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Abstract
Westudyprojective and injective tensor products ofBanach L0-modules over aσ -finite
measure space. En route, we extend to Banach L0-modules several technical tools of
independent interest, such as quotient operators, summable families, and Schauder
bases.
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1 Introduction

As of now, the language of normedmodules introduced by Gigli in [11] has become an
indispensable tool in analysis on metric measure spaces, especially on those verifying
synthetic lower Ricci curvature bounds (the so-called RCD spaces). Normed modules
allow to define several spaces of measurable tensor fields, whose investigation has
remarkable analytic and geometric consequences. In this respect, three constructions
are particularly important: duals, pullbacks, and (in the case of Hilbert modules) tensor
products. For example, the dual of the pullback is important for constructing the
differential of a map of bounded deformation or the velocity of a test plan (cf. with the
introduction of [13]), while the tensor product of Hilbert modules is a fundamental
tool when studying the second order differential calculus on RCD spaces (see [11,
Section 3]). However, since many spaces of interest are ‘non-Riemannian’, it would
be interesting to study tensor products of non-Hilbert normed modules, as well as to
understand their relation with duals and pullbacks: this is the main goal of this paper.
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We assume the reader is familiar with (projective and injective) tensor products of
Banach spaces, for which we refer e.g. to the authoritative monograph [21].

Let us briefly describe the content of the paper. Fix a σ -finite measure space X =
(X, �,m), i.e. X is a set, � is a σ -algebra on X, and m : � → [0,+∞] is a σ -finite
(countably-additive) measure. We consider the class of Banach L0(X)-modules, i.e.
modules over the commutative ring L0(X) that are endowedwith a complete pointwise
norm operator (cf. with Definition 2.4). Even though we are mostly interested in
their applications to metric measure geometry, we consider Banach L0-modules over
general measure spaces. Our choice is due to the fact that Banach L0-modules play
an important role also in other research areas, see for example [15], as well as [14]
and the references therein. The only results where we need to require an additional
assumption on the base measure space (verified in the case of metric measure spaces)
are Theorems 4.13 and 5.13. Given two Banach L0(X)-modules M and N , we first
provide a useful criterion to detect the null tensors of the algebraic tensor product
M ⊗N ; see Lemma 3.19. Its proof is quite subtle, one reason being the fact that
the algebraic dual of a module might not separate the points (differently from duals
of vector spaces); cf. with Remark 3.20. Having Lemma 3.19 at our disposal, we can:

• Define and study the projective tensor product M ⊗̂πN , see Sect. 4.
• Define and study the injective tensor product M ⊗̂εN , see Sect. 5.

Motivated by the analysis on metric spaces, our attention is focussed on the following
results:

• The dual of M ⊗̂πN can be identified with the space B(M ,N ) of bounded
L0(X)-bilinear maps fromM ×N to L0(X) (see Theorem 4.11), while the dual
ofM ⊗̂εN is a quotient of the dual of the space Cpb(D

w∗
M ∗ ×D

w∗
N ∗; L0(X)) (see

Definition 3.16 and Theorem 5.12).
• The operation of taking pullbacks of Banach L0(X)-modules commutes both with
projective tensor products (Theorem 4.13) andwith injective tensor products (The-
orem 5.13).

While some of the concepts and results we presented above are natural extensions of
their version for Banach spaces, other ones are non-trivial generalisations (see e.g. the
two different notions of a continuousmodule-valuedmap in Sect. 3.4) or have no coun-
terpart in the Banach space setting (as in the case of pullback modules). We conclude
the introduction by mentioning that a significant portion of the paper is devoted to the
development of several technical tools (new in the setting of Banach L0(X)-modules),
which are needed in Sects. 4 and 5, and can be useful in the future research concern-
ing normed modules: we study quotient operators (Sect. 3.1), summable families in
Banach L0(X)-modules (Sect. 3.2), and local Schauder bases (Sect. 3.3).

2 Preliminaries

Given an arbitrary set I �= ∅, we denote by P(I ) its power set (i.e. the set of its
subsets) and

P f (I ):=
{
F ∈P(I )

∣∣ F is finite
}
.
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Given any couple of indexes i, j ∈ I , we define δi j ∈ {0, 1} as δi j :=1 if i = j and
δi j :=0 if i �= j .Moreover, ifX is a set, then the characteristic function1E : X→ {0, 1}
of a subset E ⊆ X is

1E (x):=
{
1
0

for every x ∈ E,

for every x ∈ X\E .

For any map ϕ : X → Y between two sets X and Y, we denote by ϕ[X] ⊆ Y the
image of ϕ.

2.1 Tensor products of modules

In this section, we recall the basics of the theory of tensor products of modules, which
is originally due to [5]. See also [7] and the references indicated therein. Our standing
convention is that all rings are assumed to have a multiplicative identity.

Theorem 2.1 (Tensor products of modules) Let R be a commutative ring. Let M and
N be modules over R. Then there exists a unique couple (M ⊗ N ,⊗), where M ⊗ N
is an R-module and ⊗: M × N → M ⊗ N is an R-bilinear map, such that the
following universal property holds: given any R-module Q and any R-bilinear map
b : M × N → Q, there exists a unique R-linear map b̃ : M ⊗ N → Q, called the
R-linearisation of b, for which the diagram

M × N Q

M ⊗ N

b

⊗
b̃

commutes. The couple (M ⊗ N ,⊗) is unique up to a unique isomorphism: given
any (T , ⊗̃) with the same properties, there exists a unique isomorphism of R-modules
� : M ⊗ N → T such that

M × N M ⊗ N

T

⊗

⊗̃
�

commutes. We say that (M ⊗ N ,⊗), or just M ⊗ N, is the tensor product of M and
N.

Those elements of M ⊗ N of the form v ⊗w are called elementary tensors. Any
α ∈ M⊗N is a sumof elementary tensors:α =∑n

i=1 vi⊗wi for somev1, . . . , vn ∈ M
and w1, . . . , wn ∈ N .

Let us recall the following criterion, which allows us to detect when a given element∑n
i=1 vi ⊗ wi ∈ M ⊗ N is null:

∑n
i=1 vi ⊗ wi = 0 if and only if
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n∑

i=1
b(vi , wi ) = 0

whenever Q is an R-module and
b : M × N → Q is an R-bilinear map.

(2.1)

Differently from the case of tensor products of vector spaces, in (2.1) one has to
consider R-bilinear maps b with values into an arbitrary R-module Q (taking Q = R
is not sufficient). Indeed, it can happen that no non-null bilinear map b : M × N → R
exists even if M , N are non-trivial; see [18].

Lemma 2.2 (Tensor products of R-linear maps) Let R be a commutative ring. Let
T : M → M̃ and S : N → Ñ be R-linear maps between R-modules. Then there
exists a unique R-linear map T ⊗ S : M ⊗ N → M̃ ⊗ Ñ such that (T ⊗ S)(v⊗w) =
T (v)⊗ S(w) for every v ∈ M and w ∈ N.

Each commutative ring R is an R-module. Moreover, each R-module M is canoni-
cally isomorphic (as an R-module) to R⊗M via the R-linear mapM 	 v 
→ 1R⊗v ∈
R ⊗ M . In particular, R ⊗ R ∼= R.

2.2 The space L0(X)

Let X = (X, �,m) be a σ -finite measure space. We denote by L0(X) the space of all
real-valued measurable functions from X to R, quotiented up to m-a.e. identity. The
equivalence class in L0(X) of a given measurable function f̄ : X→ Rwill be denoted
by [ f̄ ]m. The space L0(X) is a vector space and a commutative ring if endowed with
the natural pointwise operations. Moreover, fixed a probability measure m̃ on (X, �)

with m� m̃� m, we have that

dL0(X)( f , g):=
∫
| f − g| ∧ 1 dm̃ for every f , g ∈ L0(X)

is a complete distance, and L0(X) becomes a topological vector space and a topological
ring if endowed with dL0(X). The distance dL0(X) depends on the chosen auxiliary
measure m̃, but its induced topology does not. We also have that a given sequence
( fn)n∈N ⊆ L0(X) converges to a limit function f ∈ L0(X) with respect to dL0(X) if
and only if there exists a subsequence (ni )i∈N ⊆ N such that f (x) = limi fni (x) for
m-a.e. x ∈ X. Finally, L0(X) is a Riesz space if endowed with the natural partial order
defined in the following way: given f , g ∈ L0(X), we declare that f ≤ g if and only
if f (x) ≤ g(x) for m-a.e. x ∈ X. The positive cone of L0(X) is then denoted by

L0(X)+:={
f ∈ L0(X)

∣∣ f ≥ 0
}
.

We also point out that L0(X) is Dedekind complete, i.e. every subset { fi }i∈I of
L0(X) that is order-bounded (which means that there exists g ∈ L0(X)+ such that
| fi | ≤ g for every i ∈ I ) has both a supremum

∨
i∈I fi ∈ L0(X) and an infimum∧

i∈I fi ∈ L0(X). Let us recall that the supremum
∨

i∈I fi is the unique element of
L0(X) having the following properties:



Projective and injective tensor products... Page 5 of 55    11 

• f j ≤∨
i∈I fi for every j ∈ I .

• If a function g ∈ L0(X) satisfies f j ≤ g for every j ∈ I , then
∨

i∈I fi ≤ g.

The infimum is given by
∧

i∈I fi := −∨
i∈I (− fi ). Furthermore, L0(X) has both the

countable sup property and the countable inf property, i.e. for any order-bounded
set { fi }i∈I ⊆ L0(X) one can find C ⊆ I countable with

∨
i∈C fi = ∨

i∈I fi and∧
i∈C fi =∧

i∈I fi . More generally, the space L0
ext(X) of measurable functions from

X to [−∞,+∞], quotiented up tom-a.e. identity, is a Dedekind complete Riesz space
with the countable sup/inf properties. Notice that every set in L0

ext(X) is order-bounded
and that L0(X) is a solid Riesz subspace of L0

ext(X).
Given any measurable set E ∈ � with m(E) > 0, we will use the following

shorthand notation:

X|E :=(X, �,m|E ),

where m|E stands for the restriction of m to E , i.e. we set m|E (F):=m(E ∩ F) for
every F ∈ �.

Remark 2.3 LetX = (X, �,m)beσ -finite and { fi }i∈I ⊆ L0
ext(X). Fix a representative

f̄i of fi for any i ∈ I . Suppose there exists ameasurable function ḡ : X→ [−∞,+∞]
such that supi∈I f̄i (x) ≤ ḡ(x) for all x ∈ X; we do not require that x 
→ supi∈I f̄i (x)
is measurable. Then

∨
i∈I fi ≤ [ḡ]m. Indeed, we can find a countable set C ⊆ I such

that
∨

i∈C fi = ∨
i∈I fi . As supi∈C f̄i (x) ≤ ḡ(x) for every x ∈ X and

∨
i∈C fi =[

supi∈C f̄i
]
m
, we deduce that

∨
i∈I fi ≤ [ḡ]m.

We also point out that the metric space (L0(X),dL0(X)) is separable if and only if
the measure space (X, �,m) is separable, which means that we can find a sequence
(En)n∈N ⊆ � such that

inf
n∈Nm(En
E) = 0 for every E ∈ � such that m(E) < +∞.

We refer e.g. to [12, Section 1.1.2] for a more detailed discussion on L0(X) spaces.
See also [1, 4].

2.3 Banach spaces

We briefly recall some definitions and results concerning Banach spaces.
Given an index set I �= ∅ and an exponent p ∈ [1,∞], we denote by �p(I ) the

vector space

�p(I ):=
{
a = (ai )i∈I ∈ R

I
∣∣ ‖a‖�p(I ) < +∞}

,

where for any a = (ai )i∈I ∈ R
I we define the quantity ‖a‖�p(I ) ∈ [0,+∞] as

‖a‖�p(I ):=
{(∑

i∈I |ai |p
)1/p

supi∈I |ai |
if p < ∞,

if p = ∞,
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where
∑

i∈I |ai |p:= supF∈P f (I )
∑

i∈F |ai |p. It holds that (�p(I ), ‖ · ‖�p(I )) is a
Banach space.

An (unconditional) Schauder basis of a Banach space B is a family of vectors
{vi }i∈I ⊆ B such that for any v ∈ B there is a unique (λi )i∈I ⊆ R

I for which
{λivi }i∈I ⊆ B is summable and

v =
∑

i∈I
λivi .

We recall that this means that for any ε > 0 there exists Fε ∈P f (I ) such that

∥∥∥∥v −
∑

i∈F
λivi

∥∥∥∥
B

< ε for every F ∈P f (I ) with Fε ⊆ F .

We point out that, letting span(S) denote the closure of the linear span of a set S ⊆ B,
we have

vi /∈ span
{
v j

∣∣ j ∈ I\{i}} for every i ∈ I . (2.2)

We also recall that the canonical elements (ei )i∈I ⊆ �1(I ), which are given by

ei :=(δi j ) j∈I ∈ �1(I ), (2.3)

forman (unconditional) Schauder basis of �1(I ). See e.g. [9] for an account of Schauder
bases.

A separable Banach space B is said to be a universal separable Banach space
if every separable Banach space can be embedded linearly and isometrically in B.
The Banach–Mazur theorem states that universal separable Banach spaces exist; for
instance, the space C([0, 1]) endowed with the supremum norm has this property. See
e.g. [3] for a proof of this result.

2.4 Banach L0-modules

The notion of normed/Banach L0(X)-module we are going to recall was introduced in
[11], but the axiomatisation we will present is taken from [10] (with a slight difference
in the terminology, since here we distinguish between non-complete normed modules
and Banach modules). Unless otherwise specified, the discussion is essentially taken
from [2, 10, 11].

Definition 2.4 (Banach L0-module) Let X be a σ -finite measure space, M a module
over L0(X). Then we say thatM is a normed L0(X)-module if it is endowed with a
map | · | : M → L0(X)+, which is said to be a pointwise norm onM , verifying the
following properties:
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|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v| + |w| for every v,w ∈M ,

| f · v| = | f ||v| for every f ∈ L0(X) and v ∈M .

Moreover, we say that M is a Banach L0(X)-module when the following distance
is complete:

dM (v,w):=dL0(X)(|v − w|, 0) for every v,w ∈M .

In the case where Xo = ({o}, δo) is the one-point probability space, the normed
L0(Xo)-modules (resp. the Banach L0(Xo)-modules) can be identified with the
normed spaces (resp. the Banach spaces), with the only caveat that the distance dM
associated with a normed L0(Xo)-module M is not induced by the norm ‖ · ‖M of
M . However, one has that dM (v, 0) = ‖v‖M ∧ 1 for every v ∈M .

Next, we recall/introduce a number of definitions related to normed and Banach
L0(X)-modules. Let X = (X, �,m) be a σ -finite measure space. Let M and N
be normed L0(X)-modules. Given any measurable set E ∈ �, we can consider the
‘localisation’ of M on E , i.e. the space

M |E :=1E ·M = {
v ∈M

∣∣ 1X\E · v = 0
} = {

1E · v
∣∣ v ∈M

}
.

We can regard M |E either as a normed L0(X|E )-module or as a normed L0(X)-
submodule of M . We say that some elements v1, . . . , vn ∈ M are independent on
E provided the mapping

L0(X|E )n 	 ( f1, . . . , fn) 
→
n∑

i=1
fi · vi ∈M |E

is injective, while a vector subspace V ⊆ M is said to generate M on E if it holds
that M |E = clM

(
1E · G (V)

)
, where we denote

G (S):=
{

n∑

i=1
1Ei · vi ∈M

∣∣∣∣ n ∈ N, (Ei )
n
i=1 ⊆ � partition of X, (vi )

n
i=1 ⊆ S

}

for every subset S ⊆ M . The module M is said to be finitely-generated if there
exists a finite-dimensional vector subspace V ⊆M that generatesM (on X). A local
basis for M on E is a collection of elements v1, . . . , vn ∈ M that are independent
on E and have the property that their linear span generates M on E . In this case,
L0(X|E )n 	 ( f1, . . . , fn) 
→ ∑n

i=1 fi · vi ∈ M |E is bijective. Since two local
bases on E must have the same cardinality, one can unambiguously say that M has
local dimension n on E . Local bases do exist, whence it follows that M admits a
(m-a.e. essentially unique) dimensional decomposition (Dn)n∈N∪{∞}, which means
that (Dn)n∈N∪{∞} ⊆ � is a partition of X with the following property: M has local
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dimension n on Dn for all n ∈ N, andM |E is not finitely-generated if E ∈ � satisfies
E ⊆ D∞ and m(E) > 0.

The support of M is the ‘biggest’ subset S(M ) of X where some element of M
is not null, i.e.

S(M ) ∈ � is m-a.e. characterised by 1S(M ):=
∨

v∈M
1{|v|>0}.

The space L0(X) itself is a Banach L0(X)-module with S(L0(X)) = X. The unit
sphere of M is

SM :={
v ∈M \{0} ∣∣ |v|(x) ∈ {0, 1} for m-a.e. x ∈ X

}
.

The signum map sgn : M → SM ∪ {0} on M is defined as

sgn(v):=1{|v|>0}
|v| · v ∈ SM ∪ {0} for every v ∈M .

Notice that v = |v| · sgn(v) for every v ∈ M . Moreover, we define the unit disc of
M as

DM :={
v ∈M

∣∣ |v|(x) ≤ 1 for m-a.e. x ∈ X
}
.

