

FW−
2c (x, Q2)/x . Here the convolution Pqg ⊗ g appearing in

Eqs. (59)–(63) can be given in a single integral form by using
Eq. (58)

Pqg ⊗ g = 1

4nf ē2
q

{
CF

[
− F̃2(x, Q

2)

+2
∫ 1

x

dξ

ξ

(
x

ξ
− 1

)
F̃2(ξ, Q2)

]

+ 1

2

[
3F̃L(x, Q2) + F̃ ′

L(x, Q2)

+2
∫ 1

x

dξ

ξ
F̃L(ξ, Q2)

]}
. (64)

In a similar way, we can obtain evolution equation for the
structure function FL:

d

d log Q2

(
FL(x, Q2)

αs(Q2)
2π

)

= αs(Q2)

2π
x

{
2
[
C (1)

FL F̃2
⊗ Pqg + C (1)

FLg
⊗ Pgg

]

⊗
[
CgF̃ ′′

L
⊗ F̃ ′′

L + CgF̃ ′
L

⊗ F̃ ′
L + CgF̃L

⊗ F̃L

]

+
[
C (1)

FL F̃2
⊗
(
Pqq + 2Pqg ⊗ CgF̃2

)

+2C (1)
FLg

⊗ Pgg ⊗ CgF̃2

]
⊗ F̃2

+ 2
[
C (1)

FL F̃2
⊗ Pqg + C (1)

FLg
⊗ Pgg

]
⊗ CgF̃ ′

2
⊗ F̃ ′

2

+ nf ē2
q

Aue2
d + Ade2

u

C (1)
FLg

⊗ Pgq

⊗
[
2 (Ad + Au) F̃2 +

(
e2
u − e2

d

)
F3

+ (Au − Ad)
(
e2
d − e2

u

)
F̃W−

2

+ (Au + Ad)
(
e2
d − e2

u

)
FW−

3

]}
. (65)

Opening the convolutions in Eq. (65) and performing a
partial integration we can write the DGLAP evolution of
FL(x, Q2)/ αs

2π
in a single integral form as

d

d log Q2

(
FL(x, Q2)

αs(Q2)
2π

)

= αs(Q2)

2π
x
{
PFL F̃2

⊗ F̃2

+ PFL F̃L
⊗ F̃L + PFL F̃ ′

L
⊗ F̃ ′

L + PFLF3 ⊗ F3

+ P
FL F̃W−

2
⊗ F̃W−

2 + P
FLFW−

3
⊗ FW−

3

}
. (66)

By defining a function

ρ(z) ≡ nf ē2
q

Aue2
d + Ade2

u

C (1)
FLg

⊗ Pgq

= 4TRCFnf ē2
q

Aue2
d + Ade2

u

[
−1 + 1

3z
+ 2

3
z2 − z log (z)

]
,

(67)

we can write the kernels as

PFL F̃2
(z) ≡ CF

[
4Nc − 2Nc

1

z

+ 2

(
CF + Nc − Nc

b0

3

)
z − 4Ncz

2

+ 4 (2Nc − CF) z log (z)

+ 4 (CF − Nc) z log (1 − z)

]

+ 2 (Ad + Au) ρ(z) , (68)

PFLF3(z) ≡
(
e2
u − e2

d

)
ρ(z) , (69)

P
FL F̃W−

2
(z) ≡ (Au − Ad)

(
e2
d − e2

u

)
ρ(z) , (70)

P
FLFW−

3
(z) ≡ (Au + Ad)

(
e2
d − e2

u

)
ρ(z) . (71)

Here the kernels PFL F̃L
and PFL F̃ ′

L
are the same as in the case

of two-observable physical basis, P2-o.
FL F̃L

and P2-o.
FL F̃ ′

L
respec-

tively, in Eqs. (41) and (42).
We have solved the set of evolution equations in Eqs. (59)–

(65) using the same methods as in Sect. 2. This time we
have set the initial condition by calculating the structure
functions in Eqs. (46)–(51) at Q2 = 2.0 GeV2 using the
CT14lo_NF3 set of LO PDFs. Also in the present case we
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Fig. 2 The Q2 dependence of
FL, F2, F3, FW−

2 , FW−
3 , and

FW−
2c using the physical-basis

approach (curves) compared
with the usual PDF-based
approach (markers)

can verify that the results obtained by solving Eqs. (59)–(65)
match those obtained by using the usual PDF-based approach
where the structure functions in Eqs. (46)–(51) are evaluated
using DGLAP-evolved PDFs at higher scale. The results are
shown in Fig. 2, and the two approaches are again found to
agree within the numerical accuracy. The only visible dif-
ferences are in F3, defined in Eq. (47), at small x . As F3 is
proportional to valence quarks, it tends to zero at small x and
the wiggles seen in Fig. 2 in the results computed directly
with CT14lo_NF3 are presumably a result of numerical
instability associated with small numbers.

