
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Framework for SQL Error Message Design : A Data-Driven Approach

© 2023 Copyright held by the owner/author(s).

Published version

Taipalus, Toni; Grahn, Hilkka

Taipalus, T., & Grahn, H. (2023). Framework for SQL Error Message Design : A Data-Driven
Approach. ACM Transactions on Software Engineering and Methodology, 33(1), Article 9.
https://doi.org/10.1145/3607180

2023

9

Framework for SQL Error Message Design: A Data-Driven

Approach

TONI TAIPALUS and HILKKA GRAHN, University of Jyväskylä, Finland

Software developers use a significant amount of time reading and interpreting error messages. However,

error messages have often been based on either anecdotal evidence or expert opinion, disregarding novices,

who arguably are the ones who benefit the most from effective error messages. Furthermore, the usability

aspects of Structured Query Language (SQL) error messages have not received much scientific attention. In

this mixed-methods study, we coded a total of 128 error messages from eight database management systems

(DBMS), and using data from 311 participants, analysed 4,796 queries using regression analysis to find out if

and how acknowledged error message qualities explain SQL syntax error fixing success rates. Additionally,

we performed a conventional content analysis on 1,505 suggestions on how to improve SQL error messages,

and based on the analysis, formulated a framework consisting of nine guidelines for SQL error message design.

The results indicate that general error message qualities do not necessarily explain query fixing success in

the context of SQL syntax errors and that even some novel NewSQL systems fail to account for basic error

message design guidelines. The error message design framework and examples of its practical applications

shown in this study are applicable in educational contexts as well as by DBMS vendors in understanding

novice perspectives in error message design.

CCS Concepts: • Software and its engineering → Compilers; • Information systems → Relational

database query languages; • Human-centered computing→ Empirical studies in HCI;

Additional Key Words and Phrases: Structured Query Language, SQL, compiler, error message, database man-

agement system, human-computer interaction, human factor, usability, readability

ACM Reference format:

Toni Taipalus and Hilkka Grahn. 2023. Framework for SQL Error Message Design: A Data-Driven Approach.

ACM Trans. Softw. Eng. Methodol. 33, 1, Article 9 (November 2023), 50 pages.

https://doi.org/10.1145/3607180

1 INTRODUCTION

A common view is that computer error messages are confusing and unhelpful, even for profession-
als [9, 27], and that the difficulty of reading error messages is similar to the difficulty of reading
source code [5]. As developers use a significant amount of time reading and interpreting error
messages [5], it seems natural that both the software industry and academia are interested in the
qualities of error messages. Consequently, several studies have shown that a more usable software
development environment results in increased productivity [36, 38], and that end-users benefit
from increased usability in general [17]. From a pedagogical point of view, feedback—or formative

Authors’ address: T. Taipalus and H. Grahn, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland; emails:

{toni.taipalus, hilkka.grahn}@jyu.fi.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/11-ART9 $15.00

https://doi.org/10.1145/3607180

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

https://orcid.org/0000-0003-4060-3431
https://orcid.org/0000-0001-7567-7807
https://doi.org/10.1145/3607180
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3607180
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607180&domain=pdf&date_stamp=2023-11-23

9:2 T. Taipalus and H. Grahn

assessment—during the learning process is a powerful way to improve novices’ sense of achieve-
ment and motivation [e.g., 13]. Furthermore, feedback is effective especially in focusing on treating
mistakes or errors as learning opportunities. This view of seeing mistakes as opportunities means
that novices are shown regularly occurring mistakes and errors they make and then, utilizing
feedback, are advised how to fix these mistakes [13]. Explaining mistakes and errors encourages
learning [23].

Several studies agree that learning Structured Query Language (SQL) can be challenging, pos-
sibly due to the declarative nature [44, 63]. Since feedback is seen vital in learning, the database

management systems (DBMSs) that novices use to learn SQL should provide constructive and
useful feedback in their error messages. Unfortunately, SQL compiler error messages are rarely
clear or helpful from a novice viewpoint, although there are differences between DBMSs [53, 54].
In contrast to a professional, a novice often sees a particular error message for the first time, which
makes the quality of the error message even more important [60]. Hence, previous literature has
made attempts to examine [7] and enhance [40] error messages of programming language compil-
ers, or system error messages in general [47]. However, literature regarding SQL error messages is
still almost entirely lacking. Additionally, research dealing with programming language compiler
error messages is often based on either anecdotal evidence, or expert opinions [7], yet it has been
questioned whether experts can reliably understand novice viewpoints [44]. This study attempts
to fulfill the needs for both the data-driven approach and the novice perspective for SQL error
message design.

In this study, we explore if and how general error message guidelines apply in the context of SQL
error messages and query fixing success rates. This study also presents a framework specifically
for SQL error message design. The guidelines in the framework are based on an analysis of novice
feedback on the 16 most common SQL syntax errors and corresponding syntax error messages
from 8 DBMSs. Additionally, we apply our framework to present examples of modified SQL error
messages.

The structure of this study is as follows. In the next section, we discuss the theoretical back-
ground behind SQL query formulation, error messages in the context of general system messages
as well as programming language compilers, and error message qualities. In Section 3, we describe
our research goals (RG), methods, and data collection. Sections 4 and 5 as well as Appendix A
present the results of the study, i.e., results from the statistical analyses, the error message design
framework, and some applications of said framework. In Section 6, we discuss the implications
of our results in light of previous studies, as well as the implications for industry and education.
Section 7 concludes the study.

2 THEORETICAL BACKGROUND

2.1 Query Execution

A query writer usually communicates with a relational database via a DBMS. Depending on the
scenario, a query may be written, e.g., by using a DBMS interface, or by embedding SQL into a host
language such as Java. When the DBMS receives the query, the query is processed and executed,
and then a set of data or some form of feedback is returned. How the query is processed and
executed is dependent on a particular DBMS internals [21, 22]. Because of these different internals,
a query may be deemed erroneous by one DBMS, while executed by another [42]. It follows that
the feedback the DBMS provides to the query writer is dependent on the DBMS.

After the query is sent, the query processing done by the DBMS is largely a black box to a
novice query writer [61]. After the query writer receives an error message instead of a result
table or a result table that does not meet the query writer’s expectations, the process typically
repeats. This is called a feedback loop between the query writer and the DBMS. Apart from the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:3

query written, the DBMS has limited means to help the query writer to formulate the query they
want to formulate. Although the query writer usually cannot communicate with the DBMS in
natural language, the DBMS can relate natural language messages to the query writer, bridging
the gap between the two. This is typically done in one of two ways. First, if the DBMS deems the
query syntactically incorrect, the DBMS outputs a natural language syntax error message [1, 11],
which usually helps the query writer to pinpoint the error and even fix it. Second, if the query is
deemed syntactically correct, the query writer may obtain more information on how the query
was executed through a query execution plan [58]. As reading query execution plans require both
that the query is syntactically correct as well as considerable knowledge on DBMS internals and
physical database design [20, 61], they are typically used by developers for query optimization and
not by novices in undergraduate database courses [58]. For these reasons, this study focuses on
syntax error messages as the means of communication between the user and the DBMS.

2.2 SQL Syntax Errors

Different SQL errors have received growing scientific attention, especially in computing education
research [56]. Current research [11, 57] divides SQL errors regarding data retrieval into (i) syntax
errors, which are identified by the DBMS, and which result in a syntax error message, (ii) semantic
errors, which are typically not identified by the DBMS, and which result in incorrect data in the
result table regardless of what the query is supposed to retrieve, (iii) logical errors, which are not
identified by the DBMS, and which result in incorrect data in the result table when the intent of
the query is considered, and (iv) complications, which may be identified by the DBMS, and which
do not result in incorrect data in the result table, but unnecessarily complicate the query.

Syntax errors have been shown as the most common errors, especially in novice query for-
mulation [1, 55]. Depending on the study, common syntax errors are caused by e.g., references
to undefined tables and columns [49], problems with grouping [43, 45], data type mismatches [1],
misspellings [62], omitting mandatory clauses [49], as well as illegal aggregate function placement
and duplicate clauses [57]. The identification of the most common SQL syntax errors is challenging
due to the fact that, with a few exceptions, studies categorize SQL syntax errors depending on the
DBMS used, making results incomparable to studies with a different DBMS. Furthermore, it has
been shown that, rather intuitively, different SQL concepts such as grouping, joins or ordering in-
vite different types of syntax errors [55], making, e.g., syntax errors common for queries involving
a table join uncommon for queries involving grouping and a single table.

