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Abstract
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1 Introduction

General overview

In this paper, we focus on the theory of measurable Banach bundles over a given
σ -finite measure space (X, �,m). Our primary aim is to understand whether some
important properties of the fibers of ameasurableBanach bundle (such asHilbertianity,
uniform convexity, and reflexivity) carry over to the space of its L p-sections, and vice
versa.

Given an ‘ambient’Banach spaceB, aweaklymeasurablemultivaluedmapE : X �
B is said to be a Banach B-bundle on X if E(x) is a closed linear subspace of B for
every x ∈ X. A strongly m-measurable map v : X → B, such that v(x) ∈ E(x) for
every x ∈ X is called a section of E. For any exponent p ∈ (1,∞), we denote by
�p(E) the space of (equivalence classes, up to m-a.e. equality, of) those sections of E
for which X � x �→ ‖v(x)‖B ∈ R belongs to L p(m). It is worth pointing out that the
well-known concept of Lebesgue–Bochner space L p(m; B) is a particular instance of
a section space, corresponding to the bundle constantly equal to B.

The space �p(E) naturally comes with a pointwise multiplication by L∞(m)-
functions and with a pointwise norm operator | · | : �p(E) → L p(m), given by
|v| := ∥

∥v(·)‖B. The function �p(E) � v �→ ‖v‖�p(E) := ∥
∥|v|∥∥L p(m)

defines a
complete norm on �p(E). All in all, �p(E) is an L p(m)-normed L∞(m)-module, in
the sense of Gigli [7]. We remark that, more surprisingly, in the case of separable
normed modules the converse implication holds as well: every separable L p(m)-
normed L∞(m)-module M is isomorphic to �p(E), for some measurable Banach
B-bundle E on X, where B is a separable Banach space. This representation result—
first obtained in [20] for ‘locally finitely generated’ modules and later generalised
in [4] to all separable modules—in fact strongly motivates our interest towards the
language of measurable Banach bundles.

The theory of L p(m)-normed L∞(m)-modules was introduced by Gigli in [7]—as
already mentioned—and refined further in [6]. The main purpose was to provide a
robust functional–analytic framework, suitable for constructing effective notions of
1-forms and vector fields in the setting of metric measure spaces. The key object intro-
duced in [7] is the cotangent module L2(T ∗X), which is obtained, roughly speaking,
as the completion of the L∞(m)-linear combinations of the ‘formal differentials’ d f
of Sobolev functions f ∈ W 1,2(X). It is evident that it is not sufficient to consider
only the Banach space structure of L2(T ∗X), but instead one has to keep track also
of the ‘pointwise’ behaviour of the elements of L2(T ∗X), which is encoded into the
L∞(m)-module structure and the pointwise norm. Due to this reason, L p(m)-normed
L∞(m)-modules were the correct class of spaces to take into account. In this regard,
an enlightening side result—which is not strictly needed for the purposes of this
paper, but that we report for future reference—will be discussed in Appendix 1. More
precisely, in Theorem A.2 we will characterise those complete norms over a given
L∞(m)-module that are induced by an L p(m)-valued pointwise norm operator via
integration.
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Prior to the development of L p-normed L∞-modules on metric measure spaces,
some strictly related notions were already well-established in the literature: for
instance, random normed modules (or RN modules, or randomly normed spaces) were
introduced by Guo [10] (after Schweizer and Sklar [23]) and by Haydon et al. [18],
independently. Typically, random normed modules are formulated over a probability
measure space. In view of this fact, we will work in the general framework of normed
modules over a σ -finite measure space (and not only over a metric measure space).
The notion of a random normed module is an important concept in random metric
theory, which is derived from the investigation of probabilistic metric spaces. A key
construction in this theory is that of a random conjugate space. The random metric
theory has applications in finance optimisation problems, and it is connected with the
study of conditional and dynamic risk measures. See [15] and the references therein.

Statement of results

Let us now describe more in details the main results that we will achieve in this paper.
Fix a σ -finite measure space (X, �,m), a separable Banach spaceB, and ameasurable
Banach B-bundle E on X. Then, we will prove the following statements:

(a) E(x) is Hilbert for m-a.e. x ∈ X if and only if �2(E) is Hilbert. See Theorem 3.1.
(b) E(x) is uniformly convex for m-a.e. x ∈ X (and with modulus of convexity inde-

pendent of x) if and only if �p(E) is uniformly convex for all p ∈ (1,∞). See
Theorem 3.5. Its proof is more involved than the one for the Hilbertian case, and
relies upon some previous results about random uniform convexity by Guo and
Zeng [16, 17]. The corresponding statement for Lebesgue–Bochner spaces can be
found, e.g., in [3].

(c) E(x) is reflexive for m-a.e. x ∈ X if and only if �p(E) is reflexive for all
p ∈ (1,∞). See Theorem 3.12.

The above results are well-known in the special case of Lebesgue–Bochner spaces.
We point out that the implication ‘L p(m; B) reflexive implies B reflexive’ can be
easily proved: assuming m(X) = 1 for simplicity, one can realise B as a closed linear
subspace of L p(m; B) (by sending each v ∈ B to the section constantly equal to v).
However, the corresponding implication ‘�p(E) reflexive implies E(x) reflexive for
m-a.e. x’ will require a much more difficult proof.

We also mention that, along the way to prove item c), we will obtain a result of
independent interest: shortly said, given a measurable Banach B-bundle E (with B not
necessarily separable), the dual of�p(E) as a normedmodule can be identifiedwith the
space of q-integrableweakly∗ measurable sections of the dual bundleX � x �→ E(x)′,
where 1

p + 1
q = 1. See Sect. 3.2 for the precise formulation, as well as Theorem

3.8 for the relevant equivalence result. The corresponding statement for Lebesgue–
Bochner spaces, stating that L p(m; B)′ can be identified with the space Lq

w∗(m; B
′) of

q-integrable ‘weakly∗ measurable’ maps from (X, �,m) toB
′, was previously known

(see [13]). We also point out that a variant of the statement in c) for normed modules
has been recently obtained in [8, Theorems 3.9 and 4.17]. However, in general neither
the results of [8] imply c), nor the vice versa.
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Addendum

While in a previous version of this manuscript only one of the two implications in
(c) was obtained (namely, that ‘reflexive fibers implies reflexive section space’), in
the current version the full equivalence is proved. This is due to the fact that an
anonymous colleague kindly pointed out to us the result [18, Theorem 6.19], which
is the analogue of (c) in the setting of direct integrals. However, we do not obtain the
implication ‘reflexive section space implies reflexive fibers’ as a consequence of [18,
Theorem 6.19], but we rather follow the same proof strategy; see Remark 3.13 for
more comments on this. It would be very interesting—but outside the scopes of this
manuscript—to investigate the relation between our notion of Banach bundle and the
theory of direct integrals considered in [18].

2 Preliminaries

To begin with, we fix some general terminology, which we will use throughout the
entire paper. For any p ∈ [1,∞], we tacitly denote by q ∈ [1,∞] its conjugate
exponent, that is

1

p
+ 1

q
= 1.

Given a σ -finite measure space (X, �,m), we denote by L0
ext(�) the space of all

measurable functions from X to R ∪ {±∞}, while L0
ext(m) stands for the quotient of

L0
ext(�) up to m-a.e. equality. We call πm : L0

ext(�) → L0
ext(m) the usual projection

map on the quotient. Moreover, we define

L0(�) := {

f ∈ L0
ext(�)

∣
∣ f (X) ⊆ R

}

and L0(m) := πm

(L0(�)
)

. During this paper, we will use two different notions of
‘essential supremum/infimum’, namely:

• If f ∈ L0
ext(�) and E ∈ �, we define ess supE f , ess infE f ∈ R ∪ {±∞} respec-

tively as

ess sup
E

f := inf
{

λ ∈ R ∪ {±∞}
∣
∣
∣ f ≤ λ, holds m-a.e. on E

}

,

ess inf
E

f := sup
{

λ ∈ R ∪ {±∞}
∣
∣
∣ f ≥ λ, holds m-a.e. on E

}

.

• Given a (possibly uncountable) family { fi }i∈I ⊆ L0
ext(�), we define

∨

i∈I fi ∈
L0
ext(m) as the unique f ∈ L0

ext(m), such that fi ≤ f m-a.e. for every i ∈ I and
satisfying

g ∈ L0
ext(m), fi ≤ g m-a.e. for every i ∈ I �⇒ f ≤ g m-a.e.