A map T : M → N is said to be a homomorphism of normed L0(X)-modules
provided it is L0(X)-linear and continuous, or equivalently if it is linear and there
exists g ∈ L0(X)+ such that

|T (v)| ≤ g|v| for every v ∈M . (2.4)

We denote by Hom(M ;N ) the space of all homomorphisms of normed L0(X)-
modules from M to N . It is a normed L0(X)-module if endowed with the natural
pointwise operations and the following pointwise norm:

|T |:=
∨

v∈M

1{|v|>0}|T (v)|
|v| =

∧{
g ∈ L0(X)+

∣∣ g satisfies 2.4)
}

for every T ∈ Hom(M ;N ). If N is complete, then Hom(M ;N ) is a Banach
L0(X)-module. By an isomorphism of normed L0(X)-modules we mean a bijective
homomorphism of normed L0(X)-modules T : M → N that preserves the pointwise
norm, i.e. |T (v)| = |v| holds for every v ∈ M . Whenever an isomorphism between
M andN exists, we writeM ∼= N . The kernel ker(T ) of any T ∈ Hom(M ;N ),
which is given by ker(T ):={

v ∈ M : T (v) = 0
}
, is a closed normed L0(X)-

submodule of M .
The dual of a normed L0(X)-module M is defined as

M ∗:=Hom(M ; L0(X)).
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If M is a Banach L0(X)-module and V is a Banach L0(X)-submodule of M , then
we have that the quotient moduleM /V is a Banach L0(X)-module if endowed with
the pointwise norm

|w + V |:=
∧

v∈V
|w + v| for every w + V ∈M /V .

Any normed L0(X)-moduleM has a unique completion (M̄ , ι), i.e. M̄ is a Banach
L0(X)-module and ι : M → M̄ is a pointwise norm preserving homomorphism of
normed L0(X)-modules such that ι[M ] is dense in M̄ . Uniqueness is in this sense:
given any (M̃ , ι̃) having the same properties as (M̄ , ι), there is a unique isomorphism
of Banach L0(X)-modules φ : M̄ → M̃ with ι̃ = φ ◦ ι.

Definition 2.5 (Categories of Banach L0(X)-modules) Let X be a σ -finite measure
space. Then:

(i) We denote by BanModX the category whose objects are the Banach L0(X)-
modules, and the morphisms between Banach L0(X)-modules M and N are
given by Hom(M ;N ).

(ii) We denote by BanMod1
X

the category whose objects are the Banach L0(X)-
modules, and the morphisms between Banach L0(X)-modules M and N are
given by DHom(M ;N ).

Notice that BanMod1
X
is a lluf subcategory of BanModX, i.e. a subcategory con-

taining all the objects ofBanModX. It is proved in [19, Theorem 3.13] thatBanMod1
X

is a bicomplete category (i.e. it admits all small limits and colimits), while it is observed
in [19, Remark 3.1] that BanModX admits all finite limits and colimits.

Theorem 2.6 (Hahn–Banach) Let X be a σ -finite measure space and M a normed
L0(X)-module. Then for any given v ∈ M there exists an element ωv ∈ SM ∗ ∪ {0}
such that ωv(v) = |v|.

Theorem 2.6 appeared in [11] and was obtained as a consequence of the classical
Hahn–Banach theorem. For a more direct proof tailored to normed modules, we refer
to [17, Theorem 3.30].

A norming subset ofM ∗ is a set T ⊆ DM ∗ satisfying |v| =∨
ω∈T ω(v) for every

v ∈M . The Hahn–Banach theorem ensures that the unit disc DM ∗ itself is a norming
subset of M ∗.
Definition 2.7 (Weak∗ topology) Let X be a σ -finite measure space and let M be a
Banach L0(X)-module. Then we define the weak∗ topology on M ∗ as the coarsest
topology induced by the family

{δv : v ∈M },
where δv : M ∗ → L0(X) is given by δv(ω):=ω(v) for every ω ∈M ∗.
Remark 2.8 Similarly, one could define a weak topology on M . Moreover, the weak
and weak∗ topologies on Banach L0-modules verify properties that generalise the
corresponding ones for Banach spaces. However, in this paper we will not investigate
further in this direction.
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2.4.1 Examples of Banach L0-modules

We recall two key examples of Banach L0(X)-modules.

Definition 2.9 (The space L0(X;B)) Let X = (X, �,m) be a σ -finite measure space,
B a Banach space. Then we denote by L0(X;B) the space of all measurable maps
from X to B taking values into a separable subset of B (which depends on the map
itself), quotiented up to m-a.e. equality.

The L0-Lebesgue–Bochner space L0(X;B) is a Banach L0(X)-module if endowed
with

|v|(x):=‖v(x)‖B for every v ∈ L0(X;B) and m-a.e. x ∈ X.

Given a vector v ∈ B, we denote by v ∈ L0(X;B) the vector field that is a.e. equal to
v, i.e. we set

v(x):=v ∈ B for m-a.e. x ∈ X. (2.5)

We also recall the following definition of module-valued space of generalised
sequences:

Definition 2.10 (The space �p(I ,M )) Let I be a non-empty index set and p ∈ [1,∞).
Let X be a σ -finite measure space and M a Banach L0(X)-module. Given any v =
(vi )i∈I ∈M I , we set

|v|p:=
∨

F∈P f (I )

(
∑

i∈F
|vi |p

)1/p

.

Notice that |v|p ∈ L0
ext(X)+ for every v ∈ M I . Then we define the space �p(I ,M )

as

�p(I ,M ):={
v ∈M I

∣∣ |v|p ∈ L0(X)+
}
.

The space
(
�p(I ,M ), | · |p

)
is a Banach L0(X)-module, as it follows from [19,

Proposition 3.10] (notice indeed that �p(I ,M ) is a particular example of �p-sum in
the sense of [19, Definition 3.9]).

2.4.2 Fiberwise representation of a Banach L0-module

One can easily check that the space of measurable sections of a measurable Banach
bundle is a Banach L0(X)-module, a particular example being given by the L0-
Lebesgue–Bochner space L0(X;B), which corresponds to the constant bundle B. On
the other hand, it is much more difficult to show the converse, i.e. that any Banach
L0(X)-module can be represented as the space of sections of somemeasurable Banach
bundle. Results in this direction have been obtained in [8, 16]. We will use one such
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result (i.e. Theorem 2.11 below) to prove Lemma 2.12, which in turn will be essential
in order to obtain Lemma 3.19, and accordingly to introduce projective and injective
tensor products of Banach L0-modules.

Given a σ -finite measure space X = (X, �,m), a separable Banach space B, and
measurable maps v1, . . . , vn : X → B, we say that the multivalued map X 	 x 
→
E(x) ⊆ B, which we define as

E(x):=span{v1(x), . . . , vn(x)} ⊆ B for every x ∈ X,

is a measurable Banach bundle on X. Notice that each E(x) is a closed vector
subspace of B. The space �m(E) of allm-measurable sections of E is then defined as
the set of all measurable maps v : X → B satisfying v(x) ∈ E(x) for m-a.e. x ∈ X,
quotiented up tom-a.e. equality. It turns out that �m(E) is a Banach L0(X)-module if
endowed with the natural pointwise operations.

Theorem 2.11 (Fiberwise representation of Banach L0-modules) Let X be a σ -finite
measure space and M a Banach L0(X)-module. Let B be a universal separable
Banach space. Suppose that M has local dimension n ∈ N on a set E ∈ �. Then
there exist measurable maps v1, . . . , vn : X→ B such thatM |E ∼= �m(E), where we
set E(x):=span{v1(x), . . . , vn(x)} for every x ∈ X.

Theorem 2.11 was first proved in [16], but we preferred to present its reformulation
from [8].

Lemma 2.12 Let X be a σ -finite measure space and let M be a finitely-generated
Banach L0(X)-module. Let T : M → L0(X) be an L0(X)-linear operator. Then it
holds that T ∈M ∗.

Proof Let D0, . . . , Dn̄ be the dimensional decomposition ofM . Fix any n = 1, . . . , n̄.
Thanks to Theorem 2.11, we can find measurable vector fields v1, . . . , vn : X → B,
whereB is any given universal separableBanach space, such that v1(x), . . . , vn(x) ∈ B

are linearly independent for every x ∈ Dn and �m(E) is isomorphic toM |Dn , where
we set E(x):=span{v1(x), . . . , vn(x)} for every x ∈ X. For any i = 1, . . . , n, we
choose a measurable representative φi : X → R of the function T (vi ) ∈ L0(X),
where we are identifying M |Dn with �m(E). Given any point x ∈ Dn , the unique
linear operator from E(x) to R sending each vi (x) to φi (x) is continuous, thus

gn(x):= sup

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣
∑n

i=1 qiφi (x)

∣∣∣∣
∥∥∑n

i=1 qivi (x)
∥∥
B

∣∣∣∣ (q1, . . . , qn) ∈ Q
n\{0}

⎫
⎪⎪⎬

⎪⎪⎭
< +∞.

Notice that gn is measurable by construction. Moreover, any v ∈M |Dn can be written
(in a unique way) as v = ∑n

i=1 fi · vi for some f1, . . . , fn ∈ L0(X), so that we can
estimate

|T (v)|(x) =
∣∣∣∣∣

n∑

i=1
fi (x)φi (x)

∣∣∣∣∣
≤ gn(x)

∥∥∥∥∥

n∑

i=1
fi (x)vi (x)

∥∥∥∥∥
B

= gn(x)|v|(x)
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for m-a.e. x ∈ Dn . Therefore, letting g:=∑n̄
n=1 1Dn gn ∈ L0(X), we conclude that

|T (v)| ≤ g|v| for every v ∈M . ��

2.4.3 Pullback modules

Let X = (X, �X,mX), Y = (Y, �Y,mY) be σ -finite measure spaces. Let ϕ : X→ Y
be a measurable map such that ϕ#mX � mY. Notice that the map ϕ induces via pre-
composition a ring homomorphism L0(Y) 	 f 
→ f ◦ϕ ∈ L0(X) that is also a Riesz
homomorphism.

This is an instance of amore general phenomenon: given anyBanach L0(Y)-module
M , there is a unique couple (ϕ∗M , ϕ∗), where ϕ∗M is a Banach L0(X)-module,
ϕ∗ : M → ϕ∗M is linear, and

|ϕ∗v| = |v| ◦ ϕ for every v ∈M ,

ϕ∗[M ] generates ϕ∗M on X.

We say that ϕ∗M is the pullback module ofM under ϕ. Uniqueness is in the sense
of the following universal property: given any couple (N , T ) having the same prop-
erties as (ϕ∗M , ϕ∗), there exists a unique isomorphism of Banach L0(X)-modules
φ : ϕ∗M → N with T = φ ◦ ϕ∗.

The pullback of the dual ϕ∗M ∗ is isomorphic to a Banach L0(X)-submodule of
the dual of the pullback (ϕ∗M )∗, but in general the two spaces do not coincide.
More precisely, the unique homomorphism of Banach L0(X)-modules Iϕ : ϕ∗M ∗ →
(ϕ∗M )∗ satisfying

Iϕ(ϕ∗ω)(ϕ∗v) = ω(v) ◦ ϕ for every ω ∈M ∗ and v ∈M (2.6)

preserves the pointwise norm, but in general is not surjective. However, the following
fact holds:

Theorem 2.13 (Sequential weak∗ density of ϕ∗M ∗ in (ϕ∗M )∗) Let X, Y be sep-
arable, σ -finite measure spaces. Let ϕ : X → Y be a measurable map such that
ϕ#mX � mY. Let M be a Banach L0(Y)-module. Let � ∈ (ϕ∗M )∗ be given. Then
there exists a sequence (�n)n∈N ⊆ ϕ∗M ∗ such that Iϕ(�n) → � with respect to the
weak∗ topology of (ϕ∗M )∗ introduced in Definition 2.7.

Theorem 2.13 was proved in [13, Theorem B.1]. It is unclear whether the separa-
bility assumption on X and Y, which is due only to the proof strategy of [13, Theorem
B.1], can be dropped.

2.4.4 Bounded L0-bilinear operators

In Sects. 4 and 5 we will need to use the space B(M ,N ):

Definition 2.14 (The space B(M ,N ;Q)) Let X be a σ -finite measure space. Let
M , N , Q be normed L0(X)-modules. Then we denote by B(M ,N ;Q) the space
of all those L0(X)-bilinear operators b : M ×N → Q that are also continuous. We
also set B(M ,N ):=B(M ,N ; L0(X)).
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One can readily check that a bilinear map b : M × N → Q is L0(X)-bilinear
and continuous (i.e. it belongs to B(M ,N ;Q)) if and only if there exists a function
g ∈ L0(X)+ such that

|b(v,w)| ≤ g|v||w| for every (v,w) ∈M ×N . (2.7)

Moreover, B(M ,N ;Q) is a normed L0(X)-module if endowed with the pointwise
operations and

|b|:=
∨

(v,w)∈M×N

1{|v||w|>0}|b(v,w)|
|v||w| =

∧{
g ∈ L0(X)+

∣∣ g satisfies 2.7)
}

for every b ∈ B(M ,N ;Q). If Q is complete, then B(M ,N ;Q) is a Banach
L0(X)-module.

If M , N , Q are normed L0(X)-modules, then each b ∈ B(M ,N ;Q) can be
uniquely extended to b̄ ∈ B(M̄ , ¯N ; Q̄), where M̄ , ¯N , Q̄ are the completions of
M ,N , Q, respectively, and |b̄| = |b|.

3 Auxiliary results on Banach L0-modules

3.1 Quotient operators between Banach L0-modules

We begin with the key definition:

Definition 3.1 (Quotient operator) Let X be a σ -finite measure space. Let M and
N be normed L0(X)-modules. Then we say that a homomorphism T : M → N of
normed L0(X)-modules is a quotient operator provided it is surjective and it satisfies

|w| =
∧

v∈T−1(w)

|v| for every w ∈ N .

Notice that each quotient operator T : M → N verifies |T | ≤ 1. More precisely,
it holds that

|T | = 1S(N ). (3.1)

If M , N are two Banach L0(X)-modules and T : M → N is a homomorphism of
Banach L0(X)-modules, then T is a quotient operator if and only if the unique map
T̂ : M /ker(T ) → N satisfying

M N

M /ker(T )

T

π
T̂
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is an isomorphism of Banach L0(X)-modules, with π : M →M /ker(T ) the canon-
ical projection.

Remark 3.2 If T : M → N is a quotient operator between normed L0(X)-modules,
then its unique linear continuous extension T̄ : M̄ → ¯N to the completions is a
quotient operator.

The glueing property of M ensures that if T : M → N is a quotient operator
and w ∈ N is given, then for every ε > 0 we can find an element v ∈ M such that
T (v) = w and |v| ≤ |w| + ε.

Lemma 3.3 LetX be a σ -finite measure space and letM be a Banach L0(X)-module.
Given any Banach L0(X)-submodule V ofM , we define the annihilator V ⊥ of V in
M ∗ as

V ⊥:={
ω ∈M ∗ ∣∣ ω(v) = 0 for every v ∈ V

}
.

Then V ⊥ is a Banach L0(X)-submodule of M ∗. Moreover, it holds that

V ∗ ∼=M ∗/V ⊥,

an isomorphism of Banach L0(X)-modules being given by the map

M ∗/V ⊥ 	 ω + V ⊥ 
→ ω|V ∈ V ∗.

Proof It is straightforward to check that V ⊥ is a Banach L0(X)-submodule of M ∗.
Consider the homomorphism of Banach L0(X)-modules T : M ∗ → V ∗ given by
T (ω):=ω|V for all ω ∈ M ∗. Observe that |T | ≤ 1. Moreover, the Hahn–Banach
theorem ensures that for any η ∈ V ∗ we can find ω ∈ M ∗ such that T (ω) = η and
|ω| = |η|. This shows that T is a quotient operator. Since ker(T ) = V ⊥, we conclude
that the operator M ∗/V ⊥ 	 ω + V ⊥ 
→ ω|V ∈ V ∗ is an isomorphism of Banach
L0(X)-modules. Therefore, the proof of the statement is complete. ��

We conclude with a sufficient condition for a given homomorphism to be a quotient
operator:

Lemma 3.4 LetX be a σ -finite measure space. LetM ,N be Banach L0(X)-modules.
Let W be a dense vector subspace of N . Let T : M → N be a homomorphism
of Banach L0(X)-modules with |T | ≤ 1 satisfying the following property: given
any w ∈ N and ε > 0, there exists v ∈ M such that dN (T (v), w) < ε and
dL0(X)(|v|, |w|) < ε. Then T is a quotient operator.

Proof Let w ∈ N and k ∈ N be given. Set uk0:=0 ∈M and find recursively ukn ∈M

for n ∈ N such that dN
(
T (ukn), w−

∑n−1
i=0 T (uki )

)
< 2−k−n−1 and dL0(X)

(|ukn|,
∣∣w−

∑n−1
i=0 T (uki )

∣∣) < 2−k−n−1. Now define vkn :=
∑n

i=1 uki for every n ∈ N. Then we have



Projective and injective tensor products... Page 15 of 55    11 

that
∑

n∈N dM (vkn+1, vkn) < +∞, since

dM (vkn+1, vkn)

≤ dL0(X)

(

|ukn+1|,
∣∣∣w −

n∑

i=0
T (uki )

∣∣∣

)

+ dN

(

T (ukn), w −
n−1∑

i=0
T (uki )

)

<
3

2k+n+2
.

It follows that (vkn)n∈N ⊆ M is Cauchy, thus it makes sense to define vk ∈ M as
vk := limn vkn . Since

dN (T (vkn), w) = dN

(

T (ukn), w −
∑

i<n

T (uki )

)

≤ 1

2k+n+1
→ 0 as n →∞,

the continuity of the map T ensures that T (vk) = w. Moreover, we can estimate

|vk | ≤
∞∑

n=1
|ukn|

≤ |w| +
∞∑

n=1

∣∣∣∣|ukn| −
∣∣∣∣w −

∑

i<n

T (uki )

∣∣∣∣

∣∣∣∣+
∞∑

n=2

∣∣∣∣T (ukn−1)−
(

w −
∑

i<n−1
T (uki )

)∣∣∣∣
︸ ︷︷ ︸

=:rk

.

