
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Offensive Machine Learning Methods and the Cyber Kill Chain

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

Accepted version (Final draft)

Turtiainen, Hannu; Costin, Andrei; Polyakov, Alex; Hämäläinen, Timo

Turtiainen, H., Costin, A., Polyakov, A., & Hämäläinen, T. (2023). Offensive Machine Learning
Methods and the Cyber Kill Chain.  In T. Sipola, T. Kokkonen, & M. Karjalainen (Eds.), Artificial
Intelligence and Cybersecurity : Theory and Applications (pp. 125-145). Springer.
https://doi.org/10.1007/978-3-031-15030-2_6

2023



Offensive Machine Learning Methods and the
Cyber Kill Chain

Hannu Turtiainen, Andrei Costin, Alex Polyakov, and Timo Hämäläinen

Abstract Cyberattacks are the “newnormal” in the hyper-connected and all-digitized
modern world, as breaches, denial-of-service, ransomware, and a myriad of other
attacks occur every single day. As the attacks and breaches increase in complexity,
diversity, and frequency, cybersecurity actors (both ethical and cybercrime) turn to
automating these attacks in various ways and for a variety of reasons, including the
development of effective and superior cybersecurity defenses. In this chapter, we
address innovations in machine learning, deep learning, and artificial intelligence
within the offensive cybersecurity fields. We structure this chapter inline with the
Lockheed Martin’s Cyber Kill Chain taxonomy in order to cover adequate grounds
on this broad topic, and occasionally refer to the more granular MITRE ATT&CK
taxonomy whenever relevant.

1 Introduction

Machine learning (ML), deep learning (DL), reinforcement learning (RL), and arti-
ficial intelligence (AI) technologies 1 have been among the most tackled and even
controversial talking points in information technology for the past decade. Some
view these technologies as a panacea for cybersecurity problems. Others are, how-
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ever, more sceptical yet, and see additional issues arising, mainly due to the bias
and non-transparent nature of such technologies, which is unfortunately common
and the norm in many present implementations. As these technologies are slowly
being adopted within the cybersecurity tools space, the attacking side has also been
productive and advancing in this matter.

MLsec technologies bring several crucial benefits for more efficient and pro-
ductive (ethical) hacking: the increase of capable actors, extensive increase in the
possible attack frequency, and an increase in the variety of possible targets. These
feats are possible due to the considerable scalability of MLsec systems and the ease
of deployment in a cost-efficient and time-saving manner when compared to the clas-
sical “army of skillful humans.” In addition, target selection benefits greatly from
MLsec technologies as larger numbers of diverse data can be gathered and analyzed
in almost real-time [11].

Complex systems such as smart Cyber-Physical Systems (sCPS) are particularly
vulnerable to MLsec attacks due to their complex inter-connectivity via smart sensor
networks, clouds, and the Internet of Things (IoT) [44]. Kaloudi and Li [44] compare
the possible attacks to these systems to the Butterfly Effect, inwhich small, seemingly
inconsequential incidents may have large, catastrophic effects, such as the global
effect of the infamous Mirai botnet [6].

As MLsec methods are being used more and more in the cybersecurity space,
they may also cause further unforeseen issues. ML methods rely on predetermined
features, which can be biased or otherwise compromised or unrepresentative of the
current threat landscape. DL and AI methods, although better suited for constant
learning, can be “poisoned” (i.e., undetectable alterations with malicious intents)
during training with poisoning samples to render them ineffective or considerably
“crippled.” They can also be fooled at the inference stage with the help of so-
called adversarial examples, which can bypass AI-driven systems [51]. Researchers
agree that as MLsec models get increasingly more efficient in their function, and as
more and more data are generated, the MLsec tools will play a vital role in future
cybersecurity “wars.” From the (ethical) attacker’s perspective, the reconnaissance,
target infiltration, data exfiltration, and privilege escalation stages seem particularly
advantaged with the addition of MLsec tools and techniques [89].

At the same time, offensive MLsec can pose serious threats to organizations’ cy-
bersecurity. In comparison to human attackers, offensive MLsec improves coverage,
as the MLsec methods can scale virtually without limits. The speed of execution
of such attacks is also significantly increased, thus considerably reducing the time
available to defenders to respond. The success rate of the attacks can increase with
the use of MLsec models as more data can be processed with each step and therefore,
more knowledge is available to the attacker [58].

This paper is organized as follows. In Section 2, we exhibit the Cyber Kill Chain
phases and present relevant MLsec related works respectively. Section 3 introduces
ideas and suggests works on how ML and AI can be used against MLsec models.
Finally, we conclude in this chapter in Section 4.
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2 Cyber Kill Chain phases

MLsec technologies are already entrenched in the cyberattack space in most of the
phases of the Cyber Kill Chain. Today, MLsec methods are predominantly applied
in the reconnaissance, infiltration, lateral movement, and act on objectives parts
of cyberattacks. However, advances in the MLsec field bring the technologies to
other phases and parts of the cyberattack taxonomy thanks to more use-cases being
developed and showcased [12].