On the reflexivity properties of Banach bundles... Page 5 of 26     7 

Similarly,
∧

i∈I fi ∈ L0
ext(m) is the unique element f of L0

ext(m), such that fi ≥ f
m-a.e. for every i ∈ I and satisfying

g ∈ L0
ext(m), fi ≥ g m-a.e. for every i ∈ I �⇒ f ≥ g m-a.e.

Notice that the above notions of essential supremum/infimum are invariant under
modifications of the functions f and fi on an m-negligible set, thus accordingly we
can unambiguously consider ess supE f , ess infE f ,

∨

i∈I fi ,
∧

i∈I fi whenever f and
fi are elements of L0

ext(m).
The Lebesgue spaces are defined in the usual way: given any p ∈ [1,∞), we

define

Lp(m) :=
{

f ∈ L0(�)

∣
∣
∣
∣

∫

| f |p dm < +∞
}

,

L∞(m) :=
{

f ∈ L0(�)

∣
∣
∣
∣
sup
X

| f | < +∞
}

.

We also consider the spaces L p(m) := πm

(Lp(m)
)

and L∞(m) := πm

(L∞(m)
)

,
which are Banach spaces if endowed with the usual pointwise operations and with the
norms

‖ f ‖L p(m) :=
( ∫

| f |p dm

)1/p

, ‖ f ‖L∞(m) := ess sup
X

| f |.

Recall that Lq(m) is isomorphic as a Banach space to the dual of L p(m).
It is worth recalling that, given an arbitrary σ -finite measure space (X, �,m) and

any exponent p ∈ [1,∞), the Lebesgue space L p(m) is not necessarily separable. In
fact, it holds that

(X, �,m) is separable ⇐⇒ L p(m) is separable for every p ∈ [1,∞), (2.1)

where (X, �,m) is said to be separable provided there exists a countable family
C ⊆ � for which the following property holds: given any set E ∈ � withm(E) < +∞
and ε > 0, there exists F ∈ C, such thatm(E�F) < ε. The equivalence stated in (2.1)
is well-known; it follows, for instance, from [4, Lemma 2.14]. We also point out that
if (X,d) is a complete and separable metric space, � is the Borel σ -algebra of X, and
m is a boundedly-finite Borel measure on X, then (X, �,m) is a separable measure
space.

2.1 Banach spaces

Let us begin by fixing some basic terminology about Banach spaces. Given a Banach
space B, we denote by B

′ its (continuous) dual space. Moreover, we denote by BB and
SB the closed unit ball and the unit sphere of B, respectively. Namely, we set

BB := {

v ∈ B
∣
∣ ‖v‖B ≤ 1

}

, SB := {

v ∈ B
∣
∣ ‖v‖B = 1

}

.
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In this paper we are mostly concerned with Hilbert, uniformly convex, and reflexive
spaces.We recall the notion of uniform convexity, just to fix a notation for the modulus
of convexity.

Definition 2.1 (Uniform convexity) LetBbe aBanach space.Let us define themodulus
of convexity δB : (0, 2) → [0, 1] of the space B as follows: given any ε ∈ (0, 2), we
set

δB(ε) := inf

{

1 −
∥
∥
∥
∥

v + w

2

∥
∥
∥
∥

B

∣
∣
∣
∣
v,w ∈ SB, ‖v − w‖B ≥ ε

}

.

Then we say that B is uniformly convex if and only if δB(ε) > 0 holds for every
ε ∈ (0, 2).

It is well-known that the following implications are verified:

B is Hilbert �⇒ B is uniformly convex �⇒ B is reflexive.

The following elementary observation will play a rôle during the proof of Theorem
3.5.

Remark 2.2 The uniform convexity condition can be checked on a dense set. Namely,
given any dense subset D of SB, one has that for every ε ∈ (0, 2) it holds that

δB(ε) = inf

{

1 −
∥
∥
∥
∥

v + w

2

∥
∥
∥
∥

B

∣
∣
∣
∣
v,w ∈ D, ‖v − w‖B > ε

}

.

This claim can be easily proved via a standard approximation argument.

Let us briefly recall the basic theory of Lebesgue–Bochner spaces; for a detailed
account we refer, e.g., to [19]. Fix a σ -finite measure space (X, �,m) and a Banach
space B. Then, a given map v : X → B is said to be strongly m-measurable if it ism-
measurable and essentially separably valued, i.e., there exists an m-null set N ∈ �

such that the image v(X\N ) ⊆ B is separable. It holds that a given map v : X → B is
stronglym-measurable if and only if it is both essentially separably valued and weakly
m-measurable, that is

X � x �→ 〈ω, v(x)〉 ∈ R, is m-measurable for every ω ∈ B
′.

We denote by L0(m; B) the space of all strongly m-measurable maps from X to B,
while for any given exponent p ∈ [1,∞) we define

Lp(m; B) :=
{

v ∈ L0(m; B)

∣
∣
∣
∣

∫

‖v(·)‖p
B
dm < +∞

}

,

L∞(m; B) :=
{

v ∈ L0(m; B)

∣
∣
∣
∣
sup
X

‖v(·)‖B < +∞
}

.
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These definitions are well-posed, since ‖v(·)‖B is m-measurable thanks to the m-
measurability of v and the continuity of ‖ · ‖B. We introduce an equivalence relation
on L0(m; B): given any v,w ∈ L0(m; B), we declare that v ∼ w if and only if
v(x) = w(x) for m-a.e. x ∈ X. Then, we define

L0(m; B) := L0(m; B)/ ∼,

while πm : L0(m; B) → L0(m; B) stands for the projection map on the quotient.
Moreover, we define L p(m; B) := πm

(Lp(m; B)
)

for every p ∈ [1,∞]. The linear
space L p(m; B) becomes a Banach space if it is endowedwith the norm ‖v‖L p(m;B) :=
∥
∥‖v(·)‖B

∥
∥

L p(m)
. The spaces L p(m; B) are called theLebesgue–Bochner spaces.Note

also that L p(m; R) = L p(m).

2.2 Banach bundles

Aimof this section is to recall the notionofBanachbundle introduced in [4] and itsmain
properties. Let us fix a measurable space (X, �) and a Banach spaceB. By ϕ : X � B

we denote a multivalued map, i.e., a map from X to the power set of B. Following
[1], we say that ϕ is weakly measurable provided

{

x ∈ X : ϕ(x) ∩ U �= ∅
} ∈ �

holds for every open set U ⊆ B. The following definition is taken from [4, Definition
4.1] (cf. also with [21, Definition 2.15] for the case of a non-separable ambient space
B):

Definition 2.3 (Banach bundle) Let (X, �) be a measurable space and B a Banach
space. Then a given weakly measurable multivalued map E : X � B is said to be
a Banach B-bundle on X provided E(x) is a closed linear subspace of B for every
x ∈ X.

We define the support of a Banach B-bundle E as follows:

H(E) := {

x ∈ X
∣
∣ E(x) �= {0B}}.

Notice that H(E) = X\{x ∈ X : E(x) ∩ (B\{0B}) �= ∅
} ∈ �.

Let us also introduce the following subclasses of Banach bundles, which will be
studied in details in Sects. 3.1 and 3.3.

Definition 2.4 (Hilbert, uniformly convex, reflexive bundles) Let (X, �,m) be a mea-
sure space, B a Banach space, and E a Banach B-bundle over X. Then, we say that:

(i) E is Hilbert if E(x) is Hilbert for m-a.e. x ∈ X.
(ii) E is uniformly convex if E(x) is uniformly convex for m-a.e. x ∈ X.
(iii) E is reflexive if E(x) is reflexive for m-a.e. x ∈ X.

Let (X, �,m) be a σ -finite measure space. By a section of a Banach B-bundle
E over X we mean a measurable selector of E, i.e., a strongly m-measurable map
v : X → B with v(x) ∈ E(x) for all x ∈ X. We denote by �̄0(E) the family of all
sections of E. We introduce an equivalence relation on �̄0(E): given v,w ∈ �̄0(E),
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we declare that v ∼ w if and only if v(x) = w(x) for m-a.e. x ∈ X. We then define

�0(E) := �̄0(E)/ ∼,

while πm : �̄0(E) → �0(E) stands for the projection map on the quotient. By analogy
with the case of Lebesgue–Bochner spaces, for any given exponent p ∈ [1,∞] we
define

�̄p(E) :=
{

v ∈ �̄0(E)

∣
∣
∣
∣
‖v(·)‖B ∈ Lp(m)

}

, �p(E) := πm

(

�̄p(E)
)

.