Given that dL0(X)(rk, 0) < 2−k and |w| = |T (vk)| ≤ |vk |, we can extract a subse-
quence (k j ) j∈N ⊆ N such that |vk j | → |w| in the m-a.e. sense. This implies that
|w| =∧

v∈T−1(w) |v|, as desired. ��

3.2 Summability in Banach L0-modules

First, we introduce a notion of summable family in a normed L0-module. Recall that
a family {vi }i∈I in a normed space B is said to be summable, with sum v ∈ B, if for
every ε > 0 there exists F ∈ P f (I ) such that

∥∥v −∑
i∈F∪G vi

∥∥
B
≤ ε for every

G ∈ P f (I\F). We propose the following generalisation of this notion to normed
L0-modules:

Definition 3.5 (Summable family in a normed L0-module) LetX be a σ -finite measure
space and M a normed L0(X)-module. Then we say that a family {vi }i∈I ⊆ M is
summable inM if

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣
v −

∑

i∈F∪G
vi

∣∣∣∣∣
= 0 for some v ∈M . (3.2)
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The element v ∈ M is unique, is called the sum of {vi }i∈I in M , and is denoted by∑
i∈I vi .

In a Banach space B, the Cauchy summability criterion states that a family
{vi }i∈I ⊆ B is summable if and only if for every ε > 0 there exists F ∈ P f (I )
such that

∥∥∑
i∈G vi

∥∥
B
≤ ε for every G ∈P f (I\F). This summability criterion can

be generalised to Banach L0-modules:

Proposition 3.6 (Cauchy summability criterion)LetX be aσ -finitemeasure space. Let
M be a Banach L0(X)-module. Then it holds that a family {vi }i∈I ⊆M is summable
if and only if

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣
∑

i∈G
vi

∣∣∣ = 0. (3.3)

In this case, J :={
i ∈ I : vi �= 0

}
is atmost countable.Moreover, given any increasing

sequence (Fn)n∈N of finite subsets of J satisfying J =⋃
n∈N Fn, we have that

∑

i∈Fn
vi →

∑

i∈I
vi as n →∞. (3.4)

Proof Suppose {vi }i∈I is summable and set v:=∑
i∈I vi ∈ M for brevity. We have

that
∣∣∣∣∣

∑

i∈G
vi

∣∣∣∣∣
≤

∣∣∣∣∣
v −

∑

i∈F
vi

∣∣∣∣∣
+

∣∣∣∣∣
v −

∑

i∈F∪G
vi

∣∣∣∣∣
if F ∈P f (I ) and G ∈P f (I\F),

which yields
∨

G∈P f (I\F)

∣∣∑
i∈G vi

∣∣ ≤ 2
∨

G∈P f (I\F)

∣∣v−∑
i∈F∪G vi

∣∣ and accord-
ingly

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣
∑

i∈G
vi

∣∣∣∣ ≤ 2
∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣v −
∑

i∈F∪G
vi

∣∣∣∣ = 0.

Conversely, suppose (3.3) holds. Then we can find an increasing sequence (F̃k)k∈N
of finite subsets of J such that ψk :=∨

G∈P f (I\F̃k )
∣∣∑

i∈G vi
∣∣ ↘ 0 holds m-a.e.

Notice that J = ⋃
k∈N F̃k . Up to a non-relabelled subsequence, we can also assume

that dL0(X)(ψk ∧ 1, 0) ≤ k−1 for every k ∈ N. Define Jk :=
{
i ∈ I : dM (vi , 0) >

k−1
}
for every k ∈ N. Given that |vi | ≤ ψk for every i ∈ I\F̃k , we deduce that

dM (vi , 0) ≤ dL0(X)(ψk ∧ 1, 0) ≤ k−1, so that i /∈ Jk . This shows that Jk ⊆ F̃k , thus
in particular Jk is finite. Since J = ⋃

k∈N Jk , we deduce that J is at most countable.
Moreover,

∣∣∣∣∣∣

∑

i∈F̃m
vi −

∑

i∈F̃k
vi

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i∈F̃m\F̃k
vi

∣∣∣∣∣∣
≤ ψk for every k,m ∈ N with m ≥ k
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implies that
(∑

i∈F̃k vi
)
k∈N is a Cauchy sequence in M . Denoting by v ∈ M its

limit, we claim that {vi }i∈I is summable and v = ∑
i∈I vi . First, letting φk :=

∣∣v −∑
i∈F̃k vi

∣∣ ∈ L0(X)+, we have that φk → 0 in L0(X) as k → ∞, thus in particular∧
k∈N φk = 0. Therefore, we deduce that

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣
v −

∑

i∈F∪G
vi

∣∣∣∣∣
≤

∧

k∈N

∨

G∈P f (I\F̃k )

∣∣∣∣∣∣
v −

∑

i∈F̃k∪G
vi

∣∣∣∣∣∣

≤
∧

k∈N
φk +

∧

k∈N
ψk = 0,

which shows that {vi }i∈I is summable with sum v, as we claimed. Finally, given an
increasing sequence (Fn)n∈N of finite subsets of J with J =⋃

n∈N Fn , we can extract
a subsequence (nk)k∈N such that F̃k ⊆ Fnk for every k ∈ N, so that

∣∣v−∑
i∈Fnk vi

∣∣ ≤
φk + ψk for every k ∈ N, whence it follows that

∑
i∈Fnk vi → v as k → ∞. Given

that the limit v does not depend on the specific choice of the sequence (Fn)n∈N, we
can conclude that (3.4) is verified. The proof is complete. ��

Furthermore, given any family { fi }i∈I ⊆ L0(X)+, we define
∑

i∈I
fi :=

∨

F∈P f (I )

∑

i∈F
fi ∈ L0

ext(X)+.

This is consistent with Definition 3.5, since
∨

F∈P f (I )
∑

i∈F fi ∈ L0(X)+ if

and only if { fi }i∈I ⊆ L0(X) is summable. In this case, its sum coincides with∨
F∈P f (I )

∑
i∈F fi . Moreover,

|v|p =
(
∑

i∈I
|vi |p

)1/p

for every v = (vi )i∈I ∈ �p(I ,M )

holds whenever M is a Banach L0(X)-module and p ∈ [1,∞). Let us also observe
that

v =
∑

i∈I
(δi jvi ) j∈I for every v = (vi )i∈I ∈ �1(I ,M ). (3.5)

Indeed, using the summability of {|vi |}i∈I in L0(X) and Proposition 3.6 we obtain
that

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣
v −

∑

i∈F∪G
(δi jvi ) j∈I

∣∣∣∣∣
1

=
∧

F∈P f (I )

∨

G∈P f (I\F)

∨

H∈P f (I\(F∪G))

∑

i∈H
|vi | = 0,
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whence the claimed identity (3.5) follows.

Remark 3.7 Let {vi }i∈I be a summable family in a given Banach L0(X)-module M .
Then it holds that

∣∣∣∣∣

∑

i∈I
vi

∣∣∣∣∣
≤

∑

i∈I
|vi |. (3.6)

Indeed, thanks to Proposition 3.6 we can find a sequence (Fn)n∈N ⊆ P f (I ) for
which

∣∣∑
i∈Fn vi −∑

i∈I vi
∣∣→ 0 in them-a.e. sense as n →∞, so that

∣∣∑
i∈I vi

∣∣ =
limn

∣∣∑
i∈Fn vi

∣∣ ≤ limn
∑

i∈Fn |vi | ≤
∑

i∈I |vi |. Also,

{vi }i∈I ⊆M is summable for every v = (vi )i∈I ∈ �1(I ,M ).

Indeed, arguing as in the proof of (3.5) we deduce that (3.3) is verified, so that {vi }i∈I
is summable by Proposition 3.6. Notice also that

∣∣∑
i∈I vi

∣∣ ≤ |v|1 holds by (3.6).

Lemma 3.8 Let X be a σ -finite measure space. Let ϕ : M → N be a homomorphism
of Banach L0(X)-modulesM ,N . Let {vi }i∈I ⊆M be summable. Then {ϕ(vi )}i∈I ⊆
N is summable and

ϕ

(
∑

i∈I
vi

)

=
∑

i∈I
ϕ(vi ). (3.7)

Proof Set v:=∑
i∈I vi for brevity. If F ∈P f (I ) and G ∈P f (I\F), then

∣∣∣∣∣
ϕ(v)−

∑

i∈F∪G
ϕ(vi )

∣∣∣∣∣
=

∣∣∣∣∣
ϕ

(

v −
∑

i∈F∪G
vi

)∣∣∣∣∣
≤ |ϕ|

∣∣∣∣∣
v −

∑

i∈F∪G
vi

∣∣∣∣∣
.

By taking first the supremum over G and then the infimum over F , we thus obtain
(3.7). ��

3.3 Local Schauder bases

We propose a notion of (unconditional) Schauder basis in a Banach L0-module. The
term ‘unconditional’ will be often omitted, as no other kind of basis is considered.

Definition 3.9 (Local Schauder basis) LetX = (X, �,m) be a σ -finite measure space
and M a Banach L0(X)-module. Let E ∈ � satisfy m(E) > 0. Then we say that a
family {vi }i∈I ⊆M is an (unconditional) local Schauder basis ofM on E provided
for any given v ∈M |E there exists a unique ( fi )i∈I ∈ L0(X|E )I such that the family
{ fi · vi }i∈I is summable inM and

v =
∑

i∈I
fi · vi .
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In the case where E = X, we say that {vi }i∈I is an (unconditional) local Schauder
basis of M .

Lemma 3.10 Let X be a σ -finite measure space, B a Banach space with a Schauder
basis {vi }i∈I . Then it holds that the family {vi }i∈I defined as in (2.5) is a local Schauder
basis of L0(X;B).

Proof Let v ∈ L0(X;B) be given. Fix a measurable representative v̄ : X → B of v.
Since {vi }i∈I is a Schauder basis of B, for any point x ∈ X we can find a unique
( f̄i (x))i∈I ∈ R

I such that

v̄(x) =
∑

i∈I
f̄i (x)vi . (3.8)

Thanks to (2.2) and the classical Hahn–Banach theorem, for any index i ∈ I we can
find ωi ∈ B

′ (where B
′ stands for the topological dual of B) with ωi (v j ) = 0 for every

j ∈ I\{i} and ωi (vi ) = 1. Hence, Lemma 3.8 gives

ωi (v̄(x)) = ωi

⎛

⎝
∑

j∈I
f̄ j (x)v j

⎞

⎠ =
∑

j∈I
f̄ j (x) ωi (v j ) = f̄i (x) for every x ∈ X,

whence it follows that f̄i : X → R is measurable. Define fi :=[ f̄i ]m ∈ L0(X) for
every i ∈ I . Since

inf
F∈P f (I )

sup
G∈P f (I\F)

∥∥∥∥v̄(x)−
∑

i∈F∪G
f̄i (x)vi

∥∥∥∥
B

= 0 for every x ∈ X

by (3.8), taking into account also Remark 2.3 (as well as its natural variants) we deduce
that

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣
v −

∑

i∈F∪G
fi · vi

∣∣∣∣∣
= 0.

This proves that { fi · vi }i∈I is summable in L0(X;B) and v = ∑
i∈I fi · vi . Finally,

let us check that ( fi )i∈I ∈ L0(X)I is the unique family with this property. Suppose
(gi )i∈I ∈ L0(X)I satisfies the identity

∑
i∈I gi · vi = v in L0(X;B). By virtue of

Proposition 3.6, the set J :={
i ∈ I : gi �= 0

}
is at most countable. Fix a measurable

representative ḡi : X→ R of gi for every i ∈ J . Since the family of all couples (F,G)

with F ∈ P f (J ) and G ∈ P f (J\F) is at most countable, we can find a set N ∈ �

such that m(N ) = 0 and

inf
F∈P f (J )

sup
G∈P f (J\F)

∥∥∥∥∥
v̄(x)−

∑

i∈F∪G
ḡi (x)vi

∥∥∥∥∥
B

= 0 for every x ∈ X\N .
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It follows that ḡi (x) = f̄i (x) for every i ∈ J and x ∈ X\N , as well as f̄i (x) = 0 for
every i ∈ I\J and x ∈ X\N . Hence, we conclude that (gi )i∈I = ( fi )i∈I , so that the
statement is achieved. ��

3.3.1 Applications to spaces of generalised sequences and to L0-Lebesgue–Bochner
spaces

Fix an arbitrary index set I �= ∅. Given any p ∈ [1,∞) and any index i ∈ I , we
define

pi
(
(a j ) j∈I

):=ai for every (a j ) j∈I ∈ �p(I ).

The resulting map pi : �p(I ) → R is a 1-Lipschitz linear operator. Hence, it makes
sense to define

a(·)i :=pi ◦ a ∈ L0(X) for every i ∈ I and a ∈ L0(X; �p(I ))

whenever X is a σ -finite measure space. Moreover, recall that any element a ∈ �p(I )
is associated with the a.e. constant vector field a ∈ L0(X; �p(I )), which is given by
a(x):=a for m-a.e. x ∈ X.

Lemma 3.11 Let X be a σ -finite measure space and I �= ∅ an index set. Let a ∈
L0(X; �1(I )) be given. Let (ei )i∈I be as in (2.3). Then the family {a(·)i · ei }i∈I is
summable in L0(X; �1(I )) and

a =
∑

i∈I
a(·)i · ei . (3.9)

In particular, the family
{|a(·)i |

}
i∈I is summable in L0(X) and it holds that

|a| =
∑

i∈I
|a(·)i |. (3.10)

Proof Fix a measurable representative ā : X → �1(I ) of a. As {ei }i∈I is a Schauder
basis of �1(I ),

inf
F∈P f (I )

sup
G∈P f (I\F)

∥∥∥∥∥
ā(x)−

∑

i∈F∪G
ā(x)i ei

∥∥∥∥∥
�1(I )

= 0 for every x ∈ X.

Using that ā(x)i = (pi ◦ ā)(x) and taking into account Remark 2.3, we can thus
conclude that

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣
a −

∑

i∈F∪G
a(·)i · ei

∣∣∣∣∣
= 0,
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which gives the first claim (3.9). Finally, (3.10) follows from (3.9) together with the
fact that

∣∣∣∣∣
|a| −

∑

i∈F∪G
|a(·)i |

∣∣∣∣∣
=

∣∣∣∣∣
|a| −

∣∣∣∣∣

∑

i∈F∪G
a(·)i · ei

∣∣∣∣∣

∣∣∣∣∣
≤

∣∣∣∣∣
a −

∑

i∈F∪G
a(·)i · ei

∣∣∣∣∣

for every F ∈ P f (I ) and G ∈ P f (I\F). All in all, the proof of the statement is
achieved. ��

Finally, the Banach L0(X)-modules L0(X; �1(I )) and �1(I , L0(X)) can be canon-
ically identified:

Corollary 3.12 Let X be a σ -finite measure space and I �= ∅ an index family. Let us
define

φ(a):=(
a(·)i

)
i∈I ∈ �1(I , L

0(X)) for every a ∈ L0(X; �1(I )). (3.11)

Then the operator φ : L0(X; �1(I )) → �1(I , L0(X)) is an isomorphism of Banach
L0(X)-modules.

Proof The fact that φ is a homomorphism of Banach L0(X)-modules satisfying
|φ(a)|1 = |a| for every a ∈ L0(X; �1(I )) follows from Lemma 3.11. Therefore, it
remains to check only thatφ is surjective. To this aim, fix f = ( fi )i∈I ∈ �1(I , L0(X)).
We know that J :={

i ∈ I : fi �= 0
}
is at most countable. Take a measurable repre-

sentative f̄i : X → R of fi for every i ∈ I , with f̄i ≡ 0 for every i ∈ I\J . Since∑
i∈I | fi | =

∑
i∈J | fi | ∈ L0(X), we can also assume (up to modifying the functions

f̄i for i ∈ J on a null set) that
{| f̄i (x)|

}
i∈I ⊆ R is summable for every x ∈ X. Then

the mapping X 	 x 
→ ā(x):=(
f̄i (x)

)
i∈I ∈ �1(I ) is well-defined, is measurable,

and takes values into a separable subset of �1(I ) (namely, the closure of the vector
subspace generated by {ei }i∈J ). Letting a ∈ L0(X; �1(I )) be the equivalence class of
ā : X → �1(I ), we have that φ(a) = f by construction. This proves the surjectivity
of φ, thus accordingly the statement is achieved. ��

3.4 Some notions of continuousmodule-valuedmaps

When dealing with injective tensor products of Banach spaces, a special role is played
by the Banach space C(K ), where K is a compact, Hausdorff topological space; cf.
with the first paragraph of Sect. 5.2. It seems that in the more general setting of Banach
L0-modules there is no ‘canonical’ counterpart of C(K ). Rather, we will propose two
generalisations of C(K ) in Definitions 3.13 and 3.16, respectively.

Let (�,�) be a uniform space (see [6]). Given an entourage U ∈ � and any p ∈ �,
we define

U[p]:={
q ∈ �

∣∣ (p, q) ∈ U
}
.
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Recall that the uniform structure � induces a topology τ� on �, which is defined as
follows:

τ�:=
{
U ⊆ �

∣∣ ∀p ∈ U ∃U ∈ � : U[p] ⊆ U
}
.

We then regard every uniform space (�,�) as a topological space, endowed with τ�.

Definition 3.13 (Uniform order-continuity) Let (�,�) be a uniform space, X a σ -
finitemeasure space, andM aBanach L0(X)-module. Thenwe say that amap v : � →
M is order-bounded if

|v|:=
∨

p∈�

|v(p)| ∈ L0(X)+, (3.12)

or equivalently if the family {|v(p)|}p∈� is an order-bounded subset of L0(X). More-
over, we say that v : � →M is uniformly order-continuous provided

∧

U∈�

Var(v;U) = 0, where we define Var(v;U):=
∨

(p,q)∈U
|v(p)− v(q)|.

We denote by UCord(�;M ) the space of all order-bounded, uniformly order-
continuous maps.

