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Abstract
Despite significant improvements, convolutional neural network (CNN) based methods are struggling with handling long-
range global image dependencies due to their limited receptive fields, leading to an unsatisfactory inpainting performance 
under complicated scenarios. To address this issue, we propose the Inpainting Transformer (ITrans) network, which combines 
the power of both self-attention and convolution operations. The ITrans network augments convolutional encoder–decoder 
structure with two novel designs, i.e. , the global and local transformers. The global transformer aggregates high-level image 
context from the encoder in a global perspective, and propagates the encoded global representation to the decoder in a multi-
scale manner. Meanwhile, the local transformer is intended to extract low-level image details inside the local neighborhood 
at a reduced computational overhead. By incorporating the above two transformers, ITrans is capable of both global rela-
tionship modeling and local details encoding, which is essential for hallucinating perceptually realistic images. Extensive 
experiments demonstrate that the proposed ITrans network outperforms favorably against state-of-the-art inpainting methods 
both quantitatively and qualitatively.

Keywords Convolutional neural network · Image inpainting · Global transformer · Local transformer

1 Introduction

Image inpainting, also known as image completion, is the 
task of filling in missing pixels in an image with fine image 
content. This task finds applications in various image editing 
domains, including object removal [1], image restoration [2], 
photo retouching [3], etc. The solution of image inpainting 
is to understand image structures and perform image syn-
thesis. Prior to the deep learning era, this subject was mainly 
performed by using existing image patches to fill in masked 

regions [2, 4, 5]. However, due to the lack of semantic under-
standing, these methods have been replaced by deep neural 
networks [6–14] and adversarial learning [15–19]. Deep 
learning-based methods treat inpainting as a generation task 
that involves end-to-end learning using convolutional neural 
networks (CNNs). CNNs are known for their remarkable 
capacity to generate fine details, thanks to their inductive 
biases [20], including locality and weight sharing, which 
ensure them efficient models across domains. Nevertheless, 
the limited receptive fields of CNNs are insufficient to access 
the necessary information for generating quality inpaintings 
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under complex scenarios, leading to unwanted artifacts and 
blurry results. More recently, transformers [21] have dem-
onstrated record-breaking performance in various computer 
vision tasks with strong capability in modeling long-range 
dependencies. While transformers provide an alternative to 
CNNs, their lack of inductive biases presents a challenge 
for processing images. Although transformers have a higher 
performance ceiling than CNNs, their complex costly pre-
training requirements make them more difficult to learn [20]. 
As a result, using transformers for image inpainting is still 
relatively uncommon in literature.

We propose the Inpainting Transformer (ITrans) network 
to integrate the benefits of both CNNs and transformers. To 
leverage the inductive bias of CNNs, we design a convolu-
tional encoder–decoder network for feature extraction and 
image generation, respectively. Additionally, we introduce 
a global and local transformer module to enhance the flex-
ibility of transformers. The global transformer module aims 
to achieve high-level perception of the input image from 
a holistic view and connects the encoder with decoder via 
skip paths in a multi-scale manner. The local transformer 
module is designed to ensure image consistency and enhance 
local details at a lower computational cost. Our ITrans net-
work incorporates these novel designs, resulting in greater 
representational power than pure CNNs and more efficient 
learning than pure transformers. Consequently, our approach 
achieves superior performance on various image inpainting 
benchmarks. Our main contributions are outlined below:

• We propose ITrans network for image inpainting, which 
benefits from the built-in inductive biases of CNNs and 
the strong expressive power transformers. And ITrans is 
the first approach to train CNN-transformer in an end-to-
end way.

• We design the global and local transformer module, 
which learn to capture image context from multiple per-
spectives and significantly improve image generation of 
missing regions.

• Our method sets new state-of-the-art performance on 
various benchmark datasets. Extensive experiments also 
verify the major insight of our ITrans network.

To the best of our knowledge, we are among the first to 
investigate hybrid architectures for image inpainting by 
merging CNNs and transformers in an end-to-end scheme. 
Our source code and models will be made available upon 
acceptance.