The previous definitions are well-posed, since X � x �→ ‖v(x)‖B ∈ R is m-
measurable thanks to the strong m-measurability of v and the continuity of ‖ · ‖B.
One can readily check that �p(E) is a Banach space if endowed with the pointwise
operations and with the norm

‖v‖�p(E) := ∥
∥‖v(·)‖B

∥
∥

L p(m)
, for every v ∈ �p(E).

This is de facto a generalisation of Lebesgue–Bochner spaces: calling EB the Banach
B-bundle whose fibers are constantly equal to the space B, it holds that �̄p(EB) =
Lp(m; B) and �p(EB) = L p(m; B).

Remark 2.5 Consistentlywith the case ofLebesgue spaces, the space of sections�p(E)

of a given Banach B-bundle E over X needs not be separable, even if B is separable,
m is σ -finite, and p ∈ [1,∞). In fact, under the assumption that the ambient space B

is separable, it holds that

�p(E) is separable for all p ∈ [1,∞) ⇐⇒ (

X, �,m|H(E)

)

is separable.

We omit the proof, similar to the one of (2.1).

Hereafter, we shall focus on σ -finite measure spaces and Banach B-bundles E over
X, where the space B is separable. We will need the following result, taken from [4,
Proposition 4.4], whose proof we sketch here for the reader’s usefulness.

Proposition 2.6 Let (X, �,m) be a σ -finite measure space. Let B be a separable
Banach space and let E be a Banach B-bundle over X. Let p ∈ [1,∞) be given. Then
there exists a countable Q-linear subspace C of �̄p(E), such that E(x) = clB

{

v(x) :
v ∈ C} for every x ∈ X.

Proof Fix (wn)n∈N dense in B. For any k, n ∈ N, we define ϕnk : X � B as

ϕnk(x) :=
{{

w ∈ E(x) : ‖w − wn‖B ≤ 1/k
}

,

{0B},
if such set is not empty,
otherwise.

One can readily check that the multivalued map ϕnk is weakly measurable. Therefore,
an application of the Kuratowski–Ryll-Nardzewski Selection theorem (see, e.g., [1,
Theorem 18.13]) ensures the existence of a section vnk ∈ �̄p(E), such that vnk ∈
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ϕnk(x) for every x ∈ X. This implies that {vnk : n, k ∈ N} is dense in E(x) for every
x ∈ X. Consequently, the Q-linear subspace of �̄p(E) generated by {vnk : n, k ∈ N}
fulfils the requirements. ��

We will need also the following easy consequence of Proposition 2.6:

Corollary 2.7 Let (X, �,m) be a σ -finite measure space. Let B be a separable Banach
space and let E be a Banach B-bundle over X. Then, there exists a countable subset
D of �̄∞(E), such that

∥
∥v(x)

∥
∥

B
∈ {0, 1}, for every v ∈ D and x ∈ X,

SE(x) ⊆ clB
{

v(x)
∣
∣ v ∈ D}

, for every x ∈ X.

Proof Take any family C as in Proposition 2.6 and define

D := {

1{‖v(·)‖B>0}‖v(·)‖−1
B

v(·) ∣
∣ v ∈ C} ⊆ �̄∞(E).

It is then immediate to check that D has the desired properties. ��

2.3 Banachmodules

In this section, we recall the basics of the theory of Banach modules. We begin by
introducing the notion of L p-normed L∞-module proposed by N. Gigli [7].

Definition 2.8 (L p-normed L∞-module) Let (X, �,m) be a σ -finite measure space
and let p ∈ (1,∞) be a given exponent. Let M be a module over L∞(m). Then, a
map | · | : M → L p(m) is said to be an L p(m)- pointwise norm on M provided it
verifies the following conditions:

|v| ≥ 0, for every v ∈ M , with |v| = 0 ⇐⇒ v = 0, (2.2a)

|v + w| ≤ |v| + |w|, for every v,w ∈ M , (2.2b)

| f · v| = | f ||v|, for every f ∈ L∞(m) and v ∈ M , (2.2c)

where equalities and inequalities are intended in them-a.e. sense. The couple (M , | · |)
is called an L p(m)-normed L∞(m)-module. We endow M with the norm ‖ · ‖M ,
given by

‖v‖M := ∥
∥|v|∥∥L p(m)

, for every v ∈ M .

When the norm ‖ · ‖M is complete, we say that (M , | · |) is an L p(m)-Banach
L∞(m)-module.

The support of an L p(m)-Banach L∞(m)-module M is defined as the m-a.e.
uniquely determined set H(M ) ∈ �, such that

1H(M ) =
∨{

1{|v|>0}
∣
∣ v ∈ M

}

.
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A prototypical example of L p(m)-Banach L∞(m)-module is the space of L p(m)-
sections of a Banach B-bundle E over X, the L p(m)-pointwise norm on �p(E) being
|v| := ‖v(·)‖E(·). If the space B is separable, then H(�p(E)) is (m-a.e. equivalent to)
the support H(E) of E for every p ∈ (1,∞).

An important class of L2(m)-Banach L∞(m)-modules is that of Hilbert modules.
Following [7, Definition 1.2.20], an L2(m)-Banach L∞(m)-module H is said to be
Hilbert provided it is Hilbert when viewed as a Banach space. It is shown in [7, Propo-
sition 1.2.21] that H is a Hilbert module if and only if the pointwise parallelogram
identity holds:

|v + w|2 + |v − w|2 = 2|v|2 + 2|w|2 m-a.e., for every v,w ∈ H .

An operator between two L p(m)-normed L∞(m)-modules is called a homo-
morphism of L p(m)-normed L∞(m)-modules provided it is L∞(m)-linear and
continuous. The dual of an L p(m)-normed L∞(m)-moduleM is given by the space
M ∗ of all L∞(m)-linear and continuous maps fromM to L1(m). It holds thatM ∗ is
an Lq(m)-Banach L∞(m)-module if endowed with the Lq(m)-pointwise norm oper-
ator | · | : M ∗ → Lq(m), which is defined as

|ω| :=
∨ {

ω(v)
∣
∣ v ∈ M , |v| ≤ 1 holds m-a.e.

}

, for every ω ∈ M ∗.

We thus have a natural duality pairing 〈·, ·〉 : M ∗ × M → L1(m), which is given by
〈ω, v〉 := ω(v) for everyω ∈ M ∗ and v ∈ M . Notice that 〈·, ·〉 is a ‘pointwise’ duality
pairing, taking values in L1(m) (and not inR). The Hahn–Banach theorem for normed
modules ([11, 14], also [22, Theorem 3.30]) implies that if N is an L p(m)-Banach
L∞(m)-submodule ofM , then eachω ∈ N ∗ can be extended to an element ω̄ ∈ M ∗
satisfying |ω̄| = |ω|. We denote by JM : M → M ∗∗ the James’ embedding of M
into its bidual, i.e., the unique homomorphism of L p(m)-Banach L∞(m)-modules
satisfying

〈JM (v), ω〉 = 〈ω, v〉, for every v ∈ M and ω ∈ M ∗. (2.3)

We have that |JM (v)| = |v| holds m-a.e. for every v ∈ M (as a consequence of
the Hahn–Banach theorem for normed modules). Then,M is said to be reflexive (as
a module) provided JM is surjective (and thus an isomorphism). According to [7,
Corollary 1.2.18], M is reflexive if and only if it is reflexive as a Banach space.

Let us also recall the notion of adjoint operator: given a homomorphism
ϕ : M → N between two L p(m)-Banach L∞(m)-modules M and N , we denote
by ϕad : N ∗ → M ∗ the unique homomorphism of Lq(m)-Banach L∞(m)-modules,
such that

〈ϕad(ω), v〉 = 〈ω, ϕ(v)〉, for every ω ∈ N ∗ and v ∈ M . (2.4)

It holds that ϕad is an isomorphism if and only if ϕ is an isomorphism.
In the theory of Banach modules, it is often convenient to drop the integrability

assumption:
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Definition 2.9 (L0-normed L0-module) Let (X, �,m) be a σ -finite measure space.
Let M be a module over L0(m). Then, a map | · | : M → L0(m) is said to be an
L0(m)-pointwise norm onM provided it verifies (2.2a), (2.2b), (2.2c), but replacing
L∞(m)with L0(m) in (2.2c). The couple (M , |·|) is called an L0(m)-normed L0(m)-
module, or a random normed module over R with base (X, �,m) in the case where
m is a probability measure. We also endow M with the distance dM , given by

dM (v,w) :=
∫

min{|v − w|, 1} dm′, for every v,w ∈ M , (2.5)

where m′ is any given probability measure on � satisfying m � m′ � m. When dM
is complete, (M , | · |) is called an L0(m)-Banach L0(m)-module.