Given any v,w ∈ UCord(�;M ) and f ∈ L0(X), we define v + w : � →M and
f · v : � →M as

(v + w)(p):=v(p)+ w(p) for every p ∈ �,

( f · v)(p):= f · v(p) for every p ∈ �,

respectively. It can be readily checked that v + w, f · v ∈ UCord(�;M ), that(
UCord(�;M ),+, ·) is a module over L0(X), and that the map

| · | : UCord(�;M ) → L0(X)+

defined in (3.12) is a pointwise norm on UCord(�;M ). All in all, the couple(
UCord(�;M ), | · |) is a normed L0(X)-module. Moreover:

Lemma 3.14 Let (�,�) be a uniform space. Let X be a σ -finite measure space and
M a Banach L0(X)-module. Let | · | : UCord(�;M ) → L0(X)+ be defined as in
(3.12). Then

(
UCord(�;M ), | · |) is a Banach L0(X)-module.

Proof It only remains to check that UCord(�;M ) is complete. To this aim, let
(vn)n∈N ⊆ UCord(�;M ) be a given Cauchy sequence. Up to a non-relabelled subse-
quence, we can assume that dL0(X)(|vn − vn+1|, 0) ≤ 2−n for every n ∈ N. For any
p ∈ � we can estimate

dM (vn(p), vn+1(p)) ≤ dL0(X)(|vn − vn+1|, 0) ≤ 1

2n
.
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It follows that (vn(p))n∈N ⊆ M is a Cauchy sequence, so that the limit
v(p):= limn vn(p) ∈ M exists. To prove that v : � → M is order-bounded, notice
that

∣∣|vn| − |vn+1|
∣∣ ≤ |vn − vn+1| implies dL0(X)(|vn|, |vn+1|) ≤ 2−n , so that the

sequence (|vn|)n∈N ⊆ L0(X) is Cauchy. Define g:= limn |vn| ∈ L0(X). Given p ∈ �,
we can extract a subsequence (ni )i∈N such that |vni (p)| → |v(p)| and |vni | → g m-
a.e. as i →∞. Hence,

|v(p)|(x) = lim
i→∞ |vni (p)|(x) ≤ lim

i→∞ |vni |(x) = g(x) for m-a.e. x ∈ X,

which implies |v| = ∨
p∈� |v(p)| ≤ g. We pass to the verification of the uniform

order-continuity of v. For any n ∈ N we can find a sequence of entourages (U n
i )i∈N ⊆

� with
∧

i∈N Var(vn;U n
i ) = 0. With no loss of generality, we can also require that

U n
i+1 ⊆ U n

i for every i ∈ N, whence it follows that dL0(X)

(
Var(vn;U n

i ), 0
) → 0 as

i →∞. Define hn :=∑∞
k=n |vk − vk+1| ∧ 1 for every n ∈ N. Then

∫
hn dm̃ =

∞∑

k=n

∫
|vk − vk+1| ∧ 1 dm̃ =

∞∑

k=n
dL0(X)(|vk − vk+1|, 0) ≤

∞∑

k=n

1

2k

= 1

2n−1

bymonotone convergence theorem, thus hn ∈ L1(m̃) and ‖hn‖L1(m̃) ≤ 2−n+1. Notice
that

|v(p)− v(q)| ∧ 1 ≤ |v(p)− vn(p)| ∧ 1+ |vn(p)− vn(q)| ∧ 1+ |vn(q)− v(q)| ∧ 1

≤ 2hn + |vn(p)− vn(q)| ∧ 1

for every p, q ∈ � and n ∈ N. Fixing i ∈ N and passing to the supremum over all
(p, q) ∈ U n

i , we deduce that Var(v;U n
i ) ∧ 1 ≤ 2hn + Var(vn;U n

i ) ∧ 1. Integrating
with respect to m̃, we thus get

dL0(X)

(
Var(v;U n

i ), 0
) ≤ 2‖hn‖L1(m̃) + dL0(X)

(
Var(vn;U n

i ), 0
)

≤ 1

2n−2
+ dL0(X)

(
Var(vn;U n

i ), 0
)
.

Given any k ∈ N, we first choose nk ∈ N such that 2−nk+2 < 1/(2k), then we choose
ik ∈ N such that dL0(X)

(
Var(vnk ;Uk), 0

)
< 1/(2k), where we set Uk :=Unk

ik
. Hence,

dL0(X)

(
Var(v;Uk), 0

)
< 1/k for every k ∈ N, so that limk Var(v;Uk)(x) = 0 for

m-a.e. x ∈ X. In particular, we conclude that

∧

U∈�

Var(v;U) ≤
∧

k∈N
Var(v;Uk) ≤ lim

k→∞
Var(v;Uk) = 0,

which shows that v : � →M is uniformly order-continuous. All in all, v belongs to
UCord(�;M ).
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In order to conclude, it remains to check limn dUCord(�;M )(vn, v) → 0. Fix p ∈ �.
Take a subsequence (n j ) j∈N with |vn j (p) − vn(p)| → |v(p) − vn(p)| in the m-a.e.
sense. Then

|v(p)− vn(p)| ∧ 1 = lim
j
|vn j (p)− vn(p)| ∧ 1 ≤ lim

j
|vn j − vn| ∧ 1 ≤ hn

holds m-a.e., whence it follows that |v − vn| ∧ 1 ≤ hn . Therefore, we can conclude
that limn dUCord(�;M )(v, vn) ≤ limn ‖hn‖L1(m̃) = 0, as desired. ��
Remark 3.15 Given any point p ∈ �, let us consider the evaluation functional
δMp : UCord(�;M ) →M , which we define as

δMp (v):=v(p) for every v ∈ UCord(�;M ).

Observe that δMp ∈ Hom
(
UCord(�;M );M )

and |δMp | ≤ 1. In particular, we have

that δp:=δ
L0(X)
p satisfies

δp ∈ UCord(�; L0(X))∗ and |δp| ≤ 1.

Furthermore, {δp : p ∈ �} is a norming subset of UCord(�; L0(X))∗. Indeed, thanks
to (3.12) we have that | f | = ∨

p∈� | f (p)| =
∨

p∈� |δp( f )| holds for every f ∈
UCord(�; L0(X)).

Definition 3.16 (Pointwise bounded continuous maps) Let (�, τ) be a topological
space. Let X be a σ -finite measure space and M a Banach L0(X)-module. Then we
define Cpb(�;M ) as

Cpb(�;M ):={
v : � →M

∣∣ v is continuous and order-bounded
}
.

We say that Cpb(�;M ) is the space of pointwise bounded continuous maps from
� toM .

The space Cpb(�;M ) is a Banach L0(X)-module if endowed with the pointwise
norm in (3.12). This claim can be proved by repeating almost verbatim the arguments
for Lemma 3.14, the main difference being in the verification of the completeness,
where one can use the following remark:

Remark 3.17 Take a sequence (vn)n∈N ⊆ Cpb(�;M ) and an order-bounded map
v : � →M such that

δn := sup
p∈�

dM (vn(p), v(p)) → 0 as n →∞.

Then it holds that v ∈ Cpb(�;M ). Indeed, given any p ∈ � and ε > 0, we can
fix n0 ∈ N such that δn0 < ε/4 and choose a neighbourhood U of p such that
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dM (vn0(q), vn0(p)) < ε/2 for every q ∈ U . Then

dM (v(q), v(p)) ≤ dM (v(q), vn0(q))+ dM (vn0(q), vn0(p))+ dM (vn0(p), v(p))

< 2δn0 +
ε

2
< ε

for every q ∈ U , which implies that v is continuous at each point p ∈ �, as we
claimed.

We also point out that if (�,�) is a uniform space, then we have that

UCord(�;M ) is a Banach L0(X)-submodule of Cpb(�;M ). (3.13)

Indeed, if v ∈ UCord(�;M ), p ∈ �, and ε > 0 are given, then we can find an
entourage U ∈ � such that dL0(X)

(
Var(v;U), 0

)
< ε. Hence, for every point q in the

open set U[p] we have that

dM (v(q), v(p)) = dL0(X)

(|v(q)− v(p)|, 0) ≤ dL0(X)

(
Var(v;U), 0

)
< ε.

Remark 3.18 If (K ,�) is compact and B is Banach (so that B is a Banach
L0(Xo)-module, where Xo is the one-point probability space), then UCord(K ;B) =
Cpb(K ;B) = C(K ;B). Indeed, since the topology of B as a Banach space and the one
as a Banach L0(Xo)-module coincide, we have that Cpb(K ;B) ⊆ C(K ;B). Moreover,
if v ∈ C(K ;B) and k ∈ N are given, then (by compactness of K ) we can find n ∈ N,
p1, . . . , pn ∈ K , and U1, . . . ,Un ∈ � such that K =⋃n

i=1 Ui [pi ] and

‖v(p)− v(pi )‖B ≤ 1

k
for every i = 1, . . . , n and p ∈ Ui [pi ].

Then
∨

p∈K ‖v(p)‖B ≤ max
{‖v(pi )‖B + 1 : i = 1, . . . , n

}
< +∞, so that v is an

order-bounded map. Moreover, we have that

∧

U∈�

Var(v;U)(o) ≤
n∧

i=1
Var(v;Ui )(o) ≤ 2

k
.

Since k ∈ N is arbitrary, we deduce that v is uniformly order-continuous and v ∈
UCord(K ;B). All in all, we proved Cpb(K ;B) ⊆ C(K ;B) ⊆ UCord(K ;B). Recalling
also (3.13), the claim follows.

3.5 Algebraic tensor products of normed L0-modules

In order to define tensor products of Banach L0-modules, the following criterion to
detect null tensors will play a fundamental role:
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Lemma 3.19 (Null tensors in normed L0-modules) Let X be a σ -finite measure space.
LetM ,N be normed L0(X)-modules. Fix any α ∈M ⊗N , say that α =∑n

i=1 vi⊗
wi . Then it holds that α = 0 if and only if

n∑

i=1
ω(vi )η(wi ) = 0 for every ω ∈M ∗ and η ∈ N ∗. (3.14)

Proof First, assume that α = 0. For any ω ∈ M ∗ and η ∈ N ∗, the map-
ping bω,η : M × N → L0(X), which we define as bω,η(v,w):=ω(v)η(w) for
every (v,w) ∈ M × N , is L0(X)-bilinear. Therefore, we deduce from (2.1) that∑n

i=1 ω(vi )η(wi ) =∑n
i=1 bω,η(vi , wi ) = 0, which proves that (3.14) holds.

Conversely, assume (3.14) holds. Fix an arbitrary L0(X)-bilinear map b : M ×
N → Q, for some L0(X)-module Q. Denote by V (resp. by W ) the L0(X)-
submodule ofM (resp. ofN ) that is generated by v1, . . . , vn (resp. by w1, . . . , wn).
Given that the modules V and W are finitely-generated, they are Banach L0(X)-
modules. Now let DV

0 , . . . , DV
m̄ and DW

0 , . . . , DW
q̄ be the dimensional decomposi-

tions ofV andW , respectively. To prove that
∑n

i=1 b(vi , wi ) = 0 amounts to showing
that 1Dm,q ·

∑n
i=1 b(vi , wi ) = 0 holds for all m = 1, . . . , m̄ and q = 1, . . . , q̄ , where

Dm,q :=DV
m ∩ DW

q . To this aim, fix a local basis x1, . . . , xm of V on Dm,q and a
local basis y1, . . . , yq of W on Dm,q . Given any v ∈ V |Dm,q , we can find (uniquely)
functions ω̃1(v), . . . , ω̃m(v) ∈ L0(X)|Dm,q so that v = ∑m

j=1 ω̃ j (v) · x j . Moreover,

each mapping ω̃ j : V |Dm,q → L0(X) is L0(X)-linear, thus it is also continuous thanks
to Lemma 2.12. An application of the Hahn–Banach theorem for normed L0-modules
ensures the existence of some ω1, . . . , ωm ∈ M ∗ such that ω j |V |Dm,q

= ω̃ j for
every j = 1, . . . ,m. Similarly, we can find elements η1, . . . , ηq ∈ N ∗ such that
w = ∑q

k=1 ηk(w) · yk for every w ∈ W |Dm,q . Therefore, the L0(X)-bilinearity of b
yields

1Dm,q ·
n∑

i=1
b(vi , wi ) =

n∑

i=1
b
(
1Dm,q · vi ,1Dm,q · wi

)

=
m∑

j=1

q∑

k=1

(
n∑

i=1
ω j (vi )ηk(wi )

)

· b(x j , yk) (3.14)= 0.

This implies
∑n

i=1 b(vi , wi ) = 0, whence it follows that α = ∑n
i=1 vi ⊗ wi = 0 by

(2.1). ��
Remark 3.20 We stress that Lemma 3.19 shows that, in the case of normed L0(X)-
modules, a null tensor can be detected by checking only against (a class of) L0(X)-
bilinear maps taking values into the ring L0(X). It is not clear whether this happens
for arbitrary L0(X)-modules that are not equipped with a pointwise norm; cf. with the
discussion after (2.1). In other words, the proof of Lemma 3.19 is heavily relying on
the fact that we are considering normed L0(X)-modules.
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Corollary 3.21 Let X be a σ -finite measure space. Let M and N be normed L0(X)-
modules. Fix any tensor α =∑n

i=1 vi⊗wi ∈M ⊗N . Then the following conditions
are equivalent:

(i) α = 0.
(ii)

∑n
i=1 ω(vi ) · wi = 0 for every ω ∈M ∗.

(iii)
∑n

i=1 η(wi ) · vi = 0 for every η ∈ N ∗.

Proof We prove only the equivalence between i) and ii); the proof of the equivalence
between i) and iii) is very similar. Assuming ii), we deduce that

∑n
i=1 ω(vi )η(wi ) =

η
(∑n

i=1 ω(vi ) · wi
) = 0 for every ω ∈ M ∗ and η ∈ N ∗, so that α = 0 by

Lemma 3.19. Conversely, if α = 0, then the same computation as above shows that
η
(∑n

i=1 ω(vi ) ·wi
) = 0 for everyω ∈M ∗ and η ∈ N ∗, so that

∑n
i=1 ω(vi ) ·wi = 0

for every ω ∈M ∗ by the Hahn–Banach theorem, which gives ii). ��

4 Projective tensor products of Banach L0-modules

4.1 Definition andmain properties

We begin by introducing the projective pointwise norm:

Theorem 4.1 Let X be a σ -finite measure space. Let M and N be Banach L0(X)-
modules. Define |α|π ∈ L0(X)+ as

|α|π :=
∧

{
n∑

i=1
|vi ||wi |

∣∣∣∣ n ∈ N, (vi )
n
i=1 ⊆M , (wi )

n
i=1 ⊆ N , α =

n∑

i=1
vi ⊗ wi

}

(4.1)

for every α ∈ M ⊗N . Then | · |π : M ⊗N → L0(X)+ is a pointwise norm on
M ⊗N . Moreover,

|v ⊗ w|π = |v||w| for every v ∈M and w ∈ N . (4.2)

Proof To prove that | · |π is a pointwise norm on M ⊗N amounts to showing that:

i) If α ∈M ⊗N satisfies |α|π = 0, then α = 0.
ii) |α + β|π ≤ |α|π + |β|π for every α, β ∈M ⊗N .
iii) | f · α|π = | f ||α|π for every f ∈ L0(X) and α ∈M ⊗N .

Let us first check the validity of i). Assume |α|π = 0. Let ω ∈ M ∗ and η ∈ N ∗ be
given. Then we define θω,η ∈ L0(X) as θω,η:=∑n

i=1 ω(vi )η(wi ) for any v1, . . . , vn ∈
M and w1, . . . , wn ∈ N satisfying α = ∑n

i=1 vi ⊗ wi ; thanks to Lemma 3.19, the
function θω,η is independent of the chosen representation

∑n
i=1 vi ⊗ wi of α. Now

fix ε > 0. Then there exists a partition (Ek)k∈N ⊆ � of X and vk1, . . . , v
k
nk ∈ M ,

wk
1, . . . , w

k
nk ∈ N such that α =∑nk

i=1 vki ⊗wk
i and 1Ek

∑nk
i=1 |vki ||wk

i | ≤ ε for every
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k ∈ N. Therefore, can estimate

|θω,η| =
∑

k∈N
1Ek

∣∣∣∣∣

nk∑

i=1
ω(vki )η(wk

i )

∣∣∣∣∣
≤

∑

k∈N
1Ek

nk∑

i=1
|ω(vki )||η(wk

i )|

≤ |ω||η|
∑

k∈N

nk∑

i=1
|vki ||wk

i | ≤ ε|ω||η|.

Thanks to the arbitrariness of ε > 0, we deduce that θω,η = 0, so that α = 0 by
Lemma 3.19.

In order to prove ii), let us write α =∑n
i=1 vi ⊗wi and β =∑m

j=1 ṽ j ⊗ w̃ j . Then
we have that

|α + β|π ≤
n∑

i=1
|vi ||wi | +

m∑

j=1
|ṽ j ||w̃ j |,

where we used the fact that α + β = ∑n
i=1 vi ⊗ wi +∑m

j=1 ṽ j ⊗ w̃ j . By passing
to the infimum over all the possible representations of α and β, we conclude that
|α + β|π ≤ |α|π + |β|π .

We now pass to the verification of iii). If α = ∑n
i=1 vi ⊗ wi , then we have that

f · α =∑n
i=1( f · vi )⊗ wi . It follows that

| f · α|π ≤
n∑

i=1
| f · vi ||wi | = | f |

n∑

i=1
|vi ||wi |.

By passing to the infimum over all the representations of α, we obtain that | f · α|π ≤
| f ||α|π . Moreover, the same estimates yield

| f ||α|π = | f |
∣∣∣∣
1{ f �=0}

f
· ( f · α)

∣∣∣∣
π

≤ | f |1{ f �=0}| f | | f · α|π = 1{ f �=0}| f · α|π ≤ | f · α|π .

