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Abstract

In this thesis we study a specific Carnot group which is the n-th Heisenberg group
Hn = (R2n+1, ∗). Carnot groups are simply connected nilpotent Lie groups whose
Lie algebra admits a stratification. The Heisenberg group Hn is one of the easiest
examples of non-commutative Carnot groups.

In the first part of the thesis we recall some preliminaries about measure theory
and Heisenberg groups which we need. We also prove some useful inequalities which
are needed to prove the main theorem.

The main result of the thesis is that in any Heisenberg group Hn there exists a
H-regular hypersurface which has a Euclidean Hausdorff dimension of 2n + 1

2
. This

generalizes a construction in [KSC04] from n = 1 to n > 1. To prove the main result
we need a dimension comparison theorem in general Heisenberg groups. We will prove
such a dimension comparison theorem in the thesis combining ideas from the proofs
in [BRSC03](for H1) and [BTW09](for Carnot groups).

Dimension comparison theorem gives us information about the absolute continuity
of the Hausdorff measure when comparing the measure in Euclidean and Heisenberg
point of view. As a corollary we obtain Hausdorff dimension comparison which gives
us lower and upper bounds for the Heisenberg Hausdorff dimension of a set A ⊂ Hn.
More precisely the results are about comparing Hausdorff measures and dimension
when computed in the Euclidean and the Heisenberg distance, respectively.
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Tiivistelmä

Tässä tutkielmassa tutkimme Carnot-ryhmiä erikoistapauksessa, jossa Carnot-ryhmä
G on yleinen Heisenbergin ryhmä Hn = (R2n+1, ∗). Carnot-ryhmät ovat yhdesti yht-
enäisiä nilpotentteja Lien ryhmiä, joiden Lien algebra h muodostuu k-asteisesta strat-
ifikaatiosta. Heisenbergin ryhmä Hn on helpoimpia esimerkkejä ei-vaihdannaisesta
Carnot-ryhmästä.

Tutkielmassa esitellään ja todistetaan esitietoja mittateoriasta ja Heisenbergin
ryhmistä, joita tarvitsemme tutkielmassa. Lisäksi todistetaan hyödyllisiä epäyhtälöitä,
joita tarvitaan päätuloksen todistamiseen.

Tutkielman yhtenä päätuloksena todistamme, että missä tahansa Heisenbergin
ryhmässä Hn on olemassa H-säännöllinen hyperpinta, jonka Euklidinen Hausdorf-
fin dimensio on 2n + 1

2
. Päätulos yleistää paperissa [KSC04] rakennetun esimerkin

tapauksessa n = 1 tapaukseen n > 1. Tämän tuloksen todistamiseen tarvitsemme
dimensionvertailuteoreemaa yleisessä Heisenbergin ryhmässä. Dimensionvertailuteo-
reema todistetaan tutkielmassa, ja sitä varten todistamme pari propositiota, jotka
kertovat Hausdorffin mitan ja pallomitan absoluuttisesta jatkuvuudesta mielivaltai-
sissa metrisissä avaruuksissa. Pääteorioiden todistusten ideat saamme yhdistämällä
tutkimuspapereissa [BRSC03] ja [BTW09] olevia ajatuksia.

Dimensionvertailuteoreema antaa meille tietoa Hausdorffin mitan absoluuttisesta
jatkuvuudesta, kun vertaamme sitä Euklidessa ja Heisenbergin tapauksessa. Dimen-
sion vertailun avulla saamme seurauksena Hausdorffin dimension vertailuteoreeman,
joka on tämän tutkielman toinen päätulos. Sitä käyttämällä voimme verrata joukon
Hausdorffin dimensiota Heisenbergin ryhmän ja Euklidisen avaruuden välillä.
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Introduction

The Heisenberg group Hn = (R2n+1, ∗) has been an active research topic for at least
couple of decades now. The Heisenberg group equipped with the left-invariant Heisen-
berg distance dH is an example of a space that is different from Euclidean space.
Semmes observed that the space (Hn, dH) does not bi-Lipschitzly embed into any
Euclidean space. Heisenberg groups provide a rich mathematical theory for example
regarding sub-Riemannian geometry or geometric measure theory in non-Euclidean
space. In this thesis we focus on the geometric measure theoretic point of view.

We prove two main theorems in thesis. The first one is Corollary 30, which tells
us that in any Heisenberg group Hn we have the next inequalities:

β−(dimE(A)) ≤ dimHA ≤ β+(dimE(A))

for every A ⊂ Hn, where

β−(α) =

{
α, 0 ≤ α ≤ 2n

2α− 2n, 2n ≤ α ≤ 2n+ 1

and

β+(α) =

{
2α, 0 ≤ α ≤ 1

α + 1, 1 ≤ α ≤ 2n+ 1.

Here dimE and dimH denote the Hausdorff dimensions in the Euclidean and Heisen-
berg metric, respectively.

The second one is Theorem 52 which says that in any Heisenberg group Hn there
exists an H-regular surface S ⊂ Hn such that

dimE S = 2n+
1

2
.

The dimension comparison result in Hn is known by the paper of Balogh, Tyson and
Warhurst in [BTW09]. The proof in this thesis is different from what they used in
their paper [BTW09]. In this thesis we obtain the result as a corollary from Theorem
29, which tells us that for α ≥ 0 we have

Hmin{2α,α+1}
H ≪ Hα

E

and
Hmin{α,n+α/2}

E ≪ Hα
H
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and we get this theorem as a consequence of a result in abstract metric spaces. In
[BTW09] they obtain the result as a consequence of Hausdorff measure comparison
[BTW09, Proposition 3.1 p.575]. The second result Theorem 52 is a generalisation
of [KSC04, Theorem 3.1 and Remark 3.3 p.9], which combined tells that in H1 there
exists an H-regular surface S ⊂ H1 such that

dimE S =
5

2
.

The results are interesting because, for instance :

∗ If one wants to do geometric measure theory on (Hn, dH), one needs an analog of
smooth surfaces in Euclidean spaces as building blocks. The H-regular surfaces
have been proposed as such building blocks. The result shows that they can
be very different from Euclidean C1 surfaces and look like fractals. In contrast,
Euclidean hypersurfaces in R2n+1 have (Euclidean) Hausdorff dimension 2n.

∗ Lines in R2n+1 are 1-dimensional in Euclidean metric, but can be 1- or 2-
dimensional in Heisenberg metric depending on their position and direction.
The dimension comparison theorem provides a range of values that the Heisen-
berg Hausdorff dimension can assume for a set with given Euclidean Hausdorff
dimension. The range is known to be sharp, but we do not prove this here.

Chapter 1 is about preliminaries that we will need throughout this thesis. In the
first Section 1.1 we recall some basic definitions of measure theory and metric spaces.
We also recall some useful lemmas and properties for Borel regular measures and
theorems such as coarea inequality and mass distribution principle. In Section 1.2
we introduce the Heisenberg group Hn and see some basic theory about it. We will
also see how the Euclidean metric and Heisenberg metric are related to each other.
Lastly we will see some examples about the Hausdorff dimension of different sets
from Euclidean and Heisenberg point of view which leads us towards the dimension
comparison theorem in Chapter 2.

Chapter 2 is divided into two sections. In Section 2.1 we first prove a propo-
sition about absolute continuity of Hausdorff measures in arbitrary metric spaces
(X, d1), (X, d2). We will also get the same kind of a result for spherical measure. In
Section 2.2 we prove a comparison theorem in Heisenberg groups for Hausdorff di-
mension with respect to the Euclidean and Heisenberg metric, respectively. We also
get some covering results for Heisenberg metric and Euclidean metric and absolute
continuity results for Hausdorff measure and spherical measure when we apply the
results from Section 2.1 to the Heisenberg group.

Chapter 3 is about the generalization of the example which Kirchheim and Serra
Cassano constructed in H1. In Section 3.1 we define an auxiliary function h : R → R
needed for the construction of the surface. A function with the same properties was
already used in [KSC04], but here we follow the simpler construction in [Raj08]. The
function has two crucial properties where one is that the Hausdorff dimension of
h−1(t) for all points t ∈ R is at least 1

2
. In Section 3.2 we generalize the example of

Kirchheim and Serra Cassano from H1 to general Hn. Before the generalization we
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define what an H-regular hypersurface is and see some easy examples about it. Then
lastly with the dimension comparison theorem and the lower bound of the Euclidean
Hausdorff dimension of S that we prove, we get the wanted theorem that there is an
H-regular surface S ⊂ Hn such that the dimES = 2n + 1

2
. This theorem generalizes

the example of Kirchheim and Serra Cassano.
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Notation

� P(X) power set of X

� B(p, r) closed ball of radius r > 0 centered at the point p

� U(p, r) open ball of radius r > 0 centered at the point p

� dE Euclidean metric

� dH Heisenberg metric

� diam(A) := sup{d(x, y) : x, y ∈ A}

� Hs
d(A) s-dimensional Hausdorff measure of a set A with respect to the metric d

� Ss
d(A) s-dimensional spherical measure of a set A with respect to the metric d

� Ln(A) n-dimensional Lebesgue measure of a set A ⊂ Rn

� dimH(A) Hausdorff dimension of a set A in an abstract metric space or in
(Hn, dH)

� ⌈x⌉ = min{k ∈ Z : k ≥ x} ceiling function

� ⌊x⌋ = max{k ∈ Z : k ≤ x} floor function

� ≪ absolute continuity of a measure with respect to another measure
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Chapter 1

Preliminaries

In this chapter we introduce some basic definitions and results that we need through-
out this thesis. This chapter is divided into two parts. In the first part we revise some
basic measure theory and some properties for metric spaces. The second part intro-
duces Heisenberg groups and some properties that they have. The main references
for this chapter are [Mat95], [CDPT07] and [BRSC03].

1.1 Measure theory and metric spaces

In this thesis we shall call measure what is usually called outer measure. Let’s start
with some basic definitions.

Definition 1. A set function µ : P(X) := {A : A ⊂ X} → [0,∞] = {t : 0 ≤ t ≤ ∞}
is called a measure if

1. µ(∅) = 0,

2. µ(A) ≤ µ(B) whenever A ⊂ B,

3. µ(
⋃∞

i=1Ai) ≤
∑∞

i=1 µ(Ai) whenever A1, A2, ... ⊂ X.

Definition 2. Let µ and λ be measures on X. Then λ is absolutely continuous with
respect to µ denoted by λ≪ µ if for all E ⊂ X:

µ(E) = 0 implies λ(E) = 0,

cf [Mat95, Definition 2.11] for X = Rn.

Definition 3. A mapping d : X ×X → [0,∞[ is a distance function or a metric in a
set X, if it has the next properties

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x) for all x, y ∈ X, and

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
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Now the pair (X, d) is called a metric space.

In this thesis we denote by B(p, r) the closed ball with radius r > 0 centered at
point p and by U(p, r) the open ball with radius r > 0 centered at point p. For any
A ⊂ X we denote diam(A) := sup{d(x, y) : x, y ∈ A} and we make an agreement
that diam(∅)0 = 0.