Despite their commonness over other types of errors, and probably because syntax errors are
caught by the DBMS, syntax errors have been shown to be easier to fix than other types of er-
rors [2, 55]. This is arguably intuitive, as a syntax error halts the execution of a query and pre-
vents the query writer from receiving a result table, while e.g., a logical error does not. A query
with a logical error may return a result table with even seemingly correct data, yet this data do
not adhere to the query writer’s intent. Causes behind query formulation errors in general have
been explained by both human factors such as cognitive load theory [49], different misconceptions
regarding the language or generalizations [28], self-induced complexity [30], procedural fixed-
ness [51], and simple sloppiness [29, 49], as well as environmental considerations such as database
structure complexity [50] and database normal form [10].

2.3 Error Message Qualities

As syntax errors are typically the only type of errors identified by a DBMS, it follows that a natural
way to enhance the communication between the query writer and the DBMS is with more effec-
tive syntax error messages. Despite the scientific attention given to SQL errors and programming
language error messages, SQL error messages have not received much scientific attention. For this

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:4 T. Taipalus and H. Grahn

reason, we discuss programming language error message research here. It is worth noting that the
declarative nature, as well as the purpose of SQL, is different from programming languages such as
C# or Python, which poses challenges to the comparison of the results of programming language
compiler error messages and SQL error messages.

Previous studies have shown that programming language compiler error messages are often
considered confusing and unhelpful [7, 8], and that users are likely to feel inadequate and anxious
when encountering error messages [48]. The role of error messages in the feedback loop is even
more crucial when the user is a novice, yet as the quality of error messages affects the overall user
experience, better error messages benefit professionals as well [25].

For the reasons above, previous literature has formed guidelines for designing error mes-
sages [7, 47, 60]. These guidelines have focused on either general system error messages or pro-
gramming language compiler error messages, but not on SQL or query language error messages.
However, since the domains are related, and previous SQL error message guidelines are unavailable
in scientific literature, it is reasonable to inspect those related guidelines here.

The renowned guidelines for designing computer system messages by Shneiderman in 1982 [47]
consists of five suggestions that system messages should meet: (i) be brief, (ii) be positive, (iii) be
constructive, (iv) be specific, and (v) be comprehensible. Later, other authors have formed guide-
lines for programming language compiler error messages as well. For instance, Traver [60]
suggested eight programming language error message qualities, reflected against Nielsen’s heuris-
tics [34, 35] and his own experience as a programmer and an educator, for error message design.
In addition, Becker et al. [7] published a comprehensive review of papers on programming lan-
guage error messages, categorizing the studies to historical, anecdotal, or empirical research, and
presenting a compilation of 10 guidelines for programming language error message design.

These three guidelines, understandably, share similarities. Shneiderman’s first suggestion, be

brief, is discussed by both Traver [60] as clarity and brevity as well as Becker et al. [7] as reduce

cognitive load. This guideline is, depending on the source, effectively realised by aesthetic and
minimalist design [34, 35], meaning that error messages should not be cryptic, long, or hard to
interpret [60], and also by enhancing simplicity in the error messages [7]. It also has many other
meanings in the literature, such as removing jargon, using complete sentences, and using simple
vocabulary [16].

Second, be positive, more broadly expressed as proper phrasing [60] is related to Nielsen’s heuris-
tic of match between system and the real world, which refers to the positive tone of the error mes-
sage, guidance to help fix the error, use of simple language, as well as using similar words in the
system when referring to similar concepts in the real world. In the compiled guidelines [7], the
counterpart is phrased as use a positive tone, referring to avoiding negative words, such as illegal,
incorrect, or invalid.

Third, Shneiderman’s [47] be constructive is included under proper phrasing as constructive guid-

ance in Traver’s guidelines [60], and broadly interpreted counterparts in Becker et al. [7] are called
provide scaffolding and show solutions or hints. Effectively, these guidelines suggest that the error
message should provide explanations to the user on why they received the error message and giv-
ing support on how to proceed, rather than simply stating that there is an error. The error message
should also suggest solutions for how the error can be fixed.

Fourth, be specific is formulated as specificity by Traver [60], and is related to two of Nielsen’s [34,
35] heuristics, recognition rather than recall, and help user to recognize diagnose, and recover from

errors. Specifically, the guideline means that error messages should not be too general, since a
general error message makes locating the erroneous position difficult. Traver’s [60] locality is
related to this guideline, suggesting that the error message should indicate the true origin of the
error. Related to this guideline, Becker et al. [7] suggest that the error message should provide

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:5

context, meaning that there should be information about the programming code relevant to the
error which helps understand and address the error.

Fifth, the guideline be comprehensible can be mapped to clarity and brevity [60], and increase read-

ability [7]. This is perhaps one of the more subjective guidelines, as comprehensibility is closely
dependent on the user reading the message. In addition to Shneiderman’s [47] five guidelines and
their broadly interpreted counterparts, subsequent studies have suggested additional or more pre-
cise guidelines for programming language error messages. For example, it has been suggested that
error messages should be context-insensitive, meaning that the same error results in the same error
message [60], and that the error message conveys a logical train of thought to the user of why the
error occurred by using logical argumentation [7] and nonanthropomorphic messages [60]. That is,
the message should not use language which implies that the syntax was checked by a human-like
actor.

Furthermore, Traver [60] suggests that the error message is divided into three levels: a short
message first, then—if the user needs—a brief explanation or examples regarding the error mes-
sage, and finally, possible corrective actions. Additionally, the environment in general should use
colors and fonts to notify the user of errors as early in the writing process as possible [7, 60]. Fi-
nally, the message should show the user examples of similar errors to improve the understanding
of why the error occurred [7]. As can be seen, all these above guidelines share similarities with
Shneiderman’s [47] renowned guidelines regarding computer system messages, as well as with
each other.

3 RESEARCH SETTING

3.1 Research Scope and Goals

Based on the research gaps identified in the previous sections, we formulated four RG and collected
both quantitative and qualitative data to reach these goals. We chose to limit the scope of our study
to the 16 most common syntax errors reported in a previous study [57] (cf. Table 1).

We chose four “traditional” RDBMS as well as four NewSQL [39] RDBMS syntax error messages.
NewSQL systems are RDBMSs built from the ground up in the 2010s to account for the innovations
and technical development introduced by NoSQL systems, while also catering to the needs of
RDBMS users by, e.g., using SQL and a strong consistency model [39]. The reason for including
these eight DBMSs was that we wanted to inspect the state of error messages in long-running
DBMSs as well as DBMSs developed in the 2010s, while limiting the study to DBMSs that can
execute SQL to the degree the test suite requires. The test suite and the selected DBMSs are detailed
in the next section.

As discussed in Section 2.3, scientific literature has made many recommendations and guide-
lines on how user interfaces and system messages in general, or programming language error
messages in particular should be formulated. We chose to use the guidelines for system messages
proposed by Shneiderman [47], because they are general, as opposed to guidelines proposed for
programming language error messages [e.g., 7, 60], which are particular for a different purpose.
Furthermore, with our choice of older guidelines, we wished to highlight how even some modern
DBMSs disregard guidelines proposed in the early 1980s.

RG1: Find out if and how previously identified system message qualities (i.e., whether

the message is brief, positive, constructive, specific, and comprehensible) affect SQL query

fixing success in the error messages of the eight selected DBMSs. The results are presented
in Section 4.

RG2: Formulate an SQL error message design framework consisting of guidelines derived

from the collected data. The framework is presented in Section 5.1.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:6 T. Taipalus and H. Grahn

Table 1. Sixteen Most Common Syntax Errors [57] and Corresponding Tests [54]

Test Syntax error name Test Syntax error name

T01 ambiguous column T09 failure to specify column name twice
T02 omitting quotes around character data T10 using an aggregate function outside SELECT or HAVING
T03 IS where not applicable T11 grouping error: extraneous grouping column
T04 confusing the syntax of keywords T12 nonstandard operators
T05 confusing the logic of keywords T13 using WHERE twice
T06 too many columns in subquery T14 nonstandard keywords or standard keywords in wrong context
T07 undefined column T15 synonyms
T08 misspellings T16 curly, square or unmatched brackets

RG3: Investigate how query writers would improve syntax error messages of eight rela-

tional DBMSs both in general and specific to each of the most common syntax errors. The
results are introduced in Section 5.2 and presented in detail in Appendix A.

RG4: Based on the formulated framework, propose examples of error messages pertaining

to the 16 most common syntax errors. The examples are presented in Appendix A.