All in all, we have shown that | f · α|π = | f ||α|π .
Finally, let us check that (4.2) holds. The inequality |v ⊗ w|π ≤ |v||w| is trivially

verified. For the converse inequality, choose elements ω ∈ M ∗ and η ∈ N ∗ such
that |ω|, |η| ≤ 1, ω(v) = |v|, and η(w) = |w|. Given that the L0(X)-linearisation T
of M ×N 	 (ṽ, w̃) 
→ ω(ṽ)η(w̃) ∈ L0(X) satisfies

|T (α)| ≤
n∑

i=1
|T (vi ⊗ wi )| =

n∑

i=1
|ω(vi )||η(wi )| ≤

n∑

i=1
|vi ||wi |

for every α = ∑n
i=1 vi ⊗ wi ∈ M ⊗ N , it follows that |T (α)| ≤ |α|π for every

α ∈M ⊗N . In particular, we have that

|v||w| = ∣∣ω(v)η(w)
∣∣ = ∣∣T (v ⊗ w)

∣∣ ≤ |v ⊗ w|π .
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All in all, we have shown that |v ⊗w|π = |v||w|, thus accordingly (4.2) is proved. ��

Definition 4.2 (Projective tensor product) Let X be a σ -finite measure space. LetM ,
N be Banach L0(X)-modules. Then we denote by M ⊗π N the normed L0(X)-
module (M⊗N , |·|π ), where the pointwise norm |·|π is defined as in (4.1).Moreover,
the projective tensor product ofM ,N is the Banach L0(X)-moduleM ⊗̂πN that
is defined as the L0(X)-completion ofM ⊗π N .

Let us now consider the projective tensor product of homomorphisms of Banach
L0(X)-modules:

Proposition 4.3 (Projective tensor products of homomorphisms) Let X be a σ -finite
measure space. Let T : M → M̃ and S : N → ˜N be homomorphisms of Banach
L0(X)-modules. Then there exists a unique homomorphism of Banach L0(X)-modules
T ⊗π S : M ⊗̂πN → M̃ ⊗̂π

˜N with

(T ⊗π S)(v ⊗ w) = T (v)⊗ S(w) for every v ∈M and w ∈ N .

Moreover, it holds that |T ⊗π S| = |T ||S|.

Proof By virtue of Lemma 2.2, there exists a unique L0(X)-linear operator T ⊗
S : M ⊗ N → M̃ ⊗ ˜N such that (T ⊗ S)(v ⊗ w) = T (v) ⊗ S(w) for every
(v,w) ∈M ×N . If α =∑n

i=1 vi ⊗ wi ∈M ⊗N , then

∣∣(T ⊗ S)(α)
∣∣
π
=

∣∣∣∣∣

n∑

i=1
T (vi )⊗ S(wi )

∣∣∣∣∣
π

≤
n∑

i=1
|T (vi )||S(wi )| ≤ |T ||S|

n∑

i=1
|vi ||wi |.

By passing to the infimum over all possible representations of α, we obtain that
∣∣(T ⊗

S)(α)
∣∣
π
≤ |T ||S||α|π . It follows that the operator T ⊗ S can be uniquely extended to

a homomorphism of Banach L0(X)-modules

T ⊗π S : M ⊗̂πN → M̃ ⊗̂π
˜N

satisfying |T ⊗π S| ≤ |T ||S|. Finally, we have that

|T ||S| =
∨

v∈SM

∨

w∈SN
|T (v)||S(w)| =

∨

v∈SM

∨

w∈SN

∣∣T (v)⊗ S(w)
∣∣
π

=
∨

v∈SM

∨

w∈SN

∣∣(T ⊗π S)(v ⊗ w)
∣∣
π
≤ |T ⊗π S|

∨

v∈SM

∨

w∈SN
|v ⊗ w|π

= |T ⊗π S|
∨

v∈SM

∨

w∈SN
|v||w| ≤ |T ⊗π S|.

Consequently, the identity |T ⊗π S| = |T ||S| is proved. ��
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One can easily check that L0(X)⊗̂π L0(X) = L0(X)⊗π L0(X) ∼= L0(X) as Banach
L0(X)-modules via the isomorphism

L0(X)⊗π L0(X) 	
n∑

i=1
fi ⊗ gi 
→

n∑

i=1
fi gi ∈ L0(X).

In particular, up to this identification, we have that

ω ⊗π η ∈ (M ⊗̂πN )∗, |ω ⊗π η| = |ω||η| for every ω ∈M ∗ and η ∈ N ∗.

Lemma 4.4 LetX be a σ -finite measure space. LetM , M̃ ,N , ˜N be Banach L0(X)-
modules. Let T : M → M̃ and S : N → ˜N be quotient operators. Then T ⊗π

S : M ⊗̂πN → M̃ ⊗̂π
˜N is a quotient operator.

Proof By Remark 3.2, it suffices to prove that T ⊗ S : M ⊗π N → M̃ ⊗π
˜N is

a quotient operator. Given any β = ∑n
i=1 ṽi ⊗ w̃i ∈ M̃ ⊗ ˜N , we can exploit the

surjectivity of T and S to find (vi )
n
i=1 ⊆M and (wi )

n
i=1 ⊆ N such that ṽi = T (vi )

and w̃i = S(wi ) for all i = 1, . . . , n, whence it follows that β = ∑n
i=1 T (vi ) ⊗

S(wi ) = (T ⊗ S)
(∑n

i=1 vi ⊗ wi
)
. This shows that T ⊗ S is a surjective operator.

Moreover, for any tensor β ∈ M̃ ⊗π
˜N we can estimate

|β|π =
∧

α∈(T⊗S)−1(β)

|(T ⊗ S)(α)|π ≤ |T ||S|
∧

α∈(T⊗S)−1(β)

|α|π

(3.1)≤
∧

α∈(T⊗S)−1(β)

|α|π .

In order to prove the converse inequality, fix ε ∈ (0, 1). We can thus find a partition
(Ek)k∈N ⊆ � of X and, for any k ∈ N, a number nk ∈ N and elements (ṽki )

nk
i=1 ⊆ M̃ ,

(w̃k
i )

nk
i=1 ⊆ ˜N such that

β =
nk∑

i=1
ṽki ⊗ w̃k

i , 1Ek

nk∑

i=1
|ṽki ||w̃k

i | ≤ 1Ek (|β|π + ε).

Moreover, we can find (vki )
nk
i=1 ⊆ M and (wk

i )
nk
i=1 ⊆ N , with T (vki ) = ṽki and

S(wk
i ) = w̃k

i for every i = 1, . . . , nk , such that |vki | ≤ (1 + ε)|ṽki | and |wk
i | ≤

(1+ ε)|w̃k
i |. Therefore, we have that

1Ek

∣∣∣∣∣

nk∑

i=1
vki ⊗ wk

i

∣∣∣∣∣
π

≤ 1Ek

nk∑

i=1
|vki ||wk

i | ≤ (1+ ε)21Ek (|β|π + ε)

≤ 1Ek |β|π + 1Ek (3|β|π + 4)ε.
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Since (T ⊗ S)
(
1Ek ·

∑nk
i=1 vki ⊗ wk

i

) = 1Ek · β for every k ∈ N, we deduce that

∧

α∈(T⊗S)−1(β)

|α|π ≤
∑

k∈N
1Ek

∣∣∣∣∣

nk∑

i=1
vki ⊗ wk

i

∣∣∣∣∣
π

≤ |β|π + (3|β|π + 4)ε.

By the arbitrariness of ε, we can conclude that
∧

α∈(T⊗S)−1(β) |α|π ≤ |β|π . ��

Lemma 4.5 LetX be a σ -finite measure space. LetM ,N be Banach L0(X)-modules.
Let G ⊆M and H ⊆ N be generating subsets. Then it holds that the set {v⊗w

∣∣ v ∈
G, w ∈ H} generates M ⊗̂πN .

Proof As the linear span of the elementary tensors is dense in M ⊗̂πN , it suffices
to check that any given v ⊗ w with v ∈ M and w ∈ N can be approximated by
elements of the L0(X)-module generated by

{
ṽ ⊗ w̃

∣∣ ṽ ∈ G, w̃ ∈ H
}
.

Since G and H generate M and N , respectively, we can find (vn)n∈N ⊆ M and
(wn)n∈N ⊆ N that are L0(X)-linear combinations of elements of G and H , respec-
tively, such that |vn − v| → 0 and |wn − w| → 0 in the m-a.e. sense. Then

|v ⊗ w − vn ⊗ wn|π ≤ |v ⊗ w − vn ⊗ w|π + |vn ⊗ w − vn ⊗ wn|π
(4.2)= |v − vn||w| + |vn||w − wn| → 0

in the m-a.e. sense. In particular, vn ⊗ wn → v ⊗ w in M ⊗̂πN . The statement
follows. ��

Generalising the fact that �1(I )⊗̂πB ∼= �1(I , B) holds for every Banach space B,
we have the following:

Theorem 4.6 Let X be a σ -finite measure space, M a Banach L0(X)-module,
and I �= ∅ an index family. Then the unique linear continuous operator
i : L0(X; �1(I ))⊗̂πM → �1(I ,M ) satisfying

i(a ⊗ v) = (
a(·)i · v

)
i∈I for every a ∈ L0(X; �1(I )) and v ∈M (4.3)

is an isomorphism of Banach L0(X)-modules.

Proof First, notice that L0(X; �1(I )) ×M 	 (a, v) 
→ (
a(·)i · v

)
i∈I ∈ �1(I ,M )

is well-defined and L0(X)-bilinear, thus we can consider its L0(X)-linearisation
i : L0(X; �1(I ))⊗M → �1(I ,M ), i.e.

i(α) =
⎛

⎝
n∑

j=1
a j (·)i · v j

⎞

⎠

i∈I
for every α =

n∑

j=1
a j ⊗ v j ∈ L0(X; �1(I ))⊗M .
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Observe that i is the unique linear operator from L0(X; �1(I )) ⊗ M to �1(I ,M )

satisfying (4.3).
On the one hand, given any tensor α = ∑n

j=1 a j ⊗ v j ∈ L0(X; �1(I )) ⊗M we
can estimate

|i(α)|1 =
∑

i∈I

∣∣∣∣∣∣

n∑

j=1
a j (·)i · v j

∣∣∣∣∣∣
≤

∑

i∈I

n∑

j=1
|a j (·)i ||v j | =

n∑

j=1

(
∑

i∈I
|a j (·)i |

)

|v j |

(3.10)=
n∑

j=1
|a j ||v j |.

By passing to the infimum over all representations of α, we deduce that |i(α)|1 ≤ |α|π .
On the other hand, if α is written as

∑n
j=1 a j ⊗ v j , then we claim that the elements

wi :=∑n
j=1 a j (·)i · v j ∈M satisfy the following property: the family {ei ⊗wi }i∈I is

summable in L0(X; �1(I ))⊗̂πM and

∑

i∈I
ei ⊗ wi = α. (4.4)

In order to prove it, let us first notice that

ei ⊗ wi = ei ⊗
⎛

⎝
n∑

j=1
a j (·)i · v j

⎞

⎠ =
n∑

j=1
a j (·)i · (ei ⊗ v j ) =

n∑

j=1

(
a j (·)i · ei

)⊗ v j .

(4.5)

Since L0(X; �1(I )) 	 s 
→ s ⊗ v j ∈ L0(X; �1(I ))⊗̂πM is a homomorphism of
Banach L0(X)-modules,

α

=∑n

j=1a j ⊗ v j
(3.9)=

n∑

j=1

(
∑

i∈I
a j (·)i · ei

)

⊗ v j

(3.7)=
∑

i∈I

⎛

⎝
n∑

j=1

(
a j (·)i · ei

)⊗ v j

⎞

⎠ (4.5)=
∑

i∈I
ei ⊗ wi .

This proves the validity of the claim (4.4). By taking Remark 3.7 into account, we
conclude that

|α|π =
∣∣∣∣∣

∑

i∈I
ei ⊗ wi

∣∣∣∣∣
π

≤
∑

i∈I
|ei ⊗ wi |π (4.2)=

∑

i∈I
|ei ||wi | =

∑

i∈I
|wi | =

∣∣(wi )i∈I
∣∣
1

= |i(α)|1.
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All in all, we have shown that |i(α)|1 = |α|π for every α ∈ L0(X; �1(I )) ⊗ M .
Therefore, the map i can be uniquely extended to a homomorphism of Banach L0(X)-
modules from L0(X; �1(I ))⊗̂πM to �1(I ,M ), which we still denote with the symbol
i. Notice that the extension i preserves the pointwise norm.

To conclude, it remains to check that i : L0(X; �1(I ))⊗̂πM → �1(I ,M ) is sur-
jective. Let v = (vi )i∈I ∈ �1(I ,M ) be fixed. Thanks to Proposition 3.6, it follows
from the estimates

∧

F∈P f (I )

∨

G∈P f (I\F)

∣∣∣∣∣

∑

i∈G
ei ⊗ vi

∣∣∣∣∣
≤

∧

F∈P f (I )

∨

G∈P f (I\F)

∑

i∈G
|vi | = 0

that {ei ⊗ vi }i∈I is summable in L0(X; �1(I ))⊗̂πM . Letting α:=∑
i∈I ei ⊗ vi , we

have that

v
(3.5)=

∑

i∈I
(δi jvi ) j∈I =

∑

i∈I
(ei (·) j · vi ) j∈I (4.3)=

∑

i∈I
i(ei ⊗ vi )

(3.7)= i

(
∑

i∈I
ei ⊗ vi

)

= i(α),

whence it follows that i is surjective. Consequently, the proof of the statement is
complete. ��

Remark 4.7 Under the assumptions of Theorem 4.6, for any i ∈ I we define the
operator ιi as

ιi : M −→ L0(X; �1(I ))⊗̂πM

v 
−→ ei ⊗ v.

Combining Theorem 4.6 with [19, Theorem 3.12], we obtain that

(
L0(X; �1(I ))⊗̂πM , {ιi }i∈I

)

is the coproduct of {Mi }i∈I , where Mi :=M for every i ∈ I , in the category
BanMod1

X
.

Lemma 4.8 Let X be a σ -finite measure space. Let M be a Banach L0(X)-module.
Define

ϕ( f ):=
∑

v∈SM
fv · v ∈M for every f = ( fv)v∈SM ∈ �1(SM , L0(X)). (4.6)

Then ϕ : �1(SM , L0(X)) → M is a quotient operator. In particular, it holds that
M ∼= �1(SM , L0(X))/ker(ϕ).
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Proof First of all, by using Proposition 3.6 we obtain that

∧

F∈P f (SM )

∨

G∈P f (SM \F)

∣∣∣∣∣

∑

v∈G
fv · v

∣∣∣∣∣
≤

∧

F∈P f (SM )

∨

G∈P f (SM \F)

∣∣∣∣∣

∑

v∈G
fv

∣∣∣∣∣
= 0

and thus that ( fv · v)v∈SM is summable inM . Since

∣∣∣∣∣∣

∑

v∈SM
fv · v

∣∣∣∣∣∣
≤

∑

v∈SM
| fv| = | f |1,

we have that ϕ is a well-defined linear operator satisfying |ϕ( f )| ≤ | f |1 for every
f ∈ �1(SM , L0(X)), thus in particular it is a homomorphism of Banach L0(X)-
modules. Moreover, if w ∈M is given, then

f w = ( f w
v )v∈SM ∈ �1(SM , L0(X)), f w

v :=
{ |w|
0

if v = sgn(w),

otherwise

satisfies ϕ( f w) = |w| · sgn(w) = w and |ϕ( f w)| = |w| = | f w|1. Hence, ϕ is a
quotient operator, thus it induces an isomorphism of Banach L0(X)-modules between
�1(SM , L0(X))/ker(ϕ) and M . ��

We conclude this section with a useful representation formula for the projective
pointwise norm:

Theorem 4.9 (Characterisation of the projective pointwise norm) Let X be a σ -finite
measure space. LetM ,N be Banach L0(X)-modules. Then for every α ∈M ⊗̂πN
it holds that

|α|π =
∧

{
∑

n∈N
|vn||wn|

∣∣∣∣ (vn ⊗ wn)n∈N ∈ �1(N,M ⊗̂πN ), α =
∑

n∈N
vn ⊗ wn

}

.

(4.7)

Proof For brevity, we denote by q(α) the right-hand side of (4.7). On the one hand, if
(vn ⊗ wn)n∈N ∈ �1(N,M ⊗̂πN ) and α =∑

n∈N vn ⊗ wn , then

|α|π =
∣∣∣∣∣

∑

n∈N
vn ⊗ wn

∣∣∣∣∣
π

(3.6)≤
∑

n∈N
|vn||wn|,

whence it follows that |α|π ≤ q(α) for every α ∈M ⊗̂πN . On the other hand, let us
denote by

ϕ : �1(SM , L0(X)) →M ,

φ : L0(X; �1(SM )) → �1(SM , L0(X)),

i : L0(X; �1(SM ))⊗̂πN → �1(SM ,N )
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the operators given by Lemma 4.8, Corollary 3.12, and Theorem 4.6, respectively.
Recall that ϕ is a quotient operator, while φ and i are isomorphisms of Banach L0(X)-
modules. In particular, ϕ̃:=ϕ ◦ φ : L0(X; �1(SM )) → M is a quotient operator, so
that accordingly

ψ :=(ϕ̃ ⊗π idN ) ◦ i−1 : �1(SM ,N ) →M ⊗̂πN is a quotient operator

by Lemma 4.4. Hence, for any α ∈ M ⊗̂πN and ε > 0 we can find an element
w = (wv)v∈SM ∈ �1(SM ,N ) such that ψ(w) = α and |w|1 ≤ |α|π + ε. Since

∨

F∈P f (SM )

∑

v∈F
|v ⊗ wv|π ≤

∨

F∈P f (SM )

∑

v∈F
|wv| ∈ L0(X)+,

we see that (v ⊗ wv)v∈SM ∈ �1(SM ,M ⊗̂πN ). By unwrapping the various defini-
tions, we obtain

α = ψ
(
(wv)v∈SM

) (3.5)= ψ

⎛

⎝
∑

v∈SM
(δvuwv)u∈SM

⎞

⎠ (3.7)=
∑

v∈SM
ψ
(
(δvuwv)u∈SM

)

=
∑

v∈SM
ψ
(
(ev(·)u · wv)u∈SM

) (4.3)=
∑

v∈SM
(ϕ̃ ⊗π idN )(ev ⊗ wv)

=
∑

v∈SM
ϕ
(
φ(ev)

)⊗ wv
(3.11)=

∑

v∈SM
ϕ
(
(δvu1X)u∈SM

)⊗ wv

(4.6)=
∑

v∈SM

⎛

⎝
∑

u∈SM
δvuu

⎞

⎠⊗ wv =
∑

v∈SM
v ⊗ wv.