In this work, we try to map the current state-of-the-art in offensive MLsec by
employing the seven steps of Lockheed Martin’s original Cyber Kill Chain [54]
(see Figure 1). We also highlight, whenever relevant, a more granular and differing
version of the Cyber Kill Chain, presented as the MITRE ATT&CK framework [83].
Even though the MITRE ATT&CK kill chain framework presents 14 steps for more
granularity, we feel that the work we present is not large enough in scope to warrant
the use of the more granular frameworks at this time.

Fig. 1 Themain phases of the traditional CyberKill Chain (as introduced byLockheedMartin [54]).

2.1 Reconnaissance

Reconnaissance is the first step in infiltrating a target, and can be broken down into
three steps: identifying, selecting, and profiling the target. Target identification is a
passive reconnaissance method, meaning that the target is unaware of the proceed-
ings. It involves checking the domain names and web assets of the potential target
from Internet address registries. Target profiling can be done on system and social
levels. Social profiling is also a passive method, and it means crawling through
social networks and public websites and documents. System profiling, on the other
hand, is usually an active approach, meaning that the target is most likely aware of
it. It includes fingerprinting and scanning the open ports and services on the target
systems [88]. MITRE ATT&CK [83] convey similar steps and techniques in the
reconnaissance phase. Profiling the victim through all possible sources (closed/open
sources, domains, websites, phishing, etc.) is crucial. Active scanning may also be
necessary in order to adequately fingerprint and identify the network target.
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In order to successfully infiltrate a target without a zero-day exploit, many data
about the target should be gathered. However, these data are meaningless without
proper analysis and the transformation from data to real actionable insights. Algo-
rithmic data gathering such as web crawling and automatic social engineering are
fast and produce an abundance of data to be analyzed.

MLsec opportunities in the reconnaissance phases can be summarised as targeting
AI. The tasks of MLsec models in this phase are identifying the best targets and
learning their standard behavior [44]. As MLsec methods work well in pattern
detection, common vulnerabilities in, for example, front-end PHP code can be found
by tokenizing the entire available front-end code and feeding them through a model,
therefore extracting matching patterns. Database enumeration through numerous
database function executions can also be a suitable task for MLsec technologies [80].

As ML is a great tool for handling large nubmers of data, ML for information
gathering/reconnaissance is a great fit. Nowadays, people expose and post a lot of
information about themselves online, and the reconnaissance towards people (and not
just towards information technology systems) has become more feasible. Classifiers
can be used to scout out potential victims from social media. For example, one can
root out any IT professionals from the potential victim list as one could make an
assumption that theymight not be as gullible targets as some other average or unaware
users. Online service vendors such as PimEyes [65] offer this type of service. Other
clustering and classification methods such as K-means, random forests, and neural
networks can be employed on top of Natural Language Processing (NLP) analysis
for analyzing social media posts to learn about targets. Image and object recognition
can be of use, as well as social media is full of pictures. Certain objects and types of
images can be of use in identifying and classifying potential targets [66].

Tools for network scanning and sniffing have been around for a long time. How-
ever, modern Software-Defined Network (SDN) implementations can prove to be
too tricky for simple tools as targets may not be as clearly defined; therefore, more
complex tools are required. Machine learning aids in this process in several ways.
The attacker must probe the network, trigger arbitrary flows, and gather information
about the network policies, rules, and filters in place. This is traditionally an arduous
task; however, with ML methods, it can be made more manageable and feasible.
Know Your Enemy (KYE) [15] is an attack method that provides a stealthy way of
gathering valuable information about a target SDN. This intelligence can vary from
network policies to security tool configuration options.

Phishing, and its variations such as vishing and smishing, are fraud attacks in
which the target is contacted by the conman via some means of communication,
such as email, voice phone calls, or SMS. The attackers represent themselves as a
reputable entity in order to gain trust or induce some sort of reaction in the target to
make them give up sensitive information, such as passwords or banking information
about themselves [45]. Phishing is a common way to gain access to a target system,
and protecting against it can be so resource-heavy that affects day-to-day proceedings.
DeepPhish is an experimentalMLsec-driven phishingURL creator. It learns effective
patterns from previous attacks and adapts the URL generation strategy, which greatly
increases the chances of false negatives from phishing detectors [8].
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Social media is also a good venue for phishing because of its wide-spread use,
although the public nature of it could prove problematic. Still, using automated and
intelligent target-aware spear phishing frameworks is proving to be more produc-
tive than large-scale phishing attacks [72]. SNAP_R [71] is an AI spear phishing
framework that enables target discovery and message customisation in relation to
the target for Twitter phishing. Using SNAP_R, the attacker can launch automated
spear phishing campaigns that seem to be comparable to large-scale manual phishing
efforts [71].

