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Global variation in diabetes diagnosis and 
prevalence based on fasting glucose and 
hemoglobin A1c

NCD Risk Factor Collaboration (NCD-RisC)*

Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used 
to diagnose diabetes, but these measurements can identify different 
people as having diabetes. We used data from 117 population-based studies 
and quantified, in different world regions, the prevalence of diagnosed 
diabetes, and whether those who were previously undiagnosed and 
detected as having diabetes in survey screening, had elevated FPG, HbA1c 
or both. We developed prediction equations for estimating the probability 
that a person without previously diagnosed diabetes, and at a specific 
level of FPG, had elevated HbA1c, and vice versa. The age-standardized 
proportion of diabetes that was previously undiagnosed and detected in 
survey screening ranged from 30% in the high-income western region to 
66% in south Asia. Among those with screen-detected diabetes with either 
test, the age-standardized proportion who had elevated levels of both 
FPG and HbA1c was 29–39% across regions; the remainder had discordant 
elevation of FPG or HbA1c. In most low- and middle-income regions, 
isolated elevated HbA1c was more common than isolated elevated FPG. 
In these regions, the use of FPG alone may delay diabetes diagnosis and 
underestimate diabetes prevalence. Our prediction equations help allocate 
finite resources for measuring HbA1c to reduce the global shortfall in 
diabetes diagnosis and surveillance.

Diabetes is associated with debilitating complications such as amputa-
tion, vision loss and renal failure, and with increased risk of cardiovas-
cular events, dementia, some cancers and infectious diseases such as 
severe COVID-19 and tuberculosis1–6. The diagnostic criteria for dia-
betes have evolved over time to incorporate hemoglobin A1c (HbA1c), 
which is a measure of long-term glycemic status and more convenient 
to measure for patients than fasting glucose or the 2-h oral glucose 
tolerance test (OGTT)7–10. In contemporary guidelines, any one or the 
combination of fasting plasma glucose (FPG), OGTT and HbA1c may 
be used to diagnose diabetes10–14. With the exception of diagnosis of 
gestational diabetes, OGTT is now rarely used in clinical practice or 
population surveillance because of the inconvenience related to the 
glucose load, 2-h time frame and the two blood draws required for the 

test15,16. FPG and HbA1c, which are both used in clinical practice and 
epidemiological research and surveillance, measure different glycemic 
features, namely basal glucose level (FPG) and average glucose level in 
the previous 2–3 months (HbA1c)17. Therefore, individuals may have 
elevated levels of one or both biomarkers, and FPG and HbA1c may 
classify different people as having diabetes9,10. Diabetes also has a long 
subclinical period defined by hyperglycemia and can remain undiag-
nosed without screening or other mechanisms for early identification18.

Some studies have assessed sensitivity and specificity of diabetes 
diagnosis using either FPG or HbA1c relative to the OGTT or have com-
pared diabetes prevalence based on these different glycemic biomark-
ers, but most did not provide a direct comparison of HbA1c and FPG19–21. 
Most population-based studies on the concordance and discordance 
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seven of eight world regions (Extended Data Table 1). We had no study 
that measured both FPG and HbA1c from the region of Oceania, which 
consists of Pacific island nations. The number of studies in other regions 
ranged from seven in sub-Saharan Africa to 48 in the high-income west-
ern region (Table 1). The mean age of study participants was 50 years 
and 56% of participants were women. Of the 117 studies with data on 
glycemic variables, 113 (97%) with 351,270 participants (96% of all par-
ticipants) also had data on body-mass index (BMI); the remaining four 
studies either did not collect anthropometric information or only had 
self-reported height and weight data.

Screen-detected diabetes by FPG and HbA1c
Across all studies, 16% of participants had diagnosed or previously 
undiagnosed screen-detected diabetes. Diagnosed diabetes was cal-
culated based on reporting a previous diagnosis and screen-detected 
diabetes as having FPG and/or HbA1c levels at or above the thresholds 
of 7.0 mmol l−1 and 6.5% (refs. 10–13) (Fig. 2). After age-standardization, 
the total prevalence of diabetes became 12%. The age-standardized 
prevalence of diagnosed and screen-detected diabetes were 7% and 
5%, respectively. Those without a previous diabetes diagnosis had a 
lower BMI than those with a previous diagnosis in every region, by an 
average of 2.9 kg m−2 across all studies (Table 1). Among those without 
a previous diagnosis, participants with screen-detected diabetes (FPG 
≥7.0 mmol l−1 and/or HbA1c ≥ 6.5%) had a mean BMI that was higher than 
those who did not have diabetes (FPG < 7.0 mmol l−1 and HbA1c < 6.5%) 
by an average of 2.4 kg m−2.

In most regions, age-standardized diabetes prevalence was slightly 
lower than crude prevalence, except south Asia where the participants 
were on average younger than in other regions (Table 1). Regionally, 
the age-standardized total diabetes prevalence (the combination 
of diagnosed and screen-detected diabetes) ranged from ~9% in the 
high-income western region to ~21% in south Asia and sub-Saharan 
Africa. The age-standardized proportion of diabetes that was previ-
ously undiagnosed, and was detected in the screening via the survey, 
was highest (66%) in studies from south Asia, and lowest (<35%) in stud-
ies from the high-income western region, central and eastern Europe, 
and the region of central Asia, Middle East and north Africa. Two studies 
in sub-Saharan Africa were from Mauritius, a country that is different 
demographically and economically from most other countries in the 
region. When these studies were removed, total age-standardized 
diabetes prevalence in sub-Saharan Africa declined from 21% to 13% 
and the proportion who were previously undiagnosed increased from 
46% to 53% (Extended Data Fig. 2).

Across all studies together, 29% of participants with screen- 
detected diabetes had isolated elevated FPG, 37% had isolated elevated 
HbA1c and 34% had elevated levels of both. These global proportions 
were the same before and after age-standardization. There was sub-
stantial variation across regions in the composition of screen-detected 
diabetes across these three groups, both in terms of whether both 
biomarkers were elevated or only one, and in the case of the latter, 
whether the elevated biomarker was FPG or HbA1c (Fig. 2). Region-
ally, the shares of participants in these three groups changed little 
after age-standardization, and we report the age-standardized results 
here. The age-standardized proportion of those with screen-detected 
diabetes who had elevated levels of both FPG and HbA1c ranged 
from 29–39% across regions. The remaining 61–71% of participants 
with screen-detected diabetes had discordant FPG and HbA1c ele-
vations. Isolated elevated HbA1c made up 54% of participants with 
screen-detected diabetes in sub-Saharan Africa, and 47% in the region 
of central Asia, Middle East and north Africa. In these regions, isolated 
elevated FPG accounted for <17% of all screen-detected diabetes. In 
contrast, 55% of participants with screen-detected diabetes in central 
and eastern Europe, and 46% in high-income western region, had iso-
lated elevated FPG. The correlation coefficient between FPG and HbA1c 
among participants without previous diagnosis of diabetes ranged 

of diabetes diagnosis using FPG versus HbA1c have been conducted in 
a single country or region14,22–42 and the only multi-country study43 used 
data largely from high-income western countries. Therefore, there are 
scant data on how the concordance and discordance of FPG and HbA1c 
in classifying diabetes vary across regions in the world, and on the 
factors associated with this variation. The lack of data on the regional 
variation in diabetes identified based on FPG versus HbA1c means that 
we cannot quantify the full extent of the global diabetes epidemic and 
its regional variation, because diabetes prevalence is measured and 
reported using a single glycemic biomarker in most population-based 
surveys and analyses44–46. For example, in the latest global analysis44, 
only ~15% of surveys had measured both FPG and HbA1c.

We assembled a global database of population-based studies that 
had measured both FPG and HbA1c. Using these data, we quantified the 
regional variation in the extent of diabetes diagnosis, with diabetes 
defined as in the Methods. We also quantified, among those who were 
previously undiagnosed and were detected as having diabetes through 
screening in the survey, the concordance and discordance of having 
FPG and HbA1c above common diagnostic thresholds (7.0 mmol l−1 
for FPG and 6.5% for HbA1c). We refer to this group as screen-detected 
diabetes, which is an epidemiological definition, because many clini-
cal guidelines recommend two measurements for diabetes diagno-
sis10–13. We then used regression analysis to examine what individual 
and study-level factors were associated with whether participants with 
screen-detected diabetes were identified by elevated FPG, elevated 
HbA1c or elevated levels of both. It has been shown that having elevated 
levels of both biomarkers has high positive predictive value for subse-
quent clinical diagnosis and risk of complications14,47, and hence this 
group is similar to clinically diagnosed diabetes.