Next we recall the definition of Hausdorff measure and spherical measure on a
metric space (X, d).

Definition 4. Let (X, d) be a metric space. When 0 ≤ s < ∞ and 0 < δ ≤ ∞, then
for A ⊂ X we let

Hs
d,δ(A) := inf

{
∞∑
n=1

(diam(En))s : En ⊂ X, diam(En) ≤ δ, A ⊂
⋃
n∈N

En

}

and

Ss
d,δ(A) := inf

{
∞∑
n=1

(diam(B(xn, rn))s : B(xn, rn) ⊂ X, diam(B(xn, rn)) ≤ δ, A ⊂
⋃
n∈N

B(xn, rn)

}
.

We define the s-dimensional Hausdorff measure Hs
d on (X, d) and the s-dimensional

spherical measure Ss
d on (X, d) by

Hs
d(A) := lim

δ→0
Hs

d,δ(A)

and
Ss
d(A) := lim

δ→0
Ss
d,δ(A)

respectively. If the metric is clear from the context we will write Hs
δ(A),Hs(A) instead

of Hs
d,δ(A),Hs

d(A).

Remark 5. We assume throughout Section 1.1 that the metric space (X, d) is separable
just to ensure that countable δ-covers always exist, to avoid technicalities.

Also we recall the definition of Hausdorff dimension for a set A.

Definition 6. The Hausdorff dimension of a set A ⊂ X is

dimH(A) = inf{s ≥ 0 : Hs
d(A) = 0} = sup{s ≥ 0 : Hs

d(A) = ∞}.

Definition 7. Let µ be a measure on a metric space (X, d). The measure µ is Borel
regular if it is a Borel measure, i.e. every Borel set is µ-measurable, and if for every
A ⊂ X there is a Borel set B ⊂ X such that A ⊂ B and µ(A) = µ(B).

For the definition of µ-measurable sets, see [Mat95, 1.3].
Next as in [BRSC03, Prop. 2.2], we list some basic properties of Hausdorff measure

and spherical measure which are needed later on.
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Proposition 8. 1. Let (X, d) be a metric space. Then Hs
d and Ss

d are Borel regular
measures and

Hs
d(A) ≤ Ss

d(A) ≤ 2sHs
d(A)

for all A ⊂ X, s ≥ 0.

2. Let (Xi, di) (i = 1, 2) be two metric spaces and let f : (X1, d1) → (X2, d2) be an
L-Lipschitz continuous map, i.e

d2(f(x), f(y)) ≤ Ld1(x, y) (for all x, y ∈ X1).

Then
Hs

d2
(f(A)) ≤ LsHs

d1
(A)

for all A ⊂ X1 , s ≥ 0.

3. Let (X, d) be a metric space, t ∈ (0, 1), and let dt(x, y) := (d(x, y))t for x, y ∈ X.
Then dt is a distance on X and

Hs
d(A) = H

s
t
dt

(A)

for all A ⊂ X, s ≥ 0.

4. Let (X, d) be a metric space and let Y ⊂ X. Denote by dY the metric on Y
induced by d. Then

Hs
d(A) = Hs

dY
(A)

for all A ⊂ Y , s ≥ 0.

5. Properties 2 and 3 hold if Hausdorff measure is replaced by spherical measure.

Proof. Only property 3 will be proved. For the other points we refer the reader to
standard textbooks in geometric measure theory such as [Mat95].

First claim is that dt is a distance:

1. dt(x, x) = (d(x, x))t = 0 because d(x, x) = 0.

2. dt(x, y) = (d(x, y))t > 0 because d(x, y) > 0 if and only if x ̸= y.

3. dt(x, y) = (d(x, y))t = (d(y, x))t = dt(y, x) because d(x, y) = d(y, x).

4. To prove the triangle inequality we use the fact that for a, b ≥ 0, t ∈ (0, 1) it
holds (a + b)t ≤ at + bt. Notice that the function f(x) = xt is concave on the
interval [0,∞) with f(0) = 0. Now for a, b ≥ 0 we get

(a+b)t =
a

a+ b
(a+b)t+

b

a+ b
(a+b)t ≤

(
a

a+ b
(a+ b)

)t

+

(
b

a+ b
(a+ b)

)t

= at+bt.

Now

dt(x, z) = (d(x, z))t ≤ (d(x, y)+d(y, z))t ≤ (d(x, y))t+(d(y, z))t = dt(x, y)+dt(y, z).
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The second claim is that Hs
d(A) = Hs/t

dt
(A) for A ⊂ X. In this proof the notation

diamEd
n := sup{d(x, y) : x, y ∈ En} tells in which metric we are taking the supremum.

Let {En}n∈N be a δ-cover for set the A in metric d. Now we get∑
n∈N

(diamEd
n)s =

∑
n∈N

(diamEd
n)

ts
t =

∑
n∈N

(diamEdt
n )

s
t .

Now taking infimum of all δ-covers and letting δ → 0 we get Hs
d(A) = Hs/t

dt
(A). Notice

that a δ-cover for d is a δt-cover for dt.

Next we have a lemma that can be used to give a lower bound on the Hausdorff
dimension of a set in metric spaces.

Lemma 9. (Mass distribution principle): Let (X, d) be a metric space, let A ⊂ X and
let s > 0. Suppose there is a measure µ on X with the following property:

1. µ(B(x, r) ∩ A) ≤ cµr
s for all x ∈ X and 0 < r ≤ R, where cµ,R > 0 are fixed

constants.

Then one can conclude that µ(A) ≤ cµHs
d(A).

In particular, if additionally µ(A) > 0 holds true, then Hs
d(A) > 0 .

Proof. Let δ < R. Let {En}n∈N be a cover for A where En ⊂ X and diam(En) ≤ δ.
Now A ⊂

⋃
n∈NEn∩A and if xn ∈ En, then En ⊂ B(xn, diam(En)). Now we get that

µ(A) ≤ µ(
⋃
n∈N

B(xn, diam(En)) ∩ A)

≤
∑
n∈N

µ(B(xn, diam(En)) ∩ A)

≤
∑
n∈N

cµ(diam(En))s = cµ
∑
n∈N

(diam(En))s.

Now taking infimum over covers and let δ → 0 we get µ(A) ≤ cµHs
d(A). If µ(A) > 0

then Hs
d(A) > 0 can be instantly concluded from the proof above.

Theorem 10. Suppose X is a metric space, suppose µ is a Borel-regular measure on X,
and suppose that X = ∪∞

j=1Vj, where µ(Vj) < ∞ and Vj is open for each j = 1, 2, ....
Then

µ(A) = inf
O open,A⊂O

µ(O)(1.1)

for each subset A ⊂ X, and

µ(A) = sup
K closed,K⊂A

µ(K)(1.2)

for each µ-measurable subset A ⊂ X.

Proof. Proof can be found in [Hol16, Theorems 1.24 and 1.26].
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Definition 11. Let (X, d) be a metric space and A ⊂ X with diam(A) > 0. A measure
µ on X is said to be an s-Ahlfors regular measure supported on A, if A is closed and
there exists a constant C ≥ 1, such that µ(X \ A) = 0 and

1

C
rs ≤ µ(B(x, r)) ≤ Crs for all x ∈ A, 0 < r ≤ diam(A), r <∞.

If the condition is satisfied for A = X, we also say that µ is an s-Ahlfors regular
measure on X.

Ahlfors regularity is a useful property for a measure to have like the next lemma
shows.

Lemma 12. Let (X, d) be a metric space, and suppose that µ is a Borel regular measure
on X with the property that there are positive constants K and s such that

K−1rs ≤ µ(B(x, r)) ≤ Krs

for all x ∈ X and 0 < r ≤ diam(X), r < ∞. Then there is a constant C depending
only on K and s so that C−1µ(E) ≤ Hs(E) ≤ Cµ(E) for all sets E ⊂ X.

Proof. ”µ(E) ≲ Hs(E)” The measure µ satisfies the condition (1) from Lemma 9
which tells us that µ(E) ≤ KHs(E).

”Hs(E) ≤ Cµ(E)” Let O be an open set such that E ⊂ O. We claim that

(1.3) Hs(E) ≤ Hs(O) ≤ Cµ(O),

where the constant C depends only on K and s.
Taking infimum over all open sets O such that E ⊂ O we can conclude that

Hs(E) ≤ C inf
O open,E⊂O

µ(O)
(1.1)
= Cµ(E).

To justify line (1.3) notice because O is open then for every x ∈ O there is r̃x such
that B(x, r̃x) ⊂ O and r̃x can be chosen to be less than a given small enough δ. Now
by the 5r-covering lemma [Sim83, Theorem 3.3] there is a subcollection of these balls
{B(x, r̃x) : x ∈ O} such that O ⊂

⋃
i∈I B(xi, 5ri) and B(xi, ri) are pairwise disjoint.

Since the metric space (X, d) is separable it follows that the index set I is countable.
Now

Hs
10δ(O) ≤

∑
i∈I

(diam(B(xi, 5ri)))
s ≤

∑
i∈I

2s5srsi

≤ K10s
∑
i∈I

µ(B(xi, ri)) = K10sµ(
⋃
i∈I

B(xi, ri)) ≤ K10sµ(O).

Now letting δ → 0 we get Hs(O) ≤ K10sµ(O).

For sets supporting s-Ahlfors regular measures we get a nice corollary from Lemma
12.
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Corollary 13. Let A ⊂ X be a closed set in a metric space (X, d) for which there exists
an s-Ahlfors regular and Borel regular measure µ supported on A. Then, dimH(A) =
s.

Proof. By s-Ahlfors regularity we know that C−1rs ≤ µ(B(x, r)) ≤ Crs for every
r ∈ (0, diam(A)], r <∞ and x ∈ A which already tells us that µ is not a zero measure.
Now using Lemma 9 we get that Hs(A) > 0 which means that dimH(A) ≥ s.

For dimH(A) ≤ s we have two cases.

1. If A is a bounded set then using Lemma 12 we get

Hs(A) ≤ Cµ(A) ≤ C(diam(A))s <∞

which gives us dimH A ≤ s.

2. If A is a unbounded set then we use the fact that in metric spaces unbounded
set can be represented as countable union of bounded sets and dimH A =
supn∈N dimH An when A =

⋃
n∈NAn. Then by the conclusion of Lemma 12

for E = An

Hs(An) ≤ Cµ(An) ≤ C(diam(An))s <∞.

Now we know that dimH An ≤ s for every An from which we can conclude that
supn∈N dimH An ≤ s and now using the fact that dimH A = supn∈N dimH An

gives the claim.

Definition 14. A measure µ on a metric space X is said to be doubling if there exists
constant C ≥ 1 such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞

for all x ∈ X and r > 0.

Definition 15. A metric space (X, d) is said to be doubling if there exists N ∈ N such
that for every r > 0 every ball of radius 2r can be covered with at most N balls of
radius r.

Lemma 16. If a metric space (X, d) admits a doubling Borel measure then (X, d) is
metrically doubling.