A key example of L0(m)-Banach L0(m)-module is the space �0(E), where E is a
Banach B-bundle over X, and as an L0(m)-pointwise norm on �0(E) we consider
|v| := ‖v(·)‖E(·).

It is worth pointing out that a random normed module is complete with respect to
the distance introduced in (2.5) if and only if it is complete in the sense of [16, 17],
i.e., with respect to the so-called (ε, λ)-topology. Indeed, both the topology induced
by the L0-distance and the (ε, λ)-topology coincide with the one of ‘convergence in
measure’, cf. with [9] and [12].

An operator between two L0(m)-normed L0(m)-modules is called a homomor-
phism of L0(m)-normed L0(m)-modules provided it is L0(m)-linear and continuous.

The relation between L p(m)-Banach L∞(m)-modules and L0(m)-Banach L0(m)-
modules can be expressed by the following result, which is taken from [6, Theo-
rem/Definition 2.7] and follows also from [13, Theorem 3.1].

Proposition 2.10 (L0-completion) Let (X, �,m) be a σ -finite measure space. Let M
be an L p(m)-Banach L∞(m)-module, for some exponent p ∈ (1,∞). Then, there
exists a unique couple (M 0, ι), where M 0 is an L0(m)-Banach L0(m)-module, while
ι : M → M 0 is a linear operator which preserves the pointwise norm and has
dense image. Uniqueness is intended up to unique isomorphism: given another couple
(N 0, ι′) having the same properties, there exists a unique isomorphism of L0(m)-
Banach L0(m)-modules � : M 0 → N 0, such that ι′ = � ◦ ι. The space M 0 is
called the L0(m)-completion of M .

3 Main results

3.1 Hilbertian and uniformly convex bundles/modules

In this section, we prove that a given separable Banach bundle is Hilbert (resp. uni-
formly convex) if and only if its space of sections is Hilbert (resp. uniformly convex).
Let us begin with Hilbert bundles/modules.

Theorem 3.1 (Hilbert bundles/modules) Let (X, �,m) be a σ -finite measure space.
Let B be a separable Banach space and let E be a Banach B-bundle over X. Then, E
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is a Hilbert bundle if and only if �2(E) is a Hilbert space. Necessity holds also when
B is non-separable.

Proof Suppose B is an arbitrary Banach space and E is a Hilbert bundle. Fix v,w ∈
�2(E). Then,

‖v(x) + w(x)‖2E(x) + ‖v(x) − w(x)‖2E(x) = 2‖v(x)‖2E(x) + 2‖w(x)‖2E(x)

for m-a.e. x ∈ X. By integrating it over X, we obtain

‖v + w‖2�2(E) + ‖v − w‖2�2(E) = 2‖v‖2�2(E) + 2‖w‖2�2(E),

whence it follows that �2(E) is a Hilbert module.
Conversely, suppose B is separable and �2(E) is a Hilbert module. Thanks to

Proposition 2.6, we can find a Q-linear space (vn)n∈N ⊆ �2(E), such that {vn(x) :
n ∈ N} is dense in E(x) for m-a.e. x ∈ X. We argue by contradiction: suppose there
exists P ′ ∈ � withm(P ′) > 0, such that E(x) is non-Hilbert for every x ∈ P ′. Hence,
there must exist n, m ∈ N and P ∈ �, with P ⊆ P ′ and m(P) > 0, such that for
m-a.e. x ∈ P it holds

‖vn(x) + vm(x)‖2E(x) + ‖vn(x) − vm(x)‖2E(x) < 2‖vn(x)‖2E(x) + 2‖vm(x)‖2E(x).

By integrating the above inequality over P , we conclude that

‖1P · vn + 1P · vm‖2�2(E) + ‖1P · vn − 1P · vm‖2�2(E)

< 2‖1P · vn‖2�2(E) + 2‖1P · vm‖2�2(E),

thus leading to a contradiction with the assumption that �2(E) is a Hilbert module. ��

Next, we aim at obtaining the analogue of Theorem 3.1, but with the term ‘Hilbert’
replaced by ‘uniformly convex’. Its proof, which is more involved than the one for
the Hilbertian case, requires some auxiliary notions and results. More precisely, we
have to work with the concept of ‘pointwise uniform convexity’, see Definition 3.2.
This notion was proposed and studied by Guo and Zeng in [16, 17], where it is called
‘random uniform convexity’.

Definition 3.2 (Pointwise uniform convexity) Let (X, �,m) be a σ -finite measure
space and letM be an L p(m)-Banach L∞(m)-module for some exponent p ∈ (1,∞).
We denote by | · | the L p(m)-pointwise norm onM . Then, the pointwise modulus of
convexity δ

pw
M : (0, 2) → L∞(m) ofM is defined as

δ
pw
M (ε) :=

∧
{

1H(M ) − 1H(M )

∣
∣
∣
∣

v + w

2

∣
∣
∣
∣

∣
∣
∣
∣

v,w ∈ M 0, |v| = |w| = 1 and
|v − w| > ε m-a.e. on H(M )

}

,
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for every ε ∈ (0, 2), where M 0 denotes the L0(m)-completion of M . Moreover, we
say that M is pointwise uniformly convex if and only if

ess inf
H(M )

δ
pw
M (ε) > 0, for every ε ∈ (0, 2).

When m is a probability measure, the notion of pointwise uniform convexity in
Definition 3.2 coincides with the one of random uniform convexity (see [16, Definition
4.1] and [24]). Notice also that, given a Banach B-bundle E on X and two exponents
p, p′ ∈ (1,∞), one has that δpw�p(E) = δ

pw
�p′ (E).

The following theorem, which states that the pointwise uniform convexity of a
Banach module is equivalent to its uniform convexity as a Banach space, is a beautiful
result obtained by Guo and Zeng in [16, 17]; they consider probability measures, but
it is easy to see that it holds for σ -finite measures.

Theorem 3.3 Let (X, �,m) be a σ -finite measure space and let M be an L p(m)-
Banach L∞(m)-module for some p ∈ (1,∞). Then,M is pointwise uniformly convex
if and only if it is uniformly convex as a Banach space.

Before stating the main result of this section, we need to check the following
technical fact:

Remark 3.4 Let (X, �,m) be a σ -finite measure space, B a separable Banach space,
E a Banach B-bundle over X. Then, the function X � x �→ δE(x)(ε) is m-measurable
for every ε ∈ (0, 2). Indeed, given any D as in Corollary 2.7, we know from Remark
2.2 that the function δE(·)(ε) can be written as

inf
v,w∈D

(

1 − 1{‖v(·)‖B=1}1{‖w(·)‖B=1}1{‖v(·)−w(·)‖B>ε}
∥
∥
∥
∥

v(·) + w(·)
2

∥
∥
∥
∥

B

)

. (3.1)

In particular, the function δE(·)(ε) can be expressed as a countable infimum of m-
measurable functions, thus it is m-measurable. This yields the claim.

Finally, we are in a position to prove the equivalence between the uniform convexity
of a given separable Banach bundle and the uniform convexity of its space of sections.

Theorem 3.5 (Uniformly convex bundles/modules) Let (X, �,m) be a σ -finite mea-
sure space. Let B be a separable Banach space and let E be a Banach B-bundle over
X. Then, it holds that

δE(x)(ε) = δ
pw
�p(E)(ε)(x), for every ε ∈ (0, 2) and m-a.e. x ∈ H(E). (3.2)

In particular, the following two conditions are equivalent:

(i) E is a uniformly convex bundle and ess infH(E)δE(·)(ε) > 0 for all ε > 0.
(ii) �p(E) is uniformly convex for every (or, equivalently, for some) exponent p ∈

(1,∞).
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Proof Fix ε ∈ (0, 2). We aim to show that πm

(

δE(·)(ε)
) = δ

pw
�p(E)(ε) on H(E). Take

anyD as in Corollary 2.7 and recall that δE(·)(ε) can bewritten as in (3.1). Fix auxiliary
elements v̄, w̄ ∈ �̄∞(E) satisfying ‖v̄(x)‖B = ‖w̄(x)‖B = 1 and ‖v̄(x)−w̄(x)‖B > ε

for every x ∈ H(E). Given any v,w ∈ D, we denote

Avw := {

x ∈ H(E)
∣
∣ ‖v(x)‖B = ‖w(x)‖B = 1, ‖v(x) − w(x)‖B > ε

} ∈ �.