It follows that there exists (vn)n∈N ⊆ SM such that, lettingwn :=wvn for every n ∈ N,
we have (vn⊗wn)n∈N ∈ �1(N,M ⊗̂πN ), α =∑

n∈N vn⊗wn , and
∑

n∈N |vn||wn| =
|w|1 ≤ |α|π + ε. Therefore, we proved that q(α) ≤ |α|π + ε. By letting ε ↘ 0, we
conclude that |α|π = q(α). ��

4.2 Relation with duals and pullbacks

In order to provide a characterisation of the dual of the projective tensor product in
Theorem 4.11, we need to apply the following universal property:

Theorem 4.10 (Universal property of the projective tensor product) Let X be a σ -
finite measure space. Let M , N , Q be Banach L0(X)-modules. Then for any b ∈
B(M ,N ;Q) there exists a unique b̃π ∈ Hom(M ⊗̂πN ;Q) for which the following
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diagram commutes:

M ×N Q

M ⊗̂πN

b

⊗
b̃π

Also, B(M ,N ;Q) 	 b 
→ b̃π ∈ Hom(M ⊗̂πN ;Q) is an isomorphism of Banach
L0(X)-modules.

Proof Let b ∈ B(M ,N ;Q) be fixed. Denote by b̃ : M ⊗ N → Q the L0(X)-
linearisation of b given by Lemma 2.2. For any α = ∑n

i=1 vi ⊗ wi ∈ M ⊗N , we
can estimate

|b̃(α)| ≤
n∑

i=1

∣∣b̃(vi ⊗ wi )
∣∣ =

n∑

i=1
|b(vi , wi )| ≤ |b|

n∑

i=1
|vi ||wi |.

By taking the infimum over all representations of α, we get |b̃(α)| ≤ |b||α|π , whence
it follows that b̃ ∈ Hom(M ⊗π N ;Q) and |b̃| ≤ |b|. Letting b̃π be the unique
element of Hom(M ⊗̂πN ;Q) extending b̃, we have |b̃π | = |b̃| ≤ |b|. On the other
hand, we have that

|b(v,w)| = ∣∣b̃π (v ⊗ w)
∣∣ ≤ |b̃π ||v ⊗ w|π = |b̃π ||v||w| ∀(v,w) ∈M ×N ,

which implies that |b| ≤ |b̃π |. All in all, we have shown that |b̃π | = |b|. Moreover,
the resulting map B(M ,N ;Q) 	 b 
→ b̃π ∈ Hom(M ⊗̂πN ;Q) is a homomor-
phism of Banach L0(X)-modules. In order to conclude, it remains to check that such
map is surjective. To this aim, let T ∈ Hom(M ⊗̂πN ;Q) be fixed. Now define
bT : M × N → Q as bT (v,w):=T (v ⊗ w) for every (v,w) ∈ M × N . Then
bT ∈ B(M ,N ;Q) by construction and b̃Tπ = T by the uniqueness part of the
statement. Therefore, the proof is complete. ��

Choosing Q:=L0(X) in Theorem 4.10, we obtain the following characterisation
of M ⊗̂πN :

Theorem 4.11 (Dual ofM ⊗̂πN ) Let X be a σ -finite measure space. LetM andN
be Banach L0(X)-modules. Then it holds that

(M ⊗̂πN )∗ ∼= B(M ,N ),

an isomorphism of Banach L0(X)-modules being given by the map

B(M ,N ) 	 b 
→ b̃π ∈ (M ⊗̂πN )∗.

As a consequence of Theorem4.11,we obtain a useful ‘dual representation formula’
for | · |π :
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Corollary 4.12 Let X be a σ -finite measure space. Let M , N be Banach L0(X)-
modules. Then

|α|π =
∨{

b̃π (α)
∣∣ b ∈ B(M ,N ), |b| ≤ 1

}
for every α ∈M ⊗̂πN . (4.8)

Proof The statement follows from Theorem 4.11 and the Hahn–Banach theorem for
normed L0-modules. ��

We conclude the section by proving that ‘pullbacks and projective tensor products
commute’:

Theorem 4.13 (Pullbacks vs. projective tensor products) Let X, Y be separable, σ -
finite measure spaces. Let ϕ : X → Y be a measurable map such that ϕ#mX � mY.
Let M and N be Banach L0(Y)-modules. Then it holds that

ϕ∗(M ⊗̂πN ) ∼= (ϕ∗M )⊗̂π (ϕ∗N ),

the pullback map ϕ∗ : M ⊗̂πN → (ϕ∗M )⊗̂π (ϕ∗N ) being the unique homomor-
phism such that

ϕ∗(v ⊗ w) = (ϕ∗v)⊗ (ϕ∗w) for every v ∈M and w ∈ N .

Proof First, we define the map T : M ⊗π N → (ϕ∗M )⊗π (ϕ∗N ) as

T

(
n∑

i=1
vi ⊗ wi

)

:=
n∑

i=1
(ϕ∗vi )⊗ (ϕ∗wi ) ∀

n∑

i=1
vi ⊗ wi ∈M ⊗π N .

In order to prove that the map T is well-posed, it is sufficient to show that

(vi )
n
i=1 ⊆M , (wi )

n
i=1 ⊆ N ,

n∑

i=1
vi ⊗ wi = 0 �⇒

n∑

i=1
(ϕ∗vi )⊗ (ϕ∗wi ) = 0.

(4.9)

Let Iϕ : ϕ∗N ∗ → (ϕ∗N )∗ be the isometric embedding defined in (2.6). Corollary
3.21 yields

n∑

i=1
Iϕ(ϕ∗η)(ϕ∗wi ) · (ϕ∗vi ) =

n∑

i=1
(η(wi ) ◦ ϕ) · (ϕ∗vi ) = ϕ∗

(
n∑

i=1
η(wi ) · vi

)

= 0

for every η ∈ N ∗, whence it follows that
∑n

i=1 Iϕ(θ)(ϕ∗wi )·(ϕ∗vi ) = 0 for every θ ∈
G (ϕ∗[N ∗]). Using Theorem 2.13 and the density ofG (ϕ∗[N ∗]) in ϕ∗N ∗, we obtain∑n

i=1 �(ϕ∗wi )·(ϕ∗vi ) = 0 for every� ∈ (ϕ∗N )∗, so that
∑n

i=1(ϕ∗vi )⊗(ϕ∗wi ) = 0
by Corollary 3.21. This proves (4.9).
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Observe that T is linear by construction. Moreover, for any α ∈M ⊗π N we can
estimate

|T (α)|π ≤
∧

{
n∑

i=1
|ϕ∗vi ||ϕ∗wi |

∣∣∣∣ (vi )
n
i=1 ⊆M , (wi )

n
i=1 ⊆ N , α =

n∑

i=1
vi ⊗ wi

}

=
∧

{( n∑

i=1
|vi ||wi |

)
◦ ϕ

∣∣∣∣ (vi )
n
i=1 ⊆M , (wi )

n
i=1 ⊆ N , α =

n∑

i=1
vi ⊗ wi

}

= |α|π ◦ ϕ.

Now let us pass to the verificationof the converse inequality.Given anyb ∈ B(M ,N ),
we define

bϕ

⎛

⎝
n∑

i=1
1Ei · ϕ∗vi ,

m∑

j=1
1Fj · ϕ∗w j

⎞

⎠ :=
n∑

i=1

m∑

j=1
1Ei∩Fj b(vi , w j ) ◦ ϕ ∈ L0(X)

for every
∑n

i=1 1Ei · ϕ∗vi ∈ G (ϕ∗[M ]) and ∑m
j=1 1Fj · ϕ∗w j ∈ G (ϕ∗[N ]). Notice

that
∣∣∣∣∣∣

n∑

i=1

m∑

j=1
1Ei∩Fj b(vi , w j ) ◦ ϕ

∣∣∣∣∣∣
=

n∑

i=1

m∑

j=1
1Ei∩Fj |b(vi , w j )| ◦ ϕ

≤ |b| ◦ ϕ

∣∣∣∣∣

n∑

i=1
1Ei · ϕ∗vi

∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1
1Fj · ϕ∗w j

∣∣∣∣∣∣
.

Therefore, bϕ : G (ϕ∗[M ]) × G (ϕ∗[N ]) → L0(X) can be uniquely extended to an
L0(X)-bilinear operator bϕ ∈ B(ϕ∗M , ϕ∗N ) satisfying |bϕ | ≤ |b| ◦ ϕ. Thanks to
Corollary 4.12, we deduce that

|α|π ◦ ϕ =
∨{

b̃π (α) ◦ ϕ
∣∣ b ∈ B(M ,N ), |b| ≤ 1

}

=
∨

{
n∑

i=1
bϕ(ϕ∗vi , ϕ∗wi )

∣∣∣∣ b ∈ B(M ,N ), |b| ≤ 1

}

≤
∨{

B̃π (T (α))
∣∣ B ∈ B(ϕ∗M , ϕ∗N ), |B| ≤ 1

} = |T (α)|π

for every tensor α = ∑n
i=1 vi ⊗ wi ∈ M ⊗π N . All in all, we have shown that

|T (α)|π = |α|π ◦ ϕ for every α ∈ M ⊗π N . It follows that T can be uniquely
extended to a linear operator

ϕ∗ : M ⊗̂πN → (ϕ∗M )⊗̂π (ϕ∗N )

satisfying |ϕ∗α|π = |α|π ◦ ϕ for every α ∈ M ⊗̂πN . Finally, it remains to check
that ϕ∗[M ⊗̂πN ] generates (ϕ∗M )⊗̂π (ϕ∗N ). Given any v ∈ M and w ∈ N , we
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have (ϕ∗v)⊗ (ϕ∗w) = ϕ∗(v ⊗ w). This shows that

S:={
(ϕ∗v)⊗ (ϕ∗w)

∣∣ v ∈M , w ∈ N
} ⊆ ϕ∗[M ⊗̂πN ].

Given that ϕ∗[M ] and ϕ∗[N ] generate ϕ∗M and ϕ∗N , respectively, we know from
Lemma 4.5 that S generates the space (ϕ∗M )⊗̂π (ϕ∗N ), thus a fortiori ϕ∗[M ⊗̂πN ]
generates (ϕ∗M )⊗̂π (ϕ∗N ). ��

4.3 Other consequences of the universal property

Let us now discuss other consequences of Theorem 4.10 and Corollary 4.12. Our first
goal is to rewrite (4.8) in a different fashion.

Proposition 4.14 Let X be a σ -finite measure space. Let M , N be Banach L0(X)-
modules. Then the map sending b to v → b(v, ·) is an isomorphism of Banach L0(X)-
modules from B(M ,N ) to Hom(M ;N ∗). In particular, it holds that

B(M ,N ) ∼= Hom(M ;N ∗).

Proof One can readily check that the map

ϕ : b 
→ (
M 	 v → b(v, ·) ∈ N ∗)

is a homomorphism of Banach L0(X)-modules between the spaces B(M ,N ) and
Hom(M ;N ∗). For any b ∈ B(M ,N ), we have that

|ϕ(b)| =
∨

v∈M

1{|v|>0}|b(v, ·)|
|v| =

∨

v∈M

∨

w∈N

1{|v|>0}1{|w|>0}|b(v,w)|
|v||w| = |b|.

Finally,we check thatϕ is surjective. For any T ∈ Hom(M ;N ∗), we definebT : M×
N → L0(X) as bT (v,w):=T (v)(w) for every v ∈ M and w ∈ N . Then bT ∈
B(M ,N ) and ϕ(bT ) = T . ��

Similarly, we have that B(M ,N ) ∼= Hom(N ;M ∗), an isomorphism of Banach
L0(X)-modules being given by the operator

B(M ,N ) 	 b 
→ (
N 	 w 
→ b(·, w) ∈M ∗) ∈ Hom(N ;M ∗).

Corollary 4.15 Let X be a σ -finite measure space. Let M , N be Banach L0(X)-
modules. Then it holds that

(
T (vn)(wn)

)
n∈N ∈ �1(N, L0(X))

for every T ∈ Hom(M ;N ∗)
and (vn ⊗ wn)n∈N ∈ �1(N,M ⊗̂πN ).
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Moreover, for every α ∈M ⊗̂πN we have that

|α|π =
∨

{∣∣∣
∑

n∈N
T (vn)(wn)

∣∣∣
∣∣∣∣
(vn ⊗ wn)n ∈ �1(N,M ⊗̂πN ),∑

n∈N vn⊗wn = α, T ∈ DHom(M ;N ∗)

}

.

Proof Let us fix any sequence (vn ⊗ wn)n∈N ∈ �1(N,M ⊗̂πN ). We denote
α:=∑

n∈N vn ⊗ wn ∈M ⊗̂πN . Then

∣∣∣∣∣

∑

n∈F
T (vn)(wn)

∣∣∣∣∣
≤ |T |

∑

n∈F
|vn||wn| = |T |

∑

n∈F
|vn ⊗ wn|π

for every T ∈ Hom(M ;N ∗) and F ∈P f (N). By passing to the supremum over all
F ∈P f (N), we thus obtain that

∣∣(T (vn)(wn)
)
n∈N

∣∣
1 ≤ |T |∣∣(vn ⊗ wn)n∈N

∣∣
1 ∈ L0(X)+, (4.10)

which ensures that
(
T (vn)(wn)

)
n∈N ∈ �1(N, L0(X)). Now, let us introduce the short-

hand notation

Q(α):=
∨

⎧
⎨

⎩

∣∣∣∣
∑

n∈N
T (vn)(wn)

∣∣∣∣

∣∣∣∣

(vn⊗wn)n ∈ �1(N,M ⊗̂πN ),∑
n∈N vn ⊗ wn = α, T ∈

DHom(M ;N ∗)

⎫
⎬

⎭

for every α ∈M ⊗̂πN . On the one hand, whenever (vn ⊗ wn)n and T are competi-
tors for Q(α), we have that

∣∣∑
n∈N T (vn)(wn)

∣∣ ≤ ∑
n∈N |vn||wn| by (4.10), so that

Q(α) ≤ |α|π by Theorem 4.9. On the other hand, take any b ∈ B(M ,N ) such that
|b| ≤ 1. Proposition 4.14 tells that the element Tb ∈ Hom(M ;N ∗), which we define
as Tb(v):=b(v, ·) for all v ∈M , satisfies |Tb| ≤ 1. Hence, Lemma 3.8 yields

b̃π (α) =
∑

n∈N
b̃π (vn ⊗ wn) =

∑

n∈N
Tb(vn)(wn).

It follows that

|α|π =
∨

b∈DB(M ,N )

b̃π (α) =
∨

b∈DB(M ,N )

∑

n∈N
Tb(vn)(wn) ≤ Q(α)

thanks to Corollary 4.12. Consequently, the statement is finally achieved. ��

The following symmetric statement is verified as well:

(
S(wn)(vn)

)
n ∈ �1(N, L0(X))
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for every (vn ⊗ wn)n ∈ �1(N,M ⊗̂πN ) and S ∈ Hom(N ;M ∗), and we have

|α|π =
∨

⎧
⎨

⎩

∣∣∣∣
∑

n∈N
S(wn)(vn)

∣∣∣
∣∣∣∣

(vn⊗wn)n ∈ �1(N,M ⊗̂πN ),∑
n∈N vn ⊗ wn = α, S ∈

DHom(N ;M ∗)

⎫
⎬

⎭
.

These claims can be proved by arguing exactly as we did in the proof of Corollary
4.15.

Next, we use Corollary 4.12 to characterise the ‘tensor diagonal’ in the space
L0(X; �2(I ))⊗̂π L0(X; �2(I )):
Proposition 4.16 Let X be a σ -finite measure space. Then the Banach L0(X)-
submodule of L0(X; �2(I ))⊗̂π L0(X; �2(I )) that is generated by {ei ⊗ ei : i ∈ I } is
isomorphic to L0(X; �1(I )).

Proof LetM be the Banach L0(X)-submodule of L0(X; �2(I ))⊗̂π L0(X; �2(I )) that
is generated by {ei ⊗ ei : i ∈ I }. Observe that M can be described as M =
clL0(X;�2(I ))⊗̂π L0(X;�2(I ))(M), where

M :=
{
∑

i∈F
fi · (ei ⊗ ei )

∣∣∣∣ F ∈P f (I ), { fi }i∈F ⊆ L0(X)

}

.

Given any F ∈ P f (I ) and f = { fi }i∈F ⊆ L0(X), let us define the operator
b f : L0(X; �2(I ))× L0(X; �2(I )) → L0(X) as

b f (g, h):=
∑

i∈F
sgn( fi )g(·)i h(·)i for every g, h ∈ L0(X; �2(I )).