Proof. Let us take r-separated points {xi}mi=1 from B(x, 2r). Now the balls U(xi, r/2)
are disjoint and notice that U(xi, r/2) ⊂ U(x, (5r)/2) because if q ∈ U(xi, r/2) then
d(q, x) ≤ d(q, xi) + d(xi, x) < r/2 + 2r = 5

2
r. From the same kind of argument one

can see that U(x, 5
2
r) ⊂ U(xi,

9
2
r) holds for every i ∈ {1, ...,m}. Let x1 be a point

such that µ(B(x1, r/2)) ≤ µ(B(xi, r/2)) for all i ∈ {1, ...,m}. Now we get

mµ(U(x1, r/2)) ≤ µ(
m⋃
i=1

U(xi, r/2)) ≤ µ(U(x,
5

2
r))

≤ µ(B(x1,
9

2
r))

Doublingmeasure

≤ C4µ(B(x1, r/2)),
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where C is the doubling constant of µ. That tells us that m ≤ C4 which means m
is bounded and independent of x and r. By adding finitely many points if necessary,
we may assume that {xi}mi=1 is a maximal r-separated set, and still m ≤ C4. Claim
{B(xi, r)}mi=1 is a cover for B(x, 2r). If {B(xi, r)}mi=1 does not cover B(x, 2r) that
means there exists a point q ∈ B(x, 2r) such that q /∈ B(xi, r) for any i ∈ {1, ...,m}.
If q /∈ B(xi, r) for any i ∈ {1, ...,m} that tells us d(q, xi) > r which means {xi}mi=1 is
not maximal set of r-separated points, which is a contradiction.

Lastly recall the coarea inequality. This inequality can be found, for example,
from [EH21].

Theorem 17. If f : X → Y is a L-Lipschitz map between metric spaces, A ⊂ X,
∞ > s ≥ t ≥ 0, then∫ ∗

Y

Hs−t(f−1(y) ∩ A)dHt(y) ≤ (L)tCs,tHs(A),

where Cs,t > 0 is a universal constant. Moreover if X is boundedly compact i.e.,
bounded and closed sets in X are compact, A is Hs-measurable, and Hs(A) < ∞,
then the function

y → Hs−t(f−1(y) ∩ A)

is Ht-measurable and then the upper integral
∫ ∗
Y
can be replaced with the usual integral.

1.2 Heisenberg groups

In this thesis we consider the n-th Heisenberg group Hn = (R2n+1, ∗) as a homogeneous
group endowed with the left invariant, homogeneous Heisenberg distance dH defined
as follows.

Definition 18. A point p ∈ Hn is denoted by p = (x, y, t) where x, y ∈ Rn and t ∈ R. If
p = (x, y, t) and q = (x′, y′, t′) ∈ Hn then the group multiplication ∗ : Hn ×Hn → Hn

is given by

p ∗ q = (x, y, t) ∗ (x′, y′, t′) := (x+ x′, y + y′, t+ t′ + 2(x′ · y − x · y′)),

where x · y denotes standard scalar product on Rn.

The inverse of p is p−1 := (−x,−y,−t) and e = 0 is the identity of Hn. For any
q ∈ Hn and r > 0, we denote lq : Hn → Hn as the left translation p 7→ q ∗ p = lq(p)
and δr : Hn → Hn as the dilation

p 7→ (rx, ry, r2t) = δr(p).

Dilations are automorphisms of Hn. Dilation map is bijective, it maps identity to
identity and

δr(p ∗ q) = δr(x+ x′, y + y′, t+ t′ + 2(x′ · y − x · y′))
= (r(x+ x′), r(y + y′), r2(t+ t′ + 2(x′ · y − x · y′)))
= δr(p) ∗ δr(q)
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which proves that the dilation is automorphism.
Hn is endowed with a gauge also known as Korányi norm,

∥p∥H := ((|x|2 + |y|2)2 + t2)1/4

where |x|2 =
∑n

i=1 x
2
i . This gauge has the properties that are ∥p∗q∥H ≤ ∥p∥H +∥q∥H ,

∥δr(p)∥H = r∥p∥H , ∥p∥H ≥ 0 and ∥p∥H = 0 ⇔ p = 0. The triangle inequality is
proved for instance in [CDPT07, chapter 2.2.1 page 18]. From the properties that the
gauge has we see that it induces a metric called the Heisenberg distance:

dH(p, q) := ∥p−1 ∗ q∥H .

Next we prove a few useful properties of dH . For all p, q ∈ Hn,

dH(p, q) = ∥p−1 ∗ q∥H = dH(p−1 ∗ q, 0).

For all p, q, z ∈ Hn and for all r > 0,

(1.4) dH(z ∗ p, z ∗ q) = ∥(z ∗ p)−1 ∗ z ∗ q∥H = dH(p, q)

and

(1.5) dH(δr(p), δr(q)) = ∥(δr(p))
−1 ∗ δr(q)∥H = r∥p−1 ∗ q∥H = rdH(p, q).

In this thesis we will use the notation dE for Euclidean distance, Hs
E := Hs

dE
,Hs

H :=
Hs

dH
, dimE and dimH for respective Hausdorff dimensions.

The Heisenberg group Hn is a Lie group and the standard basis of the Lie algebra
h of Hn is given by

Xi := ∂/∂xi + 2yi∂/∂t, Yi := ∂/∂yi − 2xi∂/∂t, T := ∂/∂t,

for i = 1, ..., n. One can read more about Lie theory for example from [Kir08]. The
vector fields X1, ..., Xn and Y1, ..., Yn span the horizontal subspace h1. Denoting h2 as
the linear span of T , the 2-step stratification of h is expressed as

h = h1 ⊕ h2.

The vector fieldsX1, ..., Xn and Y1, ..., Yn span a vector bundle, the so-called horizontal
bundle HHn, where HHn

p := span{Xi(p), ..., Xn(p), Y1(p), ..., Yn(p)} for all p ∈ Hn,
which can be canonically identified with a vector subbundle of the tangent vector
bundle THn ≡ TR2n+1.

Lemma 19. A set A ⊂ Hn is bounded with respect to dH if and only if it is bounded
with respect to dE.

Proof. ”⇐” Let bE := b ≥ 1 be such that dE(p, 0) ≤ b for all p = (x, y, t) ∈ A. This
tells us that |x|2 + |y|2 ≤ b2 and t2 ≤ b2. Now we get

dH(p, 0) = ((|x|2 + |y|2)2 + t2)1/4 ≤ ((b2)2 + b2)1/4 = (b4 + b2)1/4

≤ (b4 + b4)1/4 = 21/4b.
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”⇒” Let bH := b ≥ 1 be such that dH(p, 0) ≤ b for all p = (x, y, t) ∈ A. This tells us
that |x|2 + |y|2 ≤ b2 and t ≤ b2. Now we get

dE(p, 0)2 = |x|2 + |y|2 + t2 ≤ b2 + b4 = (1 + b2)b2 ≤ 2b4.

Now, taking square root both sides, we get dE(p, 0) ≤ 21/2b2.

There is the following relationship between the distances dE and dH in R2n+1.

Lemma 20. Let A be a bounded subset of (R2n+1, dE) and let b ≥ 1 be such that
supp∈A dE(p, 0) ≤ b. Then there is a positive constant c = c(b) such that for p, q ∈ A
we have

(1.6)
1

c
dE(p, q) ≤ dH(p, q) ≤ c(dE(p, q))

1
2 .

In particular the identity map Id : (R2n+1, dE) → (R2n+1, dH) is a homeomorphism.

Proof. Let us start showing inequalities from left to right, denoting p = (x, y, t) and
q = (x′, y′, t′).

dE(p, q)2 = |x− x′|2 + |y − y′|2 + |t− t′|2

= |x− x′|2 + |y − y′|2 + |t− t′ − 2(x · y′ − x′ · y) + 2(x · y′ − x′ · y)|2

≤ |x− x′|2 + |y − y′|2 + (|t− t′ − 2(x · y′ − x′ · y)| + |2(x · y′ − x′ · y)|)2

≤ |x− x′|2 + |y − y′|2 + 3|t− t′ − 2(x · y′ − x′ · y)|2 + 12|(x · y′ − x′ · y)|2(1.7)

≤ cbdH(q−1 ∗ p, 0)2.(1.8)

Where we used

|t− t′ − 2(x · y′ − x′ · y)|2 ≤ 6b2|t− t′ − 2(x · y′ − x′ · y)|

and

|x · y′ − x′ · y|2 = |x · (y′ − y) − (x′ − x) · y|2 ≤ (|x · (y′ − y)| + |(x′ − x) · y|)2

≤ 3|y′ − y|2|x|2 + 3|x′ − x|2|y|2 ≤ 3b2(|y′ − y|2 + |x′ − x|2)

to go from (1.7) to (1.8). For the other inequality

dH(q−1 ∗ p, 0)4 = (|x− x′|2 + |y − y′|2)2 + |t− t′ − 2(x · y′ − x′ · y)|2

≤ (|x− x′|2 + |y − y′|2)2 + (|t− t′| + 2|(x · y′ − x′ · y)|)2

≤ b2(|x− x′|2 + |y − y′|2) + 3|t− t′|2 + 12|(x · y′ − x′ · y)|2

≤ cbdE(p, q)2.

Now we have proved the wanted inequalities.
Clearly the identity map is bijective and the inverse function of the identity map

is the identity map. Let us show that the identity map is continuous at p ∈ Hn. Let
ϵ > 0 and 1 > δ > 0. If dE(p, q) ≤ δ then we get for some c = c(|p|).

dH(f(p), f(q)) = dH(p, q) ≤ c(dE(p, q))1/2 ≤ c(δ)1/2 < ϵ

when we choose δ < ϵ2

c2
. The continuity of the inverse map can be proved by using

the other inequality, which proves that the map Id is a homeomorphism.
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Lemma 20 actually tells us more about the identity maps. For a set A that is
bounded with respect to dE (or dH), the identity map Id : (A, dE) → (A, dH) is
1
2
-Hölder continuous and Id : (A, dH) → (A, dE) is Lipschitz continuous.

From Proposition 8(2) and (1.4)-(1.5) we get a useful corollary for Hausdorff mea-
sure of left-translated or dilated sets.

Corollary 21. Let A ⊂ Hn, q ∈ Hn and s, r ∈ (0,∞). Then

Hs
H(lq(A)) = Hs

H(A),

Hs
H(δr(A)) = rsHs

H(A).

Lemma 22. H2n+2
H = cL2n+1 for a suitable positive constant c.

This follows from the fact that (2n + 2)-dimensional Hausdorff measure and
Lebesgue measure are both left Haar measures on Hn = (R2n+1, ∗) for which we
have the following fact. The fact can be found from [LD21, page 168 fact 6.5.16].

Fact 1. Left-Haar measures and right-Haar measures that are finite and not zero on
compact sets with nonempty interior are unique up to a multiplication by a constant.

One can find the proof for the uniqueness of Haar measure for instance from
[Coh13, Theorem 9.2.6 p.290] in case of locally compact topological groups.