3.2 Data Collection

We created our data collection form around a previously reported syntax error test suite [54],
which was, in turn, based on the 16 most common SQL syntax errors detailed in Table 1. This
test suite provided us with a concrete database structure, 16 SQL data demands, and the corre-
sponding erroneous queries. We then ran the erroneous queries on eight DBMSs (MySQL 8.0.12
with InnoDB storage engine, Oracle Database 19c Enterprise Edition 19.5.0.0, PostgreSQL 12.1,
SQL Server 2019 Developer, CockroachDB 19.2.2, SingleStore 7.0.10 with InnoDB storage engine,
NuoDB 4.0.4-2, and VoltDB Community 9.2.2) to capture corresponding syntax error messages.
These versions were the most recent, stable available versions at the time of data collection. Based
on the error messages, we created eight data collection forms—one for each DBMS—consisting
of the database schema, a data demand, a corresponding erroneous SQL query, and the corre-
sponding syntax error message, and two free text input fields in which the participant was asked
to write a fixed SQL query, and with their own words describe how to improve the error mes-
sage. All eight data collection forms were the same with the exception of the syntax error mes-
sages, and each data collection form consisted of 16 pages, one for each syntax error detailed in
Table 1.

We recruited study participants from a database course given in the authors’ university. Prior
to participation, the participants were given lectures and mandatory exercises on topics recom-
mended in AIS/ACM curriculum guidelines [59] for an undergraduate database course. Each topic
(separated by semicolons) included approximately 4 hours of lectures and 7 hours of exercises:
conceptual modeling; the relational model; relational calculus; data manipulation language using
SQLite with simple operators, inner and outer joins, and ordering; data manipulation language
using SQLite with aggregate functions, grouping, and correlated and uncorrelated subqueries;
and data definition language using SQLite. After these topics, this study was introduced. After
this study, the course continued with topics such as transaction management and normalization
theory. When a participant decided to participate in the study, they were randomly presented
with one of the eight data collection forms, e.g., a participant assigned to a data collection form
with syntax errors from SQL Server filled out the input fields based on their perceptions of
SQL Server error messages. For each participant, the 16 pages were shown in random order.
Participation was voluntary, and the participants were shown a data privacy statement prior
to their decision on whether to participate. Out of the 363 respondents, 311 (86%) chose to
participate.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:7

Table 2. The Rubric Created for Error Message Coding; the Numerical Codes Were Converted to Empty

(White), Half, and Full Circles (Black) for Readability; the Cutoffs for the Brevity of the Messages Were

Determined Based on Tertiles of the Length of the Messages Studied

Quality Code Description

brief

More than 171 characters, not counting the possibly replicated query or parts thereof, or

parts replicated from environmental variables.

Between 100 and 171 characters, not counting the possibly replicated query or parts thereof,

or parts replicated from environmental variables.

99 characters or less, not counting the possibly replicated query or parts thereof, or parts

replicated from environmental variables.

positive
Tone is negative, aggressive, dramatic or discouraging, using words such as illegal, invalid,

error, or incorrect.

Tone is positive or neutral, the message contains no negative words.

constructive

Offers no advice.

Offers advice on what causes the error.

Offers constructive advice on how to fix the error. General advice such as “refer to manual”

or “see help on SELECT” was not considered constructive advice.

specific

Provides no error position.

Replicates a relatively large part of the erroneous query or replicates the query in full, or

otherwise provides an approximate error position.

Specifically shows the position of the error.

comprehensible

The error message is almost incomprehensible or generally unhelpful.

The error message contains unnecessary jargon.

Not including error codes, SQL keywords, or common relational database terms, the mes-

sage reads closely to plain English.

3.3 Data Preparation

We coded the 128 syntax error messages (16 tests × 8 DBMSs) according to the five system mes-
sage guidelines described by Shneiderman [47], according to which a system message should be
brief, positive, constructive, specific, and comprehensible. Because the message qualities given by
Shneiderman are general regarding the scope of our study (system messages, as opposed to SQL

error messages), and because Shneiderman gives no example on, e.g., what is a brief message, we
defined a rubric (Table 2) according to which we coded the SQL error messages. We coded the same
subset (20%) of the error messages individually using the rubric and compared our results. All the
codings were similar. The first author then coded the rest of the error messages. The original error
messages of the eight DBMSs and respective coding are reported in Appendix B (Figures 17–32).

After data collection, we executed the 4,976 SQL queries (311 participants × 16 tests) the par-
ticipants had attempted to fix on the corresponding DBMS, e.g., if a participant had been shown
VoltDB error messages, and therefore attempted to fix erroneous queries based on VoltDB error
messages, we executed their fixed queries on VoltDB. Additionally, the syntactically correct queries
were manually checked to determine if they were also logical equivalents to the corresponding
data demand. MySQL tolerated the syntax errors in tests T05 and T09, and SingleStore tolerated
the syntax errors in tests T09 and T11. In these data collection forms, the error messages were
made up by us, and the corresponding participant answers were omitted from the analyses. This
left a total of 124 error messages for coding, and 4,796 SQL queries for statistical analyses.

3.4 Data Analyses

In order to analyze the effects of error message qualities, we constructed binomial logistic regres-
sion models for each of the 16 tests. The data contained 311 answers per test, with the limitations
concerning MySQL and SingleStore described in Section 3.3. The independent variables in the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:8 T. Taipalus and H. Grahn

model were the error message qualities, i.e., whether the error message was brief, positive, con-
structive, specific, and comprehensible. The dependent variable in the model was query fixing
success, which was binomial, 0 meaning that the query was not fixed, and 1 meaning that the
participant succeeded in fixing the query.

Participants also suggested improvements for the error messages using a free text input field.
Some participants did not suggest improvements for all error messages, while others suggested
several improvements for each of the 16 error messages they were shown. In total, the participants
gave 1,505 answers, which we analysed using conventional content analysis [24]. Effectively, the
method groups similar content, or themes, into groups that are derived from the data rather than
theory or prior literature. The goal of the method is to generalize or reduce data to a form that is
easier to interpret. The participant answers were interpreted as is, resulting in both general themes
that span across most error messages, and themes that are specific to a given error message.

We first collectively analyzed approximately 5% of the 1,505 answers, and derived example codes
from the data, such as error message should show line number and error message should suggest a

fix. We then chose a portion of 10% which we both then coded individually. After the individual
coding, we compared our results and deemed that all our codings were similar. These agreements
most likely stemmed from the fact that all the answers were relatively short, typically containing
one or two sentences. The first author then proceeded to code the rest of the data. After this step,
we convened to discuss whether the more specific categories should be merged, and categorized
the most frequent codings into a higher-level framework for SQL error message design. That is,
our results show three levels of abstraction. On the lowest level, we show suggestions for improve-
ments per error message for the 16 tests. On the middle level, we show suggested improvements
regarding all error messages. On the highest level, we categorize these suggested improvements
regarding all error messages into themes.

4 FACTORS AFFECTING ERROR MESSAGE EFFECTIVENESS

Only in three tests, the binomial logistic regression model was statistically significant (alpha level
.05). In test T01 (χ 2(3) = 13.339, p = .004), the model explained 8.0% (Nagelkerke R2) of the variance
of fixing the query and correctly classified 87.8% of cases. Of the five predictor variables (i.e., error
message qualities), only one was statistically significant: specificity of the error message (p = .012).
Error messages being specific had 2.03 higher odds of being fixed successfully.

In test T11 (χ 2(5) = 14.003, p = .016), the model explained 7.3% (Nagelkerke R2) of the variance of
fixing the query and correctly classified 82.6% of cases. Of the five predictor variables, only one was
statistically significant: error message being brief (p = .020). The errors with long error messages
had 1.79 higher odds of being fixed successfully.

In test T16 (χ 2(4) = 10.243, p = .037), the model explained 6.9% (Nagelkerke R2) of the variance
of fixing the query and correctly classified 90.4% of cases. Of the five predictor variables, only one
was statistically significant: error message being positive (p = .010). The errors with positive error
messages had 1.95 lower odds of being fixed successfully. In the rest of the tests, the binomial
logistic regression models did not identify the result as statistically significant (significance levels
ranging from p = .101 to p = .969).

5 ERROR MESSAGE DESIGN FRAMEWORK AND MODIFIED ERROR MESSAGES

5.1 Error Message Design Framework

Using conventional content analysis, and regardless of the test, we identified nine recurring sugges-
tions for error message improvements in the data. Five suggested, general improvements received
more than one hundred mentions in the 1,505 answers: specify the line number of the erroneous

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:9

part (191 mentions, approximately 13%), suggest how to fix the error (181, 12%), remove unneces-

sary information (141, 9%), explain what causes the error and why (141, 9%), and specify the error

position (111, 7%). It is worth noting that these mentions are only general mentions, not counting,
e.g., more specific suggestions on how to fix an error (e.g., “suggest single quotes around character

strings” or “suggest replacing IS with =”). Among others, these abstracted suggestions comprise the
SQL error message design framework presented in Table 3. The following list shows some selected
quotations from the data.