Finally, we leveraged the global coverage of the dataset and its 
large sample size to develop prediction equations that estimate, for 
any given FPG level, the probability that a person without previously 
diagnosed diabetes would have HbA1c above the clinical threshold for 
diabetes had it been measured, and vice versa. We aimed to develop and 
validate global and generalizable prediction equations that account 
for both personal characteristics and regional differences. These 
equations serve three purposes. First, they allow more efficient use of 
finite diagnostic resources, by identifying some people with below- or 
near-threshold level for one biomarker (for example, FPG) for measure-
ment of another (for example, HbA1c). Second, they allow the estima-
tion of the probability that a person with a screen-detected elevated 
level of one biomarker would also have an elevated level of the other, 
as a confirmation of diabetes status14,47. Finally, the prediction equa-
tions could improve diabetes surveillance by allowing estimation of 
prevalence of diabetes based on both FPG and HbA1c in health surveys 
that have measured only one of these biomarkers.

Results
Data sources
We used data collated by the NCD Risk Factor Collaboration (NCD-RisC), 
a global consortium of population-based health examination surveys 
and studies with measurement of both FPG and HbA1c, and with data 
on previous diagnosis of diabetes, as described in the Methods. The 
criteria for including and excluding studies are stated in Methods. 
Within each study, we excluded participants who had missing data 
or were pregnant, under 18 years of age or from follow-up rounds of 
studies that had multiple measurements of the same cohort over time 
(Fig. 1). After exclusions, we used data on 601,307 participants aged 
18 years and older with information on whether they had been previ-
ously diagnosed with diabetes, of whom 364,825 participants also 
had measured FPG and HbA1c. The difference between the number 
of participants with data on previous diagnosis and with biomarker 
data is mostly because many studies do blood tests on a subsample 
of those with questionnaire data. These participants were from 117 
studies whose mid-year was from 2000 to 2021 in 45 countries from 
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from 0.51 in central and eastern Europe to 0.76 in sub-Saharan Africa 
(Extended Data Fig. 3).

Association with individual and study characteristics
Some participant and study-level characteristics were associated with 
whether screen-detected diabetes was manifested as elevated levels 
of FPG, HbA1c or both (Table 2). Among those with screen-detected 
diabetes, male sex was associated with a higher probability of having 
elevated FPG, either alone (prevalence ratio (PR) = 1.10; 95% credible 
interval (CrI) 1.07–1.14) or together with elevated HbA1c (1.07; 1.03–1.11), 
and with a lower probability of having isolated elevated HbA1c (0.86; 
0.83–0.89). Older age was associated with a lower probability of having 
elevated FPG, alone (PR = 0.97 per decade of age; 0.96–0.98) or together 
with elevated HbA1c (PR = 0.97; 0.96–0.99) and a higher probability 
of having isolated elevated HbA1c (1.05; 1.04–1.06). Higher BMI was 
associated with a higher probability of having concordant elevation of 

FPG and HbA1c (PR = 1.07 per 5 units; 1.06–1.08) and a lower probability 
of having isolated elevated FPG (PR = 0.92; 0.90–0.93).

At the study level, in studies that used a portable device to measure 
HbA1c, the composition of screen-detected diabetes was shifted toward 
more isolated elevated HbA1c, but the estimates for this association 
had wide confidence intervals because the great majority of studies in 
our analysis had measured glucose and HbA1c in a laboratory. Neither 
the year of study nor the percentage of participants with diabetes who 
had reported previous diagnosis were associated with the composition 
of screen-detected diabetes.

After adjustment for participant and study characteristics, 
regional differences remained in the composition of screen-detected 
diabetes (Table 2). After adjustment for these factors, the composi-
tion of screen-detected diabetes, in terms of having elevated FPG 
and HbA1c in isolation or together, was statistically indistinguishable 
between the high-income western region and central and eastern 

727,588 participants from 131 studies

11,470 participants without data on BMIg

294,150 participants who had FPG <7 mmol l–1 and HbA1c <6.5%h

327,554 participants from 117 studies without
previous diagnosis of diabetes and with
complete data on FPG and HbA1c

Used to examine the
prevalence and

biomarker composition
of screen-detected

diabetes

316,084 participants from 113 studies
without previously diagnosed diabetes who
also had BMI measurement

Used to develop 
prediction equations

21,934 participants from 109 studies without 
previously diagnosed diabetes who also had
BMI measurement and had FPG ≥7 mmol l–1

and/or HbA1c ≥6.5%

Used to examine the
predictors of FPG-

HbA1c concordance versus
discordance

601,307 participants from 117 studies with
data on previous diagnosis of diabetes

Used to calculate the
prevalence of

diagnosed diabetes

4,830 participants who were pregnanta

participants with missing sex or age

participants aged <18 years
participants from follow-up rounds of studies that had 

1,183
23,001

diabetes
32,326
64,941

multiple measurements of the same cohort over timeb

participants with missing information on previous diagnosis of 

57,785 participants who had been previously diagnosed with
diabetes

participants from one specific area in one study in
Pakistand

participants with FPG <2 or >30 mmol l–1 or HbA1c <3% or
>18%e

203,604

1,216

11,107

participants with implausible combinations of FPG and
HbA1cf

41

participants whose FPG or HbA1c were not measured by
design or missingc

Fig. 1 | Flowchart of data cleaning and use. aExcluded because glucose 
metabolism changes during pregnancy. bData from the first available 
measurement were used for these participants. cSome surveys only measured 
glycemic biomarker on a subset of participants for logistic or budget reasons. 
dExcluded because glycemic measurements in these participants were 
systematically different from the rest from the same study, possibly because the 
specific area had high prevalence of thalassemia94. eExcluded because such values 
are more likely to be due to data recording error than values within the range.  
fWe removed participants for implausible pairs of FPG and HbA1c using the 

method of local outlier factor (LOF)95. This approach detects data combinations 
that are extremes in the joint density of the variable pairs (for example, a 
participant with FPG of 5 mmol l−1 and HbA1c of 17%, or with FPG of 28 mmol l−1 
and HbA1c of 5%). We identified extremes as those measurements whose measure 
of local density by LOF method is less than half of the average of their 100 
nearest neighbors. gIncluding all 2,436 participants from four studies that did 
not measure BMI. hIncluding all 3,455 participants from four studies in which all 
individuals without previously diagnosed diabetes had FPG < 7.0 mmol l−1 and 
HbA1c < 6.5%.
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Europe. In other regions, elevated HbA1c was a more common form 
of screen-detected diabetes than in the high-income western region, 
in isolation (PR ranging 1.42–2.20 across these regions) or together 
with elevated FPG (PR ranging 1.31–1.52 in east and southeast Asia and 
the Pacific; south Asia; sub-Saharan Africa). In all regions, isolated 
elevated FPG was less common than in the high-income western region 
(PR ranging 0.24–0.51).

Prediction equations
We developed nine prediction equations (Extended Data Table 2) that 
estimate, for any given FPG level, the probability that a person without 
previously diagnosed diabetes would have HbA1c above the clinical 
threshold for diabetes had it been measured, and vice versa. The vari-
ables in the prediction equations included FPG as well as sex, age, BMI, 
whether FPG was measured in a laboratory or using a portable device, 
and region. We assessed the performance of the models in predict-
ing (1) individual participants’ status of having HbA1c ≥ 6.5% based on 

their FPG and (2) the prevalence of HbA1c ≥ 6.5% for an entire study. 
We used the same method for predicting the probability of having 
FPG ≥ 7.0 mmol l−1 based on HbA1c. The performance at the individ-
ual level reflects how well the prediction equation works for triaging 
patients for further measurement for diabetes, and the performance at 
study (or population) level assesses how well the prediction equation 
works for diabetes surveillance. Most of the prediction equations had 
acceptable performance for estimating the probability that a person 
without diagnosed diabetes at a specific level of one glycemic bio-
marker (FPG or HbA1c) was above the clinical threshold for the other 
(Extended Data Tables 3 and 4). Specifically, the C-statistic ranged 
0.85–0.90 for prediction equations that used either biomarker to 
predict the elevated level of the other. The mean errors were between 
−0.18 and −0.65 percentage points and the mean absolute errors were 
between 2.32 and 3.30 percentage points. The best-performing models 
for predicting whether participants had HbA1c ≥ 6.5% using FPG meas-
urement included BMI and region-specific terms for FPG, referred to 

Table 1 | Characteristics of studies and participants included in the analysis: all participants, participants without diagnosed 
diabetes, and participants without diagnosed diabetes who had FPG ≥7.0 mmol l−1 and/or HbA1c ≥6.5%

Number of 
studies

Number of countries 
(% of all countries in 
the region or world)

Median 
year of 
studies

Number of 
participants

Percent 
female (%)

Mean 
(s.d.) age 
(years)

Mean FPG 
(mmol l−1)

Mean 
HbA1c (%)

Mean BMI 
(kg m−2)