The map b f is L0(X)-bilinear by construction. Also, for any g, h ∈ L0(X; �2(I )) we
can estimate

|b f (g, h)| ≤
∑

i∈F
|g(·)i ||h(·)i | ≤

(
∑

i∈F
|g(·)i |2

)1/2 (∑

i∈F
|h(·)i |2

)1/2

≤ |g||h|,

which yields b f ∈ B
(
L0(X; �2(I )), L0(X; �2(I ))

)
and |b f | ≤ 1. Now define the map

ψ : M → �1(I , L0(X)) as

ψ

(
∑

i∈F
fi · (ei ⊗ ei )

)

:=
∑

i∈F
(δi j fi ) j∈I ∀F ∈P f (I ), { fi }i∈F ⊆ L0(X).
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By virtue of Corollary 4.12, for any F ∈ P f (I ) and f = { fi }i∈F ⊆ L0(X) we can
estimate

∣∣∣∣∣

∑

i∈F
(δi j fi ) j∈I

∣∣∣∣∣
1

=
∣∣∣∣∣

(∑

i∈F
δi j fi

)

j∈I

∣∣∣∣∣
1

=
∑

i∈F
| fi | =

∑

i∈F
fi sgn( fi )

=
∑

i∈F
fi
∑

j∈F
sgn( f j )δ

2
i j =

∑

i∈F
fi
∑

j∈F
sgn( f j )ei (·)2j

=
∑

i∈F
fi b

f (ei , ei ) =
∑

i∈F
fi b̃

f
π (ei ⊗ ei )

= b̃ f
π

(
∑

i∈F
fi · (ei ⊗ ei )

)

≤
∣∣∣∣∣

∑

i∈F
fi · (ei ⊗ ei )

∣∣∣∣∣
π

.

This shows that the operatorψ is well-defined (thus also L0(X)-linear by construction)
and that it satisfies |ψ(α)|1 ≤ |α|π for all α ∈ M . Conversely, for any α =∑

i∈F fi ·
(ei ⊗ ei ) ∈ M we have

|α|π ≤
∑

i∈F
| fi ||ei ⊗ ei |π =

∑

i∈F
| fi ||ei |2 =

∑

i∈F
| fi | = |ψ(α)|1.

All in all, we have shown that ψ preserves the pointwise norm, thus it can be uniquely
extended to a homomorphism ψ̄ ∈ Hom

(
M ; �1(I , L0(X))

)
that satisfies |ψ̄(α)|1 =

|α|π for all α ∈ M . Letting φ : L0(X; �1(I )) → �1(I , L0(X)) be the isomorphism
given by Corollary 3.12, we deduce that

ϕ:=φ−1 ◦ ψ̄ ∈ Hom
(
M ; L0(X; �1(I ))

)

satisfies |ϕ(α)| = |α|π for every α ∈ M . Finally, we verify that ϕ is surjective. Fix
any a ∈ L0(X; �1(I )). Thanks to Lemma 3.11, we can find an increasing sequence
(Fn)n∈N ⊆P f (I ) with an :=∑

i∈Fn a(·)i · ei → a as n →∞. Since

ϕ

⎛

⎝
∑

i∈Fn
a(·)i · (ei ⊗ ei )

⎞

⎠ =
∑

i∈Fn
φ−1

((
δi j a(·)i

)
j∈I

)
=

∑

i∈Fn
a(·)i · ei = an,

we deduce that (an)n∈N ⊆ ϕ[M], whence it follows that a ∈ ϕ[M ]. The proof is
complete. ��

Finally, we discuss a categorical consequence of Theorem 4.11. First, we
need to introduce the two functors M ⊗̂π−: BanModX → BanModX and
Hom(M ;−) : BanModX → BanModX, where M is a Banach L0(X)-module. The
functors M ⊗̂π− and Hom(M ;−) are given as follows:

(i) For any objectN of BanModX, we define (M ⊗̂π−)(N ):=M ⊗̂πN . For any
morphism T : N → ˜N in BanModX, we define the morphism (M ⊗̂π−)(T ) :
M ⊗̂πN →M ⊗̂π

˜N as (M ⊗̂π−)(T ):=idM ⊗π T .
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(ii) For any object Q of BanModX, we set

Hom(M ;−)(Q):=Hom(M ;Q).

For any morphism T : Q → Q̃ in BanModX, we define the morphism

Hom(M ;−)(T ) : Hom(M ;Q) → Hom(M ; Q̃)

as Hom(M ;−)(T )(S):=T ◦ S for every S ∈ Hom(M ;Q).

We can now pass to the ensuing result, which states thatM ⊗̂π− is the left adjoint of
Hom(M ;−):

Proposition 4.17 Let X be a σ -finite measure space and let M be a Banach L0(X)-
module. Then

(M ⊗̂π−)  Hom(M ;−).

Proof Our goal is to find a natural isomorphism

� : Hom(M ⊗̂π−;−) → Hom(−;Hom(M ;−)),

which means that
(
M ⊗̂π−,Hom(M ;−),�

)
is a hom-set adjunction. To this aim,

fix two Banach L0(X)-modules N and Q. We define

�N ,Q : Hom(M ⊗̂πN ;Q) → Hom(N ;Hom(M ;Q))

as follows:

�N ,Q(T )(w)(v):=T (v ⊗ w) ∀T ∈ Hom(M ⊗̂πN ;Q), (w, v) ∈ N ×M .

One can readily check that�N ,Q is a morphism and |�N ,Q| ≤ 1. On the other hand,
let L be a given element of Hom(N ;Hom(M ;Q)). Define bL : M ×N → Q as
bL(v,w):=L(w)(v) for every (v,w) ∈ M × N . Since bL ∈ B(M ,N ;Q) and
|bL | ≤ |L|, we know from Theorem 4.11 that the element b̃Lπ ∈ Hom(M ⊗̂πN ;Q)

satisfies |b̃Lπ | ≤ |L|. Since

b̃Lπ (v ⊗ w) = bL(v,w) = L(w)(v) for every (v,w) ∈M ×N ,

we deduce that �N ,Q(b̃Lπ ) = L and |�N ,Q(b̃Lπ )| = |L| ≥ |b̃Lπ |. All in all, we have
shown that �N ,Q is an isomorphism. Let us finally check the naturality of �. Given
any two morphisms T : ˜N → N and S : Q → Q̃ in BanModX, we consider the
morphisms

Hom(M ⊗̂πT ; S) : Hom(M ⊗̂πN ;Q) → Hom(M ⊗̂π
˜N ; Q̃),

Hom(T ;Hom(M ; S)) : Hom(N ;Hom(M ;Q)) → Hom( ˜N ;Hom(M ; Q̃)),
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which are given by Hom(M ⊗̂πT ; S)(ϕ):=S ◦ ϕ ◦ (idM ⊗π T ) for every ϕ ∈
Hom(M ⊗̂πN ;Q) and Hom(T ;Hom(M ; S))(ψ)(w̃):=S ◦ (ψ ◦ T )(w̃) for every
ψ ∈ Hom(N ;Hom(M ;Q)) and w̃ ∈ ˜N . Unwrapping the various definitions, one
can see that the following diagram is commutative:

Hom(M ⊗̂πN ;Q) Hom(N ;Hom(M ;Q))

Hom(M ⊗̂π
˜N ; Q̃) Hom( ˜N ;Hom(M ; Q̃))

Hom(M ⊗̂π T ;S)

�N ,Q

Hom(T ;Hom(M ;S))

� ˜N , ˜Q

whence it follows that� is a natural isomorphism.Consequently, the proof is complete.
��

The previous result implies that the functor M ⊗̂π− is cocontinuous, i.e. it pre-
serves colimits. Notice however that we are considering M ⊗̂π− as an endofunctor
on BanModX, which is only finitely cocomplete, and not on the cocomplete category
BanMod1

X
.

5 Injective tensor products of Banach L0-modules

5.1 Definition andmain properties

We begin by introducing the injective pointwise norm:

Theorem 5.1 Let X be a σ -finite measure space. Let M , N be Banach L0(X)-
modules. Define

|α|ε:=
∨

{∣∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣∣

∣∣∣∣

n∑

i=1
vi ⊗ wi = α, ω ∈ DM ∗ , η ∈ DN ∗

}

(5.1)

for every α ∈ M ⊗N . Then | · |ε : M ⊗N → L0(X)+ is a pointwise norm on
M ⊗N . Moreover,

|v ⊗ w|ε = |v||w| for every v ∈M and w ∈ N . (5.2)

Proof One can readily check that | · |ε verifies the pointwise norm axioms; the fact
that |α|ε = 0 implies α = 0 is a consequence of Lemma 3.19. To prove (5.2), notice
first that Lemma 3.19 yields

∣∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣∣
= ∣∣ω(v)η(w)

∣∣ ≤ |ω||v||η||w| ≤ |v||w|

whenever
∑n

i=1 vi ⊗ wi is a representation of the tensor v ⊗ w and for all (ω, η) ∈
DM ∗ × DN ∗ . Hence, we obtain that |v ⊗ w|ε ≤ |v||w|. Conversely, an application
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of the Hahn–Banach theorem gives two elements ωv ∈ SM ∗ ∪ {0} and ηw ∈ SN ∗ ∪
{0} such that ωv(v) = |v| and ηw(w) = |w|. Therefore, we have that |v||w| =
ωv(v)ηw(w) ≤ |v ⊗ w|ε. All in all, (5.2) is proved. ��
Remark 5.2 Observe that |α|ε ≤ |α|π for every α ∈ M ⊗ N . Indeed, if we write
α =∑n

i=1 vi ⊗ wi , then for any ω ∈ DM ∗ and η ∈ DN ∗ we have that

∣∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣∣
≤

n∑

i=1
|ω(vi )||η(wi )| ≤

n∑

i=1
|vi ||wi |,

whence the claim follows.

Definition 5.3 (Injective tensor product) Let X be a σ -finite measure space. Let M
andN be Banach L0(X)-modules. Then we denote byM ⊗ε N the normed L0(X)-
module (M⊗N , |·|ε), where the pointwise norm |·|ε is defined as in (5.1).Moreover,
the injective tensor product of M and N is the Banach L0(X)-module M ⊗̂εN
defined as the L0(X)-completion of M ⊗ε N .

The space M ⊗̂εN is a Banach L0(X)-submodule of B(M ∗,N ∗):

Proposition 5.4 Let X be a σ -finite measure space. LetM andN be Banach L0(X)-
modules. Given any tensor α = ∑n

i=1 vi ⊗ wi ∈ M ⊗ N , we define the map
Bα : M ∗ ×N ∗ → L0(X) as

Bα(ω, η):=
n∑

i=1
ω(vi )η(wi ) for every ω ∈M ∗ and η ∈ N ∗. (5.3)

Then Bα is well-defined and belongs toB(M ∗,N ∗).Moreover, the resulting operator

M ⊗ε N 	 α 
→ Bα ∈ B(M ∗,N ∗)

can be uniquely extended to an isomorphism of Banach L0(X)-modules from the injec-
tive tensor product M ⊗̂εN to the closure of {Bα : α ∈M ⊗N } in B(M ∗,N ∗).

Proof Thewell-posedness of (5.3) follows fromLemma 3.19, while the rest is straight-
forward. ��

The following result provides other two representations of the injective tensor prod-
uct M ⊗̂εN :

Proposition 5.5 Let X be a σ -finite measure space. LetM andN be Banach L0(X)-
modules. Given any tensor α = ∑n

i=1 vi ⊗ wi ∈ M ⊗ N , we define the maps
Lα : M ∗ → N and Rα : N ∗ →M as

Lα(ω):=
n∑

i=1
ω(vi ) · wi , Rα(η):=

n∑

i=1
η(wi ) · vi ∀ω ∈M ∗, η ∈ N ∗,
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respectively. Then Lα ∈ Hom(M ∗;N ) and Rα ∈ Hom(N ∗;M ). Moreover, the
resulting maps

M ⊗ε N 	α 
→ Lα ∈ Hom(M ∗;N ),

M ⊗ε N 	α 
→ Rα ∈ Hom(N ∗;M )

can be uniquely extended to pointwise norm preserving homomorphisms defined on
M ⊗̂εN .

Proof We consider only Lα , the proof for Rα being analogous. The well-posedness
of the map Lα follows from Corollary 3.21. It is then easy to check that Lα ∈
Hom(M ∗;N ) holds for every α ∈ M ⊗ N and that the mapping M ⊗ε N 	
α 
→ Lα ∈ Hom(M ∗;N ) is a homomorphism of normed L0(X)-modules. Also, we
have that

|Lα| =
∨

ω∈DM ∗
|Lα(ω)| =

∨

ω∈DM ∗

∨

η∈DN ∗

∣∣η
(
Lα(ω)

)∣∣

=
∨

ω∈DM ∗

∨

η∈DN ∗

∣∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣∣
= |α|ε

for every α =∑n
i=1 vi⊗wi ∈M⊗εN by theHahn–Banach theorem. The statement

follows. ��
Corollary 5.6 Let X be a σ -finite measure space. Let M , N be Banach L0(X)-
modules. Let T and S be norming subsets ofM ∗ andN ∗, respectively. Then it holds
that

|α|ε =
∨

ω∈T

∣∣∣∣∣

n∑

i=1
ω(vi ) · wi

∣∣∣∣∣
=

∨

η∈S

∣∣∣∣∣

n∑

i=1
η(wi ) · vi

∣∣∣∣∣
∀α =

n∑

i=1
vi ⊗ wi ∈M ⊗ε N .

Proof Given that |Lα| = ∨
ω∈T |Lα(ω)| and |Rα| = ∨

η∈S |Rα(η)|, the statement
follows from Proposition 5.5. ��

Let us now consider the injective tensor product of homomorphisms of Banach
L0(X)-modules:

Proposition 5.7 (Injective tensor products of homomorphisms) Let X be a σ -finite
measure space. Let T : M → M̃ and S : N → ˜N be homomorphisms of Banach
L0(X)-modules. Then there exists a unique homomorphism of Banach L0(X)-modules
T ⊗ε S : M ⊗̂εN → M̃ ⊗̂ε

˜N with

(T ⊗ε S)(v ⊗ w) = T (v)⊗ S(w) for every v ∈M and w ∈ N .

Moreover, it holds that |T ⊗ε S| = |T ||S|.
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Proof Let T ⊗ S : M ⊗N → M̃ ⊗ ˜N be as in Lemma 2.2. Given any element
α =∑n

i=1 vi ⊗ wi ∈M ⊗N , we have that

∣∣(T ⊗ S)(α)
∣∣
ε
=

∨
{∣∣∣∣

n∑

i=1
ω̃(T (vi ))η̃(S(wi ))

∣∣∣∣

∣∣∣∣ ω̃ ∈ DM̃ ∗ , η̃ ∈ D ˜N ∗

}

≤ |T ||S|
∨

{∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣

∣∣∣∣ ω ∈ DM ∗ , η ∈ DN ∗

}

= |T ||S||α|ε,

where we used the fact that 1{|T |>0}
|T | · (ω̃ ◦ T ) ∈ DM ∗ and 1{|S|>0}

|S| · (η̃ ◦ S) ∈ DN ∗ . It

follows that the map T ⊗ S : M ⊗N → M̃ ⊗ ˜N can be uniquely extended to a
homomorphism of Banach L0(X)-modules T ⊗ε S : M ⊗̂εN → M̃ ⊗̂ε

˜N satisfying
|T ⊗ε S| ≤ |T ||S|. Finally, the validity of the converse inequality |T ⊗ε S| ≥ |T ||S|
can be proved arguing as in Proposition 4.3. ��

One can easily check that L0(X)⊗̂εL0(X) = L0(X)⊗ε L0(X) ∼= L0(X) as Banach
L0(X)-modules via the isomorphism

L0(X)⊗ε L0(X) 	
n∑

i=1
fi ⊗ gi 
→

n∑

i=1
fi gi ∈ L0(X).

In particular, up to this identification, we have that

ω ⊗ε η ∈ (M ⊗̂εN )∗, |ω ⊗ε η| = |ω||η| for every ω ∈M ∗ and η ∈ N ∗.

Lemma 5.8 LetX be a σ -finite measure space. LetM ,N be Banach L0(X)-modules.
Let G ⊆M and H ⊆ N be generating subsets. Then it holds that the set {v⊗w

∣∣ v ∈
G, w ∈ H} generates M ⊗̂εN .

Proof The statement follows from Lemma 4.5 and Remark 5.2. ��

5.2 Relation with order-continuousmaps

As we already mentioned in the first paragraph of Sect. 3.4, the Banach space C(K )

(where K is a compact, Hausdorff topological space) has a special relevance in connec-
tion with injective tensor products. For instance, it holds that C(K )⊗̂εB

∼= C(K ;B)

for every Banach space B, whence it follows that any quotient operator f : B1 →
B2 between Banach spaces induces a quotient operator id ⊗ε f : C(K )⊗̂εB1 →
C(K )⊗̂εB2. The goal of the present section is to extend these results to the setting
of Banach L0(X)-modules, taking as K a compact, Hausdorff uniform space, and
replacing C(K ) with UCord(K ; L0(X)).
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Theorem 5.9 Let (K ,�) be a compact, Hausdorff uniform space. Let X be a σ -
finite measure space and M a Banach L0(X)-module. Then the unique linear and
continuous operator

j : UCord(K ; L0(X))⊗̂εM → UCord(K ;M )

satisfying j( f ⊗ v)(·) = f (·) · v for every f ∈ UCord(K ; L0(X)) and v ∈ M is an
isomorphism.

Proof Notice that | f (·) · v| = | f (·)||v| and Var( f (·) · v;U) = |v|Var( f ;U) for every
f ∈ UCord(K ; L0(X)), v ∈M , and U ∈ �, which implies that

f (·) · v ∈ UCord(K ;M ).

Therefore, it makes sense to define j : UCord(K ; L0(X))⊗ε M → UCord(K ;M ) in
the following way:

j

(
n∑

i=1
fi ⊗ vi

)

:=
n∑

i=1
fi (·) · vi ∀

n∑

i=1
fi ⊗ vi ∈ UCord(K ; L0(X))⊗ε M .