Phishing detection is a common research topic in the MLsec field. Attackers can
benefit from defensive research as well, because ML for detection avoidance is one
of the key features of a good and successful phishing campaign. Some efforts, such
as that of Khan et al. [45], experiment with a variety of algorithms and datasets,
exposing strengths and weaknesses in them. Thus, this information can be used
to further evolve and improve the phishing campaigns as well as the detection
algorithms. All in all, it is an arms race between the attackers and the defenders.

2.2 Weaponizing

After the reconnaissance phase, the target has been selected and possible vulnerabil-
ities, security holes, backdoors, etc. have been identified. The information gathered
from the reconnaissance phase is now used to construct the payload containing a
malware or a Remote Access Trojan (RAT) and the exploit in order to infiltrate the
target [54, 43]. The steps during this phase in MITRE ATT&CK [83] focus on attack
preparation through capability and infrastructure development but also compromis-
ing target infrastructure and accounts. Kaloudi et al. [44] sets the most important
MLsec tasks for this phase as acquiring information about the standard behavior
of the target and generating abnormal behavior based on that information, as well
as new vulnerability discovery and payload generation. They refer to these steps as
“AI-aided.”

A common way to discover vulnerabilities in software is to use fuzzing. It is a
method in which the input to the target (e.g., software, system) is tested with a huge
variety of uncommon and carefully manipulated inputs, while the target is monitored
for crashes and anomalous behavior. Machine learning can be beneficial for fuzzing
in two ways: generation of new samples, and ranking of resulting crashes. If an
algorithm can create smarter input for the fuzzer, it means valuable time can be
saved in trying to crash the target under test. At the same time, not all crashes lead
to a vulnerability discovery. Therefore, an MLsec-driven ranking algorithm can sort
out the most exploitable-relevant crashes for researchers to look at first [66].

For malware creation, the way that ML is used can be thought of as counter-
intuitive. As malware detection heavily uses ML models, these models can be used
as testbeds for new malware. For example, the attacker takes a known malware,
introduces changes, and then tests the malware against malware detectors such as
VirusTotal. On the other hand, many MLsec methods can be used to create initiation
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triggers for malware. For example, a sleeper malware in a system can wait for a
certain facial recognition event to occur until it initializes [66], or other similar
“secret knock” computer vision signals [16].

Initial access and malware delivery methods can be categorized in two types:
“attacker-controlled” and “attacker-released” deliverymethods. The “attacker-controlled”
methods involve directly attacking the web services of the target, while the “attacker-
released” methods make use of the users who have access to the target to deliver their
payload. This can happen via email, USB sticks, social media interactions, and other
means [54]. MITRE ATT&CK [83] proposes several methods for initial access,
such as exploiting public-facing applications and services, compromised account
usage, supply-chain compromise, phishing, hardware additions, insider access, etc.
For MLsec methods, phishing, compromised accounts, and public services are the
venues to look into.

One example of a stealthy spyware was presented by Zhang et al. [93]. They
developed a proof-of-concept app that recorded users’ phone calls after infiltrating an
Android phone. The voice data were then used to synthesise Android voice assistant
activation keyword (“OK Google”) via Natural Language Processing (NLP). As the
voice assistant is naturally granted high privileges in the phone, gaining such an
access level is of high value. The attack might be detected by the user if it was
launched in an arbitrary time; therefore, more data from the phone’s sensors are
collected and a more appropriate noisy attack time is selected [93]. This approach
could be used to further gather information about some target, or to gain more
privileges within the phone or the networks it connects to.

Spamming and phishing are old techniques for information gathering. They have
become such an everyday phenomenon that today, spam and phishing filters in
services are common ground. To circumvent them, the attackers must create better
examples thatmimic human activity. In order to train an algorithm tomimic authority,
training samples are needed.As socialmedia is public, the amount of training samples
one can acquire can be vast, and therefore, the results can be surprisingly good (see
Section 2.1). For emails, however, if the attacker does not have an insider within
the target organization, getting examples of private email correspondence can be
challenging [66].

Spoofing has seen huge leaps of improvement with MLsec contributions over the
last decade. Fake pictures, voice, and videos are a real threat. Lybebird [20] showcase
their audio-mimicking capabilities, while Van den Oord et al. [62] proposeWaveNet,
a waveform-level audio data model built around GANs. With MLsec technologies,
the Internet could be filled with fakes in the not-too-distant future. As an example,
voice cloning was used in a bank heist resulting in $35 million in losses [10].
Spoofing related to AI is discussed separately in Section 3.

Last but not least, numerous papers have been published over the last decade
on variations of Automatic Exploit Generators (AEG) [7, 41, 42, 86, 3]. These
developed tools are essentially signature-based detectors for exploits from source
code and binaries. These tools employ static and dynamic analysis (some including
their extensive vulnerability databases) to root out issues in the execution of the code
or in the source code itself. Some tools also apply fuzzing tools to increase the bug
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yield by possibly triggering unknown vulnerabilities. Grieco et al. [31] resorted to
ML algorithms in order to solve the AEG task. Their goal was to make vulnerability
discovery easily scalable by using light-weight analysis components and automated
by utilizing MLsec capabilities in having plenty of features from a large dataset
instead of hand-picked features specialized for a certain task.