All participants

 Central and eastern Europe 8 4 (20%) 2012 51,352 55.6 55 (11) 5.8 5.5 28.2

  Central Asia, Middle East 
and north Africa

10 5 (18%) 2015 73,109 54.4 47 (15) 5.7 5.9 27.7

 High-income western 48 11 (41%) 2010 190,276 53.2 53 (18) 5.6 5.5 27.8

  Latin America and the 
Caribbean

17 11 (31%) 2016 75,257 62.3 48 (18) 5.7 5.7 28.3

 South Asia 8 2 (29%) 2012 87,404 54.4 42 (14) 5.9 6.0 23.1

  East and southeast Asia 
and the Pacific

19 7 (41%) 2012 112,854 56.2 52 (16) 5.6 5.7 24.0

 Sub-Saharan Africa 7 5 (10%) 2014 11,055 62.6 49 (14) 6.1 6.2 26.3

 All studies 117 45 (22%) 2012 601,307 55.6 50 (17) 5.7 5.7 26.4

Participants without diagnosed diabetes

 Central and eastern Europe 8 4 (20%) 2012 12,086 52.2 49 (14) 5.4 5.4 27.4

  Central Asia, Middle East 
and north Africa

10 5 (18%) 2015 46,886 55.1 46 (14) 5.3 5.6 27.5

 High-income western 48 11 (41%) 2010 100,140 53.9 52 (16) 5.4 5.3 27.4

  Latin America and the 
Caribbean

17 11 (31%) 2016 38,524 60.8 48 (17) 5.3 5.4 28.0

 South Asia 8 2 (29%) 2012 28,554 52.7 41 (14) 5.6 5.7 24.0

  East and southeast Asia 
and the Pacific

19 7 (41%) 2012 92,900 56.6 51 (16) 5.4 5.6 23.9

 Sub-Saharan Africa 7 5 (10%) 2014 8,464 62.2 48 (14) 5.6 5.8 26.2

 All studies 117 45 (22%) 2012 327,554 55.7 49 (16) 5.4 5.5 26.2

Participants without diagnosed diabetes who had FPG ≥ 7.0 mmol l−1 and/or HbA1c ≥ 6.5%

 Central and eastern Europe 8 4 (20%) 2012 551 41.7 58 (11) 8.0 6.4 31.3

  Central Asia, Middle East 
and north Africa

10 5 (18%) 2015 3,328 52.0 55 (13) 7.7 7.3 30.2

 High-income western 44 11 (41%) 2009 4,422 43.1 62 (13) 7.9 6.7 31.0

  Latin America and the 
Caribbean

17 11 (31%) 2016 2,718 63.0 55 (15) 8.4 7.3 30.4

 South Asia 8 2 (29%) 2012 4,612 51.7 47 (13) 8.0 7.4 26.0

  East and southeast Asia 
and the Pacific

19 7 (41%) 2012 6,157 52.0 58 (13) 8.1 7.0 26.1

 Sub-Saharan Africa 7 5 (10%) 2014 1,257 60.5 55 (11) 7.5 7.2 28.7

 All studies 113 45 (22%) 2013 23,045 51.7 56 (14) 8.0 7.1 28.4
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as models 5 and 8 in Extended Data Tables 2 and 3. These two models 
had similar C-statistic. Model 5 had the smallest deviation and model 
8 had the smallest bias. The addition of sex interaction terms did not 
improve model performance. The best models for predicting whether 
participants had FPG ≥ 7.0 mmol l−1 using HbA1c measurement were 
also models 5 and 8 (Extended Data Tables 2 and 4). The coefficients 
of these models are shown in Extended Data Tables 5 and 6.

In Fig. 3, the coefficients from model 8 were used to calculate the 
probability that a person without a history of diabetes diagnosis, based 
on measurement of a single glycemic biomarker that is below the clini-
cal threshold, would have elevated level of the other (elevated HbA1c 
at a specific FPG and BMI level (Fig. 3a) or elevated FPG at a specific 
HbA1c and BMI level (Fig. 3b)). For example, in south Asia, people aged 
55 years and older, without a previous diabetes diagnosis, with obesity 
(BMI ≥ 30 kg m−2), whose FPG is 6.5–6.9 mmol l−1 have a 29–63% prob-
ability of having elevated HbA1c. In contrast, the probability of having 
elevated HbA1c remained no higher than 17% for men and women of the 

same age and FPG level in the high-income western region and central 
and eastern Europe, which means that screen-detected diabetes that 
is manifested as isolated elevated HbA1c is relatively rare in these 
two regions. For those whose HbA1c was measured, the probability 
of having elevated FPG was below 30% in every region except central 
and eastern Europe; the probability surpassed 20% only in those with 
high BMI and HbA1c levels.

In Fig. 4, the coefficients from model 8 were used to calculate 
the probability that a person without a history of diabetes diagnosis, 
based on measurement of a single glycemic biomarker that is above 
the clinical threshold, would have elevated level of the other (elevated 
HbA1c at a specific FPG and BMI level (Fig. 4a) or elevated FPG at a 
specific HbA1c and BMI level (Fig. 4b)). These results show that peo-
ple without a previous diagnosis who had an elevated level of one 
diabetes biomarker had varying probabilities of also being elevated 
for the other depending on region, age, sex and BMI. In particular, for 
those with screen-detected elevated HbA1c, the probability of also 

a

Crude Age-standardized

10

All s
tudies

High-in
come w

este
rn

Centra
l a

nd

eas
tern

 Euro
pe

Eas
t a

nd so
utheas

t

Asia
 an

d th
e Pac

ific

La
tin

 Americ
a a

nd

the C
ari

bbean

Centra
l A

sia
, M

iddle

Eas
t a

nd north
 Afri

ca

South Asia

Sub-Sah
ara

n Afri
ca

0

10

20

Pr
op

or
tio

n 
of

 a
ll 

pa
rt

ic
ip

an
ts

 (%
)

Diagnosed diabetes

Without previous diagnosis of
diabetes

Diagnosed diabetes

Elevated levels of both FPG
and HbA1c

Isolated elevated HbA1c

Isolated elevated FPG

b
Crude Age-standardized

0 25 50 75 100 0 25 50 75 100

All studies

Central Asia, Middle East and
north Africa
East and southeast Asia and the
Pacific

Latin America and the Caribbean

Sub-Saharan Africa

South Asia

High-income western

Central and eastern Europe

Proportion of participants with screen-detected diabetes (%)

All s
tudies

High-in
come w

este
rn

Centra
l a

nd

eas
tern

 Euro
pe

Eas
t a

nd so
utheas

t

Asia
 an

d th
e Pac

ific

La
tin

 Americ
a a

nd

the C
ari

bbean

Centra
l A

sia
, M

iddle

Eas
t a

nd north
 Afri

ca

South Asia

Sub-Sah
ara

n Afri
ca

Fig. 2 | Extent and composition of diagnosed and screen-detected diabetes 
by region. a, Crude and age-standardized proportion of participants with 
diagnosed or screen-detected diabetes and, for those without previous 
diagnosis, whether they had isolated elevated FPG (FPG ≥ 7.0 mmol l−1 and 
HbA1c < 6.5%), isolated elevated HbA1c (HbA1c ≥ 6.5% and FPG < 7.0 mmol l−1) or 
elevated levels of both. b, Crude and age-standardized proportion of participants 
with screen-detected diabetes who had isolated elevated FPG, isolated elevated 
HbA1c or elevated levels of both, by region. The contents in b are the same as the 
segment of a that is below the zero line, scaled to 100% so that the composition 

of screen-detected diabetes can be compared across regions, regardless of its 
total prevalence. Having elevated levels of both biomarkers has high positive 
predictive value for subsequent clinical diagnosis and risk of complications14,47 
and hence this group is similar to clinically diagnosed diabetes. In a, regions 
are ordered by the total proportion of participants who had diagnosed and 
screen-detected diabetes. In b, regions are ordered by the crude proportion of 
participants with screen-detected diabetes who had elevated levels of both FPG 
and HbA1c. Extended Data Fig. 1 provides sex-specific results.
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having FPG ≥ 7.0 mmol l−1 surpassed 90% in some region-age-BMI com-
binations. The exceptions were south Asia and Latin America and the 
Caribbean, where isolated elevated HbA1c and isolated elevated FPG 
were both common and hence only partially predicted one another.

Discussion
Our analysis of pooled global data showed that the use of either FPG 
or HbA1c alone might substantially underestimate the burden of dia-
betes relative to the number of people who would have elevated lev-
els of either glycemic measure, especially in low- and middle-income 
countries where diagnosis rates are currently low. We also presented 
prediction equations to help allocate finite resources for measurement 
of HbA1c in settings where FPG (but not HbA1c) is routinely measured 
due to logistic or cost constraints. The prediction equations can also 
be used to enhance diabetes surveillance, to adjust the estimated 
prevalence in the majority of population-based health surveys which 
measure only one biomarker.