Letting ṽ := 1H(E)\Avw
· v̄ + 1Avw · v and w̃ := 1H(E)\Avw

· w̄ + 1Avw · w, we have
that δpw�p(E)(ε) ≤ 1H(E) − 1H(E)

∣
∣ ṽ+w̃

2

∣
∣ m-a.e., whence it follows that

1Avw δ
pw
�p(E)(ε) ≤ 1 − 1Avw

∥
∥
∥
∥

v(·) + w(·)
2

∥
∥
∥
∥

B

, holds m-a.e. on H(E).

Since the right-hand side in the above inequality equals 1 on H(E)\Avw, and
δ
pw
�p(E)(ε) ≤ 1, we deduce that δ

pw
�p(E)(ε) ≤ 1 − 1Avw

∥
∥ v(·)+w(·)

2

∥
∥

B
m-a.e. on H(E).

The arbitrariness of v,w ∈ D gives δ
pw
�p(E)(ε) ≤ πm

(

δE(·)(ε)
)

on H(E).
Let us now pass to the converse inequality. Fix any λ > 0 and two elements

u, w ∈ �∞(E) with |u| = |z| = 1 and |u − z| > ε m-a.e. on H(E). Therefore, we
can find a partition {Bvw}(v,w)∈D×D ⊆ � of H(E), such that

∣
∣πm(v) − u

∣
∣ + ∣

∣πm(w) − z
∣
∣ ≤ (|u − z| − ε

) ∧ λ, holds m-a.e. in Bvw

for every (v,w) ∈ D × D. It follows that Bvw ⊆ Avw up to m-negligible sets.
Moreover, for every (v,w) ∈ D × D and m-a.e. x ∈ Bvw we can estimate

1 − 1Avw (x)

∥
∥
∥
∥

v(x) + w(x)

2

∥
∥
∥
∥

B

≤ 1H(E)(x) − 1H(E)(x)

∣
∣
∣
∣

u + z

2

∣
∣
∣
∣
(x) + λ,

whence it follows that 1BvwδE(·)(ε) ≤ 1H(E) − 1H(E)

∣
∣ u+z

2

∣
∣ + λ holds m-a.e. for

every (v,w) ∈ D × D. Since {Bvw}(v,w)∈D×D is a partition of H(E), we deduce that
πm

(

δE(·)(ε)
) ≤ 1H(E) − 1H(E)

∣
∣ u+z

2

∣
∣ + λ holds m-a.e. on H(E). Being λ, u, and z

arbitrary, we conclude that πm

(

δE(·)(ε)
) ≤ δ

pw
�p(E)(ε) m-a.e. on H(E). This proves

(3.2), whence the equivalence (i) ⇐⇒ (ii) follows. ��

3.2 Characterisation of the dual of a section space

Let (X, �,m) be a σ -finite measure space. Let B be a Banach space and E a Banach
B-bundle over X. Then, we define �̄0(E′

w∗) as the space of all those maps ω̄ : X →
⊔

x∈X E(x)′, such that ω̄(x) ∈ E(x)′ for every x ∈ X and

X � x �−→ 〈ω̄(x), v̄(x)〉 ∈ R is m-measurable, for every v̄ ∈ �̄0(E).

We introduce an equivalence relation on �̄0(E′
w∗): given any ω̄, η̄ ∈ �̄0(E′

w∗), we
declare that ω̄ ∼ η̄ if for any v̄ ∈ �̄0(E) it holds 〈ω̄(x) − η̄(x), v̄(x)〉 = 0 for m-a.e.
x ∈ X.
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Remark 3.6 When the ambient Banach space B is separable, it holds that

ω̄ ∼ η̄ ⇐⇒ ω̄(x) = η̄(x), for m-a.e. x ∈ X.

On arbitrary Banach spaces, this needs not necessarily be the case.

We denote the associated quotient space by

�0(E′
w∗) := �̄0(E′

w∗)/ ∼,

while πm : �̄0(E′
w∗) → �0(E′

w∗) stands for the projection map. Then, the space
�0(E′

w∗) is an L0(m)-normed L0(m)-module if endowed with the following L0(m)-
pointwise norm operator:

|ω| :=
∨ {〈ω̄(·), v̄(·)〉 ∣

∣ v̄ ∈ �̄0(E), |v̄| ≤ 1
}

, ∀ω = πm(ω̄) ∈ �0(E′
w∗).

Remark 3.7 When B is separable, |ω|(x) = ‖ω̄(x)‖E(x)′ for m-a.e. x ∈ X.

In particular, for any exponent q ∈ (1,∞) we can consider the space

�q(E′
w∗) := {

ω ∈ �0(E′
w∗)

∣
∣ |ω| ∈ Lq(m)

}

,

which inherits an Lq(m)-normed L∞(m)-module structure.

Our interest towards the space �q(E′
w∗) is motivated by the following result, which

states that the module dual of the section space �p(E) can be identified with �q(E′
w∗)

itself. When E(x) := B for every x ∈ X (i.e., �p(E) is the Lebesgue–Bochner space
L p(m; B)), this result was proved in [13].

Theorem 3.8 (Dual of a section space) Let (X, �,m) be a σ -finite measure space. Fix
any exponent p ∈ (1,∞). Let B be a Banach space and E a Banach B-bundle over
X. Then

�q(E′
w∗) ∼= �p(E)∗.

An isomorphism I : �q(E′
w∗) → �p(E)∗ of Lq(m)-normed L∞(m)-modules is

〈I(ω), v〉 := πm

(〈ω̄(·), v̄(·)〉), ∀ω = πm(ω̄) ∈ �q(E′
w∗), v = πm(v̄) ∈ �p(E).

(3.3)

In particular, the space �q(E′
w∗) is an Lq(m)-Banach L∞(m)-module.

Proof The validity of them-a.e. inequality
∣
∣πm

(〈ω̄(·), v̄(·)〉)∣∣ ≤ |ω||v| implies that I is
awell-defined homomorphism of Lq (m)-normed L∞(m)-modules satisfying |I(ω)| ≤
|ω| m-a.e. for every ω ∈ �q(E′

w∗). To conclude, it only remains to prove that the map
I is surjective and satisfies |I(ω)| ≥ |ω| m-a.e. for every ω ∈ �q(E′

w∗). To this aim,
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let T ∈ �p(E)∗ be fixed. Since �p(E) is an L p(m)-Banach L∞(m)-submodule of
L p(m; B), the Hahn–Banach extension theorem for normedmodules gives an element
T̄ ∈ L p(m; B)∗, such that T̄ |�p(E) = T and |T̄ | = |T |. Now, recall that, thanks to
[13], the statement holds for the constant bundle EB given by EB(x) := B for all
x ∈ X. Hence, denoting Lq

w∗(m; B
′) := �q((EB)′w∗) for consistency of notation,

we have the isomorphism Ī : Lq
w∗(m; B

′) → L p(m; B)∗. Define η := Ī−1(T̄ ) ∈
Lq

w∗(m; B
′) and take a representative η̄ ∈ L0

w∗(m; B
′) := �̄0((EB)′w∗) of η. Letting ω̄

be given by ω̄(x) := η̄(x)|E(x) ∈ E(x)′ for every x ∈ X, we have that ω̄ ∈ �̄0(E′
w∗)

(since �̄0(E) ⊆ L0(m; B)). Finally, we define ω := πm(ω̄) ∈ �0(E′
w∗). Given any

element v̄ ∈ �̄0(E), we have that 〈ω̄(·), v̄(·)〉 = 〈η̄(·), v̄(·)〉, whence it follows that
πm

(〈ω̄(·), v̄(·)〉) ≤ |η||πm(v)|. We thus conclude that ω ∈ �q(E′
w∗), I(ω) = T , and

|ω| ≤ |η| = |T̄ | = |T | = |I(ω)|. The proof is complete. ��
We point out that the previous result is obtained as a consequence of the corre-

sponding result for Lebesgue–Bochner spaces, studied in [13]. This proof was kindly
suggested to us by the referee. In a previous version of the paper, Theorem 3.8 was
proved in a more involved way, making use of a generalised form of the Lebesgue
differentiation theorem [21]. We also point out that results in the same spirit were
obtained in [8, Theorem 3.9] and [8, Theorem 4.17], but in that case it is not suffi-
cient to apply the result for Lebesgue–Bochner spaces (cf. with the discussion in [21,
Remark 4.6]).

