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Abstract: In addition to identifying and prosecuting cyber attackers, attack attribution activities can
provide valuable information for guiding defenders’ security procedures and supporting incident
response and remediation. However, the technical analysis involved in cyberattack attribution
requires skills, experience, access to up-to-date Cyber Threat Intelligence, and significant investigator
effort. Attribution results are not always reliable, and skillful attackers often work hard to hide or
remove the traces of their operations and to mislead or confuse investigators. In this article, we
translate the technical attack attribution problem to the supervised machine learning domain and
present a tool designed to support technical attack attribution, implemented as a machine learning
model extending the OpenCTI platform. We also discuss the tool’s performance in the investigation
of recent cyberattacks, which shows its potential in increasing the effectiveness and efficiency of
attribution operations.

Keywords: cyberattack; technical cyberattack attribution; digital forensics; machine learning; cyber
threat intelligence

1. Introduction

Law Enforcement Agencies (LEAs), forensic institutes, National Cyber Security Cen-
ters (NCSCs), Computer Emergency Response Teams (CERTs), and companies providing
cybersecurity services routinely have to investigate cyberattacks on organizations and
citizens. In many cases, a key question in such investigations is who is responsible for
conducting a given cyberattack (which is also a key question to answer for achieving
accountability in cyberspace [1]). This identification of the source of a cyberattack—which
can be a nation state, a crime syndicate, or other nefarious group or individual—is often re-
ferred to as “cyberattack attribution” and involves technical, legal, and political analysis [2].
In this article, the focus is on technical attack attribution, which is based on the analysis of
technical attack traces and Cyber Threat Intelligence (CTI). Technical attribution activities
rarely result in the names or locations of the people behind a cyberattack, instead providing
threat actor monikers [3] (e.g., “APT 41” or “Black Basta”) and similar information. This
is one reason why it was pointed out in [4] that “. . . questions of responsibility are rarely
decided solely through a single technological tool or form of evidence . . .” [4] (p. 382) and
“. . . a legal approach, rather than a technological one, can solve the attribution problem” [4]
(p. 376). However, technical attribution is almost always the primary element of any
attribution efforts, providing key facts and hypotheses.

Identifying the threat actor behind a cyberattack can be very important and valuable,
though the attribution value and investigation priorities vary and depend significantly on
the context. For internal cybersecurity teams, CERTs and commercial service providers,
technical attribution efforts usually help understand the attacker’s intentions, capabilities
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and level of sophistication, modus operandi, and expected behavior, informing the defend-
ers’ security procedures from prevention to response and remediation and giving them
greater confidence in their operations. For example, the understanding of an attacker’s
Tactics, Techniques, and Procedures (TTPs) guides the defenders in what additional attack
traces and artefacts they should look for and what vulnerability patches they should priori-
tize in order to minimize the impact of an ongoing attack and the risk of future ones. In the
context of cyberattacks driven by political, military, or industrial competition motives, the
technical attribution value can include a reliable view of the impact of sensitive information
loss and can even extend to driving foreign policy measures, if threat actors are associated
with specific nation states. Also, importantly for LEAs, the insights provided by technical
attribution efforts are almost always the first step in identifying and prosecuting attackers.

With all the potential value, technical analysis involved in cyberattack attribution
requires a high skill level, experience, access to up-to-date CTI, and significant investigator
effort. Furthermore, attribution results always contain elements of uncertainty, and skillful
attackers often work hard to hide or remove the traces of their operations and to mislead
or confuse investigators. Recognizing the challenges, the EU-funded CC-DRIVER [5] and
CYBERSPACE [6] projects contributed to designing and developing a tool to support cyber-
attack attribution. This article presents the tool and discusses the results of its application
in the context of recent cyberattacks, which show the tool’s potential to increase the effec-
tiveness and efficiency of attribution operations. Whilst our approach to translating the
technical attack attribution problem to the supervised machine learning domain is similar
to that of Noor et al. [7], we propose a way to overcome the lack of training data issue,
use both low-level and high-level features to represent cyberattacks, and implement the
tool as a contribution to a popular open-source CTI platform based on a de facto standard
CTI language. This all significantly increases the chances of a high adoption and impact of
the tool.