— [on CockroachDB, T04] “The error message tries to say that the LIKE operator does not under-

stand lists, but it says this in a very difficult way. A typical those-who-know-just-know type

of message. Isn’t the point of error messages to help us, rather than further separate us from

professional users?”
— [on MySQL, T08] “It is unnecessary to state multiple times, or even once, that the query is

erroneous. If it weren’t erroneous, I would receive results instead of a message.”
— [on MySQL, T08] “It is astounding how the message cannot pinpoint such an obvious typo.”
— [on VoltDB, T09] “Simply providing a line number would have been more helpful than this

long error message.”
— [on NuoDB, T10] “The error was easy to locate, but fixing it just requires skill which I do not

have, and the error message is not helpful in this regard.”
— [on NuoDB, T12] “The error message was so comprehensive it almost fixed the error for me.”
— [on Oracle Database, T13] “Perhaps the message is technically the correct way to describe the

error, but from a human perspective, this seems incomprehensible.”

First, two guidelines in the framework are closely related to where the error occurs. The data
suggest that providing the line number (and providing it correctly) was one of the most frequent
suggestions for improvements. Additionally, and while line breaks are not something SQL enforces,
the data suggest that a line number is not always enough to specify the error position accurately.
One solution to such suggestion (also suggested by the data) is to replicate the erroneous query
or parts thereof, and specify the erroneous position using a free-standing circumflex like some
DBMSs already do (e.g., PostgreSQL in Figure 17).

Second, three guidelines are closely associated with what elements should form the body of
the error message. The data suggest that novices want to know what causes the compiler to halt
the interpretation of the query, and providing the position of the error is not informative enough.
Additionally, a frequent suggestion for improvements was that the error message should explain
why the error occurs. For example, placing a semicolon in the middle of a query should result in
an error message showing the line number and exact position of the error, stating that there is a
semicolon in the middle of a query (the what), and explaining that a semicolon is used to terminate
an SQL statement, and that placing a semicolon in the middle of a query is against this principle
(the why). Finally, the error message should be structured in a way that the most important parts for
the user are placed first. This arguably helps professional users, who are arguably not as interested
in hints or SQL examples as novices.

Third, two guidelines concern how the user could or should proceed in fixing the erroneous
query. The error message should suggest how the user could fix the error. As the DBMS does
not understand the intent of the user, the wording in these suggestions should be reserved, as a
suggested fix may point the user toward a fix that is not the correct fix for the particular intent.
Next, the error message should show examples of correctly using the SQL concepts associated
with the error, e.g., an erroneous expression should result in an error message showing examples
of correctly written expressions.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:10 T. Taipalus and H. Grahn

Table 3. The SQL Error Message Design Framework Consists of Three High-Level Themes Consisting of a

Total of Nine Guidelines

Where
Provide line number: as accurately as possible, show the user on which line the error is.
Specify the error position: point to the position of the error on the erroneous line.

What
Explain what causes the error: describe what is missing, extraneous, ill-placed, or incorrect.
Explain why the error occurs: describe what principle is violated.
Place the most important information first: let the user choose whether to read further.

How
Provide suggestions on how to fix the error: use reserved wording, as the intent of the user is unknown.
Provide working examples of similar query concepts: show how a query concept is used as a part of a query.

Remove unnecessary elements: remove error codes, host names etc., or move them to the end of the message.

Use plain English: use well-understood terms, or explain complex terms using simple natural language words.

Finally, general themes in the data were the removal of unnecessary elements and the use of
plain English (or whatever the language is if the error messages are provided in some other lan-
guage). For example, error codes, host names, and the statement that the query is erroneous were
seen as unnecessary information. The use of plain English was also frequently suggested, as the
environment is complex even without seemingly unnecessarily convoluted sentences.

5.2 Suggested Improvements and Modifications

We present the results from the conventional content analysis for each of the 16 tests in Appen-
dix A (Figures 1–16) due to their length. Each of these figures consists of subfigures illustrating
(a) the erroneous query with the erroneous part highlighted for readability, (b) respective fixed
query, (c) suggested improvements derived with conventional content analysis, with the number
of occurrences, and (d) an example of how an error message could be reformulated based on the
proposed error message design framework. It is worth noting that suggestions with fewer than two
mentions are not reported, as we deemed that one mention did not constitute a category. Despite
the highlights in Appendix A, the erroneous parts were not highlighted for the study participants,
and that the typographic details concerning, e.g., line breaks may differ from the tests proper due to
horizontal space limitations here. The example queries shown in the modified error messages are
intended as static examples, i.e., we do not intend the DBMS to generate dynamic examples based
on the underlying database schema, although with recent advances in large language models, this
might be a feature to consider. All corresponding error messages are presented in Appendix B.

6 DISCUSSION

6.1 General Discussion

This study pursued to examine what qualities of error messages explain the rate the participants
succeeded to correct the query they were shown and how would they improve the error messages.
Utilizing the participants’ suggestions, we modified the error messages used in this study and
compiled a set of guidelines for error message design (Table 3).

As can be observed, the queries with common syntax errors are simple in the test suite. Addi-
tionally, as the test suite is based on previously identified common syntax errors, the empirical
observations underneath also show that novices commit simple syntax errors [57]. Despite this,
the error messages do not reflect the simple nature of the errors. Based on the error messages listed
in Appendix B, it seems justified to argue that many error messages fail to identify the nature of
the error correctly, identify the error position incorrectly, or both. This arguably highlights the
rather unfortunate state of error messages in many modern DBMSs, instead of begging the ques-
tion of why the test suite only considers simple syntax errors. Despite what a reader thinks about
the error message guidelines presented in this study or of those presented previously in scientific
literature, we argue that all the DBMSs subject to this study have error messages that contain at

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:11

Table 4. Typical Characteristics of the SQL Error Messages of Eight DBMSs; It is Worth Noting that These

are Typical Characteristics Based Only on the 16 Types of Errors Studied

DBMS Characteristics of SQL error messages

MySQL (with InnoDB) Sometimes contain error codes at the beginning of the message; both brief and wordy

messages; general suggestions to check the manual; line numbers sometimes present;

sometimes replicates a part of the query; non-uniform error messages.

Oracle Database Error codes at the beginning of the message; brief messages; no line numbers; general

messages.

PostgreSQL No error codes; line numbers; specific error position is indicated by a free-standing cir-

cumflex; sometimes provides hints; replicates the erroneous line; complete sentences.

SQL Server Error codes and additional environmental variable information at the beginning of the

message; line numbers; a single message may identify multiple errors; replicates the er-

roneous position.

CockroachDB No error codes; does not explicitly state that there is an error; both brief and wordy

messages; no line numbers; sometimes the specific error position is indicated by a free-

standing circumflex; sometimes provides general hints; sometimes replicates the query

up to the position of the error.

SingleStore (with InnoDB) Error codes at the beginning of the message; general suggestions to check the manual;

line numbers sometimes present; sometimes replicates a part of the query.

NuoDB Error codes at the beginning of the message; sometimes replicates parts of the query;

sometimes the specific error position is indicated by a free-standing circumflex; some-

times explains what was expected at the erroneous position.

VoltDB No error codes; no line numbers; replicates the whole query; sometimes provides hints;

sometimes explains what was expected at the erroneous position.

least some elements that seem unintuitive in facilitating query fixing. Table 4 lists characteristics
typical to each DBMS. The table arguably shows that many (if not all) of the design guidelines
presented in this study have been implemented in at least one of the DBMSs studied.

RG1, presented in Section 3.1, was concerned with previously identified system message quali-
ties and how they affect SQL query fixing success. This was analyzed with binomial logistic regres-
sion. The results of the regression analyses presented in Section 4, with three exceptions, failed
to reject the null hypothesis. This may indicate, at least with the data available, that general error
message qualities do not explain SQL error fixing, i.e., the general guidelines fail to particularize.
In addition, it should be noted that all the percentages of how much the three statistically signif-
icant models explained the success rate were very low. The results from the qualitative analysis,
however, suggest that the participants value the error message qualities proposed by Shneider-
man [47], with the exception that error messages should be positive. In a sense, the results from
the quantitative analyses are not in line with the results from the qualitative analyses. That is,
the regression analyses suggest that general system error message qualities do not affect query
fixing, but nevertheless the results from the content analyses rather uniformly suggest that if the
error message qualities tested in the regression model were not present in the error messages, the
participants suggested adding these qualities.