4 Conclusions and outlook

We have in this paper advocated an approach to the Q2 depen-
dence of DIS structure functions where the DGLAP evolution

equations are formulated and solved directly for measurable
structure functions. The evolution equations in the physical
basis are more complicated than when the Q2 dependence
is formulated in terms of PDFs, and also e.g. derivatives of
the structure functions are involved. However, this feature is
compensated by several advantages. Most importantly, there
is no need to define the factorization scheme nor the fac-
torization scale: since the evolution equations express the
Q2-dependence of observable quantities in terms of observ-
able quantities, the coefficients must necessarily be scheme
and scale independent. The approach in terms of physical
structure functions also has the advantage of being more
transparent in the parametrization of the initial conditions
of the evolution, and does not have ambiguities concerning
positivity constraints.

We have shown that it is possible to find a basis of physi-
cal structure functions that has a one-to-one correspondence
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with PDFs in the 3-flavour scheme, which leads to a closed
set of coupled evolution equations among the physical struc-
ture functions. We formulate the evolution equations directly
in momentum space, in contrast to the existing literature on
the subject where the evolution has been written in Mellin
space. At this stage we have presented the result only to the
first non-zero order in αs but the approach can be straight-
forwardly extended to the second non-zero order as well,
which we intend to do in a future work. The qualitative nov-
elty at second non-zero order is that also double derivatives
of structure functions will be involved which can potentially
cause extra challenges for a precise numerical evaluation.
The emergence of higher derivatives is easy to understand
through a simple example: Suppose we have a structure func-
tion F that depends on the gluon PDF through,

F ≡ C (1) ⊗ g + αsC
(2) ⊗ g, (72)

and a differential operator P such that PC (1) ⊗g = g. Then,

g = P
[
F − αsC

(2) ⊗ g
]

= P
[
F − αsC

(2) ⊗ PF
]

+ O(α2
s ) . (73)

If P contains a derivative, the second term will contain a
double derivative. At still higher orders in αs even higher
derivatives will appear. Another complication that can be
expected at higher orders is that the derivation of the evolution
kernels may involve integrals which cannot be analytically
performed and have to be dealt with in a different way. In the
lowest order discussed here it was still possible to express all
the integrals in a closed form e.g. in going from Eq. (34) to
Eq. (36). The actual scheme dependence in the conventional
PDF approach will appear only at the second non-zero order.
Thus in our leading order calculation we have been able to
test numerically our evolution equations against results from
standard PDF sets.

For simplicity, we have here worked in terms of 3-
flavour basis whose applicability is restricted to “low” Q2

due to appearance of logarithmically enhanced contributions
involving the heavy-quark masses, αm

s logn(m2/Q2), m ≥
n, at NLO and beyond. In terms of PDFs, these logarithms
are resummed into the scale-dependent heavy-quark PDFs.
To accomplish the same in the physical-basis approach, one
needs to introduce additional heavy-quark dependent struc-
ture functions, like the neutral-current F2c and F2b. Indeed,
F2c is a significant fraction of e.g. the HERA total cross
section. Each new flavour will increase the dimensionality
of the evolution equations by one, but in a picture in which
the heavy-quark PDFs are perturbatively generated, the ini-
tial conditions of the evolution are still determined by six
structure functions. Including nonperturbative heavy flavor
then requires additional initial conditions. Additionally, if
one includes explicit quark masses, the coefficient functions

contain Q2/m2
q terms which will add technical difficulties.

Also the CKM-suppressed contributions, neglected here for
simplicity, can straightforwardly be included.

Since the PDFs can be expressed in terms of physical
structure functions, it follows that all other cross sections –
those at the LHC in particular – can be expressed in terms
of structure functions as well. In other words, the measured
structure functions could, in principle, be directly used to
predict cross sections at the LHC without any reference to
PDFs, as discussed in Sect. 1. This may eventually provide an
alternative approach to the usual PDF-based paradigm and a
way to estimate theoretical uncertainties associated with the
scheme-dependence of factorization.
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