In this article, we first briefly review several noteworthy challenges of technical attack
attribution, the data used in attack analysis, the connections between attribution and
other key questions that arise in digital forensics and cyber incident response activities,
and the earlier work on applying machine learning to the attack attribution problem.
We then explain the technical approach, present the tool, which is based on a machine
learning model and implemented as an extension of the OpenCTI platform [8], and show
its performance in three cyberattack investigation cases (two of which were carried out by
one of the CC-DRIVER and CYBERSPACE partners, WithSecure Corporation, and one by
The DFIR Report group). The article concludes by discussing the challenges and directions
for future work.

2. Technical Attack Attribution

When running analysis to identify the source of a cyberattack, investigators face multi-
ple problems. Cybercriminals and other perpetrators often attempt to hide the origin of
their attack network traffic by routing it via multiple links on the Internet, for instance,
using proxy servers or onion-routing tools (such as Tor [9]) instead of directly connecting to
the victim. They can utilize compromised or stolen devices to hide their identity, and they
also rely increasingly often on tools commonly available on the victim’s devices instead of
using custom malware that can be fingerprinted and connected to their authors—this tech-
nique is known as “living-off-the-land” [10]. Attribution activities are further complicated
by the growing popularity of the “Crime-as-as-a-service” mode of cybercriminal operations
(malware-as-a-service, ransomware-as-a-service, DDoS-as-a-service, bulletproof hosting,
etc.), the use of malicious code which is open-sourced, shared or stolen from other attackers
(and sometimes even from state security agencies and security researchers [11,12]), and the
use of malicious infrastructure (such as command-and-control servers) and TTPs previously
attributed to other attackers. One should also note that CTI and other information crucial
for attack attribution can be kept confidential by certain parties due to laws, contracts, and
various—justified or unjustified—concerns.
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Attack attribution is closely connected with several other questions typically asked by
incident responders and investigators when trying to gain insights into the threat actor’s
operations in the victim’s cyber estate. Good examples of such questions are:

• When did the threat actor breach the victim’s systems and networks?
• What level of privilege does the threat actor have in the victim’s systems and networks?
• What assets has the threat actor touched and potentially compromised?
• What is the impact of the breach?

So, essentially any data collected in an incident response operation can be useful
for attribution-related analysis, while the data revealing the threat actor’s capabilities,
objectives, and behavior are of particular value. These data include:

• The Attacker’s TTPs. The MITRE ATT&CK framework [13] is commonly used to
structure and model this information.

• Indicators of Compromise (IOCs) and the attacker’s infrastructure, such as the file
hashes of malicious payloads and IP addresses which the attack traffic originates from
or where the command-and-control (C2) servers are hosted.

• Malware analysis results (especially for victim-tailored malware with no public source
code), which can provide high-value information. For instance, sometimes attackers
make mistakes or leave traces in their malware code, and in other cases, they use
evolving versions of the same malware for many years.

• Benign tools used by the attacker. These can be popular living-off-the-land binaries,
such as Powershell and Windows Management Instrumentation (WMI), or other
benign software found in the victim’s estate that provides capabilities beneficial for
the attacker.

• Exploited vulnerabilities, either previously unknown ones (zero-day vulnerabilities) or
ones used earlier in other attacks. Exploitation techniques can be implemented in mal-
ware or by using appropriate benign tools, and we often see the same vulnerabilities
used in multiple attacks conducted by the same threat actor.

• Attack metadata, such as the times when the attacker communicates with the victim’s
systems (which can hint at the attacker’s geographical location) or information about
the victim (as their operations, core business domains, location, etc., can reveal the
attacker’s objectives).

Given the nature of the attack attribution problem, an obvious approach is to look for
similarities in data collected from attacks and about attackers. Identifying, ranking, and
aggregating such similarities in large volumes of highly heterogeneous data is, however,
time-consuming for investigators and requires expertise and experience. So, the growing
number and sophistication of cyberattacks necessitate analysis automation, and machine
learning techniques are a natural choice.