Our results, based on a large number of studies from different 
regions of the world, are consistent with a previous smaller study with 
data from mostly high-income western countries43 and with the collec-
tive results from studies done in individual countries22–42 in identifying 
substantial variation in diabetes classified by FPG versus HbA1c across 
regions. None of the previous studies had sufficient geographical 
coverage or participants to robustly quantify regional differences in 

how those with previously undiagnosed diabetes that were identified 
based on elevation of FPG and HbA1c, in isolation or together, as we 
did. A study using baseline data from the ORIGIN trial48, which covered 
people with diabetes or prediabetes from 40 countries, did not quan-
tify the concordance and discordance of diabetes based on different 
biomarkers but its graphical results indicated smaller differences 
in FPG-HbA1c relationship between Europe and north America than 
between these regions and Asia or south America. We found that sex, 
age and BMI were predictors of having concordant versus discordant 
elevated FPG and elevated HbA1c, which is consistent with results from 
studies in individual countries22,32,34,40,49. Finally, to our knowledge, 
our prediction equations are the only global and generalizable tool 
for predicting the probability of being classified as having diabetes 
based on one glycemic biomarker based on measurement of another. A 
previous regression related HbA1c to average glucose50 (but not fasting 
glucose). This relationship is currently used by the American Diabetes 
Association for assessing glycemic control51 and not for inferring new 
diagnosis of diabetes. It used data from only 507 individuals, 422 of 
whom were non-Hispanic White. The data came from ten centers, of 
which nine were in the United States and Europe. Over half (268) had 
type 1 diabetes, which is the less common form of diabetes in adults. 
The conversions did not account for other traits such as BMI and age, 
nor was the performance of the prediction equation validated in data 
that were not used in its derivation.

Table 2 | Association of whether screen-detected diabetes is manifested as isolated elevated FPG, isolated elevated HbA1c 
or elevated levels of both with individual and study characteristics

Isolated elevated FPG Isolated elevated HbA1c Elevated levels of both

PR CrI Posterior 
probability

PR CrI Posterior 
probability

PR CrI Posterior 
probability

Region

 High-income western Reference Reference Reference

 Central and eastern Europe 1.16 0.73–1.86 0.259 0.62 0.35–1.09 0.049 0.83 0.61–1.12 0.115

 Latin America and the Caribbean 0.48 0.32–0.72 <0.001 1.42 0.93–2.16 0.053 1.16 0.91–1.46 0.109

 East and southeast Asia and the Pacific 0.51 0.35–0.73 <0.001 1.53 1.04–2.25 0.015 1.35 1.10–1.67 0.002

 South Asia 0.24 0.13–0.44 <0.001 1.65 0.89–3.10 0.056 1.52 1.08–2.15 0.009

  Central Asia, Middle East and  
north Africa

0.33 0.20–
0.54

<0.001 2.20 1.31–3.67 0.001 1.06 0.80–1.40 0.342

 Sub-Saharan Africa 0.33 0.19–0.57 <0.001 1.65 0.92–2.94 0.045 1.31 0.96–1.79 0.045

Sex

 Women Reference Reference Reference

 Men 1.10 1.07–1.14 <0.001 0.86 0.83–
0.89

<0.001 1.07 1.03-1.11 <0.001

Age (per 10 years of age) 0.97 0.96–
0.98

<0.001 1.05 1.04–1.06 <0.001 0.97 0.96–0.99 <0.001

BMI (per 5 kg m−2) 0.92 0.90–
0.93

<0.001 0.99 0.98–1.01 0.137 1.07 1.06–1.08 <0.001

Study year (per 5 years of time) 1.01 0.89–1.14 0.447 1.05 0.92–1.20 0.240 1.06 0.99–1.14 0.048

Percent people with diabetes who 
had been diagnosed before (per 10 
percentage points)

0.98 0.89–1.09 0.380 0.98 0.88–1.09 0.354 1.05 0.99–1.11 0.046

Measurement of FPG

 Laboratory Reference Reference Reference

 Portable device 1.71 1.00–2.91 0.025 0.89 0.51–1.56 0.338 0.87 0.64–1.16 0.169

Measurement of HbA1c

 Laboratory Reference Reference Reference

 Portable device 0.33 0.16–0.68 0.001 2.13 1.05–4.20 0.018 0.54 0.35–0.81 0.002

The association with each variable is reported as prevalence ratios (PRs), adjusted for all other variables in the table, in the regression models described in the Methods, in which data from 
individual participants with screen-detected diabetes were used. Extended Data Table 7 shows results excluding studies that had measured FPG in capillary whole blood using a portable 
device. CrI, credible interval.
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Fig. 3 | The predicted probability of having screen-detected diabetes with 
isolated elevated HbA1c or FPG. a,b, The probability, by sex, age and region, of 
participants who did not have previous diagnosis of diabetes of having elevated 
HbA1c (≥6.5%) at different FPG and BMI levels (a) and elevated FPG (≥7.0 mmol l−1) 
at different HbA1c and BMI levels (b). The probabilities were calculated using 

coefficients of prediction equation model 8, with measurement method set to 
laboratory for prediction. These results show the probability of having screen-
detected diabetes if the second biomarker had been measured, for a person 
whose first biomarker was below the clinical threshold for diabetes diagnosis.
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Fig. 4 | The predicted probability of having screen-detected diabetes with 
elevated levels of both FPG and HbA1c. a,b, The probability by sex, age and 
region of participants who did not have a previous diagnosis of diabetes of 
having elevated HbA1c (≥6.5%) at different FPG and BMI levels (a) and elevated 
FPG (≥7.0 mmol l−1) at different HbA1c and BMI levels (b). The probabilities were 
calculated using coefficients of prediction equation model 8, with measurement 

method set to laboratory for prediction. These results show the probability 
that the second biomarker, had it been measured, would be above the clinical 
threshold for diabetes diagnosis, for a person whose first biomarker was above 
the clinical threshold for diabetes diagnosis. Having elevated levels of both 
biomarkers has high positive predictive value for subsequent clinical diagnosis 
and risk of complications14,47.
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The strengths of our study include the amount, quality and geo-
graphical diversity of data, with studies from seven of eight major world 
regions. We carefully checked that data on biomarkers of diabetes and 
previous diagnosis were of high quality and consistent across studies 
as stated in detail in the Methods. The scale, quality and consistency 
of data allowed the characterization of the relationship between these 
glycemic biomarkers and the development of prediction equations 
that can inform the allocation of resources toward closing the global 
diagnosis and monitoring gaps.

Our study is also affected by limitations that apply to data pooling 
analyses, especially those that use data collected in different countries 
and time periods. Despite our extensive efforts to identify and access 
data, we had limited data in some regions and none from Pacific island 
nations in the Oceania region. We did not analyze concordance and 
discordance with OGTT because few studies, mostly from high-income 
countries, had data on all three glycemic biomarkers and because the 
use of OGTT in clinical settings is largely for diagnosis of gestational 
diabetes and not for population surveillance. The use of OGTT would 
identify additional people as having diabetes above and beyond those 
identified with FPG and HbA1c25,28. We did not analyze time trends of 
diagnosed and screen-detected diabetes, which should be the subject 
of future work, as conducted for hypertension52. Although we checked 
all data sources and their characteristics thoroughly, and accounted for 
whether a study had measured FPG and HbA1c in a laboratory or using 
a portable device, other unobserved differences might remain due to 
differing methods. Examples include differences in assays used for 
measuring FPG and HbA1c. We attempted to mitigate these differences 
by limiting our data to studies with mid-year of 2000 and later, a period 
over which HbA1c assays were more likely to be standardized, and by 
including the study-level random effects in our models, which remove 
the influence of unobserved differences across studies. Beyond our 
finding that the results were not sensitive to exclusion of studies that 
used a portable device (Extended Data Table 7), studies that have tested 
different devices on the same set of samples have found high correla-
tions (>0.97) among their measurements and between these devices 
and reference laboratory methods53,54. We did not have consistent data 
from all studies on other potential determinants of concordant versus 
discordant elevated levels of FPG and HbA1c, such as genetics, fasting 
duration, time between puncture and centrifuge, measures of insu-
lin resistance and pre-existing disease status and comorbidities (for 
example, liver disease, hemoglobinopathies and anemia) that might 
have differential influence on FPG and HbA1c. These variables should 
ideally be the subject of coordinated multicenter studies with con-
sistent data collection methods in different regions and populations; 
however, such studies would be very costly especially as the number 
of outcomes and variables increases. There is intraindividual variation 
in FPG, and to a lesser extent HbA1c55, which could reduce the concord-
ance between FPG and HbA1c, and repeated measurements of FPG may 
improve its concordance with HbA1c39. Finally, while the studies that 
were used to define the diagnostic cutoff points were all based on single 
measurements of glycemia8,56, as are epidemiological and surveillance 
studies44,57–59, many clinical guidelines recommend using a second 
confirmatory test for diabetes diagnosis and initiating treatment10–13 
(we note that there is variation in this guidance, for example while the 
American Diabetes Association requires two above-threshold tests for 
diagnosing diabetes in most cases10, the European Association for the 
Study of Diabetes only advises doing so11, the World Health Organiza-
tion only recommends repeated testing for asymptomatic patients13, 
and the International Diabetes Federation further limits repeated 
testing to when the first measurement is close to the threshold for diag-
nosis12). A key reason for clinical guidelines recommending a confirma-
tory test is to minimize risks of erroneous results, for example, due to 
mis-recording of laboratory results or large intraindividual variability 
(which is more relevant for FPG than HbA1c), potentially leading to a 
lifelong (mis-)diagnosis for an individual patient. This is not a relevant 

issue in prevalence studies in a population, as random measurement 
error and fluctuations in one direction are approximately balanced 
by those in the opposite direction. Reflecting the difference between 
the clinical and epidemiological approaches to diabetes definition, 
we referred to those without a previous diagnosis who had biomarker 
levels above the clinical thresholds as screen-detected diagnosis, and 
our prediction equations should be considered a tool for triaging some 
people at specific levels of FPG for measurement of HbA1c, and possibly 
vice versa, rather than a tool for conferring a diagnosis.