To prove that the definition of j is well-posed amounts to showing that

( fi )ni=1 ⊆
UCord(K ; L0(X)),
(vi )

n
i=1 ⊆

M ,
∑n

i=1 fi ⊗ vi = 0

�⇒
n∑

i=1
fi (·) · vi = 0. (5.4)

Assuming
∑n

i=1 fi ⊗ vi = 0, we have that
∑n

i=1 fi (p) · vi = ∑n
i=1 δp( fi ) · vi = 0

for every p ∈ K by Remark 3.15 and Corollary 3.21, thus showing that (5.4) holds.
Moreover, if α = ∑n

i=1 fi ⊗ vi is an element of UCord(K ; L0(X)) ⊗ε M , then by
Corollary 5.6 and Remark 3.15 we can compute

|j(α)| =
∨

p∈K

∣∣∣∣∣

n∑

i=1
fi (p) · vi

∣∣∣∣∣
=

∨

p∈K

∣∣∣∣∣

n∑

i=1
δp( fi ) · vi

∣∣∣∣∣
= |α|ε.

Since j is also linear by construction, it can be uniquely extended to a homomorphism
of Banach L0(X)-modules

j : UCord(K ; L0(X))⊗̂εM → UCord(K ;M )

that preserves the pointwise norm.
In order to conclude, it remains to check that the isometric embedding map j is also

surjective. Let v ∈ UCord(K ;M ) be given. Then we can find a sequence (Un)n∈N ⊆
� with Var(v;Un) → 0 in L0(X). Fix any n ∈ N. Given that {Un[p]}p∈K is an

open cover of the compact set K , there exist kn ∈ N and (pni )
kn
i=1 ⊆ K such that
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K =⋃kn
i=1 Un[pni ]. Now, take a continuous partition of unity (ηni )

kn
i=1 subordinated to

(Un[pni ])kni=1 (see e.g. [20]), i.e. ηni : K → [0, 1] is continuous, supported in Un[pni ],
and

∑kn
i=1 ηni = 1 on K . With no loss of generality, we can also assume that for any

i = 1, . . . , kn there exists qni ∈ Un[pni ] such that ηni (qni ) = 1; this fact will be used in
Remark 5.10. Let us define

αn :=
kn∑

i=1
(ηni (·)1X)⊗ v(pni ) ∈ UCord(K ; L0(X))⊗ε M .

Observe that for any given point p ∈ K we can estimate

∣∣j(αn)(p)− v(p)
∣∣ =

∣∣∣∣∣

kn∑

i=1
ηni (p)

(
v(pni )− v(p)

)
∣∣∣∣∣
≤

kn∑

i=1
ηni (p)

∣∣v(pni )− v(p)
∣∣

≤ Var(v;Un).

By passing to the supremum over all p ∈ K , we get |j(αn)−v| ≤ Var(v;Un), whence
it follows that j(αn) → v in UCord(K ;M ). This shows that j is surjective, as desired.

��

Remark 5.10 We isolate a useful byproduct of the proof of Theorem 5.9. For any
n ∈ N, we denote

Fn :=
{

(ηi )
n
i=1 ⊆ C(K ; [0, 1])

∣∣∣∣ {ηi = 1} �= ∅ ∀i = 1, . . . , n,

n∑

i=1
ηi = 1

}

,

where C(K ; [0, 1]) stands for the set of continuous functions from K to [0, 1]. Then
we have that

D :=
⋃

n∈N

{
n∑

i=1
(ηi (·)1X)⊗ vi

∣∣∣∣ (ηi )
n
i=1 ∈ Fn, (vi )

n
i=1 ⊆M

}

is dense in UCord(K ; L0(X))⊗̂εM , or equivalently

⋃

n∈N

{
n∑

i=1
ηi (·)vi

∣∣∣∣ (ηi )
n
i=1 ∈ Fn, (vi )

n
i=1 ⊆M

}

is dense in UCord(K ;M ). Moreover, it holds that

|α|ε =
n∨

i=1
|vi | for every α =

n∑

i=1
(ηi (·)1X)⊗ vi ∈ D . (5.5)
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To prove it, take (qi )ni=1 ⊆ K such that ηi (qi ) = 1 for every i = 1, . . . , n. Therefore,
we can estimate

|α|ε = |j(α)| =
∨

p∈K

∣∣∣∣∣

n∑

i=1
ηi (p)vi

∣∣∣∣∣
≤

∨

p∈K

n∑

i=1
ηi (p)|vi | ≤

n∨

i=1
|vi |

=
n∨

i=1
|j(α)(qi )| ≤ |α|ε,

which shows the validity of (5.5).

Proposition 5.11 Let (K ,�) be a compact, Hausdorff uniform space. Let X be a σ -
finite measure space and letM ,N be Banach L0(X)-modules. Let T : M → N be
a quotient operator. Then the map

id ⊗ε T : UCord(K ; L0(X))⊗̂εM → UCord(K ; L0(X))⊗̂εN

is a quotient operator.

Proof First, notice that |id ⊗ε T | = |T | ≤ 1. Our goal is to apply Lemma 3.4. To
this aim, we shorten UC:=UCord(K ; L0(X)), and we fix β ∈ UC⊗̂εN and ε >

0. By Remark 5.10, we can find n ∈ N, (ηi )
n
i=1 ∈ Fn , and (wi )

n
i=1 ⊆ N such

that β̃:=∑n
i=1(ηi (·)1X)⊗ wi satisfies dUC⊗̂εN (β̃, β) < ε/2. Since T is a quotient

operator, for any i = 1, . . . , n we can find vi ∈ M such that T (vi ) = wi and
|vi | ≤ |wi | + δ, where we have chosen some δ > 0 for which dL0(X)(δ1X, 0) < ε/2.

Now define α:=∑n
i=1(ηi (·)1X) ⊗ vi ∈ UC⊗̂εM . Since (id ⊗ε T )(α) = β̃, we

have dUC⊗̂εN ((id ⊗ε T )(α), β) < ε. Moreover, recalling (5.5) we see that |α|ε =∨n
i=1 |vi | ≤ δ +∨n

i=1 |wi | = |β̃|ε + δ ≤ |α|ε + δ, which yields dL0(X)(|α|ε, |β|ε) ≤
dL0(X)(δ1X, 0)+ dL0(X)(|β̃|ε, |β|ε) < ε. Therefore, we can apply Lemma 3.4, which
gives that id ⊗ε T : UC⊗̂εM → UC⊗̂εN is a quotient operator. ��

5.3 Relation with duals and pullbacks

First of all, we provide a characterisation of the dual of M ⊗̂εN . By D
w∗
M ∗ we will

mean the unit disc ofM ∗ endowed with the restriction of the weak∗ topology. More-
over, the space D

w∗
M ∗ × D

w∗
N ∗ will be tacitly equipped with the product topology.

Theorem 5.12 (Dual of M ⊗̂εN ) Let X be a σ -finite measure space. Let M and
N be Banach L0(X)-modules. Then there exists a unique homomorphism of Banach
L0(X)-modules

ι : M ⊗̂εN → Cpb(D
w∗
M ∗ × D

w∗
N ∗; L0(X))

such that

ι(v ⊗ w)(ω, η) = ω(v)η(w) ∀(v,w, ω, η) ∈M ×N × DM ∗ × DN ∗ .
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Moreover, the homomorphism ι preserves the pointwise norm. In particular, it holds
that

(M ⊗̂εN )∗ ∼= Cpb(D
w∗
M ∗ × D

w∗
N ∗; L0(X))∗/(M ⊗̂εN )⊥.

Proof First of all, let us define ι : M ⊗ε N → Cpb(D
w∗
M ∗ × D

w∗
N ∗; L0(X)) as

ι(α)(ω, η):=
n∑

i=1
ω(vi )η(wi )

for every α =∑n
i=1 vi ⊗wi ∈M ⊗ε N and (ω, η) ∈ DM ∗ ×DN ∗ . It can be easily

checked that ι is well-posed and L0(X)-linear. Moreover, (3.12) and (5.1) yield

|ι(α)| =
∨

(ω,η)∈DM ∗×DN ∗

∣∣ι(α)(ω, η)
∣∣ =

∨

(ω,η)∈DM ∗×DN ∗

∣∣∣∣∣

n∑

i=1
ω(vi )η(wi )

∣∣∣∣∣
= |α|ε

for every α = ∑n
i=1 vi ⊗ wi ∈ M ⊗ε N , thus ι can be uniquely extended to a

pointwise norm preserving homomorphism

ι : M ⊗̂εN → Cpb(D
w∗
M ∗ × D

w∗
N ∗; L0(X)).

For the last claim, see Lemma 3.3. ��
Westress that in Theorem5.12we consider the spaceCpb, differently fromSect. 5.2.

It seems that in Theorem 5.12 the space Cpb cannot be replaced by the smaller space
UCord. Furthermore, we point out that the description of (M ⊗̂εN )∗ provided by
Theorem 5.12 is rather implicit if compared with the corresponding one for Banach
spaces (see [21, Proposition 3.14]). Indeed, it is not clearwhether the spaceCpb(D

w∗
M ∗×

D
w∗
N ∗; L0(X))∗ can be described as a space of measures.
We conclude this section by proving that ‘pullbacks and injective tensor products

commute’:

Theorem 5.13 (Pullbacks vs. injective tensor products) Let X = (X, �X,mX), Y =
(Y, �Y,mY) be separable, σ -finite measure spaces. Let ϕ : X→ Y be a measurable
map with ϕ#mX � mY. Let M ,N be Banach L0(Y)-modules. Then it holds that

ϕ∗(M ⊗̂εN ) ∼= (ϕ∗M )⊗̂ε(ϕ
∗N ),

the pullback map ϕ∗ : M ⊗̂εN → (ϕ∗M )⊗̂ε(ϕ
∗N ) being the unique homomor-

phism such that

ϕ∗(v ⊗ w) = (ϕ∗v)⊗ (ϕ∗w) for every v ∈M and w ∈ N .
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Proof Let us define T : M ⊗ε N → (ϕ∗M )⊗ε (ϕ∗N ) as

T
( n∑

i=1
vi ⊗ wi

):=
n∑

i=1
(ϕ∗vi )⊗ (ϕ∗wi ) for every

n∑

i=1
vi ⊗ wi ∈M ⊗ε N .

The well-posedness of T can be proved exactly as in Theorem 4.13, while its linearity
is clear. Moreover, for any α =∑n

i=1 vi ⊗ wi ∈M ⊗ε N we have

|α|ε ◦ ϕ =
∨

{∣∣∣∣

n∑

i=1
Iϕ(ϕ∗ω)(ϕ∗vi ) Iϕ(ϕ∗η)(ϕ∗wi )

∣∣∣
∣∣∣∣ ω ∈ DM ∗ , η ∈ DN ∗

}

≤
∨

{∣∣∣∣

n∑

i=1
�(ϕ∗vi )�(ϕ∗wi )

∣∣∣∣

∣∣∣∣ � ∈ D(ϕ∗M )∗ , � ∈ D(ϕ∗N )∗

}

= |T (α)|ε.

Conversely, if ξ =∑m
j=1 1E j · ϕ∗ω j and θ =∑�

k=1 1Fk · ϕ∗ηk are given elements of
G (ϕ∗[DM ∗ ]) and G (ϕ∗[DN ∗ ]), respectively, then

∣∣∣∣∣

n∑

i=1
Iϕ(ξ)(ϕ∗vi ) Iϕ(θ)(ϕ∗wi )

∣∣∣∣∣
=

m∑

j=1

�∑

k=1
1E j∩Fk

∣∣∣∣∣

n∑

i=1
ω j (vi )ηk(wi )

∣∣∣∣∣
◦ ϕ

≤ |α|ε ◦ ϕ.

Using Theorem 2.13, as well as the density of G (ϕ∗[DM ∗ ]) and G (ϕ∗[DN ∗ ]) in
Dϕ∗M ∗ and Dϕ∗N ∗ , respectively, we get

∣∣∑n
i=1 �(ϕ∗vi )�(ϕ∗wi )

∣∣ ≤ |α|ε ◦ ϕ for
all � ∈ Dϕ∗M ∗ and � ∈ Dϕ∗N ∗ . It follows that |T (α)|ε ≤ |α|ε ◦ ϕ holds for
every α ∈ M ⊗ε N , thus accordingly T can be uniquely extended to a linear map
ϕ∗ : M ⊗̂εN → (ϕ∗M )⊗̂ε(ϕ

∗N ) satisfying |ϕ∗α|ε = |α|ε◦ϕ for allα ∈M ⊗̂εN .
Finally, the fact that ϕ∗[M ⊗̂εN ] generates (ϕ∗M )⊗̂ε(ϕ

∗N ) can be proved as in
Theorem 4.13, using Lemma 5.8 in place of Lemma 4.5. The proof is then complete.

��

5.4 Pointwise crossnorms

Let us now introduce a class of ‘tensor product pointwise norms’:

Definition 5.14 (Reasonable pointwise crossnorm) LetX be a σ -finite measure space.
LetM andN be Banach L0(X)-modules. Then a pointwise norm | · |c onM ⊗N is
said to be a reasonable pointwise crossnorm provided the following properties are
verified:

(i) |v ⊗ w|c ≤ |v||w| for every v ∈M and w ∈ N .
(ii) ω ⊗ η ∈ (M ⊗N )∗c and |ω ⊗ η|c∗ ≤ |ω||η| for every ω ∈ M ∗ and η ∈ N ∗,

where we denote by ((M ⊗N )∗c , | · |c∗) the dual of the normed L0(X)-module
(M ⊗N , | · |c).
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The projective pointwise norm and the injective pointwise norm are examples of
reasonable pointwise crossnorms. In fact, they are the ‘greatest’ and the ‘least’ cross-
norms, respectively:

Theorem 5.15 (Characterisation of reasonable pointwise crossnorms) Let X be a σ -
finite measure space. Let M and N be Banach L0(X)-modules. Let | · |c be a given
pointwise norm on M ⊗N . Then | · |c is a reasonable pointwise crossnorm if and
only if

|α|ε ≤ |α|c ≤ |α|π for every α ∈M ⊗N . (5.6)

Proof Suppose | · |c is a reasonable pointwise crossnorm. Given any element α =∑n
i=1 vi ⊗ wi ∈M ⊗N , we can estimate

|α|c ≤
n∑

i=1
|vi ⊗ wi |c ≤

n∑

i=1
|vi ||wi |,

thus by taking the infimum over all representations of α we get |α|c ≤ |α|π . Moreover,
we have that

|α|ε =
∨{|(ω ⊗ η)(α)| ∣∣ (ω, η) ∈ DM ∗ × DN ∗

}

≤
∨{|�(α)| ∣∣ � ∈ D(M⊗N )∗c

} = |α|c.

Conversely, if (5.6) is verified, then |v ⊗ w|c ≤ |v ⊗ w|π = |v||w| holds for every
(v,w) ∈M ×N . Moreover,

|(ω ⊗ η)(α)| ≤ |ω ⊗ η|ε∗ |α|ε ≤ |ω||η||α|c for every (ω, η) ∈M ∗ ×N ∗,

thusω⊗η ∈ (M ⊗N )∗c and |ω⊗η|c∗ ≤ |ω||η|. Hence, | · |c is a reasonable pointwise
crossnorm. ��

LetX be a σ -finite measure space andM ,N Banach L0(X)-modules. Let | · |c be a
reasonable pointwise crossnorm onM ⊗N . LetG ⊆M and H ⊆ N be generating
subsets. Then it follows from the second inequality in (5.6) and Lemma 4.5 that the
set {v⊗w

∣∣ v ∈ G, w ∈ H} generates the Banach L0(X)-module obtained by taking
the completion of (M ⊗N , | · |c).
Proposition 5.16 LetX be a σ -finite measure space. LetM andN be Banach L0(X)-
modules. Let | · |c be a reasonable pointwise crossnorm on M ⊗N . Then it holds
that

|v ⊗ w|c = |v||w|, |ω ⊗ η|c∗ = |ω||η| ∀(v,w, ω, η) ∈M ×N ×M ∗ ×N ∗.
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Proof First, (5.6) and (5.2) yield |v ⊗ w|c ≥ |v ⊗ w|ε = |v||w|. Proposition 4.3 and
(5.6) yield

|ω ⊗ η|c∗ =
∨{|(ω ⊗ η)(α)| ∣∣ α ∈M ⊗N , |α|c ≤ 1

}

≥
∨{|(ω ⊗π η)(α)| ∣∣ α ∈ DM⊗πN

} = |ω ⊗π η| = |ω||η|.

Therefore, the proof of the statement is complete. ��
We conclude the paper with another important example of reasonable pointwise

crossnorm. A Banach L0(X)-module H is a Hilbert L0(X)-module if 〈·, ·〉 ∈
B(H ,H ), where we define

〈v,w〉:=|v + w|2 − |v|2 − |w|2
2

∈ L0(X) for every v,w ∈H .

The Riesz representation theorem for Hilbert L0(X)-modules states that the spaceH
is canonically isomorphic to its dualH ∗ via the operator

H 	 v 
→ 〈v, ·〉 ∈H ∗.

Now letH andK be Hilbert L0(X)-modules. Then we define theHilbert–Schmidt
pointwise norm on H ⊗K as

|α|HS:=
⎛

⎝
n∑

i, j=1
〈vi , v j 〉〈wi , w j 〉

⎞

⎠

1/2

∈ L0(X)+ (5.7)

for every α = ∑n
i=1 vi ⊗ wi ∈ H ⊗K . Following [11, Section 1.5], we define the

tensor product of Hilbert modules H ⊗HS K as the completion of the normed
L0(X)-module (H ⊗K , | · |HS). It holds thatH ⊗HSK is a Hilbert L0(X)-module.
Also,

| · |HS is a reasonable pointwise crossnorm on H ⊗K .

Indeed, the identity |v⊗w|HS = |v||w| for all (v,w) ∈H ×K is a direct consequence
of (5.7), thus Definition 5.14 i) holds. Definition 5.14 ii) then follows as well, by the
Riesz representation theorem for Hilbert L0(X)-modules. In particular, Theorem 5.15
ensures that

|α|ε ≤ |α|HS ≤ |α|π for every α ∈H ⊗K .
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