3.3 Reflexive bundles/modules

In this section, we will prove that the section space of a separable Banach bundle is
reflexive if and only if (almost all) its fibers are reflexive. Before stating the main
theorem, we need to discuss a few auxiliary results.

Remark 3.9 Let us recall a standard fact in Banach space theory. Let B be a Banach
space whose dual B

′ is separable. Let (vn)n∈N ⊆ B and (ωn)n∈N ⊆ B
′ be given

sequences satisfying ‖vn‖B = ‖ωn‖B
′ = 〈ωn, vn〉 = 1 for every n ∈ N. Suppose

(ωn)n∈N is dense in the unit sphere SB
′ . Then, the Q-linear subspace of B generated

by (vn)n∈N is dense in B.

Proposition 3.10 Let (X, �,m) be a σ -finite measure space and p ∈ (1,∞) a given
exponent. Let B be a separable Banach space and let E be a reflexive Banach B-bundle
over X. Let θ : �p(E) → �q(E′

w∗)∗ be given by

〈θ(v), ω〉 := πm

(〈ω̄(·), v̄(·)〉), ∀v = πm(v̄) ∈ �p(E), ω = πm(ω̄) ∈ �q(E′
w∗).

(3.4)

Then the operator θ is an isomorphism of L p(m)-Banach L∞(m)-modules.

Proof
Step 1. The m-a.e. inequality

∣
∣πm(〈ω̄(·), v̄(·)〉)∣∣ ≤ |v||ω| ensures that θ is a well-

defined homomorphism of L p(m)-Banach L∞(m)-modules satisfying |θ(v)| ≤ |v|
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for every v ∈ �p(E).
Step 2. It remains to prove that θ is surjective and satisfies |θ(v)| ≥ |v| for every
v ∈ �p(E). To this aim, fix any L ∈ �q(E′

w∗)∗. Pick a sequence (vn)n∈N ⊆ �p(E)

with |vn|(x) ∈ {0, 1} for every n ∈ N and m-a.e. x ∈ X, and such that

{vn(x) : n ∈ N}\{0E(x)} is dense in SE(x), for m-a.e. x ∈ X.

Given any n ∈ N, thanks to [7, Corollary 1.2.16] we can find an element ω̃n ∈ �p(E)∗,
such that |ω̃n| = |vn| = 〈ω̃n, vn〉 holds m-a.e. on X. Now define ωn := I−1(ω̃n) ∈
�q(E′

w∗), where I : �q(E′
w∗) → �p(E)∗ stands for the isomorphism provided by

Theorem 3.8. Let us denote by V the Q-linear subspace of �q(E′
w∗) generated by

(ωn)n∈N. Notice that V is a countable family by construction. Given n ∈ N and ω ∈ V,
fix representatives v̄n , ω̄, L(ω), and |L| of vn , ω, L(ω), and |L|, respectively. By
Remark 3.7, there exists N ∈ � with m(N ) = 0, such that for any x ∈ X\N it holds
that

E(x), is reflexive, (3.5a)

{v̄m(x) : m ∈ N}\{0E(x)}, is dense in SE(x), (3.5b)

‖ω̄n(x)‖E(x)′ = ‖v̄n(x)‖E(x) = 〈ω̄n(x), v̄n(x)〉, (3.5c)

(ω + η)(x) = ω̄(x) + η̄(x), (3.5d)

(λ ω)(x) = λ ω̄(x), (3.5e)

L(ω + η)(x) = L(ω)(x) + L(η)(x), (3.5f)

L(λ ω)(x) = λ L(ω)(x), (3.5g)

L(ω)(x) ≤ |L|(x)‖ω̄(x)‖E(x)′ , (3.5h)

for every n ∈ N, ω, η ∈ V, and λ ∈ Q. Given any x ∈ X\N , let us consider the
countable, Q-linear subspace Vx := {ω̄(x) : ω ∈ V} of E(x)′. The fact that Vx is a
Q-linear space is granted by (3.5d) and (3.5e). By taking (3.5a), (3.5b), (3.5c), and
Remark 3.9 into account, we deduce that Vx is dense in E(x)′. Now we define the
function ϕx : Vx → R as

ϕx
(

ω̄(x)
) := L(ω)(x), for every ω ∈ V.

The well-posedness of ϕx stems from the observation that for any ω, η ∈ V it holds
that

∣
∣L(ω)(x) − L(η)(x)

∣
∣

(3.5 f )= ∣
∣L(ω − η)(x)

∣
∣

(3.5h)≤ |L|(x)
∥
∥(ω − η)(x)

∥
∥

E(x)′
(3.5g)= |L|(x)

∥
∥ω̄(x) − η̄(x)

∥
∥

E(x)′ .

TheQ-linearity of ϕx is a consequence of (3.5f) and (3.5g).Moreover, (3.5h) grants the
validity of the inequality

∣
∣ϕx

(

ω̄(x)
)∣
∣ ≤ |L|(x)‖ω̄(x)‖E(x)′ for every ω ∈ V, whence

the continuity of the function ϕx follows. Therefore, there exists a unique element
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v̄(x) ∈ E(x) ∼= E(x)′′, such that 〈ω̄(x), v̄(x)〉 = L(ω)(x) holds for every ω ∈ V and
‖v̄(x)‖E(x) ≤ |L|(x). Finally, for any point x ∈ N we define v̄(x) := 0E(x).

Step 3. Next we claim that the resulting map v̄ belongs to �̄0(E). By virtue of the
separability of B, it is sufficient to prove that v̄ : X → B is weakly m-measurable. To
this aim, fix any η0 ∈ B

′. Define η̄(x) := η0|E(x) ∈ E(x)′ for every x ∈ X. For any
ω ∈ V, one has

∥
∥η̄(x) − ω̄(x)

∥
∥

E(x)′ = sup
n∈N

〈

η0 − ω̄(x), v̄n(x)
〉

, for m-a.e. x ∈ X. (3.6)

Since the function X � x �→ ∥
∥η̄(x) − ω̄(x)

∥
∥

E(x)′ is measurable for every ω ∈ V
thanks to (3.6) and the space Vx is dense in E(x)′ for m-a.e. x ∈ X, we deduce that
for any k ∈ N we can find a partition {Ak

ω}ω∈V ⊆ � of X (up to m-null sets), such
that

∥
∥η̄(x) − η̄k(x)

∥
∥

E(x)′ ≤ 1/k for m-a.e. x ∈ X, where we set η̄k := ∑

ω∈V 1Ak
ω

ω̄.
Therefore, for m-a.e. x ∈ X we can express

〈η0, v̄(x)〉 = 〈η̄(x), v̄(x)〉 = lim
k→∞〈η̄k(x), v̄(x)〉 = lim

k→∞
∑

ω∈V
1Ak

ω
(x) 〈ω̄(x), v̄(x)〉

= lim
k→∞

∑

ω∈V
1Ak

ω
(x) L(ω)(x),

thus accordingly 〈η0, v̄(·)〉 is measurable. By arbitrariness of η0 ∈ B
′, we conclude

that v̄ is weakly m-measurable (thus, strongly m-measurable). Let us then define
v := πm(v̄) ∈ �0(E).

Step 4. To conclude, it only remains to show that θ(v) = L and |v| ≤ |L| in the
m-a.e. sense. Fix any η ∈ �q(E′

w∗), with representative η̄ ∈ �̄0(E′
w∗). By arguing

as we did in Step 3, we can construct a sequence (η̄k)k∈N ⊆ �̄0(E′
w∗) of the form

η̄k = ∑

ω∈V 1Ak
ω

ω̄, such that

lim
k

∥
∥η̄k(x) − η̄(x)

∥
∥

E(x)′ = 0, for m-a.e. x ∈ X.

Therefore, for m-a.e. x ∈ X it holds that

〈θ(v), η〉(x) = 〈η̄(x), v̄(x)〉 = lim
k→∞〈η̄k(x), v̄(x)〉

= lim
k→∞

∑

ω∈V
1Ak

ω
(x) 〈ω̄(x), v̄(x)〉 = lim

k→∞
∑

ω∈V
1Ak

ω
(x) L(ω)(x)

= lim
k→∞ L

(

πm(η̄k)
)

(x) = L(η)(x).