Proof of Lemma 22. L2n+1 is (2n + 2)-Ahlfors regular on (Hn, dH). It comes from
the fact that det(D(lp)) = 1 and det(D(δr)) = r2n+2. Now the area formula (see
e.g., [Sim83, Chapter 2]) tells us that

L2n+1(BH(p, r)) = L2n+1(lp(δr(BH(0, 1)))) = L2n+1(δr(BH(0, 1))) = r2n+2L2n+1(BH(0, 1)),

where 0 < L2n+1(BH(0, 1)) <∞. Now using Lemma 12 when µ = L2n+1 we get that
H2n+2

H and L2n+1 are comparable. Now the claim follows from Fact 1 since H2n+2
H and

L2n+1 are both non-trivial locally finite left-Haar measures on Hn. Note that the left
invariance of H2n+2

H follows from Corollary 21. The left invariance of L2n+1 follows
from det(D(lp)) = 1.

Lastly lets look at some examples which show that the dimension of sets can be
different when looking them in dE or dH .

Example 23. dimH H1 = 4 but dimE(R3) = 3.

Proof. When n = 1 we are studying H1 and by the proof of Lemma 22 we know that
L3 is Ahlfors 4-regular on (H1, dH). Now by Corollary 13 we get that dimH(H1) = 4.
Analogously, L3 is 3-regular on (R3, dE) and hence dimE(R3) = 3.

Example 24. dimH(xt− plane) = 3 but dimE(xt− plane) = 2.
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Proof. Notice that the xt − plane = {(x, 0, t) ∈ H1} is a subgroup of H1. The
inverse of (x, 0, t) is (−x, 0,−t), (0, 0, 0) is in the plane and (x, 0, t) ∗ (x′, 0, t′) =
(x + x′, 0, t + t′) ∈ xt − plane. Now the dilation is δr((x, 0, t)) = (rx, 0, r2t). Now
we can see that det(D(δr)) = r3 and det(D(lp)) = 1 for δr(x, t) := (rx, r2t) and
l(x,t)(x

′, t′) := (x+x′, t+t′). From this we can conclude that the dimH(xt−plane) = 3
by an analogous argument as in Example 23, identifying (x, 0, t) with (x, t) ∈ R2. On
the other hand, one can observe that H2

E restricted to the xt − plane is 2-Ahlfors
regular and Borel regular measure supported on the xt − plane from which we can
conclude that dimE(xt− plane) = 2.

Example 25. dimH(L) can be 2 or 1 but dimE(L) = 1 for lines L ⊂ H1.

Proof. If L is the t − axis, then the Hausdorff dimension with respect to dH will be
2. If L is, for instance, the x− axis, then the dimension will be 1. This can be seen
with the same argument as above for those two cases. Also every line in xy − plane
through the origin has the same Hausdorff dimension with respect to dH . This follows
from the fact that every line in xy-plane through the origin is just rotation around
the t-axis from line l = {(x, 0, 0) : x ∈ R}. Notice that rotation around the t-axis is
isometry for dH . Lets look at map Rθ : (x, y, t) 7→ (Rθ(x, y), t) where

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Now

dH(Rθ(x, y, t),Rθ(x
′, y′, t′)) = dH((Rθ(x, y), t), (Rθ(x

′, y′), t′))

= dH((x cos(θ) − y sin(θ), x sin(θ) + y cos(θ), t), (x′ cos(θ) − y′ sin(θ), x′ sin(θ) + y′ cos(θ), t′))

= ...

= ((((−(y′ − y) sin(θ) + (x′ − x) cos(θ))2 + ((x′ − x) sin(θ) + (y′ − y) cos(θ))2)2

+ (t′ − t+ 2(xy′ − x′y) cos2(θ) + 2(y′x− yx′) sin2(θ))2)1/4

= (((x′ − x)2 + (y′ − y)2)2 + (t′ − t+ 2(xy′ − x′y))2)1/4 = dH((x, y, t), (x′, y′, t′))

which proves that rotation around the t-axis is an isometry. Regarding dimE(L), one
can observe that H1

E restricted to any line L ⊂ R3 is a 1-Ahlfors regular and Borel
regular measure supported on L, from which we can conclude that dimE(L) = 1.
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Chapter 2

Dimension comparison theorem

In this chapter the main goal is to prove a dimension comparison theorem in the
general Heisenberg group Hn. Essentially we are interested what the dimension gap
can be when comparing the set between Heisenberg and Euclidean space. For example
in Example 23 the gap is 1. The main result, Theorem 29, is a generalisation of the
H1 case which is done in the paper [BRSC03]. Note that this problem has been solved
in the general case of Carnot groups in [BTW09]. The proof in this chapter follows
essentially the approach in [BTW09], but is presented as a consequence of dimension
comparison results in abstract metric spaces. One statement is also proven in a more
constructive way, following [BRSC03] and generalizing from n = 1 to n > 1. This
chapter is divided into two sections. In the first section we prove theorems that we
need in general metric spaces. In section two the goal is to prove Propositions 31 and
36 because the dimension comparison theorem follows from them instantly.

2.1 Dimension comparison in metric spaces

In this section we prove results about the absolute continuity of Hausdorff measure
and spherical measure in arbitrary metric spaces (X, d1), (X, d2) which will give useful
information for different ranges of dimensional exponents. For the proof of the second
result we need a covering result that we will prove.

Proposition 26. Let k ∈ (0, 1] and α > 0, d1, d2 be metrics on a set X such that
d2(p, q) ≤ c(d1(p, q))

k holds for all p, q ∈ X. Then

Hα
d2

≪ Hα·k
d1
.

Proof. Suppose that Hα·k
d1

(A) = 0 for some A ⊂ X. Denote dk1(p, p′) := (d1(p, p
′))k if

p, p′ ∈ X. Now by Proposition 8(3) we also have that Hα·k
d1

(A) = Hα
dk1

(A) = 0. Now

by assumption there is a positive constant c such that for all p, p′ ∈ A we have

(2.1) d2(p, p
′) ≤ c(d1(p, p

′))k.

By the inequality (2.1) and Proposition 8(2) with X1 = X2 = A, f = Id, dk1,d2 and
L = c we get

Hα
d2

(A) ≤ cαHα
dk1

(A).
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Now we conclude that

Hα
d2

(A) ≤ cαHα
dk1

(A) = cαHα·k
d1

(A) = 0.

Proposition 27. Let κ ∈ (0, 1), and let (X, d1), (X, d2) be metric spaces such that for
every bounded set A ⊂ (X, d2), there exists a constant CA <∞ such that d1 ≤ CAd

κ
2 .

Assume that there exists a Borel measure µ on (X, d2) that is Ahlfors s1-regular for
d1 and s2-regular for d2. Then, for every bounded set B ⊂ (X, d2), there exists N =
NB <∞ depending only on B, κ, and the Ahlfors regularity constant of µ with respect
to d1 and d2, such that for every Bd1(p, r) ⊂ B and 0 < r < min{1, [2diamd2(X)]κ}
we can find Bd2(p1, r

1/κ), ..., Bd2(pk, r
1/κ) satisfying:

1. Bd1(p, r) ⊂
⋃k

i=1Bd2(pi, r
1/κ).

2. k ≤ N rs1

r
1
κ s2

.

Proof. Let {pi}ki=1 be r1/κ-separated points with respect to d2 in Bd1(p, r) ⊂ B. No-
tice that open balls Ud2(pi, r

1/κ/2) are disjoint. If q ∈ Ud2(pi, r
1/κ/2) then d1(q, p) ≤

d1(q, pi)+d1(pi, p) ≤ CAd2(q, pi)
κ+r ≤ CAr/2

κ+r ≲ r, whereA is the 1
2
-neighbourhood

of B with respect to d2. Now from the inequality we get that
⋃k

i=1 Ud2(pi, r
1/κ/2) ⊂

Bd1(p, C̃r) with C̃ = (CA

2κ
+ 1). Now we get

C−1
2 k(

r1/κ

2
)s2 ≤ µ(

k⋃
i=1

Ud2(pi, r
1/κ/2)) ≤ µ(Bd1(p, C̃r)) ≤ C1(C̃r)

s1 ,

from which we can conclude that k ≲ rs1

r
1
κ s2

. Here the constants Ci, i = 1, 2 , come

from the Ahlfors regularity assumptions. Next we show that {Bd2(pi, r
1/κ)}ki=1 covers

Bd1(p, r) if we take maximal r1/κ-separated points {pi}ki=1 from Bd1(p, r). Indeed if
Bd1(p, r) is not covered by {Bd2(pi, r

1/κ)}ki=1 then there exists a point q ∈ Bd1(p, r)
such that d2(q, pi) > r1/k which means that {pi}ki=1 is not maximal and that is a
contradiction.

Proposition 28. Let L ≥ 1 and M ≥ 1. Let (X, d1), (X, d2) be metric spaces with
the same class of bounded sets. Assume that for every bounded set B ⊂ X there is
constant N = NB < ∞ such that every ball Bd1(p, r) ⊂ B, 0 < r < 1 can be covered
by Bd2(p1, r

L), ..., Bd2(pk, r
L) with k ≤ Nr−M . Then the spherical measure satisfies

the following absolute continuity property (α ≥ 0 arbitrary):

S
α+M

L
d2

≪ Sα
d1
.

By Proposition 8(1), it then also holds that H
α+M

L
d2

≪ Hα
d1
.

Proof. The case α = 0 is trivial, so assume that α > 0. Suppose that Sα
d1

(A) = 0
for some A ⊂ X. Let x0 ∈ X and An := A ∩ Bd1(x0, n) for all n ∈ N. Given
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n ∈ N, 0 < δ < 1, ϵ > 0 arbitrary, there is a covering of An with balls {Bd1(pi, ri)}i∈N
ri ≤ δ/2 which intersect An and

∞∑
i=1

(diamd1(Bd1(pi, ri)))
α ≤ ϵ

2
α+M

L N
,

where N = NB is the constant associated to Bn := Bd1(x0, n+ 1). Since

S
α+M

L
d2,δ

(A) ≤ S
α+M

L
d2,δ

(⋃
i

{A ∩Bd1(pi, ri) : diam(Bd1(pi, ri)) > 0}

)
,

we may suppose without loss of generality that diamd1(Bd1(pi, ri)) > 0 for all i, and
by decreasing the radius of the balls if necessary, we may assume that

(2.2) diamd1(Bd1(pi, ri)) ≥ ri.