The observed variation in the composition of screen-detected 
diabetes across regions may be due to a number of factors. Some 
genetic and phenotypic factors that affect fasting glucose and glucose 
metabolism through their effects on β-cell function and insulin sen-
sitivity may be more common in some regions or ethnic groups60–64. 
Other non-glycemic factors, including anemia due to iron deficiency 
or malaria, certain hemoglobin variants (for example, HbS and HbF), 
other hemoglobinopathies, polycythemia due to living in high altitude, 
liver and kidney diseases, HIV and certain drugs such as antiretroviral 
therapy for HIV, can also affect HbA1c and FPG differently65–77. Some 
of these factors, including malaria-induced and iron deficiency ane-
mia, hemoglobinopathies such as sickle cell disease and thalassemia, 
and antiretroviral therapy, are more prevalent in parts of Asia and 
Africa78–80, and may have shifted the population distribution of HbA1c 
or affected its measurement77. One study from South Africa found that 
the impact of these factors on HbA1c were small81. Guidelines recom-
mend the use of a glucose test for diabetes diagnosis in those with such 
conditions10. Smoking and alcohol use, which vary geographically, 
may differentially affect HbA1c and FPG82,83. Finally, the composition 
of diabetes that was detected through screening in the survey depends 
on whether those with a previous diagnosis were identified based on 
FPG or HbA1c. For example, with increasing use of HbA1c in clinical 
settings in high-income countries84, a smaller proportion of people 
with screen-detected diabetes would have elevated HbA1c.

Although both FPG and HbA1c are associated with increased risk 
of microvascular and macrovascular complications2,85,86, the current 
evidence on the health implications of having discordant versus con-
cordant elevation of FPG and HbA1c is limited. The few available studies 
found worse outcomes on the health risks associated with concord-
ant elevation of FPG and HbA1c than discordant elevation, but had 
mixed findings about how isolated elevation of the two biomarkers 
compare39,87,88. To the extent that both FPG and HbA1c are predictors 
of risk of complications and mortality, reliance on a single biomarker 
may miss or delay diagnosis of diabetes in some people and hence 
increase their risk of complications. This issue is especially relevant in 
low- and middle-income countries where resource constraints make 
FPG the more common approach to diagnosis, possibly because the 
measurement of HbA1c requires equipment or reagents that are more 
costly or because standardization of the HbA1c laboratory process 
requires specialist training that is not as widely available89–93. With finite 
resources, our prediction equations can help to triage some people for 
the measurement of a second biomarker, often HbA1c, and enhance 
early detection of diabetes and close the global diagnosis shortfall14. 
For surveillance, the use of a single biomarker, so far largely FPG44–46, 
underestimates the burden of diabetes and does so to a larger extent 
in low- and middle-income countries where a larger share of condi-
tions such as diabetes (and hypertension52) remains undiagnosed. Our 
prediction equations can help provide a more complete picture of the 
burden of diabetes in different regions.
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M et ho ds
The pooled analysis was approved by Imperial College London Research 
Ethics Committee and complies with all relevant ethical regulations. 
The participating studies followed their institutional approval process 
at the time of data collection.

Data
We used data collated by the NCD-RisC. The data sources included 
national and multi-country measurement surveys that were either 
publicly available or identified and accessed through contacts with 
relevant government or academic partners. Additionally, we searched 
and reviewed published studies as detailed previously44 and invited 
eligible studies to join NCD-RisC, as we did with participating studies 
in previous pooled analyses of cardiometabolic risk factors96–99. The 
NCD-RisC database is continuously updated through the above routes 
and through periodic requests to NCD-RisC members to suggest addi-
tional sources in their countries.

The inclusion criteria for this analysis were (1) data were collected 
using a probabilistic sampling method with a defined sampling frame; 
(2) data were from population samples at the national, subnational 
(defined as covering one or more subnational regions, more than 
three urban communities or more than five rural communities) or 
community level (defined as having up to three urban communities 
or up to five rural communities); and (3) both FPG and HbA1c were 
measured. Studies were excluded if they had (1) enrolled participants 
based on health status or cardiovascular risk; (2) were conducted only 
among ethnic minorities or specific educational, occupational or 
other socioeconomic subgroups; (3) recruited participants through 
health facilities, except studies based on the primary care system in 
high-income and central European countries with universal insurance; 
(4) had not measured either FPG or HbA1c; (5) had not instructed 
participants to fast for at least 6 h before FPG measurement; (6) had 
only measured FPG or HbA1c in the subset of participants who had 
known diabetes; (7) had measured HbA1c only in a subset of partici-
pants selected based on their levels of FPG and vice versa; (8) had not 
collected information on a previous diagnosis of diabetes; and (9) 
their mid-year was before 2000, before HbA1c assays were widely 
standardized100.

At least two independent people ascertained that each data 
source met the inclusion criteria. All NCD-RisC members were asked 
to review the list of data sources from their country, to verify that 
the included data met the inclusion criteria and were not duplicates. 
When FPG and/or HbA1c data were missing for more than 10% of 
participants in a survey, we checked the study design documenta-
tion to verify missingness at random so that the above inclusion 
criteria were met. Questions and clarifications were discussed with 
NCD-RisC members and resolved before data were incorporated in 
the database. For each data source, we recorded the study popula-
tion, sampling approach, years of measurement and measurement 
methods, including whether FPG and HbA1c were measured in a labo-
ratory or using a portable point-of-care device. In 11 studies, fasting 
glucose was measured in capillary whole blood; four of these used 
equipment that reported plasma-equivalent values. We converted 
the measurements from the other seven studies to plasma-equivalent 
using the relationship in a study that compared different types of 
specimens101. In a sensitivity analysis, we excluded these 11 studies 
from the analysis.

We established whether a participant had diagnosed diabetes 
using questions worded as variations of ‘Have you ever been told 
by a doctor or other health professional that you had diabetes, also 
called high blood sugar?’ In some surveys, the question on previous 
diabetes diagnosis was asked only if a participant had answered ‘yes’ 
to an earlier question, usually worded as ‘Have you ever been screened 
for diabetes?’ or ‘Have you ever had your blood glucose measured?’. In 
these cases, participants who answered ‘no’ to the first question were 

coded as not having been diagnosed with diabetes. We also consid-
ered participants who used diabetes medication such as metformin 
or insulin as having diabetes. Survey data typically do not separate 
type 1 and type 2 diabetes in adults, but studies that had data on these 
subtypes show that most (85–95%) cases of diabetes in adults are type 
2 diabetes102.

The data cleaning and use process is summarized in Fig. 1 and the 
list of data sources and their characteristics are stated in Supplemen-
tary Table 1.

Statistical analysis
We divided the participants into those who had a previous diagno-
sis of diabetes (hereafter referred to as diagnosed diabetes), those 
without a previous diagnosis of diabetes who had elevated FPG 
(FPG ≥ 7.0 mmol l−1) and/or elevated HbA1c (HbA1c ≥ 6.5%) (referred 
to as screen-detected diabetes) and the remainder who did not have 
a previous diagnosis, elevated FPG, or elevated HbA1c. We conducted 
the following three analyses.

Screen-detected diabetes by FPG and HbA1c. We graphically  
presented how total diabetes is divided into diagnosed and screen- 
detected diabetes, and how screen-detected diabetes is further divided 
into those manifested as only elevated FPG (FPG ≥ 7.0 mmol l−1 and 
HbA1c < 6.5%, referred to as isolated elevated FPG), only elevated 
HbA1c (HbA1c ≥ 6.5% and FPG < 7.0 mmol l−1, referred to as isolated 
elevated HbA1c) or elevated levels of both FPG and HbA1c. We report 
crude and age-standardized prevalence. We calculated crude preva-
lence using data from all participants regardless of age. We calculated 
age-standardized prevalence as the weighted mean of the age-specific 
values using the World Health Organization standard population103. We 
also graphically described the relationship of FPG and HbA1c among 
people without diagnosed diabetes.