While the use of machine learning has recently been very popular in attack detection
and malware analysis methods, it seems very few reports are available on its applications
to cyberattack attribution.

Han et al. [14] implemented WHAP, a web-hacking profiling system that uses a simple
similarity measure for hacking cases, which is based on heuristically assigned similarity
weights for selected features (such as IP addresses and domain names) and Case-Based
Reasoning. While the use of feature vectors for representing website hacking cases (which
are just one type of cyberattack) and the defined similarity measure for those vectors are
the only connections of the proposed approach to machine learning, conceptually, it can be
extended to attack attribution methods by utilizing similarity search and clustering based
on “learning from data”. Even for website attacks only, this would, of course, require a
major effort.

Noever et al. [15] presented a Random Forest classifier for attributing attack tech-
niques (such as backdoor, man-in-the-middle, ransomware, and DoS) to the types of threat
actors (organized crime, nation state, hacktivist, unknown). While this approach can be
relevant, e.g., for policy discussions, it does not have the attribution of specific cyberat-
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tacks to specific threat actors as its objective and would have little utility in real-world
cyberattack investigations.

Noor et al. [7] present a framework for attributing unstructured (natural language)
CTI reports and documents. Since “low-level Indicators of Compromise (IOCs) are rarely
re-used and can be easily modified and disguised resulting in a deceptive and biased cyber
threat attribution” [7] (p. 227), their work focuses on common high-level attack patterns
(i.e., TTPs) for mapping a CTI report to a threat actor. With the labels for high-level attack
patterns taken from the MITRE ATT&CK taxonomy, Latent Semantic Analysis (LSA) is
used to index CTI reports with relevant labels. Then, a small set of CTI reports collected
from publicly available datasets and marked with the threat actors behind the reported
cyberattacks is used to train several machine learning models for attributing new reports.
Although some of the models show a very good performance in the cross-validation tests,
this is likely explained by the training and validation dataset’s toy size (and no evidence is
provided for evaluating the models on cyberattack data outside of the used dataset). More
generally, we think that fully focusing on high-level attack patterns and ignoring low-level
indicators will result in poor real-world performance because (i) many attackers use very
similar TTPs (e.g., in ransomware attacks); (ii) high-level TTPs are easy to mimic in false flag
operations; (iii) low-level indicators are actually reused (mainly due to attacker mistakes or
time and cost pressures) and very useful in such cases. We will further comment on this
high-level vs. low-level balance issue in the “Discussion and Future Work” section.

The use of pattern recognition and anomaly detection methods for TTP and IOC
extraction from raw log data was also proposed by Landauer et al. in [16], illustrated by
system log data analysis. These methods could be a supportive ingredient in the attack
attribution process, providing additional features for CTI reports and attack descriptions to
be attributed.

3. STIX-Based Attack Attribution Approach

A key objective defined in both CC-DRIVER and CYBERSPACE projects was to pro-
duce tools for following the threat landscape and actors (CTI management) and for investi-
gating cyberattacks (digital forensics). Technical attack attribution capabilities fit naturally
within this toolkit. As fully automated, reliable attack attribution is an infeasible goal, we
chose to build an attack attribution recommender, based on the Structured Threat Informa-
tion eXpression [17] (STIX 2) language, implemented as an OpenCTI [8] extension, aiming
to guide incident investigators and significantly reduce their efforts.

To facilitate the process of identifying threat actors responsible for cyberattacks, the
problem was framed as follows: Design and implement a machine learning model that
takes a bundle of STIX 2 objects representing adversarial operations as input and predicts
the most probable threat actors behind the operations.

Here, “Bundle” is a STIX 2 term that refers to a collection of STIX 2 objects. While, in
principle, any STIX 2 entities can be included in a bundle, we started with the important
special case in which a bundle is a set of “incidents” observed in a given (attacked) organi-
zation in a given timeframe. In STIX 2, such “incidents” represent information collected
during attack investigation activities (usually conducted by LEAs, CERTs, or companies
providing incident response services).