2  Related work

2.1  Image inpainting

Deep generative networks for image inpainting Tradi-
tional patch-based inpainting methods typically rely 
on propagating images from remaining areas or other 
sources. For instance, in [2], redundant image patches 
were employed to determine the priority of each pixel 
based on gradient variation. Pixels sharing greater simi-
larity with missing pixels were used to fill in the areas. 
Hays et al. [4] searched through numerous image patches 
on the Internet to locate a suitable patch to fill missing 
areas. Another typical patch-based technique is patch 
matching [5], which looked for identical patches in vari-
ous source pictures. This method split the image into 
small patches and selected the most comparable one to 
fill in the holes. Although these traditional methods work 
well for small, tiny holes, and homogeneous background 
regions, they lack the crucial generating capacity needed 
to handle massive missing regions.

Pathak et al. [6] proposed a deep-learning approach 
called context encoders for image inpainting tasks, which 
is the pilot study of this area. Built on an encoder–decoder 
architecture, the encoder extracts low-resolution features 
from the corrupted image, and the decoder enlarges and 
reconstructs the image. However, the approach often 
results in visual artifacts and blurriness in the recovery 
regions. To address this issue, Iizuka et al. [7] reduced the 
number of downsampling layers, and [22] included dilated 
convolution layers in the bottleneck. Meanwhile, recent 
work LaMa [23] employed Fourier convolutions to enlarge 
the receptive filed and inductive bias. The U-Net structure 
[24] is widely applied to extract low-level features well-
reserved in encoder layers. Liu et al. [8] introduced partial 
convolution to prevent the feature maps from capturing 
too many zeros, thereby smoothing the output image by 
filtering redundant zeros while traversing over missing 
regions. Additionally, Yu et al. [11] implemented gated 
convolution in both encoder and decoder layers, which 
learns a dynamic feature selection mechanism for channel-
wise spatial placement across all layers, improving color 
consistency and inpainting quality on free-form masks.

Attention mechanism Attention mechanisms have 
recently been applied to improve inpainting tasks. Yu et al. 
[25] first introduced contextual attention, demonstrating 
the attention process with dilated convolutions. The con-
textual attention model operates in two stages. The first 
stage generates a coarse inpainting result, while the second 
stage refines the image using patch-similarity-based con-
textual attention. Kim et al. [26] made further progress by 
introducing the texture transform attention (TTA) module. 
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With the TTA module, high-level features are reassembled 
from low-level features and sent to the decoder, improving 
the inclusion of texture information in the reconstructed 
regions. Transformers are all about attention, and the 
inclusion of an attention mechanism reminds us of the 
potential of transformers in image inpainting.

2.2  Vision transformers

Transformers Attention-based models, particularly 
transformers [21] have emerged as the de facto stand-
ard approach in natural language processing (NLP) [27]. 
Transformers also show great performance in computer 
vision fields. Vision transformer (ViT) [28] is a convo-
lution-free transformer that outperforms previous CNN-
based models [29] in image recognition tasks. ViT pro-
cesses images as a sequence of 16 × 16 words, allowing 
for robust representation. The transformer architecture’s 
effectiveness in ViT has been demonstrated through pre-
training on massive datasets. Subsequently, DeiT [30] 
adapts ViT for better sample efficiency through an inno-
vative knowledge distillation technique. ViT has also been 
applied to other computer vision tasks, such as object 
detection [31, 32], and semantic segmentation [33–35].

Transformers in inpainting Image inpainting can be 
considered as a form of image generation task, and there 
are various approaches that use transformers and convolu-
tion layers. Parmer et al. [36] first suggested that image 
generation be viewed as autoregressive sequence genera-
tion using a transformer architecture. Generative models 
such as [36, 37] employ autoregressive learning and GPT-
3-based techniques [27]. In contrast, transformer-based 
generative adversarial networks (GANs) have not received 
much attention until recently. TransGAN [38] introduced 
a pure transformer-based GAN that employs grid self-
attention, a variant of self-attention, to scale for varying 
image sizes. ViTGAN [39] modified the normalization 
layers and output mapping layers of ViT in the encoder to 
fill in missing regions. To ensure Lipschitzness, ViTGAN 
utilizes L2 attention [40].

In the field of image inpainting, [41] employed a GPT-
based [42] bilateral transformer as the bottleneck model, 
with convolution-based encoder and decoder for feature 
extraction. The bilateral transformer is applied to non-
predicted tokens, while an autoregressive model is used 
in predicted tokens to avoid information leakage. This 
enables the model to simultaneously obtain bilateral con-
text and generate output. ICT [43] is a pluralistic image 
completion model that consists of two stages. In the first 
stage, a bi-directional transformer is used to generate a 
probability distribution for the missing regions. In the 

second stage, a guided upsampling network is employed 
to reconstruct the images. T-Fill [44] employed a restric-
tive CNN for individual weighted token representation, 
which is used in long-range transformer interactions. 
Notably, to the best of our knowledge, no other works 
have attempted to apply the ViT structure in image 
inpainting.