Association with individual and study characteristics. We fitted 
regression models to examine what individual and study-level fac-
tors were associated with whether participants with screen-detected 
diabetes were identified by elevated FPG, elevated HbA1c or elevated 
levels of both. We fitted three separate log-binomial regressions, 
with each of the three outcomes (isolated elevated FPG, isolated 
elevated HbA1c and elevated levels of both) as a distinct dependent 
variable. A log-binomial regression estimates the association of each 
independent variable with the probability of a participant falling in 
each of the three categories as PR. The individual level independent 
variables were sex, age and BMI; the study-level variables were region, 
study year, whether FPG and HbA1c were measured in a laboratory or 
using a portable device (to account for differences in measurement 
between them53,54) and percentage of participants with diabetes 
who had been diagnosed before in each study. The regressions also 
included a study-level random effect to account for unobserved 
factors that led to systematic differences in each study compared 
to others104,105.

We fitted the log-binomial regressions using Bayesian model 
fitting implemented in MultiBUGS (v.2.0)106. Bayesian model fitting 
has better estimation performance for log-binomial model than a 
frequentist approach107. We used a normal distribution with mean of 
zero and s.d. of 0.01 as the prior for the regression coefficients and a 
uniform distribution on 0.01–2.00 as the prior for the s.d. of study-level 
random effects. We ran four chains and assessed convergence visually 
using trace plots. After burn-in and thinning, we kept 50,000 draws 
to represent the posterior distributions of the PRs. We report PRs 
and their 95% CrIs as the mean and the 2.5th and 97.5th percentiles of 
their posterior distributions. We report the posterior probability that 
a PR with posterior mean estimate >1.0 is less than one and vice versa 
for PRs <1.0; the posterior probabilities are analogous to P values in a 
frequentist analysis.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02610-2

Prediction equations. We tested nine logistic regression models for 
estimating the probability that a person without diagnosed diabetes 
at a specific level of FPG had an HbA1c over the clinical threshold for 
diabetes (HbA1c ≥ 6.5%). The variables in the models were selected 
based on clinical and epidemiological relevance and data availability. 
The variables included FPG as well as sex, age, BMI, glycemic measure-
ment method (laboratory based or via a portable device) and region. 
The nine prediction models (Extended Data Table 2) differed by the 
predictors included and whether the coefficient of the FPG term 
was allowed to vary by sex and region. In all models, we included a 
study-level random effect to account for unobserved factors that 
led to systematic differences in each study compared to others104,105. 
We also tested the inclusion of nonlinear (square and cubic) terms 
of FPG, year of data collection and other interaction terms; these 
models performed worse than those without the additional terms 
as evaluated by the metrics below and are not presented. We did 
not interact age, which is a continuous variable, with FPG and other 
terms, to avoid overfitting. We fitted and evaluated all prediction 
models in R (v.4.2.1)108.

We assessed the performance of the models in predicting (1) indi-
vidual participants’ status of having HbA1c ≥ 6.5% based on their FPG 
and (2) the prevalence of HbA1c ≥ 6.5% for an entire study. The perfor-
mance at the individual level reflects how well the prediction equation 
works for triaging patients for further measurement for diabetes, 
and the performance at study (or population) level assesses how well 
it works for diabetes surveillance. We used the C-statistic to assess 
individual-level performance and mean error and mean absolute error 
between the predicted and observed prevalence for population-level 
performance. The C-statistic measures how well a prediction equation 
distinguishes individuals with higher risk from those with lower risk. 
Mean error assesses whether there is systematic difference (bias) in the 
predicted prevalence compared to the observed one and mean abso-
lute error assesses any deviation of the predicted prevalence from the 
observed prevalence. We calculated error by study, sex and age group 
(18–39 years, 40–59 years and 60 years and older).

We evaluated the performance of the models in 20 rounds of 
tenfold cross-validation109. In each fold of each round, we held out all 
data from a random 10% of studies, fitted the model to the data from 
the remaining 90% of studies and made estimates for the held-out 
observations. We repeated this process ten times, each time holding 
out a different 10% of studies so that each study was held out exactly 
once. We calculated the above individual-level and population-level 
performance metrics for all held-out observations. We repeated the 
tenfold cross-validation 20 times and report the means and ranges of 
the performance metrics from all 20 rounds.

We repeated the same process for predicting the probability of 
having FPG ≥ 7.0 mmol l−1 based on HbA1c.

Ethics and inclusion
This research followed the recommendations set out in the Global Code 
of Conduct for Research in Resource-Poor Settings.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used in this research are governed by data-sharing protocols 
of participating studies. Contact information for data providers 
can be obtained from www.ncdrisc.org and https://doi.org/10.5281/
zenodo.8169145.

Code availability
The computer code for the log-binomial regression in this work is avail-
able at www.ncdrisc.org and https://doi.org/10.5281/zenodo.8169145.
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Extended Data Fig. 1 | Extent and composition of diagnosed and screen-
detected diabetes by region and sex. (a) Crude and age-standardized 
proportion of participants with diagnosed or screen-detected diabetes, and, 
for those without prior diagnosis, whether they had isolated elevated FPG (FPG 
≥7.0 mmol/L and HbA1c < 6.5%), isolated elevated HbA1c (HbA1c ≥6.5% and 
FPG < 7.0 mmol/L) or elevated levels of both, and (b) crude and age-standardized 
proportion of participants with screen-detected diabetes who had isolated 
elevated FPG, isolated elevated HbA1c or elevated levels of both, by region and 
sex. Its contents are the same as the segment of Panel A that is below the zero 

line, scaled to 100% so that the composition of screen-detected diabetes can 
be compared across regions, regardless of its total prevalence. Having elevated 
levels of both biomarkers has high positive predictive value for subsequent 
clinical diagnosis and risk of complications14,47, and hence this group is similar 
to clinically-diagnosed diabetes. In panel A, regions are ordered by the total 
proportion of participants who had diagnosed and screen-detected diabetes. In 
panel B, regions are ordered by the crude proportion of participants with screen-
detected diabetes who had elevated levels of both FPG and HbA1c.
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Extended Data Fig. 2 | Extent and composition of diagnosed and 
screen-detected diabetes by region, after removing two studies in Mauritius 
from sub-Saharan Africa. (a) Crude and age-standardized proportion of 
participants with diagnosed or screen-detected diabetes, and, for those without 
prior diagnosis, whether they had isolated elevated FPG (FPG ≥7.0 mmol/L and 
HbA1c < 6.5%), isolated elevated HbA1c (HbA1c ≥6.5% and FPG < 7.0 mmol/L) 
or elevated levels of both, and (b) crude and age-standardized proportion of 
participants with screen-detected diabetes who had isolated elevated FPG, 
isolated elevated HbA1c or elevated levels of both, by region. Its contents are the 

same as the segment of Panel A that is below the zero line, scaled to 100% so that 
the composition of screen-detected diabetes can be compared across regions, 
regardless of its total prevalence. Having elevated levels of both biomarkers 
has high positive predictive value for subsequent clinical diagnosis and risk 
of complications14,47, and hence this group is similar to clinically-diagnosed 
diabetes. In panel A, regions are ordered by the total proportion of participants 
who had diagnosed and screen-detected diabetes. In panel B, regions are ordered 
by the crude proportion of participants with screen-detected diabetes who had 
elevated levels of both FPG and HbA1c. Regions are in the same order as in Fig. 2.
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Extended Data Fig. 3 | Relationship between FPG and HbA1c, among 
participants who had not been previously diagnosed with diabetes, by 
region. The shading indicates the density of participants in each region, with 
darker shades corresponding to more participants and vice versa. The dotted 
lines are placed at FPG of 7.0 mmol/L and HbA1c of 6.5%, which are common 

clinical thresholds for diabetes10–13. The numbers on the panels indicate the 
Pearson correlation coefficient between FPG and HbA1c in each region. A total of 
623 (0.2%) participants with FPG of 19-28 mmol/L and/or HbA1c of 12-17% are not 
shown in the figure so that the axes have sufficient resolution in ranges where the 
great majority of participants were.
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Extended Data Table 1 | List of analysis regions and countries in each region. The data used in the analysis came from 
countries shown in bold

Region Country

Central and eastern 
Europe 

Albania, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech 
Republic, Estonia, Hungary, Latvia, Lithuania, Moldova, Montenegro, North 
Macedonia, Poland, Romania, Russian Federation, Serbia, Slovakia, 
Slovenia, Ukraine