“Threat actors” refer to individuals, groups, or organizations which operate in cy-
berspace with a malicious intent. We, however, chose to build our recommender model
to predict “intrusion sets” (which can subsequently be mapped to threat actors and then
to identities, e.g., by LEAs) in order to provide greater flexibility. Cyberattacks are often
leveraged by threat actors as part of a coordinated campaign against a specific target to
achieve a specific objective. An entire attack package consisting of multiple campaigns
sharing properties and behaviors and believed to be orchestrated by a single threat actor is
represented in STIX 2 as an “intrusion set”, and there are advantages in reasoning about
attribution in terms of intrusion sets. For example, the threat actor behind a given attack
may not be known, but their multiple operations can be grouped together in an intrusion
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set, and then a new attack can be attributed—technically, without involving identities—to
that intrusion set. This form of attribution almost always helps when responding to the
attack and mitigating its impact, and it can also be a useful step in discovering the attackers’
identities. We note that a threat actor can move from one intrusion set to another, changing
their TTPs, or they can “utilize” multiple intrusion sets at the same time. The attribution
relationships in STIX 2 are shown in Figure 1.
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Figure 1. Attributed-to relationships in STIX 2 are shown with the arrows in bold (the icons are taken
from https://github.com/MISP/intelligence-icons, accessed on 21 January 2024).

Our preliminary investigations confirmed that obtaining sufficiently large incident
datasets to train a good attribution support model would be challenging, particularly
because such datasets are often considered highly confidential. So, in parallel to extending
the data collection, we simplified our problem to predicting an intrusion set for a single
incident (instead of a bundle), as shown in Figure 2.
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For intrusion sets, a collection of over 350 entities (identified by their names, such as
“APT28” or “Lazarus”) was obtained from MITRE [18], AlienVault [19], Malpedia [20], and
WithSecure. To compensate for the shortage of incident data, we chose to rely on the data
augmentation approach, generating synthetic incidents based on the data from available
intrusion sets. In producing incidents, specific rules designed together with cybersecurity
experts, guided by their experience and observations, were followed:

• Incident data reuse the elements (properties or related objects) present in a specific
intrusion set.

• The number of elements should be between 10 and 50 per incident, following a beta-
binomial distribution with the median value around 15.

• From the elements present in an intrusion set, the following STIX 2 objects are reused:
TTPs (up to 50%), tools (up to 20%), malware (up to 20%) and others (up to 10%).
“Others” here include indicators, locations, and so on (all the entities that can be found
in the intrusion set). The numbers in brackets indicate the upper bounds on the share
of reused elements of a given type. However, if an intrusion set does not have, for
example, “tool” elements at all, we will end up having zero tools added to synthetic
incidents. With the chosen upper bounds, the actual numbers of attributes of a given
type are selected uniformly at random.

• To keep the synthetic dataset balanced, each non-empty intrusion set is used to gener-
ate the same number of incidents.

Using this approach, hundreds of thousands of synthetic incidents can be produced
from the available intrusion sets, and those form the main body of a labeled dataset for
supervised learning. It is split into training and testing sets, where the testing (validation)
set has 20% of the data, with the remainder used for training a model. At the time of writing
this article, the incident dataset consisted of approximately 270 thousand entries.

The incident data are preprocessed for training and validation by applying CountVec-
torizer from the scikit-learn library [21] as a one-hot encoder, mapping incidents to sparse
binary vectors: the entity IDs and names observed in at least one of the incidents are used as
our features, and for a given incident the value of a specific feature is 1 if the corresponding
entity ID or name is present in the incident and 0 otherwise. The properties and objects,
from which we pick entity IDs and names, were informally introduced in the discussion of
the data collected in incident response operations in Section 2. The complete list is:

• Attack Patterns (https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#
_axjijf603msy, accessed on 21 January 2024)

• Malware (https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_s5l7katgbp0
9, accessed on 21 January 2024)

• Tools (https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_z4voa9ndw8
v, accessed on 21 January 2024)

• Identities (including Sector entities) (https://docs.oasis-open.org/cti/stix/v2.1/os/
stix-v2.1-os.html#_wh296fiwpklp, accessed on 21 January 2024)