3  Approach

Our goal is to generate a realistic image Ip from a masked 
image Im that has missing regions, indicated by a binary 
mask M . Following the idea of [9], we divide the inpaint-
ing process into two stages: edge generation and image 
inpainting. Specifically, we first generate an edge map with 
the Canny edge detector [45] and complete the edge map 
as the image’s structure prior. Subsequently, we stack edge 
map and masked image Im together as a four-channel input 
to our ITrans network to yield the inpainting result.

Our ITrans network is an end-to-end network that 
incorporates the CNN network with transformer modules, 
global and local transformer, to enhance the quality of 
inpainting. Figure 2 shows the structure of the ITrans net-
work. The global transformer focuses on global high-level 
context modeling in the encoder, and serves in the skip 
layer to enhance inpainting performance. The local trans-
former is applied to an additional neighborhood branch to 
acquire low-level details. These two transformer modules 
introduce additional attention in inpainting. The network 
is trained on places and human face datasets with ran-
domly generated irregular masks for free-form inpaint-
ing. The architecture details of our ITrans network will 
be discussed in depth in Sect. 3.1. The two transformer 
modules in ITrans will be introduced in Sects. 3.2 and 3.3, 
respectively. The loss functions will be shown in Sect. 3.4.

3.1  ITrans network

The whole inpainting network consists of two stages: edge 
completion and image inpainting. We have utilized the same 
edge generation model as [9]. The edge completion model 
takes the masked grayscale image Ig , masked edge Em , and 
Canny-generated edges together as the input to construct the 
full edge, considered as an image structure prior.

In the image inpainting stage, we introduce ITrans 
network. ITrans’s primary structure is a CNN-based 
encoder–decoder network, with 8 ResBlocks [29] used to 
generate missing pixels in the bottleneck. The architecture 
of ITrans leverages the inductive bias of CNN networks 
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to efficiently learn cross-domain information from vari-
ous images. Since encoder features typically contain 
more unique image structures than decoder features, we 
believe it is essential to aggregate both types of features 
for inpainting. To achieve this, we employ the global trans-
former in the skip-connection structure to merge these two 
features.

Moreover, we also incorporate an extra branch with 
four convolutional layers for the local transformer. This 
feature map is then passed through the local transformer 
to extract local details. Finally, the concatenation of the 
ResBlock bottleneck and local transformer outputs is sent 
to the decoder. This decoder progressively upsamples the 
feature maps to generate the final image.

The ITrans network is a generative model that trains 
under the GAN framework [46], using PatchGAN [47] 
structure for the discriminators. In particular, we choose 
differnent normalization approaches in different modules. 
Spectral normalization [48] is applied in all discriminators to 
stabilize training by scaling down weight matrices. Instance 
normalization [49] is used in the encoder and decoder for 
structure generating, while layer normalization [50] is imple-
mented in all transformer layers.

3.2  Global transformer

The global transform00er performs global self-attention 
on feature maps in order to enhance the quality of image 
inpainting. Based on the concept of vision transformer (ViT) 
[51], which treats images as word sequences in natural lan-
guage processing, our global transformer splits the input 
image into fixed-size patches and adds class tokens into 
patches. Position embedding is then used to maintain posi-
tional information, and the concatenated sequence is sent to 
the transformer encoder. To avoid overfitting, dropout layers 
[52] are also implemented.

In image inpainting tasks, retaining all pixels through-
out the process is necessary to preserve key textural clues 
in the background. Therefore, in the global transformer for 
image inpainting, we remove all dropout layers to maintain 
all features and pixels for higher inpainting quality, applied 
in both position embedding and the transformer encoder. To 
induce self-attention of the input, a multi-head layer (MLP) 
is inserted after the transformer encoder. The MLP layer 
enhances the generation performance of the global trans-
former and stabilizes training. Following that, a classifica-
tion vector is obtained, representing categories of all pixels 
in feature maps. However, instead of a 1-D vector, we want 
a self-attention map for the decoder. The obtained vector is 
sent to a rearrange module, which reshapes it into the size of 
input feature map. Each pixel in this self-attention map has a 
classification. Finally, we add a convolution layer to recover 
input channels and smoothing the attention map. And this is 

the output of the global transformer, which comprises classi-
fication categories from the input feature map. The structure 
of our global transformer is depicted in Fig. 3.