By assumption every Bd1(pi, ri) can be covered by {Bd2(pi,j, r
L
i )}i∈N,j∈{1,...,k(i)} and

k(i) ≤ Nr−M
i . Now {Bd2(pi,j, r

L
i )}i∈N,j∈{1,...,k(i)} also covers An. Now for every m ∈ N

m∑
i=1

k(i)∑
j=1

(diamd2(Bd2(pi,j, r
L
i )))

α
L
+M

L =
m∑
i=1

k(i)∑
j=1

(diamd2(Bd2(pi,j, r
L
i )))α/Ldiamd2(Bd2(pi,j, r

L
i ))

M
L

≤
m∑
i=1

(2rLi )α/L
k(i)∑
j=1

(2rLi )
M
L

(2.2)

≤
m∑
i=1

2α/L(diamd1(Bd1(pi, ri)))
αk(i)(2rLi )

M
L

assumption

≤
m∑
i=1

(diamd1(Bd1(pi, ri)))
α2α/LNr−M

i (2rLi )
M
L

≤ ϵ

2
α+M

L N
2

α+M
L N ≤ ϵ.

The above also tells us that S
α
L
+M

L
d2,δ

(An) ≤ ϵ. Since 0 < δ < 1, ϵ > 0 are arbitrary we

get S
α
L
+M

L
d2

(An) = 0. Finally,

S
α
L
+M

L
d2

(A) = S
α
L
+M

L
d2

(
⋃
n∈N

An) ≤
∑
n∈N

S
α
L
+M

L
d2

(An) = 0.

2.2 Dimension comparison theorem in Heisenberg group

Our main theorems in this chapter which we want to prove are Theorem 29 and
Corollary 30.
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Theorem 29. (Dimension comparison theorem). Let α ≥ 0. Then the following
statements hold in Hn

1.
Hmin{2α,α+1}

H ≪ Hα
E

i.e. Hmin{2α,α+1}
H is absolutely continuous with respect to Hα

E.

2.
Hmin{α,n+α/2}

E ≪ Hα
H

i.e. Hmin{α,n+α/2}
E is absolutely continuous with respect to Hα

H .

As a corollary, we obtain the Hausdorff dimension comparison.

Corollary 30. In the Heisenberg group Hn we have:

β−(dimE(A)) ≤ dimHA ≤ β+(dimE(A))

for every A ⊂ Hn, where

β−(α) =

{
α, 0 ≤ α ≤ 2n

2α− 2n, 2n ≤ α ≤ 2n+ 1

and

β+(α) =

{
2α, 0 ≤ α ≤ 1

α + 1, 1 ≤ α ≤ 2n+ 1.

Proof. Let α = dimE(A). Now let α′ > α. For α′ we know that Hα′
E (A) = 0.

By Theorem 29 we get that Hmin{2α′,α′+1}
H (A) = 0 which tells us that dimH(A) ≤

min{2α′, α′+1} for all α′ > α. We get the inequality by contradicition: if dimH(A) >

min{2α′, α′+1} then Hmin{2α′,α′+1}
H (A) = ∞ which is not possible. Now letting α′ → α

we get that dimH(A) ≤ min{2α, α + 1} which tells us that dimH(A) ≤ β+(α).
For the other inequality let α = dimH(A). By the same argument as above one

can show that dimE(A) ≤ min{α, n + α
2
}. Now we have two cases to check. If

β−(dimE(A)) = max{dimE(A), 2dimE(A) − 2n} = dimE(A) then

β−(dimE(A)) = max{dimE(A), 2dimE(A)−2n} = dimE(A) ≤ min{α, n+
α

2
} ≤ α = dimH(A).

The other case is that if β−(dimE(A)) = max{dimE(A), 2dimE(A)−2n} = 2dimE(A)−
2n then we get

β−(dimE(A)) = max{dimE(A), 2dimE(A) − 2n} = 2dimE(A) − 2n

≤ 2(n+
α

2
) − 2n = α = dimH(A).

These two cases show that β−(dimE(A)) ≤ dimH(A) which concludes the proof.

22



Let us recall Examples 23 - 25. These examples show the sharpness of the dimen-
sion comparison theorem for H1 and α = 1 (β−(1) = 1, β+(1) = 2) and α = 2 for the
upper bound (β+(2) = 3), and α = 3 (β−(3) = 4 = β+(3)).

Now from Proposition 26 we get the first big proposition that we need for the
dimension comparison theorem.

Proposition 31. The Hausdorff measures on Hn satisfies the following absolute con-
tinuity properties

1. Hα
H ≪ Hα/2

E .

2. Hα
E ≪ Hα

H .

Proof. Now by Lemma 20 our assumptions needed for Proposition 26 are true for met-
rics dE and dH when restricted to bounded subsets of Hn and since Hn =

⋃
n∈NBE(0, n)

it suffices to consider bounded sets. Now choosing k = 1/2 in the first case and k = 1
in the second case then the Proposition 26 gives the claim instantly.

Analogously as in [BRSC03], we will also prove a second proposition of similar
kind because Proposition 31 does not give good results for large values of α. For
example, if α = 4 then we are in situation H4

E ≪ H4
H but since for every A ⊂ H1 we

have H4
E(A) = 0, this does not tell us anything new. That is why we also need the

other big proposition because it is going to fix our problem with larger values of α.
The next statement shows us how to almost optimally cover a Euclidean ball with

Heisenberg balls.

Proposition 32. Let A be a bounded subset of (R2n+1, dE). Then there exists N =
N(A) ∈ N such that for any Euclidean ball BE(p, r) with p ∈ A and 0 < r < 1 we
can find Heisenberg balls BH(p1, r), ..., BH(pk, r) satisfying:

1. BE(p, r) ⊂
⋃k

i=1BH(pi, r).

2. k ≤ N
r
.

Proof. Recall that the Lebesgue measure is a (2n + 2)-regular measure for dH and
(2n + 1)-regular for dE. Now Lemma 19, Lemma 20 and Proposition 27 give us the
claim with κ = 1, s1 = 2n+ 1, s2 = 2n+ 2, d1 = dE, d2 = dH .

The next proposition is basically the same as one above but other way around. It
tells us how many Euclidean balls do we need to cover a Heisenberg ball.

Proposition 33. Given a bounded subset A of (R2n+1, dE), there is N = N(A) ∈ N
such that for any Heisenberg ball BH(p, r) with p ∈ A and 0 < r < 1 we can find
BE(p1, r

2), ..., BE(pk, r
2) satisfying:

1. BH(p, r) ⊂
⋃k

i=1BE(pi, r
2).

2. k ≤ N
r2n

.
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Remark 34. Proposition 33 follows from the Ahlfors regularity of the Lebesgue mea-
sure, Lemma 20, Proposition 27 with κ = 1

2
, s1 = 2n+2, s2 = 2n+1, d1 = dH , d2 = dE

but I will also present an alternative proof following [BRSC03, Proposition 3.5].

Before we can prove the proposition we want to know how Euclidean balls behave
under group translation.

Lemma 35. Let A be a bounded subset of (R2n+1, dE) i.e A ⊂ BE(0, b). For r > 0,
p = (x, y, t) ∈ R2n+1 and p′ = (x′, y′, t′) ∈ A we have.

lp′(BE(p, r)) ⊂ BE(lp′(p), (2b+ 1)r).

Moreover if lp′(p) + (x′′, y′′, t′′) ∈ lp′(BE(p, r)) then |(x′′, y′′)| ≤ r.

Proof. Let (x+ x′′′, y + y′′′, t+ t′′′) ∈ BE(p, r).

lp′(x+ x′′′, y + y′′′, t+ t′′′)

= p′ ∗ (x+ x′′′, y + y′′′, t+ t′′′)

= (x′ + x+ x′′′, y′ + y + y′′′, t′ + t+ t′′′ + 2((x+ x′′′) · y′ − x′ · (y + y′′′)))

= lp′(p) + (x′′′, y′′′, t′′′ + 2(x′′′ · y′ − x′ · y′′′)).

Now we can calculate the Euclidean norm of the second term

|(x′′′, y′′′, t′′′ + 2(x′′′ · y′ − y′′′ · x′))|2

= |x′′′|2 + |y′′′|2 + |t′′′ + 2(x′′′ · y′ − y′′′ · x′)|2
C−S

≤ |x′′′|2 + |y′′′|2 + (|t′′′| + 2|p′||(x′′′, y′′′, t′′′)|)2

= |x′′′|2 + |y′′′|2 + |t′′′|2 + 4|p′||(x′′′, y′′′, t′′′)||t′′′| + 4|p′|2|(x′′′, y′′′, t′′′)|2

≤ |(x′′′, y′′′, t′′′)|2 + 4b|(x′′′, y′′′, t′′′)||t′′′| + 4b2|(x′′′, y′′′, t′′′)|2

≤ r2 + 4br2 + 4b2r2 = (2b+ 1)2r2.

Now taking square root both sides we get |(x′′′, y′′′, t′′′ +2(x′′′ ·y′−x′ ·y′′′)| ≤ (2b+1)r.
Hence lp′(x + x′′′, y + y′′′, t + t′′′) ∈ BE(lp′(p), (2b + 1)r). Notice that if lp′(p) +
(x′′, y′′, t′′) ∈ lp′(BE(p, r)) then lp′(p) + (x′′, y′′, t′′) = lp′(p) + (x′′′, y′′′, ...) which means
that (x′′, y′′) = (x′′′, y′′′) ∈ projt(BE(0, r)) which tells us that |(x′′, y′′)| ≤ r.

Now we can prove Proposition 33 the alternative way.

Proof of Proposition 33. First we will prove the following for BH at the origin: There
is K ∈ N such that given 0 < r < 1 we can find BE(p1, r

2), ..., BE(pl, r
2) satisfying:

BH(0, r) ⊂
l⋃

i=1

BE(pi, (2n+ 1)1/2r2) and l ≤ K

r2n
.