RG2 was to formulate an SQL error message design framework derived from the data.
Table 5 compares the guidelines presented in this study to those presented by Shneiderman [47],
Traver [60], and Becker et al. [7]. The table shows that most of our guidelines map to most of the
guidelines presented in previous studies, indicating that our study participants suggest improve-
ments for error messages presented in previous studies unknown to them. The only clear omission
in our guidelines is that the error message should be positive. According to our coding of the eight
DBMS error messages, all DBMSs had at least one error message that was not positive, meaning
that all 311 participants were exposed to at least one non-positive error message. Our data con-
tained only three mentions (all from a single participant, approximately 0.3% of all participants)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:12 T. Taipalus and H. Grahn

Table 5. The SQL Error Message Design Framework Guidelines and Their Broadly Interpreted

Counterparts in Previous Literature

SQL error message de-

sign guidelines (this

study)

General system message

guidelines described by

Shneiderman [47]

Programming language

error message guidelines

presented by Traver [60]

Programming language

error message guide-

lines compiled by Becker

et al. [7]

Provide line number Specific Specificity; Locality Provide context

Specify the error position Specific Specificity; Locality Provide context

Explain what causes the

error

Constructive (not present) Provide scaffolding

Explain why the error

occurs

(not present) (not present) Allow dynamic interac-

tion; Provide scaffolding;

Use logical argumentation

Place the most important

information first

(not present) Extensible help Reduce cognitive load

Provide suggestions on

how to fix the error

Constructive Constructive guidance Show solutions or hints

Provide working examples

of similar query concepts

(not present) Extensible help Show examples

Remove unnecessary

elements

Brief Clarity and brevity Reduce cognitive load

Use plain English Comprehensible Clarity and brevity; Pro-

grammer language

Increase readability

(not present) Positive Positive tone Use a positive tone

(not present) (not present) (not present) Provide errors at the right

time

(not present) (not present) Context-insensitivity;

Nonanthropomorphism;

Consistency; Visual design

(not present)

that the error message could be rephrased without the use of dramatic words. This observation
may be biased due to the fact that the participants were recruited from a single university. Becker
et al. [7] summarize that in the context of programming language error messages, the effects of a
positive tone have been empirically tested by merely two studies, while 14 studies on the subject
are of historical or anecdotal nature. A closer inspection of the two studies reveals that in the first
study [31], 29% of the 77 participants observed that the word illegal may intimidate the user. In
the second study [32], 6 of the 13 participants claimed that the error messages under observation
were friendly, yet it was not further discussed whether friendly was considered helpful. Both our
quantitative and qualitative results contest the recommendation that error messages should be
positive. In fact, in test T16, a positive tone even reduced the odds of successful query fixing. Our
interpretation of this result is that the positive error messages in test T16 simply had some other
quality which hindered query fixing, rather than positive tone being detrimental to query fixing.

RG3 was to investigate how the error messages should be improved according to the partic-
ipants, and RG4 was to propose examples of modified error messages based on the suggested
improvements. The modified error messages are presented in Appendix A. We listed specify the

error position as one of the guidelines. It seems both crucial and needless to expand that the error
message must provide the error position correctly, something that both programming language
error messages [60] as well as SQL error messages (e.g., VoltDB in Figure 24 in Appendix B)
sometimes fail to do. In cases when reliably pinpointing the error is not possible, the error mes-
sage should provide a near position like some DBMSs already do, although even these positions
are not always accurate, or replicate a part of the query which does not contain the error (e.g.,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:13

SingleStore in Figure 24 in Appendix B). As demonstrated with a quotation in Section 5.1, at least
one participant raised a concern that simply providing the line number of the erroneous part would
be more informative than the error message provided. Although the consensus view seems to be
that feedback with examples is more useful than binary feedback (correct/incorrect) [14], even
this might not hold true when the error message provides unnecessary or incorrect feedback. For
example, the error message of VoltDB shown in Figure 22 in Appendix B replicates the erroneous
query in its entirety, yet does not provide the error position, demonstrating an error message that
is neither brief nor specific. Also from the perspective of specificity and comprehensiveness, the
error messages of VoltDB and SQL Server in Figure 22 in Appendix B are different. Considering
that the error in the query in Figure 22(a) is that the subquery returns too many columns for the
IN operator which is in this case only expecting values from one column, the cause of the error
in VoltDB in Figure 22 in Appendix B is ambiguous, stating “row column count mismatch”, which
seems to imply that the error is somehow related to rows. The error can be fixed by making sure
that there is the same number of columns in the upper-level query’s expression concerning IN,
as in the subquery’s SELECT clause. The error message of SQL Server in Figure 22 in Appendix B,
however, uses a complete sentence and conveys the cause of the error more accurately.

Regarding suggestions on how to fix errors, Marceau et al. [26] suggest that novices can follow
suggestions on how to fix an error without understanding what causes the error and whether the
suggestion is even the right fix. This may be problematic from an educational perspective, as the
goal is arguably not to fix an error per se but to learn how to write queries. Although making
mistakes is part of any learning process, simply committing errors for the sake of receiving hints
and suggestions on how to correctly write a query seems counterproductive to learning. We believe
that by explaining what causes the error and why the error occurs, the error message can provide
a more deep-rooted understanding to a novice, as opposed to merely providing a suggestion on
how to fix the error.

Both Shneiderman [47] and Traver [60] have suggested that error messages should be brief,
and the need for brevity is usually argued with the need to reduce cognitive load [46, 51]. Four
of our guidelines, provide line number, specify the error position, place the most important informa-

tion first, and remove unnecessary elements can be viewed as means to reduce cognitive load, yet
it is worth noting that our data suggest very few observations on error message brevity per se.
Based on the data, it seems reasonable to argue that brevity in itself is not a desirable goal for
an SQL error message, as it can be seen to contradict guidelines such as using plain English with
complete sentences, or with the guidelines of providing hints and suggestions. Additionally, some
errors arguably cannot be described with both clarity and brevity, as the situations in which the
errors occur, or why the error occurs may be complex. Therefore, we present that cognitive load
should be reduced with other means such as the removal of unnecessary elements and ordering
of information, rather than with brief error messages.

Previous results from scientific efforts toward more effective programming language error mes-
sages have been inconclusive, or not implemented by the industry, which somewhat diminishes
the framework presented in this study. For example, some studies have tested enhanced error mes-
sages with novices, yet concluded that there are no positive effects [15, 40]. In contrast, at least one
study has shown that the utilization of enhanced error messages results in fewer errors, and fewer
repetitions of a similar error [6]. Nevertheless, it has been criticized that over several decades,
error message guidelines revolve around similar themes, and despite the rise of new program-
ming languages, the same problems persist [7]. In our opinion, there have also been exceptions,
such as the error messages presented in the programming language Rust. From a critical perspec-
tive, this study is also yet another one proposing guidelines for error message design, albeit in the
novel context of SQL. Despite the criticism presented about programming language error messages,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:14 T. Taipalus and H. Grahn

Table 5 shows that there are fundamental differences between the error messages in different
DBMSs and that the effects of these differences have also been shown to affect the perceived use-
fulness for error finding and fixing [54]. Therefore, it seems reasonable to argue that enhancing
SQL error messages is a desirable goal for both industry and education, even though our quan-
titative analysis does not support the view that some error message qualities affect query fixing
success rates. In other words, the effects of enhanced error messages may be explained with other
variables besides success, not captured in our data or regression model.

Additionally, online learning environments have been proposed for SQL learning for
decades [12], and several learning environments that provide enhanced error messages have been
studied in programming education [8, 40]. Implementing enhanced error messages into learning
environments seems like a natural and relatively fast way of helping novices, as well as acquiring
empirical findings on the effectiveness of said error messages. The potential problems with such
learning environments are the maintenance overhead and the fact that many of such environments
are closed or proprietary, and to our knowledge not widely utilized in industry. Furthermore, in
terms of SQL, which can be implemented by one of several different DBMSs with different internals,
either the maintenance of the learning environment is even more laborious than that of program-
ming language learning environments, or the SQL learning environment only supports a small sub-
set of DBMSs. One workaround to maintenance could be to check the query syntax on the learning
environment’s side, which, in turn, risks the situation where the learning environment evaluates
the query syntax error-free, yet the underlying DBMS detects a syntax error (or vice versa). Given
these considerations, we deem it beneficial for education that the DBMS vendors undertake the
task of enhancing SQL error messages to consider design guidelines. That being said, the task is not
as straightforward as changing the character strings provided by the compiler [4], and arguably
requires refactoring of the query parsing process with, e.g., reclassification [64] or perhaps by uti-
lizing the work done on automatic error correction in SQL [37], or with large language models.
However, it is unclear how DBMSs identify error messages, how different these implementations
are between different DBMSs [52], and how technically difficult it is to implement modified er-
ror messages. Finally, industry may be (rightfully) concerned about investing in enhancing error
messages which have not been scientifically shown to affect the general user experience.