• Locations (including Country and Region entities) (https://docs.oasis-open.org/cti/
stix/v2.1/os/stix-v2.1-os.html#_th8nitr8jb4k, accessed on 21 January 2024)

• Vulnerabilities (https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_q5
ytzmajn6re, accessed on 21 January 2024)

• Indicators (including File, IPv4 address, Domain Name, and Process entities) (https:
//docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_muftrcpnf89v, accessed
on 21 January 2024)

An example of the IDs used as features is “T1059”, which is an attack pattern specified
in the MITRE ATT&CK knowledge base (https://attack.mitre.org/techniques/T1059/,
accessed on 21 January 2024). Examples of the names used as features are “MagicRAT”
(a malware described at https://blog.talosintelligence.com/lazarus-magicrat/, accessed
on 21 January 2024) and “WinRAR” (a benign tool, malicious use of which is described at
https://attack.mitre.org/techniques/T1560/001/, accessed on 21 January 2024). At the

https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_axjijf603msy
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_axjijf603msy
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_s5l7katgbp09
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_s5l7katgbp09
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_z4voa9ndw8v
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_z4voa9ndw8v
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_wh296fiwpklp
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_wh296fiwpklp
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_th8nitr8jb4k
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_th8nitr8jb4k
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_q5ytzmajn6re
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_q5ytzmajn6re
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_muftrcpnf89v
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_muftrcpnf89v
https://attack.mitre.org/techniques/T1059/
https://blog.talosintelligence.com/lazarus-magicrat/
https://attack.mitre.org/techniques/T1560/001/


Forensic Sci. 2024, 4 18

time of writing this article, the incident dataset entries were represented by approximately
10 thousand (binary) features. We ran several rounds of experiments with three shallow
multi-class classification models (with the same collection of intrusion sets but with the
synthetic incidents generating algorithm that evolved from round to round): naive Bayes
(the Bernoulli version was used, as incidents are represented as binary vectors), logistic
regression, and random forest. In the final round, with the incident generation algorithm
considered optimal by the experts (presented earlier in this section), all the models showed
similar results, with a classification accuracy of around 0.97. The Bernoulli naive Bayes
classifier was selected as the attribution recommender model primarily because (i) it has
a significantly shorter training time than the other two classifiers (important for frequent
retraining, which is a likely scenario), and (ii) its predictions are easy to interpret for
incident investigators. Of course, the good observed performance of the models can be due
to the synthetic nature of the data, so we are collecting more real-world incident data and
planning further extensive modeling and validation experiments.

4. The Tool Design and Processing Flow

The attack attribution tool runs as an OpenCTI extension. The OpenCTI platform,
with its growing user community and convenient framework for extending the platform’s
capabilities, has become a popular choice for storing, analyzing, and sharing both CTI
and digital forensics data collected in cyber incident investigations. STIX 2, the underly-
ing OpenCTI data format, allows for a rich representation of incidents as collections of
observables and associated entities (such as TTPs, malware, and command-and-control in-
frastructure), combining high-level, abstracted views of attacks with relevant technical details.

The attribution tool is implemented as a connector [22] of OpenCTI and is available as
an open-source contribution to the OpenCTI Platform project [23]. It is written in Python
and uses the pycti Python library [24] to call the OpenCTI API. The tool is packaged as a
Docker container, which is typical for OpenCTI connectors.

At runtime, the attribution tool runs as a standalone process and subscribes to the
OpenCTI platform as an internal enrichment connector with a callback method for message
processing. When a user wants to attribute an incident object and selects the attribution
button in the platform GUI, an attribution request message is sent to the message queue,
and subsequently the callback method is executed. The tool then uses the OpenCTI platform
API to collect the relevant information of the incident object under analysis and of the
objects in direct relationship with it, which is then passed to the attribution recommender
model. To return the intrusion sets predicted by the model to the user, the tool creates a
“note object” and attaches it to the incident object. Such a note object contains the top three
intrusion set names with the corresponding model’s confidence values and the links to
the intrusion set objects in the OpenCTI database. There is also a configuration setting in
the attribution tool for automatically creating a relationship between an incident object
and the top predicted intrusion set if the model’s confidence value for the latter is above a
chosen threshold.