First denote Ot as the vertical axis. For p = (0, 0, t) ∈ Ot and r > 0 we denote
BH,∞(p, r) the set of points p′ = (x′, y′, t′) ∈ Hn satisfying |(x′, y′)| ≤ r and |t−t′| ≤ r2.
Now BH,∞(p, r) is a flat box with height 2r2 centered at p ∈ Hn and its orthogonal
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projection along the vertical axis is a disk of radius r. Now one can see easily that
BH(0, r) ⊂ BH,∞(0, r). Let p ∈ BH(0, r). Now ∥p∥4H = (|x|2 + |y|2)2 + |t|2 ≤ r4

from which we get |x|2 + |y|2 ≤ r2 and |t| ≤ r2 ⇒ p ∈ BH,∞(0, r). Now Heisenberg
boxes can be covered with Euclidean boxes which can be covered by Euclidean balls.
Formally let p̃ = (x̃, ỹ, t̃) ∈ Hn and C(p̃, r2) be a Euclidean box C(p̃, r2) := {(x̃, ỹ, t̃) :
|x̃j − xj|, |ỹj − yj|, |t̃ − t| ≤ r2, j ∈ {1, ..., n}}. Now notice that the height of the
Heisenberg box and the Euclidean box are same. So we need to calculate how many
Euclidean r2-boxes do we need to cover the Heisenberg box BH,∞(0, r) in the 2n-
dimensions. So the amount of Euclidean boxes that we need is

⌈( 2r

2r2
)2n⌉ = ⌈ 1

r2n
⌉,

which in the original paper [BRSC03] is denoted by ([1
r
] + 1)2n for n = 1. Now each

cube C(xi, r
2) is contained in Euclidean ball of radius (2n+ 1)1/2r2. Hence, the claim

is proved for K := 22n since [1
r
] + 1 < 2

r
. Now given A ⊂ BE(0, b) with p ∈ A and

0 < r < 1, we can find BE(p1, (2n + 1)1/2r2), ..., BE(pl, (2n + 1)1/2r2) covering for
lp−1(BH(p, r)) = BH(0, r) so that lr2n ≤ K. Now there exist constant M = M(b, n)
and balls BE(p1, r

2/(2b + 1)), ..., BE(pk, r
2/(2b + 1)) that cover BH(0, r) such that

kr2n ≤ KM . There is such covering because every ball BE(pi, (2n + 1)1/2r2) ⊂⋃m
j=1BE(pij , r

2/(2b + 1)). Notice that m is bounded by number ⌈(2b + 1)2n+1(2n +

1)n+1/2⌉. To cover a line length of (2n+ 1)1/22r2 with radius of 2r2/(2b+ 1) balls we
need

2r2(2n+ 1)1/2

2r2

2b+1

= (2n+ 1)1/2(2b+ 1)

amount of them. To cover all 2n+1 dimensions we need ⌈((2n+1)1/2(2b+1))2n+1⌉ =
⌈(2b + 1)2n+1(2n + 1)n+1/2⌉ amount of balls. Now defining M := ⌈(2b + 1)2n+1(2n +
1)n+1/2⌉, N := MK and with Lemma 35 we get

BH(p, r) = lp(lp−1(BH(p, r)) ⊂ lp(
l⋃

i=1

m⋃
j=1

BE(pij , r
2/(2b+ 1)))

=
l⋃

i=1

m⋃
j=1

lp(BE(pij , r
2/(2b+ 1)))

L.35
⊂

l⋃
i=1

m⋃
j=1

BE(lp(pij), r
2).

Now defining k := l ·m proves the proposition with N depending only on n and b.

Proposition 36. The spherical measure satisfies the following absolute continuity prop-
erties (α ≥ 0 arbitrary) on Hn:

1. Sα+1
H ≪ Sα

E.

2. Sn+α
2

E ≪ Sα
H .

Proof. The first case comes instantly when applying Proposition 28 to metrics d1 =
dE, d2 = dH and choosing L = 1 = M . You can apply the Proposition 28 because
Proposition 32 holds.
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Second case also follows instantly from Proposition 28 when choosing d2 = dE,
d1 = dH and L = 2 and M = 2n. You can apply Proposition 28 because Proposition
33 holds.

Now we are ready to proof the dimension comparison theorem.

Proof of Theorem 29. 1. If min{2α, α + 1} = 2α then H2α
H ≪ Hα

E by Proposition
31. For the other case we get by Proposition 36 and Proposition 8(1) Hα+1

H ≪
Sα+1
H ≪ Sα

E ≪ Hα
E which proves the case 1.

2. If min{α, n + α/2} = α then Hα
E ≪ Hα

H by Proposition 31. For the other case

by Proposition 36 and Proposition 8(1) Hn+α/2
E ≪ Sn+α/2

E ≪ Sα
H ≪ Hα

H which
proves the case 2.

Thus the dimension comparison theorem is proved.

Remark 37. In the paper [BRSC03] they have shown the sharpness of the dimension
comparison theorem in case of H1 with different exponents of α and in [BT05] sharp-
ness for the remaining exponents was shown. For references one can see [BRSC03,
Theorem 1.2] and [BTW09, Theorem 2.6](in general Carnot groups).
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Chapter 3

An H-regular surface in Hn with large
Euclidean dimension

In this chapter we want to construct an intrinsic regular surface in Hn which has
Heisenberg Hausdorff dimension 2n+1 but the Euclidean Hausdorff dimension is 2n+1

2

(Theorem 52). The construction for n = 1 is due to Kirchheim and Serra Cassano
in [KSC04], and in this thesis we generalize it to all n ∈ N. This generalisation
answers a question in [BTW09, p.596] in the specific case where our Carnot group is
G = Hn. The example that we construct here has the smallest gap between dimE

and dimH that is possible for an H-regular surface.
This chapter is divided into two sections. In the first section we construct an

auxiliary function that we are going to use in the contruction of the surface. In
the second section we are going to construct the surface with the wanted Euclidean
Hausdorff dimension.

3.1 Construction of the function

In this section we are going to construct a function which we are going to need for
the generalisation of the example. We are not going to follow the construction of
the original paper [KSC04]. Instead we present the construction from Tapio Rajala’s
paper [Raj08] where he also answered a question which in the original paper they
could not answer.

Now for the construction we define for every m ∈ N, k ∈ {0, 1, 2} and i ∈
{0, 1, ...,m− 1} a map fm

mk+i : R2 → R2 with

fm
mk+i(x, y) =

(
x+mk + i

3m
, (−1)k

y + i

m
+

1 + (−1)k+1

2

)
.

Using the above we define set functions Fm : P(R2) → P(R2),m ∈ N, by letting

Fm(A) =
3m−1⋃
i=0

fm
i (A)
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Figure 3.1: The blue rectangles are the sets fm
i ([0, 1]2) for m = 3 (left) and m = 4

(right). In the left picture the blue rectangles form the set F 3([0, 1]2) and in the right
picture the blue rectangles form the set F 4([0, 1]2).

for every A ⊂ R2. In our case we are only interested in F 3 and F 4. To get some
intuition what the functions F 3 and F 4 do, see Figure 3.1 which shows what happens
to [0, 1]2 when mapped with F 3 or F 4.

The next proposition tells us about the crucial property that the functions have.

Proposition 38. There is a function h : R → R such that

1. for all t ∈ R the Euclidean Hausdorff dimension of h−1(t) is at least 1
2
.

2. for each m ≥ 1 we have

lim
r→0+

log((1
r
))m

√
r

sup{|h(x) − h(y)| : |x− y| ≤ r} = 0.

Proof. First we want to construct the graph of our wanted function. For this we will
mainly use function F 3 but F 4 will also be used to improve the modulus of continuity.
Now define sequence of closed sets (Gi)

∞
i=0 with

Gi = F j1 ◦ · · · ◦ F ji([0, 1]2),

where jk = 4 if
√
k ∈ N otherwise jk = 3. Now let G = ∩iGi. Notice that G is also

closed because every Gi is closed.
Let’s show that G is a graph of a function over [0, 1]. Notice that the projection

of G that is proj(G) = [0, 1]. Because the projection of G is [0, 1] it tells us that for
every p ∈ [0, 1] the intersection G ∩ {x = p} ̸= ∅. Notice that for every p ∈ [0, 1]
there is a unique y such that G∩{x = p} = {(p, y)}. There cannot be y1 and y2 such
that G ∩ {x = p} ⊇ {(p, y1)} ∪ {(p, y2)} when y1 ̸= y2 because with each iterations
Gi the functions F 3 or F 4 scale the height of the rectangles by 3−1 or 4−1. Because
y1 ̸= y2 then the distance is positive between the points which means that there is
some index i such that after enough iterations Gi the points y1 and y2 cannot be in
the same rectangles anymore. For above reasons set G is a graph of a function.

Let g be the function such that G is the graph of g and extend g to whole R by
defining h : R → R such that

h(x+ k) = g(x) + k
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for every k ∈ Z and x ∈ [0, 1].
Proof of 1: Take t ∈ [0, 1] (it suffices to consider this case), identify R with

R× {t}, and construct a measure µ on interval [0, 1] using the construction intervals
in Gi ∩ {(x, t) : x ∈ R}. For every i distribute the measure evenly on the intervals.
Precisely this means that the measure of each interval is at most 3−i in the i:th
iteration. This is a standard technique in fractal geometry and one can read more
about this from [Fal97, Page 9, (5)]. Now take ϵ > 0 and an nϵ ∈ N so that 9−nϵ ≤
(3
4
)
⌊
√
n⌋
2 for every n ≥ nϵ. To justify the existance of nϵ notice that

9−nϵ ≤ (
3

4
)
1
2
⌊
√
n⌋ ⇔ −2nϵ log(3) ≤ 1

2
⌊
√
n⌋ log(

3

4
) ⇔ ϵ ≥ −⌊

√
n⌋
n

log(3/4)

4 log(3)

and ⌊
√
n⌋
n

→ 0 when n → ∞. Now for every construction interval Xi ∈ Gn ∩ {(x, t) :
x ∈ R}, n ≥ nϵ, we get

0 < µ(Xi) ≤ 3−n ≤ 3−n9nϵ(
3

4
)
1
2
⌊
√
n⌋

= 9−n
2 9nϵ9

1
2
⌊
√
n⌋12− 1

2
⌊
√
n⌋ ≤ (9−n+⌊

√
n⌋12−⌊

√
n⌋)

1
2
−ϵ = diam(Xi)

1
2
−ϵ,

where the last equality comes from the fact that intervals of F 3 have length of 1
9

and
intervals of F 4 have length of 1

12
and Gi = F j1 ◦ · · · ◦ F ji([0, 1]2). Now by Lemma

9 we get H 1
2
−ϵ({h−1(t)}) > 0 which means that dimH(h−1(t)) ≥ 1

2
− ϵ. Now letting

ϵ→ 0 we get dimH(h−1(t)) ≥ 1
2
. One can see that the requirements for Lemma 9 are

fine by first seeing that

c̃diam(Xi) ≤ diam(Xj) ≤ diam(Xi),

where Xi is an interval from iteration i and Xj interval from iteration i + 1. Now
taking 0 < r ≪ 1 and let n ∈ N such that diam(Xj) ≤ r < diam(Xi). Now µ(B(x, r))
intersects at most two intervals from the i-th iteration which gives us that

µ(B(x, r)) ≤ 2diam(Xi)
1
2
−ϵ ≤ 2

(
1

c̃

) 1
2
−ϵ

diam(Xj)
1
2
−ϵ ≤ 2

(
1

c̃

) 1
2
−ϵ

r
1
2
−ϵ.

Proof of 2: Take 0 < r < 1 and the largest n = n(r) ∈ N such that r ≤
9−n+⌊

√
n⌋12−⌊

√
n⌋ holds. Now for every x, y ∈ R with |x− y| < r we have

|h(x) − h(y)| ≤ 2 · 3−n+⌊
√
n⌋4−⌊

√
n⌋.

We get this inequality from the idea of Figure 3.2 and from the observation that
there cannot be jump discontinuity because how the function fm

mk+i is constructed.
Jump discontinuity here means that there cannot be a gap between two consecutive
rectangles.
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Figure 3.2: Distance between two points is less or equal to width of the rectangle ⇒
the distance of function values has to be less or equal to height of two rectangles

Thus for every m ∈ N we have

log((1
r
))m

√
r

sup{|h(x) − h(y)| : |x− y| ≤ r}

≤ ((n+ 1 − ⌊
√
n+ 1⌋)log(9) + ⌊

√
n+ 1⌋log(12))m

3−n−1+⌊
√
n+1⌋12− 1

2
⌊
√
n+1⌋

2 · 3−n+⌊
√
n⌋4−⌊

√
n⌋

≤ (2log(12)(n+ 1))m6 · (
4

3
)
1
2
⌊
√
n+1⌋(

3

4
)
1
2
⌊
√
n⌋(

3

4
)
1
2
⌊
√
n⌋

= (2log(12)(n+ 1))m6(
3

4
)
1
2
⌊
√
n⌋(

4

3
)
1
2
(⌊
√
n+1⌋−⌊

√
n⌋)

≤ (2log(12)(n+ 1))m24(
3

4
)
1
2
⌊
√
n⌋.