6.2 Limitations and Threats to Validity

The limitations concerning the scope of this study are that the error message design framework
is solely based on data retrieval, and not on other types of SQL statements such as data insertion
or updating and that we only considered the 16 most common syntax errors. The main reason
behind limiting the scope of this study is the extent of previous studies. In terms of different SQL
statements, data retrieval is the most well-studied in human-centered contexts [56], and provided
us with a limited yet scientifically justified starting point with reports on which errors are the
most common [57], and how these common errors can be tested [54]. Another limitation is that
many of the syntax errors can be interpreted in multiple ways (e.g., T08 misspellings), yet we only
tested each syntax error with one query. Furthermore, all the syntax errors were tested with rela-
tively simple queries. Arguably, more complex queries emphasize the error message qualities even
more, e.g., specifying the error position in the error message is more valuable in a query spanning
50 lines when compared to a query spanning 5 lines. Finally, we only tested the syntax errors using
novice participants. This could be seen as a limitation affecting the generalizability of the results,
yet given that many previously reported guidelines have been based on expert opinion [47, 60],
and that this expert opinion has been critiqued [7], we believe the use of novices is a justified
approach toward filling an identified research gap, rather than a limitation. The use of appropriate
study participants has been argued for in detail in several studies [18, 19].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:15

Regarding the regression analyses, it is possible that there may be a hidden factor or factors
(i.e., predictors) not present in the data that affect query fixing success. Furthermore, the depen-
dent variable (i.e., query fixing success) may not be a fitting metric for error message effectiveness.
In the context of programming languages, it has been speculated that time taken to fix an error
might be such a metric [3, 41], but time was not measured in this study due to the shortcomings
of our data collection instrument. In hindsight, measuring time would have been informative and
should be taken into account in further studies if the effects of the modified error messages are
studied. Finally, it is possible that our coding of the error messages (Appendix B) captures Shnei-
derman’s [47] error message qualities incorrectly. We have explained the general nature of said
guidelines in Section 3.3, and based our coding on a rubric reported in the same section to mitigate
this threat and make the coding more transparent.

Another threat to validity is the unnatural environment in which the participants fixed their
queries. As explained in Section 2.1, the user typically engages in a feedback loop with the compiler.
In this study, however, the participants fixed queries written by someone other than themselves
(i.e., us), and received no feedback on whether their fixes were at least syntactically correct. As we
wanted to base the error message design framework on previously identified common syntax er-
rors, designing the research setting in another way would have introduced other threats to validity.
Nevertheless, the results should be interpreted while taking the environment into account.

6.3 Future Directions

Although our framework was constructed based on empirical findings, this study provides no
empirical evidence if these modified error messages actually facilitate, e.g., error fixing success
rate, the time required to fix errors or user experience in general. For this reason, we have refrained
from calling the new error message examples enhanced or improved. An intuitive topic for future
research is to test the effectiveness of these messages using several metrics and iterate the messages
based on empirical findings.

A potential—and to our knowledge little studied—topic is the suggestions given by compilers.
In our data, several participants criticized the error messages for giving misleading suggestions,
or identifying the erroneous position incorrectly. Although we did not systematically examine
such situations in our data, it seems justifiable to speculate whether certain error messages are
even detrimental to error fixing. Future research could categorize the queries the participants had
fixed as, e.g., more incorrect, still incorrect, incorrect in a different way, more correct, and correct, and
examine whether the error message plays a part in the evolution of the originally erroneous query.

Finally, both Becker et al. [7] and Traver [60] briefly discuss the interaction between the human
user and the compiler through a more interactive user interface than plain text. For example, such a
simple modification as hyperlinks in the error message pointing to more extensive documentation
is something our participants also suggested. External online documentation would also make fixes
and updates to error messages more effortless, without requiring updating the DBMS. Additionally,
the error messages may be provided in a form other than textual, if the environment allows [33].
While more rich feedback may arguably present problems in development contexts (as opposed
to learning contexts) when, e.g., the DBMS error message is replicated in a plain text error stack,
from an educational and human–computer interaction perspective, such richer error messages are
an interesting future topic.

7 CONCLUSION

In this study, we set out to investigate if and how general system error message qualities explain
SQL syntax error fixing success rates. The results indicate, at least in the scope of this study, that the
general error messages qualities do not explain query fixing success. We also analyzed qualitative

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:16 T. Taipalus and H. Grahn

data regarding suggestions on how to improve SQL error messages and formulated a framework
for SQL error message design. The framework guides error message design toward specifying
where the error occurs, what causes the error and why, providing suggestions on how to fix the
error, and showing examples of similar query concepts. Additionally, the framework emphasizes
the ordering of information in the error message, the removal of unnecessary elements, and the use
of plain English. Finally, and based on the formulated framework, we applied the framework and
showed examples of how to design error messages for the 16 most common SQL syntax errors.
We suggest the industry to follow either these or previously published general system message
guidelines.

APPENDICES

A SUGGESTED IMPROVEMENTS AND MODIFIED ERROR MESSAGES

Fig. 1. Test T01 (ambiguous column).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:17

Fig. 2. Test T02 (omitting quotes around character data).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:18 T. Taipalus and H. Grahn

Fig. 3. Test T03 (IS where not applicable).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:19

Fig. 4. Test T04 (confusing the syntax of keywords).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:20 T. Taipalus and H. Grahn

Fig. 5. T05 (confusing the logic of keywords).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:21

Fig. 6. Test T06 (too many columns in subquery).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:22 T. Taipalus and H. Grahn

Fig. 7. Test T07 (undefined column).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:23

Fig. 8. Test T08 (misspellings).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:24 T. Taipalus and H. Grahn

Fig. 9. Test T09 (failure to specify column name twice).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:25

Fig. 10. Test T10 (using an aggregate function outside SELECT or HAVING).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:26 T. Taipalus and H. Grahn

Fig. 11. Test T11 (grouping error: extraneous grouping column).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:27

Fig. 12. Test T12 (nonstandard operators).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:28 T. Taipalus and H. Grahn

Fig. 13. Test T13 (using WHERE twice).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:29

Fig. 14. Test T14 (nonstandard keywords or standard keywords in wrong context).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:30 T. Taipalus and H. Grahn

Fig. 15. Test T15 (synonyms).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:31

Fig. 16. Test T16 (curly, square or unmatched brackets).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:32 T. Taipalus and H. Grahn

B
E

R
R

O
R

M
E

S
S

A
G

E
C

O
D

IN
G

F
ig

.1
7.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

01
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:33

F
ig

.1
8.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

02
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:34 T. Taipalus and H. Grahn

F
ig

.1
9.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

03
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:35

F
ig

.2
0.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

04
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:36 T. Taipalus and H. Grahn

F
ig

.2
1.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

05
;M

y
S

Q
L

to
le

ra
te

d
th

e
sy

n
ta

x
er

ro
r.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:37

F
ig

.2
2.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

06
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:38 T. Taipalus and H. Grahn

F
ig

.2
3.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

07
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:39

F
ig

.2
4.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

08
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:40 T. Taipalus and H. Grahn

F
ig

.2
5.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

09
;M

y
S

Q
L

a
n

d
S

in
g
le

S
to

re
to

le
ra

te
d

th
e

sy
n

ta
x

er
ro

r.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:41

F
ig

.2
6.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

10
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:42 T. Taipalus and H. Grahn

F
ig

.2
7.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

11
;S

in
g
le

S
to

re
to

le
ra

te
d

th
e

sy
n

ta
x

er
ro

r.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:43

F
ig

.2
8.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

12
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:44 T. Taipalus and H. Grahn

F
ig

.2
9.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

13
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:45

F
ig

.3
0.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

14
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:46 T. Taipalus and H. Grahn

F
ig

.3
1.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

15
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

Framework for SQL Error Message Design 9:47

F
ig

.3
2.