2.3 Delivery

In the delivery phase, the attacker launches their operation towards the target. The
intent is to deliver the malware to the target system or endpoint. In controlled
delivery, the attacker is attacking directly towards the target’s web services; however,
in released delivery, the attacker uses an auxiliary to deliver the malware. The
auxiliary can be a phishing email, USB stick, or some other means of malware
transportation not via the network [54]. In the delivery phase, “AI-concealed” steps
are the ability to remain undetected and conceal the attacker’s malicious intent [44].
MITRE ATT&CK [83] defines delivery as the initial access phase and it features
methods such as phishing, supply chain compromise, hardware additions, etc.

Although denial-of-service (DoS) attacks are thought to be quite simple attacks;
common detection and prevention systems are very effective against them [49, 92].
To fool these prevention mechanisms, ML algorithms can create arbitrary differing
data packets, in turn, making detection much harder to differentiate from the real
traffic. An even better approach is to sniff real traffic and train a neural network to
generate legitimate packets to the target, albeit in a malicious manner.

Crowd-turfing, themalicious use of crowd-sourcing services, also benefits heavily
on ML. The creation of fake reviews, news, accounts, etc, is tedious work for
people and can be too complex for simple algorithms. There is an abundance of
training material available online for creation of high-performing crowd-turfing ML
models [66].

Botnets are the backbone of some of the most well known cyberattacks such
as the Mirai-botnet [6]. The use of vast resources, even unsofisticated ones such
as DVRs and CCTV cameras, can be technologically devastating. Although, as the
name “botnet” suggests, the features of attacks are not sophisticated, as individually
utilizing system resources of the bots is an impossible task for humans. Smart botnets,
such as Hivenets [56], can identify the individual nodes of the botnet and put its
resources to full use, making the threat of botnets even greater [66].

The “Completely Automated Public Turing test to tell Computers and Humans
Apart” (CAPTCHA) is intended to restrict malicious attack attempts on websites and
other graphical user interface services by disabling the possibility for automation.
However, the advancements inMLsec technology have proven standard CAPTCHAs
essentially broken [17, 78]. For example, Yu et al. [91] showcased their automated
approach to cracking popular open-source Python CAPTCHAs using an MLsec-
based chosen-plaintext attack. Further, Alqahtani and Alsulaiman [4] set several
MLsec models (especially their CNN model) against Google’s reCAPTCHA [29]
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with over 50% of the challenges successfully solved.With these developments, newer
types of CAPTCHAs are being developed [30, 63].

2.4 Exploitation

Exploitation (or the attack and exploit execution) stage means gaining access to the
target system using the vulnerabilities and weaknesses found earlier [54]. There are
numerous ways this can be achieved in classical scenarios. MITRE ATT&CK [83]
proposes ways such as using valid user credentials, API abuse, malicious scheduled
tasks, container deployment, system services, etc. MLsec methods can aid in this
step, for example, by ensuring proper environment, selecting proper execution time,
and automating execution (“AI-automated”) [44]. However, currently this topic has
not gained much academic attention as there has been plenty of work done in more
influential topics in the Weaponizing (see Section 2.2), Delivery (see Section 2.3),
and Installation (see Section 2.5) stages, where the exploits and payload are in the
spotlight.

This phase can also be a representative example of how tools meant for security
may have implications against it. Bleeding edge technology such as Darktrace [19],
a real-time security incident AI analyst modeled on the human immune system,
is one example of this. It is supposed to detect deviation from the norm in an
ICS environment. However, such tools, if plausible to enable in the target system,
could benefit the attackers greatly in defining the norm of the system operation
and possibly being used as an alert system for testing the limits; for example, data
exfiltration methods (see Section 2.7).

2.5 Installation

Installation phase means that the attacker has reached a state where they are in
control of some part of the system. Typically, this stage involves installing a persistent
backdoor to maintain the access to the server for an extended period of time.Methods
can vary from webshells, system backdoors, adding services and making malware
appear as standard system files [54]. This stage is referred to as “AI evolved” by
Kaloudi et al. [44] and the MLsec task is the (ideally stealth) self-propagation of the
malware and persistence. MITRE ATT&CK [83] has this step divided into several
more specific steps. Persistence requires the attacker to establish some ground on
the target system by acquiring accounts or setting up some services for further
use. Privilege escalation means gaining elevated access in the system, endpoint, or
service, where the attack has originated. This can be achieved by using exploits or
by the means of gaining superior credential access in the system. Defence evasion
implies obfuscating or masquerading the malicious behavior in the target entity and
fooling defence systems. After the initial installation, the attackers might require
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access to other systems or endpoints in the network; thus, network discovery and
lateral movement in the network are required.