Central Asia, Middle 
East and north Africa

Algeria, Armenia, Azerbaijan, Bahrain, Egypt, Georgia, Iran, Iraq, Jordan, 
Kazakhstan, Kuwait, Kyrgyzstan, Lebanon, Libya, Mongolia, Morocco,
Occupied Palestinian Territory, Oman, Qatar, Saudi Arabia, Syrian Arab 
Republic, Tajikistan, Tunisia, Turkey, Turkmenistan, United Arab Emirates, 
Uzbekistan, Yemen

High-income western
Andorra, Australia, Austria, Belgium, Canada, Cyprus, Denmark, Finland, 
France, Germany, Greece, Greenland, Iceland, Ireland, Israel, Italy, 
Luxembourg, Malta, Netherlands, New Zealand, Norway, Portugal, Spain, 
Sweden, Switzerland, United Kingdom, United States of America

Latin America 
and the Caribbean 

Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, Bermuda, 
Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican 
Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Haiti, 
Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto 
Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, 
Suriname, Trinidad and Tobago, Uruguay, Venezuela

Oceania 
American Samoa, Cook Islands, Federated States of Micronesia, Fiji, French 
Polynesia, Kiribati, Marshall Islands, Nauru, Niue, Palau, Papua New Guinea, 
Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu

South Asia Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka 

East and southeast
Asia and the Pacific

Brunei Darussalam, Cambodia, China, Indonesia, Japan, Lao PDR, 
Malaysia, Maldives, Myanmar, North Korea, Philippines, Singapore, South
Korea, Taiwan, Thailand, Timor-Leste, Viet Nam

Sub-Saharan Africa

Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, 
Central African Republic, Chad, Comoros, Congo, Cote d'Ivoire, Djibouti, DR
Congo, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, 
Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar, 
Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, 
Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, 
Somalia, South Africa, South Sudan, Sudan, Tanzania, Togo, Uganda,
Zambia, Zimbabwe
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Extended Data Table 2 | Specification of models tested to predict whether a participant has HbA1c ≥6.5% based on FPG 
levels, and to predict whether a participant has FPG ≥7.0 mmol/L based on HbA1c levels

Models to predict whether a participant has HbA1c ≥6.5% based on FPG

Common terms BMI terms FPG terms Device terms

Model 1: sex + age + region + study RE + FPG 

Model 2: sex + age + region + study RE + FPG + region * FPG 

Model 3: sex + age + region + study RE + FPG + region * FPG + sex * FPG 

Model 4: sex + age + region + study RE + BMI + FPG 

Model 5: sex + age + region + study RE + BMI + FPG + region * FPG 

Model 6: sex + age + region + study RE + BMI + FPG + region * FPG + sex * FPG 

Model 7: sex + age + region + study RE + BMI + FPG + device for measuring FPG

Model 8: sex + age + region + study RE + BMI + FPG + region * FPG + device for measuring FPG

Model 9: sex + age + region + study RE + BMI + FPG + region * FPG + sex * FPG + device for measuring FPG

Models to predict whether a participant has FPG ≥7 mmol/L based on HbA1c

Common terms BMI terms HbA1c terms Device terms

Model 1: sex + age + region + study RE + HbA1c 

Model 2: sex + age + region + study RE + HbA1c + region * HbA1c 

Model 3: sex + age + region + study RE + HbA1c + region * HbA1c + sex * HbA1c 

Model 4: sex + age + region + study RE + BMI + HbA1c 

Model 5: sex + age + region + study RE + BMI + HbA1c + region * HbA1c 

Model 6: sex + age + region + study RE + BMI + HbA1c + region * HbA1c + sex * HbA1c 

Model 7: sex + age + region + study RE + BMI + HbA1c + device for measuring HbA1c 

Model 8: sex + age + region + study RE + BMI + HbA1c + region * HbA1c + device for measuring HbA1c 

Model 9: sex + age + region + study RE + BMI + HbA1c + region * HbA1c + sex * HbA1c + device for measuring HbA1c 

* denotes statistical interaction. Age, FPG, HbA1c and BMI were normalized using the following values (approximately equal to mean and standard deviation across all participants): Age: 
centered at 50 years, divided by 15 years FPG: centered at 5.5 mmol/L, divided by 1.0 mmol/L HbA1c: centered at 5.5%, divided by 0.7% BMI: centered at 26.5 kg/m2, divided by 5.0 kg/m2 FPG: 
fasting plasma glucose; BMI: body-mass index; RE: random effect.
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Extended Data Table 3 | Performance of models for predicting whether a participant whose FPG was measured had  
HbA1c ≥6.5%

Individual-level
performance Population-level performance 

C-statistic 
Mean error 

(bias)
(percentage points) 

Mean absolute error 
(deviation) 

(percentage points) 

Model 1 0.897 (0.895, 0.899) -0.65 (-0.84, -0.42) 3.20 (3.01, 3.41) 

Model 2 0.898 (0.896, 0.900) -0.60 (-0.81, -0.37) 3.15 (2.98, 3.37) 

Model 3 0.898 (0.896, 0.900) -0.60 (-0.81, -0.37) 3.16 (2.98, 3.37) 

Model 4 0.903 (0.901, 0.905) -0.64 (-0.83, -0.41) 3.14 (2.95, 3.36) 

Model 5 0.904 (0.902, 0.906) -0.59 (-0.79, -0.37) 3.10 (2.92, 3.32) 

Model 6 0.904 (0.902, 0.906) -0.59 (-0.79, -0.37) 3.10 (2.93, 3.32) 

Model 7 0.902 (0.900, 0.903) -0.57 (-0.76, -0.35) 3.30 (3.14, 3.51) 

Model 8 0.903 (0.902, 0.905) -0.52 (-0.73, -0.31) 3.29 (3.15, 3.50) 

Model 9 0.903 (0.902, 0.905) -0.52 (-0.73, -0.31) 3.30 (3.15, 3.50) 

The reported values are the means and ranges over 20 rounds of 10-fold cross-validation. See Extended Data Table 2 for details of model specifications.
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Extended Data Table 4 | Performance of models for predicting whether a participant whose HbA1c was measured had  
FPG ≥7.0 mmol/L

Individual-level
performance Population-level performance 

C-statistic 
Mean error 

(bias)
(percentage points) 

Mean absolute error 
(deviation) 

(percentage points) 

Model 1 0.845 (0.831, 0.850) -0.14 (-0.21, -0.03) 2.52 (2.46, 2.64) 

Model 2 0.857 (0.846, 0.862) -0.17 (-0.22, -0.05) 2.41 (2.35, 2.52) 

Model 3 0.857 (0.846, 0.862) -0.17 (-0.23, -0.05) 2.41 (2.35, 2.52) 

Model 4 0.853 (0.840, 0.858) -0.15 (-0.21, -0.03) 2.42 (2.36, 2.55) 

Model 5 0.863 (0.853, 0.867) -0.18 (-0.24, -0.07) 2.32 (2.26, 2.42) 

Model 6 0.863 (0.853, 0.867) -0.18 (-0.24, -0.07) 2.32 (2.26, 2.42) 

Model 7 0.853 (0.840, 0.859) -0.13 (-0.20, 0.06) 2.47 (2.35, 2.64) 

Model 8 0.862 (0.854, 0.866) -0.17 (-0.24, 0.02) 2.33 (2.24, 2.49) 

Model 9 0.862 (0.854, 0.866) -0.17 (-0.24, 0.02) 2.33 (2.24, 2.49) 

The reported values are the means and ranges over 20 rounds of 10-fold cross-validation. See Extended Data Table 2 for details of model specifications.
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Extended Data Table 5 | Coefficients of the best-performing prediction equations for whether a participant whose FPG was 
measured had HbA1c ≥6.5%

Terms Coefficients for 
Model 5 

Coefficients for 
Model 8 

Intercept -5.09 (-5.39, -4.79) -5.10 (-5.40, -4.81) 
Male sex -0.06 (-0.10, -0.01) -0.06 (-0.10, -0.01) 
Age 0.52 (0.50, 0.55) 0.52 (0.50, 0.55)
FPG 1.42 (1.38, 1.47) 1.42 (1.38, 1.47)
BMI 0.37 (0.35, 0.39) 0.37 (0.35, 0.39)
Region 
    High-income western Reference Reference
    Central and eastern Europe -0.57 (-1.36, 0.21) -0.64 (-1.42, 0.14) 
    Latin America and the Caribbean 1.50 (0.95, 2.05) 1.44 (0.89, 1.99)
    East and southeast Asia and the Pacific 1.38 (0.85, 1.91) 1.39 (0.87, 1.91)
    Central Asia, Middle East and north Africa 1.77 (1.07, 2.47) 1.71 (1.01, 2.41)
    South Asia 3.44 (2.70, 4.17) 3.07 (2.23, 3.91)
    Sub-Saharan Africa 1.81 (1.01, 2.60) 1.73 (0.93, 2.52)
Region * FPG 
    High-income western Reference Reference
    Central and eastern Europe 0.04 (-0.12, 0.19) 0.03 (-0.12, 0.18)
    Latin America and the Caribbean -0.30 (-0.37, -0.23) -0.30 (-0.37, -0.23) 
    East and southeast Asia and the Pacific -0.04 (-0.10, 0.02) -0.04 (-0.10, 0.02) 
    Central Asia, Middle East and north Africa 0.08 (0.00, 0.15) 0.08 (0.00, 0.15)
    South Asia -0.67 (-0.73, -0.61) -0.67 (-0.73, -0.61) 
    Sub-Saharan Africa 0.03 (-0.08, 0.14) 0.03 (-0.08, 0.15)
Using handheld device to measure FPG - 0.61 (-0.10, 1.32)