3.3  Local transformer

In general, convolution layers focus on the local area within 
the convolution kernel, while the ViT module concentrates 
on global attention and precise details on local areas. How-
ever, the global receptive field of ViT can result in the loss 
of some details. Therefore, to address this issue, we propose 
the local transformer, which primarily concerns low-level 
image details in deeper layers. To the best of our knowledge, 
there have been relatively few attempts to use transformers 
to extract local fine details. The structure of our local trans-
former is depicted in Fig. 4.

Initially, we consider the sequences for attention com-
putation, which are query (Q), key (K) and value (V). We 
apply a sequence extracting convolution layer instead of 
patching procedures to obtain the sequences. The sequences 
are defined as:

where X is the input feature map; f (⋅) , g(⋅) , and h(⋅) are 
different convolution layers. Then, query (Q), key (K) and 
value (V) sequences are sent to the kernel-sized self-atten-
tion layer. The self-attention layer in our local transformer 
focuses on attention with a sequence size that extracts con-
volution kernels. To ensure efficient computation, we adopt 
a dynamic multi-headed dimension choosing mechanism in 
the attention layer. For multi-headed layers, we use different 
head numbers for distinct feature channels to save compu-
tational costs. The number of head dimensions depends on 
the number of input feature channels. The head dimension is 
small for low-level features and large for high-level features, 
resulting in reduced computation costs across a spectrum of 
input sizes. The self-attention head is defined as:

where 
√
dh is the feature dimension for each head. Finally, 

an MLP layer is added to restore the missing pixels and to 
generate the final local attention map.

To reduce computational costs, we omit the use of posi-
tion embedding and class tokens in our local transformer 
design. Attention sequences are generated using convolution 
kernels, which preserve the order of original features. There-
fore, it is unnecessary to retain position information through 
position embedding. In highly detailed contexts, there are 
more pixel categories than in the original image, and class 

(1)

Q = Reshape(f (X)),

K = Reshape(g(X)),

V = Reshape(h(X)),

(2)Attention(X) = softmax(QKT∕
√
dh)V,
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tokens become less significant in local areas while consum-
ing more time. To address this issue, we add a skip layer to 
the local transformer, which combines the input feature map 
with the local attention map for upsampled decoding. The 
output of our local transformer is defined as:

where F(⋅) denotes convolution operation.

3.4  Training losses

Inpainting tasks are inherently ambiguous, especially 
when dealing with extensive missing regions, and multiple 
plausible fillings may be appropriate for the same region. 
To address the complexity of this task, we will introduce 
all of our proposed losses.

In the edge completion stage, we apply adversarial loss 
and feature-matching loss [53]:

The loss weight �adve and �FM are to 1 and 10, respectively. 
Adversarial loss ensures the generated details are naturally 
looking ones, which is defined as:

where G1 and D1 denote edge generator and discriminator, 
respectively; EGT  indicates ground truth edges; Ep indi-
cates predicted completed edges; and Ig indicates grayscale 
images.

Feature-matching loss compares activation maps in spe-
cific discriminator layers, which is similar to perception 
loss [54–56] and it is defined as:

where L is the final convolution layer of discriminator, Ni is 
the number of elements of the i’th activation layer, and D(i)

1
 

is the i’th layer of discriminator.
In inpainting stage, the input is incomplete image 

Im = IGT ⋅ (1 −M) , where masked areas are set to 0, along 
with completed edge map Ec = EGT ⋅ (1 −M) + Ep ⋅M . 
The predicated image Ip is generated from the incomplete 
image and the completed edge. L1 loss, adversarial loss, 
style loss, perceptual loss, and total variation loss are all 
included in training loss. L1 loss is normalized by mask 

(3)Output = F(Concat(X,Attention(X))),

(4)min
G1

max
D1

LG1
= min

G1

(�advemax
D1

(Ladve) + �FMLFM).

(5)
Ladve = �(EGT ,Ig)

logD1(EGT , Ig)

+ �Ig
log [1 − D1(Ep, Ig)],

(6)LFM = �

�
L�

i=1

1

Ni

‖D(i)

1
(EGT ) − D

(i)

1
(Ep)‖1

�
,

size to guarantee a proper scaling. Adversarial loss is simi-
lar to Eq. (5):

Perceptual loss [54] evaluates the distance between features 
of the predicted and original images on a pre-trained net-
work. It does not require the exact reconstruction, allow-
ing for variances in the predicted image. Perceptual loss is 
defined as:

where Φi is the i’th activation layer of VGG-19 pre-trained 
network on ImageNet [57].