Installation can be a difficult phase for the attacker. Operating and security systems
usually have systems in place where unwanted installations can be detected and
prevented. MLsec-based evasive malware, such as DeepLocker [79], make this task
easier by hiding behind benign, everyday software and only activating the payload
once the conditions are met (e.g., precise target are reached). These conditions are
determined by the deep neural network that is trained for the target specifications,
as deep neural networks are essentially black boxes, and DeepLocker is able to hide
the trigger conditions behind such smokescreens [79].

Another way to bypass MLsec-based malware detectors is to create malware
examples that are benign to the detector itself. MalGAN [40] is an algorithm that
generates adversarial malware examples, using the black-box detection algorithm
employed in the defending end, in order to bypass it undetected [40]. The author’s
algorithm shows great promise and further fuels the MLsec technology war between
the offensive and defensive actors. Vidal et al. [55] presented two MLsec models
to masquerade detection bypassing. The models were based on action pruning and
noise generation, and they were highly successful.

The accessed entity in the target’s system is usually not the intended target, or
if it originally was, a more attractive or valuable target may present itself when the
first target is penetrated. Therefore, privilege escalation and lateral movement are
required. Brute-force password guessing via generated password rules is resource
intensive and time consuming and with proper security policies in place, it might
be redundant as well. To address these issues, Hitaj et al. [38] presented PassGAN,
a MLsec-based method for password guessing. The idea behind it is to generate
better samples, with GANmodels, based on password characteristics and structures,
thus, being able to guess between 51% and 73% additional unique passwords in
comparison to HashCat run with standard password generation rules and dictionary
attacks.

Along with gaining access through MLsec-driven credential cracking [47], privi-
lege escalation can be established through exploit use as well. Individually checking
all the services and software within the breached target is tedious and stagnant, thus,
requiring automation. However, testing every possible option is again quite a noisy
and resource intensive procedure. To further develop this strategy (for white hat
penetration testing purposes), MLsec-based smarter penetration testing frameworks
have been researched.

Network discovery within the target’s network may be noisy and alert the defend-
ers easily. On the other hand, passive network discovery may be slow and yield less
results. Network traffic analysis can be used to accomplish this task and discover
hosts and services within a network automatically, thus, generating knowledge about
the network, potential additional targets, and possible data exfiltration channels as
well as establishing information about the standard network activity. The attackers
may use methods meant for defenders in their activities. Works from Pacheco et
al. [64] and Shafiq et al. [73] are some of the few examples of network traffic classi-
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fication by capturing traffic and using MLsec models to refine it and gaining higher
understanding of it.

Automated exploitation is a less-researched topic in the MLsec field possibly due
to the high interpretability and high number of impacting factors in the decision. Still,
Valea andOprisa [85] used data from the popular penetration testing training platform
Hack The Box [37] to train their MLsec models. The intention of their framework
was to obtain root shell on the breached machine by first scanning the target, then
search for vulnerabilities for the found services, and lastly, exploit the vulnerability
to obtain root shell. Within their tests on the Hack The Box platform, they were
able to successfully exploit seven out of ten test machines, clearly showcasing the
ability to automatically exploit machines with known exploits with great success
when using MLsec approaches. On the other hand, Fang et al. [22] developed an
automatic MLsec-based exploitability metrics model for determining the real-world
usability of recent exploits, which can be used to minimize the time wasted on lesser
exploits with poor success rate.

As network data are often encrypted even in local networks, Man-in-the-Middle
(MITM) attacks by themselves are less useful. Tools such as SSLStrip and SSLStrip2
can be used to set plain text data transfer between the victim and the attacker while
preserving the perceived encrypted data transfer between the victim and the server
(between the attacker and the server in reality). However, this type of attack is
noticeable and can be hindered by the use of HTTP Strict Transport Security (HSTS).
Nonetheless, a MITM attack can be useful even with encrypted data. Al-Hababi and
Tokgoz [2] demonstrated how MLsec models can be trained to classify encrypted
network traffic and determine which applications or services are being used. The
attackers can use this technique for example to establish standard network behavior,
or to prospect possible C2 solutions (see Section 2.6).

Keylogging is an old technique that can be used legitimately, for example, as
a parental control in a child’s computer or as an attack software, for example, to
steal credentials. Essentially, if the tool can be installed on a desktop endpoint, the
keylogger saves all the keyboard inputs and sends them to the attacker. The attackers
can use this informationmostly to yield credentials from the user or to gather personal
or company secrets. To combat this, random noise can be inserted to the internal
memory of the keyboard in order to obfuscate real data [90]. However,MLsecmodels
can be used to counter this defence. Lee and Yim [50] proposed MLsec models to
filter out the noise generated by the defence tools and yield the actual keystrokes
from the keylogger. Their best model resulted in up to 96.2% accuracy, making the
attack significantly more feasible than without such filtering.