E
rr

o
r

m
es

sa
g
es

a
n

d
co

d
in

g
fo

r
te

st
T

16
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

9:48 T. Taipalus and H. Grahn

ACKNOWLEDGMENTS

The authors thank all who participated in the study, as well as the anonymous reviewers for their
insights on how to improve the paper.

REFERENCES

[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister. 2016. Students’ syntactic mistakes

in writing seven different types of SQL queries and its application to predicting students’ success. In Proceedings

of the 47th ACM Technical Symposium on Computing Science Education. ACM, New York, NY, 401–406. DOI:https://

doi.org/10.1145/2839509.2844640

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’ semantic mistakes in writing seven

different types of SQL queries. In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer

Science Education. ACM, New York, NY, 272–277. DOI:https://doi.org/10.1145/2899415.2899464

[3] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare. 2019. Targeted example generation

for compilation errors. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software

Engineering. IEEE. DOI:https://doi.org/10.1109/ase.2019.00039

[4] Andrei Alexandrescu. 1999. Better template error messages. C/C++ Users Journal 17, 3 (1999), 37–47.

[5] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-Hill, and Chris Parnin. 2017.

Do developers read compiler error messages?. In Proceedings of the 2017 IEEE/ACM 39th International Conference on

Software Engineering. IEEE. DOI:https://doi.org/10.1109/icse.2017.59

[6] Brett A. Becker. 2016. An effective approach to enhancing compiler error messages. In Proceedings of the 47th ACM

Technical Symposium on Computing Science Education. ACM. DOI:https://doi.org/10.1145/2839509.2844584

[7] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey

Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler error messages

considered unhelpful. In Proceedings of the Working Group Reports on Innovation and Technology in Computer Science

Education . ACM. DOI:https://doi.org/10.1145/3344429.3372508

[8] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, and Catherine Mooney. 2016.

Effective compiler error message enhancement for novice programming students. Computer Science Education 26, 2–3

(2016), 148–175. DOI:https://doi.org/10.1080/08993408.2016.1225464

[9] Brett A. Becker, Cormac Murray, Tianyi Tao, Changheng Song, Robert McCartney, and Kate Sanders. 2018. Fix the first,

ignore the rest: Dealing with multiple compiler error messages. In Proceedings of the 49th ACM Technical Symposium

on Computer Science Education. ACM, New York, NY, 634–639. DOI:https://doi.org/10.1145/3159450.3159453

[10] A. Faye Borthick, Paul L. Bowen, S. T. Liew, and Fiona H. Rohde. 2001. The effects of normalization on end-

user query errors: An experimental evaluation. International Journal of Accounting Information Systems 2, 4 (2001),

195–221. DOI:https://doi.org/10.1016/S1467-0895(01)00023-9

[11] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries: A quite complete list. Journal of Systems

and Software 79, 5 (2006), 630–644. DOI:https://doi.org/10.1016/j.jss.2005.06.028

[12] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee, Vladimir Zadorozhny, and Xin Zhou.

2010. Learning SQL programming with interactive tools: From integration to personalization. ACM Transactions on

Computing Education 9, 4, Article 19 (2010), 15 pages. DOI:https://doi.org/10.1145/1656255.1656257

[13] Kathleen M. Cauley and James H. McMillan. 2010. Formative assessment techniques to support student motivation

and achievement. The Clearing House: A Journal of Educational Strategies, Issues and Ideas 83, 1 (2010), 1–6. DOI:https:

//doi.org/10.1080/00098650903267784

[14] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan, and Björn Hartmann. 2015. How

can automatic feedback help students construct automata? ACM Transactions on Computer-Human Interaction

22, 2, Article 9 (2015), 24 pages. DOI: https://doi.org/10.1145/2723163

[15] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syntax error messages appears ineffectual.

In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education . ACM, New York, NY,

273–278. DOI:https://doi.org/10.1145/2591708.2591748

[16] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C. Albrecht, and Garrett B.

Powell. 2021. On designing programming error messages for novices: Readability and its constituent factors. In

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM. DOI:https://doi.org/10.1145/

3411764.3445696

[17] G. M. Donahue. 2001. Usability and the bottom line. IEEE Software 18, 1 (2001), 31–37. DOI:https://doi.org/10.1109/52.

903161

[18] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch, Andreas Jedlitschka, and Markku Oivo.

2017. Empirical software engineering experts on the use of students and professionals in experiments. Empirical

Software Engineering 23, 1 (2017), 452–489. DOI:https://doi.org/10.1007/s10664-017-9523-3

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1109/ase.2019.00039
https://doi.org/10.1109/icse.2017.59
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1016/S1467-0895(01)00023-9
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1080/00098650903267784
https://doi.org/10.1145/2723163
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1109/52.903161
https://doi.org/10.1007/s10664-017-9523-3

Framework for SQL Error Message Design 9:49

[19] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, Andreas Jedlitschka, Natalia Juristo, Jürgen

Münch, Markku Oivo, Per Runeson, Martin Shepperd, Dag I. K. Sjøberg, and Burak Turhan. 2018. Four commentaries

on the use of students and professionals in empirical software engineering experiments. Empirical Software Engineer-

ing 23, 6 (2018), 3801–3820. DOI:https://doi.org/10.1007/s10664-018-9655-0

[20] Mrunal Gawade and Martin Kersten. 2012. Stethoscope: A platform for interactive visual analysis of query execution

plans. Proceedings of the VLDB Endowment 5, 12 (2012), 1926–1929. DOI:https://doi.org/10.14778/2367502.2367539

[21] Goetz Graefe. 1993. Query evaluation techniques for large databases. Computing Surveys 25, 2 (1993), 73–169.

DOI:https://doi.org/10.1145/152610.152611

[22] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Architecture of a database system. Foundations

and Trends in Databases 1, 2 (2007), 141–259. DOI:https://doi.org/10.1561/1900000002

[23] Richard Higgins, Peter Hartley, and Alan Skelton. 2002. The conscientious consumer: Reconsidering the role of as-

sessment feedback in student learning. Studies in Higher Education 27, 1 (2002), 53–64. DOI:https://doi.org/10.1080/

03075070120099368

[24] Hsiu-Fang Hsieh and Sarah E. Shannon. 2005. Three approaches to qualitative content analysis. Qualitative Health

Research 15, 9 (2005), 1277–1288. DOI:https://doi.org/10.1177/1049732305276687

[25] E. Kantorowitz and H. Laor. 1986. Automatic generation of useful syntax error messages. Software: Practice and Expe-

rience 16, 7 (1986), 627–640. DOI:https://doi.org/10.1002/spe.4380160703

[26] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind your language: On novices’ interactions

with error messages. In Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software. ACM, New York, NY, 3–18. DOI:https://doi.org/10.1145/2048237.2048241

[27] Davin McCall and Michael Kölling. 2019. A new look at novice programmer errors. ACM Transactions on Computing

Education 19, 4, Article 38 (2019), 30 pages. DOI:https://doi.org/10.1145/3335814

[28] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2021. Identifying SQL misconceptions of novices: Find-

ings from a think-aloud study. In Proceedings of the 17th ACM Conference on International Computing Education Re-

search. ACM, New York, NY, 355–367. DOI:https://doi.org/10.1145/3446871.3469759

[29] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou. 2022. Expert perspectives on student errors in SQL. ACM

Transactions on Computing Education 23, 1 (2022), 1–28. DOI:https://doi.org/10.1145/3551392

[30] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou. 2022. So many brackets! an analysis of how SQL learners

(Mis)manage complexity during query formulation. In Proceedings of the 30th IEEE/ACM International Conference on

Program Comprehension. ACM, New York, NY, 122–132. DOI:https://doi.org/10.1145/3524610.3529158

[31] Rolf Molich and Jakob Nielsen. 1990. Improving a human-computer dialogue. Communications of the ACM 33, 3 (1990),

338–348. DOI:https://doi.org/10.1145/77481.77486

[32] Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008. Backstop: A tool for debugging runtime errors.