Style loss is shown by Sajjadi et al. [58] as an effective 
way to deal with “checkerboard” artifacts caused by trans-
pose convolution [59]. Style loss adopts the same activation 
layers as perceptual loss and is defined as:

where GΦi

j
 is the Gram matrix of activation map Φi . Total 

variation loss [60] is used for smoothing the output spatially 
and compacting the possible noise in the decoder. Total vari-
ation loss for an H ×W × C feature map is defined as:

The final training loss for ITrans network is:

In the training settings, we set �l1 = 1 , �advi = 0.1 , �p = 0.1 , 
�s = 250 , and �TV = 0.01.

4  Experiments

4.1  Implementation details

The ITrans network is implemented in PyTorch [62]. We 
use Adam [63] optimizer with �1 =0 and �2=0.9. The learn-
ing rate of the generator is set to 10−4 learning rate initially, 
and decreases to 10−5 until convergence. The discriminator’s 
learning rate is one-tenth that of the generator. In the edge 

(7)
Ladvi = �(IGT ,Ec)

logD2(IGT ,Ec)

+ �Ec
log [1 − D2(Ip,Ec)].

(8)Lp = �

�
�

i

1

Ni

‖Φi(IGT ) − Φi(Ip)‖1

�
,

(9)Ls = �j

�
‖GΦi

j
(Ip) − G

Φi

j
(IGT )‖1

�
,

(10)LTV =
1

HWC

∑

i,j,k

√
(Ii,j+1,k − Ii,j,k)

2 + (Ii+1,j,k − Ii,j,k)
2.

(11)
Linpaint = �l1Ll1 + �adviLadvi + �pLp

+ �sLs + �TVLTV .
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Fig. 1  Inpainting results by the 
proposed ITrans network for 
diverse scenes and human faces

Fig. 2  ITrans Network. In the 
ITrans network, we adopt an 
encoder–decoder structure 
along with ResBlock bottle-
neck. The global transformer 
is added as skip layer to gather 
encoder and decoder features 
and self-attention together. We 
add another branch specifically 
for the local transformer, which 
aims at extracting fine image 
details

Fig. 3  Global transformer. In 
global transformer, we do not 
adopt dropout layer in order to 
keep all pixels in the feature 
map. We believe it is essential 
to hold all pixels in our atten-
tion map
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completion stage, the initial edge is generated by the Canny 
edge detector [45].

4.2  Training datasets

Our ITrans network is trained on the MS-COCO [64], 
Places2 [65] datasets for places inpainting and CelebA 
[66] dataset for human faces. Places2 is an image inpaint-
ing dataset that contains over 8 million images with more 
than 365 places categories, while CelebA has over 200 
thousand celebrity faces. To improve free-form inpaint-
ing performance, we mix NVIDIA-ALDR datasets [8] 

and Google-Quick-Draw!-based QD-IMD [67] together, 
as well as randomly produced square masks. Both of these 
datasets include randomly drawn stripes to simulate the 
artifacts present in real-world inpainting tasks. The resolu-
tion of training images is set to 512 × 512 and all models 
are trained for 1 million iterations with a batchsize of 8.

5  Results

In our experiments, we use Places2 and CelebA for places 
and human faces tests respectively, and NVIDIA-ALDR test 
sets are used for different mask regions.

Fig. 4  Local transformer. We 
obtain transformer sequences 
with sequence extraction 
convolution. Self-attention is 
computed by a kernel-sized 
attention layer. And we add a 
skip layer at the output stage to 
combine input and self-attention 
together for feature aggregating

(a) GT (b) Input (c) FRRN (d) EC (e) ICT (f) ITrans

Fig. 5  Qualitative comparison with current models. a Ground truth, b masked images, c FRRN [61], d EdgeConnect [9], e ICT [43], f ITrans
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5.1  Qualitative comparison

Figure 1 shows inpainting results obtained by our ITrans 
network. Our ITrans network produces visually realistic 
results when the missing area is extensive. In Fig. 5, we 
compare images generated by our model to those generated 
by other inpainting approaches. ITrans works well on fine 
details, demonstrating the efficacy of our network structure. 
With the use of edge maps, ITrans network could specifically 
concentrate on pixel generation with the transformer-based 
self-attention.