2.6 Command and Control

As the attack and the malware has established a beachhead in the target system,
the intent is to establish a Command-and-Control (C2 or C&C) infrastructure to
remotely observe and manipulate the target. The C2 communication channel can be
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established in many different ways to mask it as standard traffic [54]. Kaloudi et
al. [44] defines tasks for the C2 phase as “AI multilayered.” MLsec is required to
self-destruct the initial access processes and set up new layers for the campaign to
move forward towards its end goal. MITRE ATT&CK [83] characterizes this step
with means of creating the C2 network. There are many means to this end such as
proxies, non-standard port use, communication through removable media, encrypted
channels, protocol tunneling, etc.

Chung et al. [14] proposed a self-learning malware targeting Cyber-Physical
Systems (CPS), as their security is often overlooked in the overall system. At first,
their malware gathers data from the target CPS and learns patterns. The data are
then used with statistical methods to select a strategy of attack that has the lowest
probability of detection and the highest chance of success by emulating random
incidents in the CPSes. The malware injects the CPS logic with their malicious code
to start the attack. The malfunctioning part of the system in many cases causes a
cascading effect that affects the system as a whole [14].

One way to establish an undetected C&C connection is to use Domain Generation
Algorithms (DGAs). DGAs are typically used in many malware types; however,
there are detectors set up by the network administrators in order to root out these
fake domain names. In that vein, DeepDGA [5] is a DL architecture for creating
hard-to-detect pseudo-random domains, for example, for C2 purposes. DeepDGA
uses the GAN algorithm to generate domain names, which are sufficiently effective
and efficient in confusing the MLsec-based DGA classifiers [5].

2.7 Actions on objectives

The attackers have reached the final stage of the operation and their goal is accom-
plished. The attackers can now choosewhat to do next. They can, for example, destroy
systems, exfiltrate and collect data and credentials, overwrite or corrupt data, escalate
privileges further, and move laterally across the environment [54]. In this stage, the
real damage can be done. MLsec tasks for this can be described as “AI massive.”
These tasks can vary from data destruction to victim extortion [44]. In this con-
text, the collection, exfiltration, and impact steps from the MITRE ATT&CK [83] fit
here. Data collection can be as effective as the attackers’ access and lateral movement
allow. The data can be collected from databases, emails, microphones, and cloud
servers, and via screen, keyboard, or clipboard capture, with Man-in-the-Middle
attacks, etc. After data capture, they need to be exfiltrated safely and unnoticed from
the victim’s system. At present, there are many ways to exfiltrate data, including
unconventional methods covering air-gapped networks [35, 34, 36, 33]. Data ex-
filtration can be achieved by obfuscating it, timing it to fit regular behavior, done
through a physical medium, set up via a web service, conducted through the C2
channel, as well as employing other sophisticated steps. MITRE defines impact steps
as the destructive phase in the scenario. Possible impact of the attack can vary greatly
and can include storage wipes, defacement, account removal, data corruption, DoS,
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data destruction and theft, and resource hĳacking. At this time, we were unable to
find any major work on MLsec data exfiltration methods. In theory, MLsec models
could be a decidedly superior choice for selecting and generating data exfiltration
traffic and steps based on the target’s and network’s standard behavior and current
defence mechanisms.

Machine learning can be useful for the attack itself as well. When the attackers
have breached their target, they may have one or more of the following goals: es-
pionage, fraud, and sabotage. The attacks are performed with malicious programs
such as malware, spyware, or ransomware. The most common way to infect a host
nowadays is using phishing tactics to con legitimate users to download the ma-
licious program [1]. Uploading the malicious program with the use of software
vulnerabilities is also a prolific way to accomplish an attack. Denial-of-service at-
tacks are also quite common mischievous attacks that could cause serious harm.
An example of some of the less known attacks is crowd-turfing, which means the
generation of fake news, fake reviews, mass following, and other exploits for social
media and crowd-sourcing efforts. Machine learning is especially well adapted for
crowd-turfing attempts [66].

3 Adversarial Machine Learning

Unsurprisingly, the MLsec technology can be attacked, as with any technology
developed at present. As the use of MLsec models increases, so does the desire to
influence them. The models themselves are in many cases essentially black-boxes;
therefore the attacker’s influence on them can be left unseen by the defenders.

In the logistics industry, autonomous vehicles can be tricked into misinterpreting
signs and other triggers for action. The method for spoofing image classification
algorithms has been proven already [26], and will certainly cause issues in this field.
For AI in the cybersecurity space, MLsec methods are abundant in email spam
filters and malware detection systems. These systems are not impenetrable and can
be bypassed [81]. Facial recognition is used in many places, such as smart devices
and laptops, as a credential replacement (i.e., identification feature). As with the
logistics example, face recognition uses similar technology and can be fooled in
many, sometimes arbitrary, ways [74]. This spoofing logic can be applied to voice
recognition aswell. Research shows [13] that, for example, AmazonEcho devices can
be tricked into executing commands by adding minimal, inaudible noises to a voice
recording. These arbitrary commands can be used to hack the devices. In the finance
industry, MLsec-driven fraud detection systems and user behavior analysis are in
place; however, hackers can still manipulate and trick these systems as well [67].