In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education. ACM, 173–177. DOI:https://

doi.org/10.1145/1352135.1352193

[33] Emerson Murphy-Hill and Andrew P. Black. 2012. Programmer-friendly refactoring errors. IEEE Transactions on Soft-

ware Engineering 38, 6 (2012), 1417–1431. DOI:https://doi.org/10.1109/TSE.2011.110

[34] Jakob Nielsen. 1994. Enhancing the explanatory power of usability heuristics. In Proceedings of the Conference Com-

panion on Human Factors in Computing Systems. ACM, New York, NY, 210. DOI:https://doi.org/10.1145/259963.260333

[35] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM, New York, NY, 249–256. DOI:https://doi.org/10.1145/97243.97281

[36] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Compiler error messages. ACM SIGCSE Bul-

letin 40, 1 (2008), 168–172. DOI:https://doi.org/10.1145/1352322.1352192

[37] Shunsuke Otawa, Kento Goto, and Motomichi Toyama. 2021. Automatic correction of syntax errors in SuperSQL

queries. In Proceedings of the 22nd International Conference on Information Integration and Web-Based Applications &

Services . ACM, New York, NY, 28–33. DOI:https://doi.org/10.1145/3428757.3429131

[38] J. F. Pane, B. A. Myers, and L. B. Miller. 2002. Using HCI techniques to design a more usable programming system. In

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments. IEEE Computing

Society. DOI:https://doi.org/10.1109/hcc.2002.1046372

[39] Andrew Pavlo and Matthew Aslett. 2016. What’s really new with NewSQL? SIGMOD Record 45, 2 (2016), 45–55.

DOI:https://doi.org/10.1145/3003665.3003674

[40] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do enhanced compiler error messages help students? Results

inconclusive. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM, New

York, NY, 465–470. DOI:https://doi.org/10.1145/3017680.3017768

[41] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer, Nevan Simone, and Maxine

Cohen. 2017. On novices’ interaction with compiler error messages: A human factors approach. In Proceedings of

the 2017 ACM Conference on International Computing Education Research. ACM, New York, NY, 74–82. DOI:https://

doi.org/10.1145/3105726.3106169

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.14778/2367502.2367539
https://doi.org/10.1145/152610.152611
https://doi.org/10.1561/1900000002
https://doi.org/10.1080/03075070120099368
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1002/spe.4380160703
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1145/3551392
https://doi.org/10.1145/3524610.3529158
https://doi.org/10.1145/77481.77486
https://doi.org/10.1145/1352135.1352193
https://doi.org/10.1109/TSE.2011.110
https://doi.org/10.1145/259963.260333
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1145/3428757.3429131
https://doi.org/10.1109/hcc.2002.1046372
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3105726.3106169

9:50 T. Taipalus and H. Grahn

[42] Gary B. Randolph. 2003. The forest and the trees: Using oracle and SQL server together to teach ANSI-standard

SQL. In Proceedings of the 4th ACM Conference on Information Technology Curriculum. ACM, New York, NY, 234–236.

DOI:https://doi.org/10.1145/947121.947174

[43] Phyllis Reisner. 1977. Use of psychological experimentation as an aid to development of a query language. IEEE Trans-

actions on Software Engineering SE-3, 3 (1977), 218–229. DOI:https://doi.org/10.1109/tse.1977.231131

[44] Phyllis Reisner. 1981. Human factors studies of database query languages: A survey and assessment. Computing Sur-

veys 13, 1 (March 1981), 13–31. DOI:https://doi.org/10.1145/356835.356837

[45] Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. 1975. Human factors evaluation of two data base

query languages. In Proceedings of the National Computer Conference and Exposition. ACM. DOI:https://doi.org/10.

1145/1499949.1500036

[46] Shin-Shing Shin. 2020. Structured query language learning: Concept map-based instruction based on cognitive load

theory. IEEE Access 8 (2020), 100095–100110. DOI:https://doi.org/10.1109/ACCESS.2020.2997934

[47] Ben Shneiderman. 1982. Designing computer system messages. Communications of the ACM 25, 9 (1982), 610–611.

DOI:https://doi.org/10.1145/358628.358639

[48] Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven Jacobs, Niklas Elmqvist, and Nicholas Diakopoulos.

2016. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Pearson.

[49] John B. Smelcer. 1995. User errors in database query composition. International Journal of Human-Computer Studies

42, 4 (1995), 353–381. DOI:https://doi.org/10.1006/ijhc.1995.1017

[50] Toni Taipalus. 2020. The effects of database complexity on SQL query formulation. Journal of Systems and Software

165 (2020), 110576. DOI:https://doi.org/10.1016/j.jss.2020.110576

[51] Toni Taipalus. 2020. Explaining causes behind SQL query formulation errors. In Proceedings of the 2020 IEEE Frontiers

in Education Conference. 1–9. DOI:https://doi.org/10.1109/FIE44824.2020.9274114

[52] Toni Taipalus. 2023. Query execution plans and semantic errors: Usability and educational opportunities. In Proceed-

ings of the Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. ACM, New York,

NY, Article 239, 6 pages. DOI: https://doi.org/10.1145/3544549.3585794

[53] Toni Taipalus and Hilkka Grahn. 2023. NewSQL database management system compiler errors: Effectiveness and

usefulness. International Journal of Human–Computer Interaction (2023), 1–12. DOI:https://doi.org/10.1080/10447318.

2022.2108648 arXiv:https://doi.org/10.1080/10447318.2022.2108648

[54] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. 2021. Error messages in relational database management systems:

A comparison of effectiveness, usefulness, and user confidence. Journal of Systems and Software 181 (2021), 111034.

DOI:https://doi.org/10.1016/j.jss.2021.111034

[55] Toni Taipalus and Piia Perälä. 2019. What to expect and what to focus on in SQL query teaching. In Proceedings of the

50th ACM Technical Symposium on Computer Science Education. ACM, New York, NY, 198–203. DOI:https://doi.org/

10.1145/3287324.3287359

[56] Toni Taipalus and Ville Seppänen. 2020. SQL education: A systematic mapping study and future research agenda.

ACM Transactions on Computing Education 20, 3, Article 20 (2020), 33 pages. DOI:https://doi.org/10.1145/3398377

[57] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and complications in SQL query formulation. ACM

Transactions on Computing Education 18, 3, Article 15 (2018), 29 pages. DOI:https://doi.org/10.1145/3231712

[58] Jess Tan, Desmond Yeo, Rachael Neoh, Huey-Eng Chua, and Sourav S. Bhowmick. 2022. MOCHA: A tool for visualizing

impact of operator choices in query execution plans for database education. Proceedings of the VLDB Endowment 15,

12 (2022), 3602–3605. DOI:https://doi.org/10.14778/3554821.3554854

[59] Heikki Topi, Kate M. Kaiser, Janice C. Sipior, Joseph S. Valacich, J. F. Nunamaker, Jr., G. J. de Vreede, and Ryan Wright.

2010. Curriculum Guidelines for Undergraduate Degree Programs in Information Systems. Technical Report. ACM, New

York, NY. Retrieved from https://dl.acm.org/citation.cfm?id=2593310

[60] V. Javier Traver. 2010. On compiler error messages: What they say and what they mean. Advances in Human-Computer

Interaction 2010 (2010), 1–26. DOI:https://doi.org/10.1155/2010/602570

[61] Weiguo Wang, Sourav S. Bhowmick, Hui Li, Shafiq Joty, Siyuan Liu, and Peng Chen. 2021. Towards enhancing data-

base education: Natural language generation meets query execution plans. In Proceedings of the 2021 International

Conference on Management of Data. ACM, New York, NY, 1933–1945. DOI:https://doi.org/10.1145/3448016.3452822

[62] C. Welty. 1985. Correcting user errors in SQL. International Journal of Man-Machine Studies 22, 4 (1985), 463–477.

DOI:https://doi.org/10.1016/s0020-7373(85)80051-1

[63] Charles Welty and David W. Stemple. 1981. Human factors comparison of a procedural and a nonprocedural query

language. ACM Transactions on Database Systems 6, 4 (1981), 626–649. DOI:https://doi.org/10.1145/319628.319656

[64] John Wrenn and Shriram Krishnamurthi. 2017. Error messages are classifiers: A process to design and evaluate er-

ror messages. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software. ACM. DOI:https://doi.org/10.1145/3133850.3133862

Received 16 June 2022; revised 27 April 2023; accepted 12 June 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 9. Pub. date: November 2023.

https://doi.org/10.1145/947121.947174
https://doi.org/10.1109/tse.1977.231131
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/1499949.1500036
https://doi.org/10.1109/ACCESS.2020.2997934
https://doi.org/10.1145/358628.358639
https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1109/FIE44824.2020.9274114
https://doi.org/10.1145/3544549.3585794
https://doi.org/10.1080/10447318.2022.2108648
http://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3398377
https://doi.org/10.1145/3231712
https://doi.org/10.14778/3554821.3554854
https://dl.acm.org/citation.cfm?id=2593310
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/3448016.3452822
https://doi.org/10.1016/s0020-7373(85)80051-1
https://doi.org/10.1145/319628.319656
https://doi.org/10.1145/3133850.3133862