5.2  Quantitative comparison

We use four quantitative metrics to evaluate inpainting 
qualities: (1) relative L1 (MAE); (2) structural similar-
ity index (SSIM) [68]; (3) peak signal-to-noise ratio 
(PSNR); (4) Frechet inception distance (FID) [69]. 

Table 1  Quantitative results on Places2

We compare our Inpainting Transformer network (ITrans) with 
FRRN [61], EdgeConnect [9] and ICT [43]. On evaluating metrics, 
PSNR and SSIM are higher the better, while MAE and FID are lower 
the better. The best metrics are boldfaced

Mask ratio FRRN EC ICT Itrans

PSNR 0–10% 31.33 31.92 26.60 32.15
10–20% 27.73 27.60 24.11 27.88
20–30% 24.53 24.70 21.98 24.98
30–40% 22.16 22.50 20.25 22.79
40–50% 20.06 20.69 18.83 21.05
All 23.83 24.36 21.66 24.68

SSIM 0–10% 0.9677 0.9712 0.9191 0.9726
10–20% 0.9358 0.9342 0.8719 0.9375
20–30% 0.8795 0.8808 0.8090 0.8868
30–40% 0.8077 0.8132 0.7369 0.8222
40–50% 0.7199 0.7324 0.6563 0.7456
All 0.8113 0.8203 0.7582 0.8288

MAE(%) 0–10% 1.78 1.56 3.37 1.54
10–20% 2.22 2.28 4.17 2.22
20–30% 3.23 3.26 5.25 3.14
30–40% 4.51 4.46 6.51 4.25
40–50% 6.19 5.91 7.98 5.61
All 4.86 4.36 6.14 4.17

FID 0–10% 4.49 4.08 15.03 4.06
10–20% 11.52 10.69 20.14 10.31
20–30% 22.94 20.43 26.52 19.14
30–40% 38.04 34.77 33.67 31.84
40–50% 58.73 53.94 43.99 49.02
All 17.10 16.24 14.37 15.10

Table 2  Quantitative results on Celeb-HQ

The best metrics are boldfaced

Mask ratio FRRN EC ICT Itrans

PSNR 0–10% 35.23 35.29 32.45 35.67
10–20% 30.72 30.89 29.78 31.19
20–30% 27.56 27.73 27.34 27.97
30–40% 24.86 24.90 25.15 25.28
40–50% 22.16 22.75 23.50 23.30
All 26.18 26.70 26.55 27.28

SSIM 0–10% 0.9804 0.9802 0.9674 0.9815
10–20% 0.9558 0.9563 0.9462 0.9584
20–30% 0.9182 0.9185 0.9153 0.9214
30–40% 0.8640 0.8662 0.8711 0.8742
40–50% 0.7901 0.8007 0.8283 0.8098
All 0.8547 0.8629 0.8704 0.8791

MAE(%) 0–10% 1.09 1.09 1.63 1.06
10–20% 1.58 1.57 2.03 1.50
20–30% 2.26 2.27 2.60 2.14
30–40% 3.28 3.21 3.34 3.00
40–50% 4.82 4.44 4.16 4.03
All 3.84 3.32 3.23 2.99

FID 0–10% 3.32 3.21 15.19 2.61
10–20% 8.67 7.77 17.87 7.04
20–30% 15.97 14.74 21.16 14.16
30–40% 25.14 25.06 25.02 23.34
40–50% 37.87 36.46 27.98 34.79
All 14.17 12.56 14.07 11.04

Table 3  Inpainting results with and without global transformer

Statistics are based on 2000 images on Places2 and 500 images on 
Celeb-HQ, respectively

Dataset Places CelebA

Mask w/o G-Trans w/ G-Trans w/o G-Trans w/ G-Trans

PSNR
20–30% 24.70 24.73 27.73 27.79
30–40% 22.50 22.53 24.86 25.10
SSIM
20–30% 0.8808 0.8824 0.9185 0.9211
30–40% 0.8132 0.8150 0.8640 0.8704
MAE
20–30% 3.26 3.23 2.27 2.21
30–40% 4.46 4.40 3.28 3.14
FID
20–30% 20.43 20.23 14.74 14.66
30–40% 34.77 34.73 25.06 25.00
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Pixel-wise metrics measures the accuracy (MAE), struc-
ture (SSIM) and color (PSNR) of inpainting images with 
ground truths. FID measures perceptually accuracy due 
to its feature-based characteristic, which is based on the 
Inception-V3 model [70] for superior perception perfor-
mance than humans [71–73].