MLsec-driven systems can be attacked in many ways, but the attacks can be boiled
down to three distinct goals that the attackers have: espionage (Privacy), sabotage
(Availability), and fraud (Integrity) [67].
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3.1 MLsec Attack Goals

The attackers can weaponize a defensive MLsec model against itself, by creating
well-crafted inputs to the system in order to gain information about it. There are
examples of anonymous data in a dataset being identified, such as the Netflix dataset
case [59]. This information can be used to further enhance later attacks or used
directly as-is [67].

The defender’s MLsec models can also be sabotaged. Some typical attacks, such
as flooding, also work on MLsec models. However, some specialized attacks are
also available. For example, the trustworthiness of a model can be deteriorated
by submitting many misclassified data to it and even aiding in the retraining of
the model with this intentionally bad data. Another attack is called adversarial
reprogramming of a MLsec model, and it means using the model for one’s own
purposes to solve one’s tasks instead of the model holder’s intended use for the
model [67]. Another example of sabotage is resource denial, which is effectively a
DoS-attack. Hong et al. [39] proposed DeepSloth, a multi-exit architecture targeting
adversarial slowdown attack. The authors showcased how their attack can essentially
render popular multi-exit architecture models, such as MobileNet, unable to perform
tasks properly. With DeepSloth, the attacker can create adversarial perturbations,
which are indistinguishable to humans, but result in far more complex calculations
than a regular sample, thus, creating slowdowns [39].

Fraud is intentional task misclassification in MLsec model terms. This means
that the model interprets it’s environment or inputs incorrectly and possibly does
something inaccurate or harmful. This can be done using poisoning or evasion.
Poisoning means interacting with the system during the training phase and poisoning
the dataset in order to make the model behave unintentionally [46]. Evasion is a term
used for model vulnerability exploitation in order to achieve misoperation [67].

3.2 Adversarial Attacks

The scope of attacks against MLsec is extensive. MLsec models require specific
hardware and environments with ML libraries and frameworks and they all have
their own vulnerabilities. Nevertheless, the most important and underestimated part
of AI security is the algorithm-specific vulnerabilities unique to ML.

There are three main approaches an attacker can take to affect a MLsec model:

• Manipulation. The attacker corrupts the logic of the MLsec model with a spe-
cially generated input. This approach includes such attacks as adversarial exam-
ples, adversarial reprogramming, scaling, and others.

• Extraction. The attacker extracts data from the MLsec model. The data can
be data about the model or the dataset itself. Attacks in this section are model
inversion, membership inference, model extraction, and others.
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• Injection. The attacker injects data into a training process aiming to corrupt
the model. Attacks such as poisoning, backdoors, and Trojans are part of this
approach.

Similarly to OWASP Top-10 for Application Security [87], below we summarize
an unofficial Top 10 list of adversarial attacks on AI solutions.

1. Evasion attacks involve inputs for MLsec that result in an incorrect output and
cause models to make false predictions or behave in an unexpected manner [82].
As an example from the real world, we can take an AI-driver malware detection
engine, which can be bypassed using an adversarial attack by changing binary in
such a way that it will not be recognized as a malware.

2. Poisoning attacks involve injecting data into the training dataset to make MLsec
models produce an incorrect output [70]. Such an attack can be performed, for
example, against a spam filter by poisoning the ML classifier with non-spam data,
which looks like spam to retrain the classifier.

3. Model inversion relates to retrieving information about the samples used in the
dataset [25]. This type of attack can be used against NLP algorithms, such as GPT-
3 [24], to retrieve critical information on how the system was trained. These data
can contain credit card information, passwords, or any other private information.

4. Backdoor attacks affect training models in such a way that they behave anoma-
lously when fed a particular input but work as intended with other inputs [32].
For example, AI applications, especially devices, may be developed by multiple
vendors. The outsourced AI algorithm developer can insert a backdoor into their
AI model and sell it to an IoT vendor as a smart speaker model. These types
of backdoors can, for example, have some undocumented voice commands for
accessing the device.

5. Model extraction implies gaining knowledge about the ML model and its pa-
rameters with the help of model extraction attacks [61]. For example, if someone
wants to steal an API-provider’s model, the attackers could use legitimate API
requests in a specially-crafted manner so that it leads to model extraction after a
finite number of API calls.

6. Membership inference is a privacy attack that is intended to determine whether
certain data points were in the training dataset or not [75]. The healthcare industry
could be affected by these types of attacks as their datasets contain private medical
data.

7. Trojan attacks are direct modifications to a trained model. The intention is to
enable the model to perform additional tasks [53]. In comparison to the backdoor
attack above, the attacker does not have access to the dataset; however, the at-
tacker has access to the MLsec model stored or transmitted insecurely. Many AI
applications were trained with the help of transfer learning, therefore, most of the
time the model base is publicly available. Attackers may hack the model hosting
and inject trojans into the base model and affect models derived from that as well.