The connector periodically checks whether new data in the OpenCTI database should
be used for retraining the attribution recommender model. For example, a new intrusion
set is an obvious reason for retraining.

The tool processing flow is shown in Figure 3, and further details can be found at [23].
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5. Attribution Results for Real-World Incidents

The data expression power of STIX 2 and the growing popularity of OpenCTI explain
why an increasing number of incident response operations by WithSecure, a major European
provider of cybersecurity services and solutions, rely on OpenCTI for data management
and analysis. This recently gave us an opportunity to validate the attack attribution tool as
part of two real-world attack investigation engagements.

5.1. The “No Pineapple!” Incident

The first attack, codenamed “No Pineapple!” by the WithSecure’s Threat Intelligence
team, transpired to be part of a sophisticated campaign targeting public and private sector
research organizations, the medical research and energy sectors, as well as their supply
chains. WithSecure’s engagement started when a threat hunt in a customer estate identified
beaconing [25] to a Cobalt Strike C2 server. Since the C2 server IP address was previously
listed as an IOC for the BianLian ransomware group and a few other details also pointed
to their involvement, the initial (low-confidence) assessment of the WithSecure’s experts
was that they were dealing with a potential ransomware incident. However, as more
attacker tools, techniques, and actions were collected from the customer environment, it
became evident that the main objective of the attack was espionage, and a North Korean
state-sponsored threat actor was behind it. Notably, the attacker made a concerted effort
at hiding their traces, clearing logs and deleting files, tools, and other indicators of their
presence [26].
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The collected digital forensics data were added to OpenCTI as an incident object
representing the details of a single attack against a single organization. The object has quite
a rich set of relationships, as can be seen in Figure 4.
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We then applied the attack attribution tool to the “No Pineapple!” data and received
the “Lazarus” intrusion set associated with a North Korean state-sponsored threat actor
on the top of the list. It should be noted that at the time of the tool validation experiment,
the Lazarus intrusion set was not updated with the “No Pineapple!” investigation data but
represented the state of knowledge prior to the investigation.

The top three results reported by the tool (with the respective model confidence
values) were:

1. Lazarus Group: 0.996186486423268.
2. Elephant Beetle: 0.003794891776652858.
3. APT29: 0.000018620678059799746.

So, the Lazarus group was suggested by the model as the most probable intrusion
set for “No Pineapple!” with an overwhelming confidence, and this was subsequently
confirmed by the WithSecure’s experts. Elephant Beetle, which is a financially motivated
cybercrime group, was the second model’s pick. While the model confidence for the
Elephant Beetle intrusion set is low, we note that it shares a set of common attack techniques
with Lazarus, including blending in with the environment; deploying JSP web shells (JSP
file browser, in particular); and operating from temporary directories. It also exploits
known vulnerabilities in public-facing devices to gain initial access, although we are not
aware of any specific vulnerabilities exploited by both Lazarus and Elephant Beetle. That
is where the similarities end. Elephant Beetle is known to target different geographies,
their operations have been financially motivated, and they often target web services and
their components.

5.2. The “Black Basta” Incident

Another recent intrusion investigation by the WithSecure’s Incident Response team
also brought an OpenCTI incident object with a large number of relationships: 4 Attack Pat-
terns, 5 Malware entities, 2 Tools, 19 IPv4 addresses, 9 Files, 5 Domain Names, 5 Processes,
3 Regions, and 1 Country. The top three results reported by the tool in this case (with the
respective model confidence values) were:

1. Black Basta: 0.9919987932223466.
2. GCMAN: 0.0005211614823012417.
3. Saaiwc Group: 0.0005211614823012417.

The Black Basta intrusion set suggested by the tool was confirmed by the experts.
In the OpenCTI instance that was used for the incident attribution, there were 21 Attack
Patterns, 3 Malware entities, 6 Regions, and 2 Countries associated with this intrusion set.