Since the right-hand side tends to 0 as n→ ∞, for all ϵ > 0 there exists N0 ∈ N, and
0 < r0 < 1, such that if 0 < r < r0, then n(r) > N0 and

log (1
r
)m

√
r

sup{|h(x) − h(y)| : |x− y| ≤ r} < ϵ.

Remark 39. Property 2 ensures that the function h is 1
2
-Hölder continuous on [0,1]

since for every ϵ > 0 there exists 0 < r < r(ϵ) such that

|h(x) − h(y)| ≤ ϵ log

(
1

|x− y|

)−m√
|x− y|
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if |x−y| < r(ϵ). Conversely one can notice if h were an arbitrary 1
2
-Hölder continuous

the limit could go to infinity:

log((1
r
))m

√
r

sup{|h(x) − h(y)| : |x− y| ≤ r} ≲
log((1

r
))m

√
r

r
1
2 .

For Lipschitz functions Property 2 in Proposition 38 is trivially satisfied but the first
property does not hold anymore. Indeed, if h were L-Lipschitz,

lim
r→0+

log((1
r
))m

√
r

sup{|h(x) − h(y)| : |x− y| ≤ r} ≤ lim
r→0+

log((1
r
))m

√
r

Lr = 0,

but now using Theorem 17 one can see that∫
R
H0(h−1(t) ∩ [0, 1])dH1(t) ≲ H1([0, 1]) <∞.

Now H0 is the counting measure and the above tells us that for H1 almost every t ∈ R
the points in h−1(t) that intersect with interval [0, 1] has to be finite which means
that dimH h

−1(t) ≥ 1
2

cannot happen for almost every t.

3.2 Generalisation of an example by Kirchheim and Serra

Cassano

Before we start proving Theorem 52 by adapting the construction from [KSC04] to
higher dimensions we need more definitions and some propositions/theorems which
we will take for granted.

Definition 40. If Ω is an open subset of Hn and f ∈ C1(Ω) we define the horizontal
gradient of f as

∇Hf := (X1f, ..., Xnf, Y1f, ..., Ynf),

where Xi, Yi are as in Section 1.2.

One can also extend the definition above to work for functions that are not in
Euclidean C1.

Definition 41. We say that function f is differentiable along Xi (Yi) at P0 if the map
λ 7→ f(lP0(δλei)) (respectively: λ 7→ f(lP0(δλen+i))) is differentiable at λ = 0, where
ek is the k-th vector of the canonical basis of R2n+1.

Clearly, if f ∈ C1(Ω) then f is differentiable along Xi and Yi at all points of Ω.
Hence, if we set for each f differentiable along Xi and Yi at P0 the horizontal gradient
to be

∇Hf =
n∑

n=1

(Xif)Xi + (Yif)Yi

then this definition extends the one given above.
If Ω ⊂ Hn we shall denote C1

H(Ω) the set of continuous real functions in Ω such
that ∇Hf is continuous in Ω.
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Definition 42. We say that S ⊂ Hn is an H-regular hypersurface if for every p ∈ S
there exists an open ball U(p, r) and a function f ∈ C1

H(U(p, r)) such that

1. S ∩ U(p, r) = {q ∈ U(p, r) : f(q) = 0}

2. ∇Hf(p) ̸= 0.

Example 43. The (y, t)-plane is a H-regular hypersurface in H1.

Proof. Let function f be f(x, y, t) = x. Notice that f is continuous and the horizontal
gradient of f is also continuous. One can see this by calculating the horizontal gradient

∇Hf(x, y, t) = ((∂x + 2y∂t)f(x, y, t), (∂y − 2x∂t)f(x, y, t))

= (∂xf(x, y, t) + 2y∂tf(x, y, t), ∂yf(x, y, t) − 2x∂tf(x, y, t))

= (∂xx+ 2y∂tx, ∂yx− 2x∂tx) = (1, 0).

The horizontal gradient ∇Hf(x, y, t) = (1, 0) ̸= (0, 0) which tells us that the horizontal
gradient of f is continuous and not zero. Let p ∈ (y, t)-plane then p = (0, y0, t0).
Now one can see that (y, t) − plane ∩ U((0, y0, t0), r) = {(0, y, t) ∈ U((0, y0, t0), r) :
f(0, y, t) = 0} because f(x, y, t) = 0 if and only if x = 0.

Remark 44. One can also show with similar argument as above that (x, t)-plane is also
H-regular hypersurface. In case of (x, t)-plane the function f would be f(x, y, t) = y
and then ∇Hf(x, y, t) = (0, 1). The (x, y)-plane is not a H-regular hypersurface,
but we will not prove it here. Instead we try similar argument for (x, y)-plane. Let
function f be f(x, y, t) = t. Now the function f is continuous and

∇Hf(x, y, t) = ((∂x + 2y∂t)f(x, y, t), (∂y − 2x∂t)f(x, y, t))

= (∂xf(x, y, t) + 2y∂tf(x, y, t), ∂yf(x, y, t) − 2x∂tf(x, y, t))

= (∂xt+ 2y∂tt, ∂yt− 2x∂tt) = (2y,−2x)

which shows that ∇Hf(x, y, t) is also continuous. Now notice that ∇Hf(x, y, t) = 0
when p = (0, 0, 0) and the origin is a point from the (x, y)-plane.

Definition 45. The characteristic set of S is defined by

C(S) := {p ∈ S : TpS = HpHn}.

Fact 2. Euclidean C1 surfaces with no characteristic points are H-regular.

One can see from the computations in Example 43 and Remark 44 that the (x, t)-
and (y, t)-planes have no characteristic points but in the (x, y)-plane the origin is a
characteristic point.

Definition 46. Let (x, y, t), p ∈ Hn. We set

πp((x, y, t)) = x1X1(p) + ...+ xnXn(p) + y1Y1(p) + ...+ ynYn(p).

The map p→ πp((x, y, t)) is a smooth section of HHn.
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Definition 47. We denote by ⟨·, ·⟩p the scalar product on the fiber HpHn that makes
{X1(p), ..., Xn(p), Y1(p), ..., Yn(p)} orthonormal. We also write | · |p :=

√
⟨·, ·⟩p.

The next theorem was proven in [FSSC01, Theorem 6.8].

Theorem 48 (Whitney Extension Theorem). Let F ⊂ Hn be a closed set, assume
f : F → R, k : F → HHn are continuous functions. We set

R(p, q) :=
f(p) − f(q) − ⟨k(q), πq(q

−1 · p)⟩q
dH(q, p)

,

and, if K ⊂ F is a compact set,

ρK(δ) := sup{|R(p, q)| : p, q ∈ K, 0 < dH(p, q) < δ}.

If ρK(δ) → 0 as δ → 0 for every compact set K ⊂ F , then there exists f̃ : Hn →
R, f̃ ∈ C1

H(Hn) such that
f̃|F ≡ f, ∇Hf̃|F ≡ k.

The last theorem that we need before we can prove the main theorem is from
[Bal03].

Theorem 49. Let Q ⊂ Rn be the unit cube and let F : Q→ Rn be a C1 smooth vector
field. Define Ag,F := {(x, y) ∈ Q : ∇g(x, y) = F (x, y)} for g : Q → R C1. Then the
following are true.

1. For any ϵ > 0 there exists fϵ : Q→ R, fϵ ∈
⋂

0<α<1C
1,α such that

Ln(Afϵ,F ) ≥ 1 − ϵ.

2. There exists a constant K <∞ such that

|∇fϵ(z) −∇fϵ(w)| ≤ K(1 + |log(|z − w|)|)K |z − w| for all z, w ∈ Q.(3.1)

Remark 50. Property 2 can be found at the end of the proof of [Bal03, Theorem 4.1
page 80].

Remark 51. Consider a hypersurface S ⊂ R2n+1 of the form S = {(x, y, f(x, y)) :
(x, y) ∈ Q} where f : Q → R is a C1 function on the unit cube Q in R2n. Then
(x, y, f(x, y)) ∈ C(S) if and only if

∂f

∂xj
(x, y) = 2yj,

∂f

∂yj
(x, y) = −2xj, j = 1, ..., n.

Let us consider the vector field F : Q→ R2n by F (x, y) = (2y,−2x). The character-
istic set C(S) is clearly related to the subset of Q on which the gradient of f coincides
with the vector field F .

More precisely, if

Af,F := {(x, y) ∈ Q : ∇f(x, y) = F (x, y)},

then
C(S) = {((x, y), f(x, y)) : (x, y) ∈ Af,F}.
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Now we have everything necessary to prove the main theorem.

Theorem 52. There exists an H-regular surface S ⊂ Hn such that

dimE S = 2n+
1

2
(3.2)

Proof. Throughout this proof, we will for simplicity denote d := dH and Hs = Hs
E.

To prove the theorem we need two things. The first is Corollary 30 which we already
have proved. The second thing what we need is the next inequality

H(4n+1−ϵ)/2(S) > 0(3.3)

for all ϵ ∈ (0, 1). The theorem follows from these two.
Let us start proving the inequality. By Theorem 49 there is a C1-function g : Q =

[0, 1]2n → R and a constant K ≤ ∞ such that

L2n(Ag) >
1

2
where Ag := {(x, y) ∈ Q : ∇g((x, y)) = (2y1, ..., 2yn,−2x1, ...,−2xn)},

(3.4)

and g satisfies property (2) in Theorem 49.
Observe that ∥g∥∞ < ∞ because g is continuous on the compact set Q. For the

function g we have the next inequality

|g(z) − g(w) − ⟨∇g(w), z − w⟩| ≤ K ′|z − w|2(1 + |log(|z − w|)|)K for all z, w ∈ Q,

(3.5)

where K ′ <∞ is a constant depending only on K.
One can show this using the mean value theorem and the Cauchy-Schwarz in-

equality

|g(z) − g(w) − ⟨∇g(w), z − w⟩|
m.v.t
= |⟨∇g(y), z − w⟩ − ⟨∇g(w), z − w⟩| for some y on the segment between z and w

= |⟨∇g(y) −∇g(w), z − w⟩|
C−S

≤ |∇g(y) −∇g(w)||z − w|
≤ K(1 + |log(|y − w|)|)K |y − w||z − w|
≤ K ′(1 + |log(|z − w|)|)K |z − w|2,

where K ′ = K ′(K) is a constant depending on K ≥ 1.
Let us justify the last inequality. Let K ≥ 1 then there exists K ′ = K ′(K) such

that for 0 < r < R:

(∗) (1 + |log(r)|)Kr ≤ K ′(1 + |log(R)|)KR.