The reported coefficients are the means and 95% confidence intervals.
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Extended Data Table 6 | Coefficients of the best-performing prediction equations for whether a participant whose HbA1c 
was measured had FPG ≥7.0 mmol/L

Terms Coefficients for 
Model 5 

Coefficients for 
Model 8 

Intercept -4.85 (-5.14, -4.56) -4.84 (-5.12, -4.55) 
Male sex 0.36 (0.32, 0.41) 0.36 (0.32, 0.41)
Age 0.28 (0.26, 0.31) 0.28 (0.26, 0.31)
HbA1c 1.93 (1.87, 1.99) 1.93 (1.87, 1.99)
BMI 0.27 (0.25, 0.29) 0.27 (0.25, 0.29)
Region 
    High-income western Reference Reference
    Central and eastern Europe 0.83 (0.11, 1.54) 0.82 (0.11, 1.53)
    Latin America and the Caribbean 0.32 (-0.22, 0.86) 0.38 (-0.16, 0.93)
    East and southeast Asia and the Pacific 0.33 (-0.18, 0.84) 0.32 (-0.18, 0.83)
    Central Asia, Middle East and north Africa -0.37 (-1.06, 0.32) -0.38 (-1.06, 0.31) 
    South Asia 1.55 (0.84, 2.26) 1.68 (0.94, 2.41)
    Sub-Saharan Africa 0.15 (-0.63, 0.92) 0.14 (-0.64, 0.91)
Region * HbA1c 
    High-income western Reference Reference
    Central and eastern Europe -0.03 (-0.20, 0.15) -0.03 (-0.20, 0.15) 
    Latin America and the Caribbean -0.75 (-0.83, -0.67) -0.75 (-0.83, -0.67) 
    East and southeast Asia and the Pacific -0.29 (-0.36, -0.22) -0.29 (-0.36, -0.22) 
    Central Asia, Middle East and north Africa -0.28 (-0.37, -0.19) -0.28 (-0.37, -0.19) 
    South Asia -1.24 (-1.30, -1.17) -1.24 (-1.30, -1.17) 
    Sub-Saharan Africa -0.10 (-0.25, 0.05) -0.10 (-0.25, 0.05) 
Using handheld device to measure HbA1c - -0.61 (-1.57, 0.34) 

The reported coefficients are the means and 95% confidence intervals.
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Extended Data Table 7 | Association of whether screen-detected diabetes is presented as isolated elevated FPG, isolated 
elevated HbA1c or elevated levels of both with individual and study characteristics, excluding studies that had measured 
FPG using a portable device

Isolated elevated FPG Isolated elevated HbA1c Elevated levels of both

prevalence
ratio

credible 
interval 

posterior 
probability

prevalence
ratio

credible 
interval 

posterior 
probability

prevalence
ratio

credible 
interval 

posterior 
probability

Region

      High-income western Reference Reference Reference

      Central and eastern Europe 1.19 0.75-1.89 0.226 0.65 0.35-1.18 0.081 0.88 0.63-1.20 0.206

      Latin America and the Caribbean 0.46 0.31-0.67 <0.001 1.47 0.93-2.29 0.047 1.07 0.84-1.35 0.298

      East and southeast Asia and the Pacific 0.53 0.38-0.75 <0.001 1.55 1.05-2.32 0.015 1.30 1.06-1.61 0.007

      South Asia 0.21 0.10-0.42 <0.001 2.41 1.07-5.43 0.017 1.29 0.86-1.92 0.109

      Central Asia, Middle East and north Africa 0.35 0.21-0.58 <0.001 2.16 1.25-3.74 0.003 1.01 0.75-1.35 0.469

      Sub-Saharan Africa 0.43 0.25-0.75 0.002 1.45 0.77-2.72 0.123 1.28 0.92-1.78 0.069

Sex 

      Women Reference Reference Reference

      Men 1.14 1.09-1.18 <0.001 0.84 0.81-0.87 <0.001 1.07 1.03-1.12 <0.001 

Age (per 10 years of age) 0.97 0.96-0.98 <0.001 1.08 1.06-1.09 <0.001 0.96 0.94-0.97 <0.001 

Body-mass index (per 5 kg/m2) 0.91 0.90-0.93 <0.001 1.01 0.99-1.02 0.191 1.06 1.04-1.07 <0.001 

Study year (per 5 years of time) 0.99 0.88-1.12 0.465 1.06 0.93-1.23 0.189 1.06 0.99-1.14 0.051

Percent people with diabetes who had been
diagnosed before (per 10 percentage points) 1.03 0.93-1.14 0.295 0.97 0.85-1.09 0.290 1.03 0.97-1.10 0.150

The association with each variable is reported as prevalence ratios, adjusted for all other variables in the table, in the regressions described in Methods in which data from individual 
participants with screen-detected diabetes were used.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection Processing of secondary data was conducted using the statistical software R (version 4.2.1).

Data analysis Analyses were conducting using the statistical software R (version 4.2.1) and MultiBUGS (version 2.0). Code for log-binomial model is provided 
at www.ncdrisc.org and https://doi.org/10.5281/zenodo.8169146.
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Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid 
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in 
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We pooled and analysed data from population-based studies that had measured FPG and HbA1c (quantitative data) and collected 
information on prior diagnosis of diabetes (qualitative data) for adults aged 18 years and over. We reported the proportions of 
participants who had diagnosed diabetes, and for those without diagnosed diabetes, whether they had elevated FPG (FPG ≥7.0 
mmol/L), elevated HbA1c (HbA1c ≥6.5%) or both. We examined the individual-level and study-level factors associated with whether 
participants with screen-detected diabetes were identified by elevated FPG, elevated HbA1c or elevated levels of both. We tested 
prediction equations for estimating the probability that a person without diagnosed diabetes at a specific level of FPG had an HbA1c 
over the clinical threshold for diabetes (HbA1c ≥6.5%), and vice versa.  

Research sample We used all studies collated by the NCD Risk Factor Collaboration that had collected information on whether participants had been 
previously diagnosed with diabetes, and measured both FPG and HbA1c. In total, we used 117 population-based studies that had 
data on 601,000 participants aged 18 years or over in 45 countries, of whom 365,000 also had measurements of both FPG and 
HbA1c. 

Sampling strategy We included studies that had collected data using a probabilistic sampling method with a defined sampling frame. Hence, we 
included studies with simple random and complex survey designs, and excluded convenience samples and studies whose participants 
were selected based on factors that might be associated with their diabetes status.  

Data collection We used participant-level data for 601,000 participants from 117 studies. This is an observational study and there was no 
experiment.

Timing We used data from surveys with mid-point of data collection period from 2000 to 2021.

Data exclusions Studies were excluded if they (1) enrolled participants based on health status or cardiovascular risk; (2) were conducted only among 
ethnic minorities or specific educational, occupational, or other socioeconomic subgroups; (3) recruited participants through health 
facilities, except studies based on primary care system in high-income and central European countries with universal insurance; (4) 
had not measured either FPG or HbA1c; (5) had not instructed participants to fast at least for 6 hours prior to FPG measurement; (6) 
had only measured FPG or HbA1c in the subset of participants who had known diabetes; (7) had measured HbA1c only in a subset of 
participants selected based on their levels of FPG, and vice versa; (8) had not collected information on prior diagnosis of diabetes; 
and (9) their mid-year was prior to 2000, before HbA1c assays were widely standardised. 
 
Participants were excluded if they (1) were pregnant at the time of measurement; (2) had missing sex or age; (3) had missing 
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information on prior diagnosis of diabetes; (4) were 18 years of age or younger; (5) had not been measured for FPG or HbA1c by 
design or data were missing; (6) were from one specific area in one study in Pakistan with high prevalence of thalassemia; (7) were 
from follow-up rounds of studies that had multiple measurements of the same cohort over time; (8) had FPG <2 or >30 mmol/L or 
HbA1c <3% or >18%; (9) had implausible combinations of FPG and HbA1c as determined by the method of local outlier factor.

Non-participation We used all studies that met our inclusion criteria, which were designed to ensure participants of the surveys included were 
representative of the general population from which each sample was drawn. Information on response rate from individual 
participating studies is not available to us.

Randomization Our study is observational, and we did not carry out experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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