Connecting the incident to a specific threat actor is more challenging. The Black Basta
group is a ransomware operator and is believed to be a Ransomware-as-a-Service (RaaS)
criminal enterprise [27], selling their ransomware and accompanying infrastructure to
other cybercriminals. The “service package” can also include playbooks and other tools for
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conducting attacks. If their “customers” fully rely on such tools and strictly follow such
playbooks, their operations will be practically indistinguishable (in particular, difficult to
distinguish from the core Black Basta group operations). So, the high confidence value
returned by the attribution tool for the Black Basta intrusion set did not help much with
identifying the threat actor behind the incident. At the same time, this high value helped
the Incident Response team in carrying out the remediation operations.

5.3. Externally Attributed Case

In addition, we tested the tool on a publicly available incident report from The DFIR
Report collection [28]. Based on this report, a new incident object and its relationships were
added to the OpenCTI instance: 19 Attack Patterns, 4 Tools, 3 Vulnerabilities, 2 Domain
Names, 2 IPv4 addresses, and 6 other Indicators. The top three results reported by the tool
for this incident were:

1. Magic Hound: 0.9833991991845277.
2. Blue Mockingbird: 0.0010974177998640602.
3. FIN10: 0.0010974177998640602.

The Magic Hound intrusion set is commonly associated with the threat actor named
APT35 by Mandiant or Phosphorus by Microsoft (currently tracked by Microsoft as Mint
Sandstrom), and The DFIR Report analysts manually attributed the incident to Phosphorus,
based primarily on the observed attack patterns. In the OpenCTI instance used for testing
the attribution tool, the Magic Hound intrusion set contained the following relationships:
131 Attack Patterns, 15 Malware entities, 13 Tools, 6 Vulnerabilities, 6 Regions, 2 Countries,
and 3 Sectors.

6. Discussion and Future Work

The results obtained so far indicate that the approach of building machine learning
models for attributing STIX 2 incidents to intrusion sets is promising and can bring sig-
nificant value to incident investigators and responders. The reliability of such models,
especially when attackers actively work to counter attribution efforts using false flags and
other techniques, critically depends on the availability of sufficiently rich incident data
and on a suitable balance between high-level attack patterns and attributes and low-level
indicators in the incident data representation. While STIX 2 is good for expressing TTPs,
malware, tools, exploited vulnerabilities, targeted geography and sectors at a certain level,
more subtle details—such as malware code similarities, custom passwords, developer
host information, the attacker’s email language, geopolitical objectives, malicious domain
registrar and registrant information—are not supported yet.

We see several ideas to explore for improving the attack attribution tool:

• Acquiring more real-world incident data, preferably with attribution labels (but even
unlabeled incidents can be useful), instead of heavily relying on synthetically gener-
ated incidents. (We showed, nevertheless, that even with synthetic incident datasets
generated in a suitable manner, one can build practically useful attribution models.)

• If many organizations agree to combine their incident data, a high-quality attribution
model can likely be trained, but incident data are often highly sensitive. One way
to address the data confidentiality issue is to train a model in a federated learning
manner [29] on data of multiple organizations. In particular, joint efforts with the
FATE project [30] working on collaborative confidentiality-preserving learning on CTI
data can be considered.

• Use of inherited STIX 2 relationships (through the OpenCTI rule engine). Currently,
only the data of direct neighbors, i.e., first-level relationships, are used in the model
for both incidents and intrusion sets. For example, a file associated with an incident
may have another relationship with a custom directory in which this file was located.
If the same directory is associated with other files, this information may be valuable
for attribution but is currently ignored.
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• STIX 2 supports timestamps which can be used for building a timeline of the attacker’s
actions. Because most of the incident data in our model training sets is produced
synthetically from the intrusion sets, timestamps are currently ignored. Collecting
timestamps whenever possible and including them in modeling should be explored
for utilizing attack timelines in attribution.

• Controlling the weights of features in the incident representation. Currently, the
influence of specific features is learned implicitly when a model is trained. Combining
the data-driven approach with expert-defined rules could be explored to mitigate the
impact of biases and other imperfections in the training sets.

In conclusion, we would like to emphasize that even when large and clean training
datasets are available, attack attribution models will make mistakes and can be deceived
by skillful and determined attackers. Therefore, such models should primarily be used in
the recommendation mode, with human experts verifying their output.
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