Proof : Define ϕ(r) := (1 + |log(r)|)Kr. Now ϕ is monotone increasing on [1,∞) as
a product of monotone increasing functions. There exists r(K) < 1 such that ϕ is
monotone increasing on (0, r(K)]. One can see this by computing the derivative of ϕ:

ϕ′(r) = (1 + |log(r)|)K −K(1 + |log(r)|)K−1 = (1 + |log(r)|)K−1 ((1 + |log(r)|) −K) .
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The first term (1 + |log(r)|)K−1 > 0 and the second term ((1 + |log(r)|) −K) ≥ 0
when | log r| ≥ K − 1. Lastly for r ∈ (r(K), 1) and R > r we estimate :

(1 + |log(r)|)Kr ≤ (1 + |log(r(K))|)Kr
≤ (1 + |log(r(K))|)KR
≤ (1 + |log(r(K))|)K(1 + |log(R)|)KR,

where the last inequality comes from fact that for arbitrary R ∈ (0,∞) we have that
R ≤ (1 + |log(R)|)KR. Now we have justified the last inequality.

Next choose the function h from Proposition 38 and set F ∗ := Ag × [−∥g∥∞, 1 +
∥g∥∞]. Note that F ∗ is a closed subset of Hn. Now define the function f ∗ : F ∗ → R
by

f ∗(x, y, t) = h(t− g(x, y)) if (x, y, t) ∈ F ∗

and the section k∗ : F ∗ → HHn as

k∗((x, y, t)) := (0, ..., 0) if (x, y, t) ∈ F ∗.

Reminder : Our goal is to construct the desired surface S. This desired surface S
will be obtained as S = Ω ∩ {f = 0}, where Ω is an open neighborhood of F ∗ and f
is defined in (∗∗) on p.38 using the extension of f ∗ guaranteed by Theorem 48.

Next we want to show that the assumption of Theorem 48 holds true for f ∗, k∗

and F ∗. The continuity of k∗: Let p = (x, y, t), q = (x′, y′, t′) ∈ F ∗ and ϵ, δ > 0 then

|k∗(p) − k∗(q)| = 0 < ϵ always when |p− q| ≤ δ.

The continuity of f ∗ follows from the fact that g is a continuous function and h is
also continuous function. The continuity of h follows from Proposition 38. Lastly we
need to show that

(3.6) lim
ρ→0

ρF ∗(δ) = 0

where ρF ∗ is the function defined in Theorem 48 for K = F ∗. Notice that for any
p = (x, y, t), q = (x′, y′, t′) ∈ F ∗ we have that

|g(x, y) − g(x′, y′) − 2(x · y′ − x′ · y)| = |g(x, y) − g(x′, y′) − 2(y′ · (x− x′) − x′ · (y − y′))|
= |g(x, y) − g(x′, y′) − (2y′ · (x− x′) − 2x′ · (y − y′)))|
= |g(x, y) − g(x′, y′) − ⟨∇g(x′, y′), (x, y) − (x′, y′)⟩|
≤ K ′d(p, q)2(1 + |log(d(p, q))|)K .

We got the last inequality from (3.5) followed by (∗) using |(x, y)− (x′, y′)| ≤ d(p, q).
One can also see from p−1 ∗ q = (−x+ x′,−y + y′,−t+ t′ + 2(x · y′ − x′ · y)) that

|t′ − t+ 2(x · y′ − x′ · y)| ≤ K ′d(p, q)2(1 + |log(d(p, q))|)K .

With these two inequalities one can show that

|(t− g(x, y)) − (t′ − g(x′, y′))| ≤ 2K ′d(p, q)2(1 + |log(d(p, q))|)K .
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Proof:

|(t− g(x, y)) − (t′ − g(x′, y′))|
= |t− t′ − 2(x · y′ − x′ · y) + g(x′, y′) − g(x, y) + 2(x · y′ − x′ · y)|
≤ |t− t′ − 2(x · y′ − x′ · y)| + |g(x′, y′) − g(x, y) + 2(x · y′ − x′ · y)|
= |t′ − t+ 2(x · y′ − x′ · y)| + |g(x, y) − g(x′, y′) − 2(x · y′ − x′ · y)|
≤ 2K ′d(p, q)2(1 + |log(d(p, q))|)K .

Now using Proposition 38 property 2 we get

|f ∗(p) − f ∗(q)| = |h(t− g(x, y)) − h(t′ − g(x′, y′))|

≤ K̄
d(p, q)(1 + |log(d(p, q))|)K/2

|log(d(p, q)(1 + |log(d(p, q))|)K/2)|K+1
.

One can show this by choosing r = 2K ′d(p, q)2(1+ |log(d(p, q))|)K . Notice that r → 0
if and only if d(p, q) → 0. We get by Proposition 38 for M = K + 1 that for given
K̃ > 0 there is r0(K̃) = r0 > 0 such that if r < r0, then :

|f ∗(p) − f ∗(q)| = |h(t− (g(x, y))) − h(t′ − g(x′, y′))|
≤ sup{|h(t− g(x, y)) − h(t′ − g(x′, y′))| : |(t− g(x, y)) − (t′ − g(x′, y′))| ≤ r}

≤ K̃

√
r

log((1/r))K+1

= K̄
d(p, q)(1 + |log(d(p, q))|)K/2

| log(d(p, q)(1 + |log(d(p, q))|)K/2)|K+1
,

where the constant K̄ depends on K̃ and K ′. The above tells us that

|f ∗(p) − f ∗(q)|
d(p, q)

≤ K̃
(1 + |log(d(p, q))|)K/2

| log(d(p, q)(1 + |log(d(p, q))|)K/2)|K+1
,

if d(p, q) is small enough.
Observing the limits one can see that

lim
t→0+

(1 + |log(t)|)K/2 = ∞

and
lim
t→0+

| log(t(1 + |log(t)|)K/2)|K+1 = ∞.

The exponent K+1 in the denominator is bigger than the exponent in the numerator
K/2 and we will show that in fact

lim
t→0+

(1 + |log(t)|)K/2

| log(t(1 + |log(t)|)K/2)|K+1
= 0,
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and in particular, the expression in the limit is bounded as t → 0+. Let’s justify the
statement above formally. Claim: limt→0+ ψ(t) = 0 for

ψ(t) =
(1 + |log(t)|)K/2

| log(t(1 + |log(t)|)K/2)|K+1

=
(1 + |log(t)|)K/2(

− log(t) − K
2

log(1 − log(t))
)K+1

for t ∈ (0, 1] small enough that t(1 + |log(t)|)K/2 < 1. First we use the fact that

ln(1 + x) ≤ x√
x+ 1

for x ≥ 0, applied to x = − log(t).

The inequality gives us that

log(1 − log(t)) ≤ − log(t)√
1 − log(t)

.(3.7)

Now using the inequality (3.7) we get

− log(t) − K

2
log(1 − log(t)) ≥ − log(t) +

K

2

log(t)√
1 − log(t)

= − log(t)

(
1 − K/2√

1 − log(t)

)
.

(3.8)

There exists a number t(K) ∈ (0, 1) such that for all t ∈ (0, t(K)):

1 − K/2√
1 − log(t)

≥ 1

2
.(3.9)

Now by (3.8) and (3.9) we get that

− log(t) − K

2
log(1 − log(t)) ≥ − log(t)

2
.

Combining the information about the inequalities gives us

ψ(t) =

(
(1 − log(t))

− log(t) − K
2

log(1 − log(t))

)K
2

1(
− log(t) − K

2
log(1 − log(t))

)K
2
+1

≤

(
1 − log(t)

− log(t)
2

)K
2

1(
− log(t)

2

)K
2
+1
.

Now the first term → 2K/2 as t→ 0 and the second term → 0 as t→ 0 which proves
the claim.

One can conclude from the above justification that the limit

|f ∗(p) − f ∗(q)|
d(p, q)

→ 0 if p, q ∈ F ∗ and d(p, q) → 0,
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thus (3.6) holds.
Therefore we can apply Theorem 48 and extend f ∗ : F ∗ → R to a function

f̃ ∗ : Hn → R, f̃ ∗ ∈ C1
H(Hn) such that

(3.10) ∇Hf̃
∗
|F ∗ ≡ 0.

Next we can define a C1
H(Hn) function f : Hn → R as

(∗∗) f(x, y, t) := f̃ ∗(x, y, t) − x1.

Now by construction and (3.10), because

|∇Hf |p = |(−1, 0, ..., 0)|R2n = 1 for all p ∈ F ∗

there is an open set Ω ⊃ F ∗ such that

|∇Hf |p ̸= 0 for all p ∈ Ω.

Defining
S := Ω ∩ {f = 0},

then S is an H-regular surface.
One can observe that

S ⊃ A : =
⋃

(x,y)∈Ag

({(x, y)} × ((h−1(x1) + g(x, y) ∩ [−∥g∥∞, 1 + ∥g∥∞])))

(3.11)

= {(x, y, t) : (x, y) ∈ Ag, t ∈
(
h−1(x1) + g(x, y)

)
∩ [−∥g∥∞, 1 + ∥g∥∞]}.

One can also see that if m ∈ h−1(x1) ∩ [0, 1] then m + g(x, y) ∈ [−∥g∥∞, 1 + ∥g∥∞].
Using Theorem 17 when s = 2n + 1−ϵ

2
, t = 2n, X = A, Y = Ag and P (x, y, t) =

projt(x, y, t) = (x, y) as our function one gets∫ ∗

Ag

H(1−ϵ)/2(h−1(x1) ∩ [0, 1])dxdy

≤
∫ ∗

Ag

H(1−ϵ)/2((h−1(x1) + g(x, y)) ∩ [−∥g∥∞, 1 + ∥g∥∞])dxdy(3.12)

=

∫ ∗

Ag

H(1−ϵ)/2
(
P−1(x, y) ∩ A

)
dxdy

≤ cϵ,nH(4n+1−ϵ)/2(A).

Note that H2n(Ag) > 0 and the integrand is strictly positive. Since ϵ > 0 we get
from Proposition 38 property 1 that

(3.13)

∫ ∗

Ag

H(1−ϵ)/2(h−1(x1) ∩ [0, 1])dxdy > 0.
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Now from (3.11), (3.12) and (3.13) we get (3.3).
Now we have everything to prove that dimE S = 2n+ 1

2
. The inequality (3.3) gives

us that dimE S ≥ 2n+ 1
2

when letting ϵ→ 0. To show that dimE S ≤ 2n+ 1
2

we can use
Corollary 30. Let α := dimES ≥ 2n + 1

2
> 2n then β := dimHS ≥ β−(α) = 2α − 2n

⇒ α ≤ β
2

+ n = 2n+ 1
2

in the last equality we used fact from [FSSC03] which tells us
that dimHS = 2n+ 1. Now we have proved that dimES = 2n+ 1

2
.
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