Table 1 shows our experimental results on Places2, 
and Table 2 shows our testing results on Celeb-HQ. The 
Places2 dataset includes 12,000 images, with each mask 
ratio consisting of 2000 masks. Celeb-HQ comprises 500 
images for each mask ratio and 2000 images for all mask 
regions. We compare the ITrans network with FRRN 
[61], EdgeConnect [9] and ICT [43]. We obtain statistics 
using available codes and pretrained weights. Our experi-
ments demonstrate that our ITrans network exceeds other 
approaches on the majority of metrics. However, it should 
be noted that ICT outperforms better than ITrans in terms 
of large masks, especially on human faces. We believe 
that this is because visual plausibility is more essential 
than restoring the original images in large masks.

5.3  Ablation study

In this section, we will turn to our key contributions: the 
global and local transformer. We will demonstrate their 
efficacy through the following ablation studies.

Global transformer Skip layers are widely used in the 
encoder–decoder structure. However, traditional skip lay-
ers simply combine the encoder and decoder without any 
extra structure. In contrast, our global transformer aggre-
gates encoder attention and decoder features in the skip 
layers. Table 3 shows the inpainting performance with and 
without global transformer. The results reveal that our global 

transformer outperforms the network without a skip layer. 
This suggests that our global transformer performs well 
on inpainting tasks and demonstrates the efficacy of global 
attention.

Local transformer The local transformer is the next focus 
of our research in the ITrans network, as it contains both 
local and global transformers. Having already demonstrated 
the effectiveness of the global transformer, we are now gain-
ing experience with the local transformer. We compare the 
performance of the network with and without the local trans-
former, and the results are shown in Table 4. Our findings 
demonstrate that our proposed local transformer module 
effectively enhances inpainting performance for both places 
and faces, with the additional branch of local attention prov-
ing highly valuable. This additional self-attention branch 
highlights the importance of detailed local self-attention in 
improving the network’s inpainting ability.

5.4  Limitations

Failure cases are shown in Fig. 6. Blurriness and artifacts 
appear when the inpainting mask is large or complicated. A 
better edge completion model and a better network struc-
ture, we believe, might improve performance. Moreover, the 
current generation performance of transformers is relatively 
poor, we need to discover a solution to enhance their gen-
erating ability. Even though a 512 × 512 image is sufficient, 
our model still need to be experimented on higher resolution 
to enhance the utility of our ITrans network.

5.5  Future works

The current ITrans network has significant scope for 
improvement. For example, the network needs to be trained 
on a wider variety of datasets. Although the current dataset 
provides simulation of various contexts, it is still insufficient 
for real-world inpainting tasks. Additionally, the transformer 
structure remains computationally expensive during training 
and requires a lighter version. Recently, diffusion models ?? 
have become popular in generative tasks, and a combination 

Table 4  Inpainting results with and without local transformer

Statistics are based on 2000 images on Places2 and 500 images on 
Celeb-HQ, respectively

Dataset Places CelebA

Mask w/o L-Trans w/ L-Trans w/o L-Trans w/ L-Trans

PSNR
20–30% 24.73 24.97 27.79 27.88
30–40% 22.53 22.76 25.10 25.26
SSIM
20–30% 0.8824 0.8858 0.9211 0.9214
30–40% 0.8150 0.8204 0.8704 0.8735
MAE
20–30% 3.23 3.17 2.21 2.14
30–40% 4.40 4.28 3.14 3.02
FID
20–30% 20.23 19.57 14.66 14.16
30–40% 34.73 32.57 25.00 23.56

Fig. 6  Failure cases. Artifacts appear in huge missing holes
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of CNNs, transformers, and diffusion models could hold 
great promise in this field.

6  Conclusion

Through multiple experiments, we have evaluated the 
end-to-end ITrans network’s ability to perform well in 
various inpainting scenarios. The ITrans network leverages 
the inductive bias of CNNs while adding flexibility with 
its global and local transformers. The global transformer 
provides global semantic self-attention for encoder feature 
maps, which are then utilized in the decoder. The local trans-
former extracts local feature details to enhance the inpaint-
ing results further. Finally, future enhancements of the gen-
erating ability are expected to improve overall performance.
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