By arbitrariness of η ∈ �q(E′
w∗), it follows that θ(v) = L . Finally, since ‖v̄(x)‖E(x) ≤

|L|(x) form-a.e. x ∈ X,weobtain them-a.e. inequality |v| ≤ |L|. Hence, the statement
is achieved. ��
Proposition 3.10 will play a key role in proving one implication of the main result
of this section, namely, Theorem 3.12. To prove the converse implication, we need
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the alternative—more ‘quantitative’—characterisation of reflexivity that we report
in Lemma 3.11. Before passing to its statement, it is convenient to introduce some
additional notation.

We denote by
⊕

N
Q the set of all those sequences q = (qi )i∈N ∈ Q

N that satisfy
qi = 0 for all but finitely many i ∈ N. We define

� :=
{

q ∈
⊕

N

Q ∩ [0, 1]N
∣
∣
∣
∣

∑

i∈N

qi = 1

}

.

Given any q, r ∈ �, we declare that q ≺ r if

max{i ∈ N | qi �= 0} < min{ j ∈ N | r j �= 0}.

Finally, we define F as

F := {

(q, r) ∈ � × �
∣
∣ q ≺ r

}

.

Lemma 3.11 Let B be a Banach space. Then, the following two conditions are equiv-
alent:

(i) B is not reflexive.
(ii) Given any λ ∈ (0, 1), there exists a sequence (vi )i∈N ⊆ BB, such that

∥
∥
∥
∥

∑

i∈N

qivi −
∑

i∈N

rivi

∥
∥
∥
∥

B

≥ λ, for every (q, r) ∈ F . (3.7)

Proof The Eberlein–Šmulian Theorem (see, e.g., [2, Theorems 3.18 and 3.19]) says
that B is reflexive if and only if every sequence in BB admits a weakly converging
subsequence. Then:

(i) �⇒ (ii). It readily follows, e.g., from [5, Theorem 3.132].
(ii) �⇒ (i). Let (vi )i∈N ⊆ BB satisfy (3.7).We argue by contradiction: supposeB is

reflexive.Then,Mazur’sLemma (see, e.g., [2,Corollary 3.8]) yields an elementv ∈ BB

and a sequence (q j ) j∈N ⊆ � such that q j ≺ q j+1 for every j ∈ N and
∑

i∈N
q j

i vi →
v strongly in B as j → ∞. In particular,

∥
∥

∑

i∈N
q j

i vi − ∑

i∈N
q j+1

i vi
∥
∥

B
< λ for

j ∈ N big enough, contradicting ii). ��
Combining Proposition 3.10 with Lemma 3.11, we obtain the main result of this
section:

Theorem 3.12 (Reflexive bundles/modules) Let (X, �,m) be a σ -finite measure
space, B a separable Banach space, and E a Banach B-bundle over X. Then, E
is a reflexive bundle if and only if �p(E) is a reflexive Banach space for every (or,
equivalently, for some) p ∈ (1,∞).
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Proof
Necessity. Suppose E is a reflexive bundle and fix any exponent p ∈ (1,∞). We

call I : �q(E′
w∗) → �p(E)∗ the isomorphism provided by Theorem 3.8. We denote

by J : �p(E)∗ → �q(E′
w∗) its inverse and consider the adjoint Jad : �q(E′

w∗)∗ →
�p(E)∗∗ of the isomorphism J. Let θ : �p(E) → �q(E′

w∗)∗ be the isomorphism given
by Proposition 3.10. By unwrapping the various definitions, it can be readily checked
that

�p(E) �q(E′
w∗)∗

�p(E)∗∗

θ

J�p (E)
Jad

is a commutative diagram. Indeed, let us fix any v = πm(v̄) ∈ �p(E) and T ∈ �p(E)∗.
Also, defineω := J(T ) ∈ �q(E′

w∗) and pick a representative ω̄ ∈ �̄0(E′
w∗) ofω. Then,

we have that

〈(Jad ◦ θ)(v), T 〉 (2.4)= 〈θ(v), J(T )〉 = 〈θ(v), ω〉 (3.4)= πm

(〈ω̄(·), v̄(·)〉)
(3.3)= 〈I(ω), v〉 = 〈T , v〉 (2.3)= 〈J�p(E)(v), T 〉,

yielding Jad ◦ θ = J�p(E). Therefore, J�p(E) is an isomorphism and thus �p(E) is
reflexive.

Sufficiency. Suppose that �p(E) is reflexive for some p ∈ (1,∞). By Proposition
2.6, there is a countable family Z ⊆ �̄∞(E), such that ‖v(x)‖B ≤ 1 for every (v, x) ∈
Z × X and

{

v(x)
∣
∣ v ∈ Z

}

is dense in BE(x), for every x ∈ X.

We equip Z with the discrete topology and ZN with the product topology. Then, ZN

is a Polish space (i.e., a metrisable space whose topology is induced by a complete,
separable distance), homeomorphic to the Baire space N

N (see [1, Section 3.14]). We
define ϕ : X � ZN as ϕ(x) := {

v ∈ ZN
∣
∣ (v, x) ∈ H

}

for every x ∈ X, where we
set

H :=
⋂

(q,r)∈F

{

(v, x) ∈ ZN × X

∣
∣
∣
∣

∥
∥
∥
∥

∑

i∈N

qivi (x) −
∑

i∈N

rivi (x)

∥
∥
∥
∥

B

≥ 1

2

}

.

Recalling that a base for the topology of ZN is given by those sets of the form

{v1} × · · · × {vn} × Z × Z × · · · , with n ∈ N and v1, . . . , vn ∈ Z ,

one can readily check that ϕ is a weakly measurable map from X to ZN having closed
values.

We now argue by contradiction: suppose that there exists P ∈ � with 0 < m(P) <

+∞, such that E(x) is not reflexive for every x ∈ P . Applying Lemma 3.11 to
each E(x) with x ∈ P , we deduce that ϕ(x) �= ∅ for every x ∈ P . Thanks to the
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Kuratowski–Ryll-Nardzewski Selection Theorem (see, e.g., [1, Theorem 18.13]), we
can find a measurable mapping V : P → ZN, such that V (x) ∈ ϕ(x) for every x ∈ P .
For any i ∈ N, we denote by πi : ZN → Z the projection onto the i-th component,
which is continuous by definition of the product topology. Then, πi ◦ V : P → Z is
measurable, so that Pi

v := (πi ◦ V )−1({v}) ∈ � for every v ∈ Z and (Pi
v)v∈Z is a

partition of P . Given any i ∈ N, we define v̄i : X → B as

v̄i (x) := (πi ◦ V )(x)(x)

m(P)1/p
∈ E(x), for every x ∈ P,

and v̄i (x) := 0B for all x ∈ X\P . Since v̄i (x) = ∑

v∈Z m(P)−1/p1Pi
v
(x)v(x) for all

x ∈ P , we have that v̄i ∈ �̄∞(E) ∩ �̄p(E) and ‖πm(v̄i )‖�p(E) ≤ 1. Observe also that
it holds

∥
∥
∥
∥

∑

i∈N

qi v̄i (x) −
∑

i∈N

ri v̄i (x)

∥
∥
∥
∥

B

≥ 1

2m(P)1/p
, ∀(q, r) ∈ F , x ∈ P. (3.8)

Hence, denoting by vi ∈ �p(E) the equivalence class of v̄i , for any (q, r) ∈ F we
can estimate

∥
∥
∥
∥

∑

i∈N

qivi −
∑

i∈N

rivi

∥
∥
∥
∥

�p(E)

=
(∫

P

∥
∥
∥
∥

∑

i∈N

qi v̄i (x) −
∑

i∈N

ri v̄i (x)

∥
∥
∥
∥

p

B

dm(x)

)1/p

(3.8)≥ 1

2
.

Using Lemma 3.11 again, we deduce that �p(E) is not reflexive, leading to a contra-
diction. ��
Remark 3.13 Aswe alreadymentioned in the Introduction, the proof of the sufficiency
part of Theorem 3.12 follows along the lines sketched in the proof of [18, Theorem
6.19]. On the other hand, the proof of the necessity part is different from the one of
[18, Theorem 6.19], and in particular it avoids the use of Rosenthal’s �1-Theorem.
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Appendix A. A criterion to detect Banachmodules

Aim of this appendix is to address the following problem: given a module M over
L∞(m), can we characterise those complete norms on M that come from an L p(m)-
pointwise norm? We will provide a positive answer to this question in Theorem A.2
below.

First, we recall a well-known, elementary result concerning Radon–Nikodým
derivatives. We report its proof for the reader’s usefulness.