8. Presentation attacks are methods where the attacker generates and constructs
new objects to fool the MLsec model [21]. Face recognition applications are the
most common target for such an attack.
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9. Attribute inference is an attack that is performed to get information about dataset
attributes [27].With this attack, the hackersmay find information about the dataset
attributes and guess what parameters are favored by the model. Recommendation
systems may be a good example of a target for attribute inference attack.

10. Slowdown attack implies performing various types of DoS attacks [39], as some
ML-related operations are resource intensive (e.g., re-training a model, transfer
learning, inference on complex models). Any publicly available AI-driven API
can be vulnerable to this type of attack.

3.3 Attacks on various MLsec methods

Adversarial samples are slightly altered versions of originals that cause MLsec
models to misclassify the sample [28]. Adversarial samples are few and far between
when it comes to ML models. Every classification algorithm [18] and regression
algorithm [84] that the MLsec models are based on is vulnerable to some sort of
adversarial input. Generative models such as auto-encoders and GANs are also prone
to attacks [48].

Fast Gradient Sign Method (FGSM) [28] is one heavily utilized method for
creating adversarial samples. In essence, FGSM calculates the gradients of a loss
function in regards to the input sample and utilizes the sign of these gradients in
order to generate a new adversarial input [28].

Clustering differs from classification, as the classes of the data are not known
in advance. Clustering is heavily used in cybersecurity for malware detection, and
commonly, new training data for it comes from the Internet. If this is somehowknown,
the attacker can manipulate the training data, effectively worsening the model from
the start. Other attacks against clustering are available. For example, an attack against
a common algorithm, k-nearest neighbor, was presented [77].

With complex systems and multi-featured data, dimensionality reduction is often
required. Although this category is not nearly as popular as some of the others, there
have been attacks performed for dimensionality reduction [68, 69]. For example,
Rubistein et al. [69] showcased their attack on Principal Component Analysis (PCA),
where they poisoned training data in order to decrease DoS attack detection rate
significantly.

Reinforcement learning can also be tricked with adversarial attacks even though
there is no training data gathered beforehand. Behzadan and Munir [9] demonstrated
that the action-based and reward-based training of RL algorithms can be fooled, and
thereby the policies can be affected by injecting adversarial inputs to the environment.

As MLsec-based Intrusion Detection Systems (IDSs) are one of the most im-
plemented systems for MLsec in the cybersecurity space, it makes sense that those
systems are being tested with new types of attacks. For example, Lin et al. [52]
developed IDSGAN, a GAN-model-based adversarial malicious traffic generating
system, to attack IDSs. The authors managed to reduce the detection rates of black-
box IDS models to almost zero for several different attacks. Similarly, Shu et al. [76]
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demonstrated their Generative Adversarial Active Learning (Gen-AAL) method for
adversarial attacks against IDSs without previous knowledge about the target system.
They also require minimal number queries to the target to gain adequate numbers of
training data for their GAN model.

Martins et al. [57] conducted a review on adversarial ML applied to malware
and system intrusion cases. They concluded that adversarial attacks can deteriorate
the efficacy of all normal classifiers. Nonetheless, the most effective defence against
such attacks is adversarial training (i.e., including adversarial samples in training).

Catching encrypted C2 traffic is essential when dealing with attackers who have
previously established a beachhead into a system. However, detection avoidance of
C2 traffic can be improved by applying MLsec techniques, for example, Novo and
Morla [60] generated C2 traffic adversarial samples by employing FGSM and adding
TCP/IP flow delays (padding). They set the samples against their own detector and
reached highly successful avoidance when the detector was not trained with a dataset
containing adversarial samples.

4 Conclusion

In this chapter, we addressed the innovations in ML, DL, RL, and AI within the
offensive cybersecurity fields. We structured this chapter inline with the Lockheed
Martin’s Cyber Kill Chain taxonomy in order to cover adequate grounds on this
broad, growing, and hot topic.

At the time of this writing, the offensive MLsec is quite well represented and
mature. On the one hand, Reconnaissance, Delivery, and Installation phases of the
Cyber Kill Chain are most advanced in terms of technology maturity, number of
state of the art works, and the coverage of possible scenarios. However, Exploitation
and Acting on objectives phases are in incipient stages, and require more intensive
research and innovation efforts. In addition to the use of MLsec for cybersecurity
offensive scenarios, we have also explored the offensive technologies against MLsec
technologies themselves. As the presented research has shown, the MLsec systems
have weaknesses that can (and most certainly will) be exploited by attackers, which
sets an increasingly worrying trend for future attacks as well as the defensive capa-
bilities based on MLsec.

In this sense, we also conclude that besides the defenders, the attackers most
certainly can and will (ab)use the MLsec technologies for nefarious purposes, and
there is evidence that the attackers are often one step ahead. Very likely, it will
be impossible to completely embargo or restrict the MLsec use to ethical use only
(similarly to kitchen knives being easily available in many stores). However, the
research and practitioner communities canminimize the abuse ofMLsec for offensive
purposes by developing MLsec technologies and models in a way that is easy out of
the box to inspect, verify, and explain such as “eXplainable AI” (XAI).
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