Lemma A.1 Let (X, �) be a measurable space. Letm, μ1, μ2, μ3 be σ -finite measures
on �, such that μ1, μ2, μ3 � m. Let α ∈ (0,+∞) be given. Suppose

μ1(E)α ≤ μ2(E)α + μ3(E)α, for every E ∈ �. (A.1)

Then it holds that

(
dμ1

dm

)α

≤
(

dμ2

dm

)α

+
(

dμ3

dm

)α

, in the m-a.e. sense. (A.2)

Proof Let us denote f j := dμ j
dm for j = 1, 2, 3. Let k ∈ N be fixed. By using the

σ -finiteness of m, we can find a partition (Ei )i∈N ⊆ �, such that 0 < m(Ei ) < +∞
for every i ∈ N and

∣
∣ f j (x) − f j (y)

∣
∣ ≤ 1

k
, for all i ∈ N, j = 1, 2, 3, and m-a.e. x, y ∈ Ei . (A.3)

Define λi j := 1
m(Ei )

∫

Ei
f j dm for all i ∈ N and j = 1, 2, 3. Observe that (A.3)

ensures that

∣
∣ f j (x) − λi j

∣
∣ ≤ 1

k
, for all i ∈ N, j = 1, 2, 3, and m-a.e. x ∈ Ei . (A.4)

Given that
∫

Ei
f j dm = ∫

Ei

dμ j
dm dm = μ j (Ei ), we deduce that

λα
i1 = μ1(Ei )

α

m(Ei )α

(A.1)≤ μ2(Ei )
α

m(Ei )α
+ μ3(Ei )

α

m(Ei )α
= λα

i2 + λα
i3, ∀i ∈ N. (A.5)

http://creativecommons.org/licenses/by/4.0/
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Hence, combining (A.4) with (A.5), for every i ∈ N and m-a.e. x ∈ Ei we get

(

f1(x) − 1

k

)α

≤ λα
i1 ≤ λα

i2 + λα
i3 ≤

(

f2(x) + 1

k

)α

+
(

f3(x) + 1

k

)α

.

By arbitrariness of i, k ∈ N, we conclude that f α
1 ≤ f α

2 + f α
3 holds m-a.e., yielding

(A.2). ��

We are in a position to characterise which complete norms ‖ · ‖ on an L∞(m)-module
M are induced by an L p(m)-pointwise norm. Roughly speaking, the required com-
patibility between the norm and the module structure is expressed via two conditions,
labelled 2a) and 2b): the former relates the given norm with the multiplication by
L∞(m)-functions and the chosen exponent p, while the latter is a weak continuity
assumption on the multiplication operator.

Theorem A.2 (When a norm is induced by a pointwise norm) Let (X, �,m) be a σ -
finite measure space. Let M be a module over the ring L∞(m) and ‖ · ‖ a complete
norm on M . Let p ∈ [1,∞) be a given exponent. Then, the following two conditions
are equivalent:

(1) There exists an L p(m)-pointwise norm operator | · | : M → L p(m) on M , such
that

‖v‖ = ∥
∥|v|∥∥L p(m)

, for every v ∈ M .

(2) The following two properties are satisfied:

(2a) It holds ‖1E · v‖p + ‖1X\E · v‖p = ‖v‖p for every E ∈ � and v ∈ M .
(2b) It holds limn→∞ ‖ fn · v‖ = 0 for every v ∈ M and for every ( fn)n∈N ⊆

L∞(m), such that | fn|⇀0 weakly∗ in L∞(m) as n → ∞.

Proof
(1) �⇒ (2). Suppose (1) holds. Let us prove (2a). Fix E ∈ � and v ∈ M . Then

‖1E · v‖p + ‖1X\E · v‖p =
∫

E
|v|p dm +

∫

X\E
|v|p dm =

∫

|v|p dm = ‖v‖p,

thus (2a) holds. To prove (2b), fix any sequence ( fn)n∈N ⊆ L∞(m), such that | fn|⇀0
weakly∗ in L∞(m). This yields M := supn ‖ fn‖L∞(m) < +∞ thanks to the Uniform
Boundedness Principle. Therefore, since |v|p ∈ L1(m),

lim
n→∞ ‖ fn · v‖ = lim

n→∞

(∫

| fn · v|p dm

)1/p

≤ M (p−1)/p lim
n→∞

(∫

| fn||v|p dm

)1/p

= 0,
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thus (2b) holds. All in all, (2) is proven.
(2) �⇒ (1). Suppose (2) holds. First, we claim that for any v ∈ M one has

‖1E · v‖p =
∑

n∈N

‖1En · v‖p, if (En)n∈N ⊆ � is a partition of E . (A.6)

To prove it, denote E ′
n := ⋃n

i=1 Ei for every n ∈ N and notice that 1E\E ′
n
⇀0 weakly∗

in L∞(m) as n → ∞. By repeatedly applying (2a), we obtain for any n ∈ N that

‖1E · v‖p = ‖1E1 · v‖p + ‖1E\E1 · v‖p = · · · =
n

∑

i=1

‖1Ei · v‖p + ‖1E\E ′
n
· v‖p,

whence by letting n → ∞ and using (2b) we conclude that (A.6) holds.
Given any v ∈ M , we define the set-function μv : � → [0,+∞] as

μv(E) := ‖1E · v‖p, for every E ∈ �.

It follows from (A.6) that μv is σ -additive. Given any N ∈ � with m(N ) = 0,
it holds 1N = 0 as elements of L∞(m), thus μv(N ) = ‖0 · v‖p = 0. Moreover,
μv(X) = ‖v‖p < +∞. All in all, we have proven that μv is a finite measure on �

satisfying μv � m. Hence, we can define

|v| :=
(
dμv

dm

)1/p

∈ L p(m), for every v ∈ M .

Observe that
∫ |v|p dm = μv(X) = ‖v‖p, thus to conclude it only remains to show

that | · | : M → L p(m) is a pointwise norm operator. Trivially, |v| = 0 holds m-a.e.
if and only if v = 0. The m-a.e. inequality |v + w| ≤ |v| + |w| stems from Lemma
A.1: for E ∈ � we have

μv+w(E)1/p = ∥
∥1E · (v + w)

∥
∥ = ∥

∥1E · v + 1E · w
∥
∥ ≤ ‖1E · v‖ + ‖1E · w‖

= μv(E)1/p + μw(E)1/p,

thus Lemma A.1 ensures that |v +w| ≤ |v|+ |w| holdsm-a.e. on X. Finally, we claim
that

| f · v| = | f ||v|, holds m-a.e. on X (A.7)

for every f ∈ L∞(m) and v ∈ M . Let us first prove it in the case where f is a
simple function, namely, f = ∑n

i=1 λi 1Ei for some λ1, . . . , λn ∈ R and pairwise
disjoint sets E1, . . . , En ∈ �. To this aim, notice that for any set F ∈ � the following
identities are satisfied:

∫

F
| f · v|p dm =

n
∑

i=1

∫

F∩Ei

| f · v|p dm =
n

∑

i=1

μ f ·v(F ∩ Ei )
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=
n

∑

i=1

∥
∥1F∩Ei · ( f · v)

∥
∥p =

n
∑

i=1

∥
∥λi (1F∩Ei · v)

∥
∥p

=
n

∑

i=1

|λi |p‖1F∩Ei · v‖p =
n

∑

i=1

|λi |p
∫

F
1Ei |v|p dm

=
∫

F
| f |p|v|p dm.

By arbitrariness of F , we deduce that (A.7) holds whenever f is a simple function. The
general case follows by approximation: given any f ∈ L∞(m), we can find a sequence
( fn)n∈N of simple functions, such that fn → f strongly in L∞(m) as n → ∞. Then,
| fn − f |⇀0 weakly∗ in L∞(m), thus 2b) yields

∫
∣
∣| fn · v| − | f · v|∣∣p dm ≤

∫
∣
∣( fn − f ) · v

∣
∣p dm = ∥

∥( fn − f ) · v
∥
∥p −→ 0.

Moreover, since | fn| → | f | in L∞(m), we have | fn||v| → | f ||v| in L p(m). Since
we already know that | fn · v| = | fn||v| for all n ∈ N, we conclude that | f · v| =
limn | fn · v| = limn | fn||v| = | f ||v| strongly in L p(m), proving (A.7). Therefore, | · |
is a pointwise norm, whence (1) follows. ��
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20. Lučić, D., Pasqualetto, E.: The Serre–Swan theorem for normed modules. Rend. Circ. Mat. Palermo
(2) 68, 385–404 (2019)
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