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Abstract

Huttunen Joona
Identifying and forecasting thunderstorms using weather radar data and machine
learning
Master’s thesis
Department of Physics, University of Jyväskylä, 2023, 59 pages.

Methods for nowcasting lightning using weather radar data were developed using
machine learning models. Reflectivity was selected as the main feature for the
prediction. The purpose was to examine if machine learning applications could be
used to nowcast thunderstorms with minimal data sets. The emphasis was to find
out a model which is based on binary image classification and doesn’t require large
sets of training data to work sufficiently. Convolutional neural network was the first
choice. Accuracy for the model was 0.83. Another approach was made using random
forest model. Precision for class 0 (no lightning) was 0.52, and for class (recorded
lightning) 1, 0.90 and with total accuracy of 0.88 To improve the sets more features
should be used and possibly larger data sets.

Keywords: Atmosphere, Lightning, Nowcasting, Machine learning, Classification
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Tiivistelmä

Huttunen Joona
Identifying and forecasting thunderstorms using weather radar data and machine
learning
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2023, 59 sivua

Salamoinnin ennustamiseen säätutkatietojen avulla kehitettiin koneoppimismenetelmiä.
Tarkoituksena oli tutkia, voidaanko koneoppimista käyttää salamoinnin ennus-
tamiseen pienillä datamäärillä. Pilvien heijastuvuus valittiin tärkeimmäksi selit-
täväksi tekijäksi. Tavoitteena oli löytää malli, joka pohjautuu kuvantunnistukseen.
Konvoluutioneuroverkko oli ensimmåinen valinta. Tarkkuus mallille (accuracy) oli
0.83. Toisena lähestymistapana käytettiin random forest -mallia, joka soveltui
laskentateholta nopeammin käytettyihin datamääriin. Tarkkuus luokan 0 (ei os-
umaa) osalta oli 0,52 ja luokan 1 (osuma määrätyssä alueessa) osalta 0,90. Tulosten
parantamiseksi olisi käytettävä enemmän myrskyn kehityksen kannalta merkittäviä
muuttujia ja suurempia datamäääriä.

Avainsanat: rajuilmat, koneoppiminen, kuvantunnistus
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1 Introduction

Storms and thunderstorms occur all over the globe. During summertime in Finland
thunderclouds occur almost daily. In comparison to the global average, the annual
lightning rates are low in Finland [1]. The clouds can be singular and small in
magnitude but it’s not uncommon for them to consist of multiple clouds clustered
together. These clusters can be hundreds of kilometers in size. Three main contribut-
ing factors in the development of rain- and thunderclouds are humidity, instability of
air convection, and updraft. [2].

Thunderstorms (thunderclouds) and their development can be forecast using
weather radars. Weather radars can collect data about the amount of rain in a
specific cross-section of a cloud. They can also get information about the structure of
clouds and the small particles that they consist of, ie. rain droplets and snowflakes.
By using statistics from previous years and present weather data we can create a
nowcast (a forecast of immediately expected weather conditions) about the current
weather.

There has been a growing trend in using large sets of data and machine learning
principles for weather forecasting in recent years. Machine learning offers possibly
greater accuracy in forecasts and computationally faster results. It also excels when
using very large data sets. [3]

The purpose of this thesis is to examine the usage of multiple weather radar data
sources and machine learning methods to create accurate nowcasts of lightning strikes.
Another goal is to examine the coefficient of determination and which variable would
be most suitable for nowcasting. The information acquired from weather radar data
has greater temporal and spatial resolution compared to numerical weather prediction
models. The overall hypothesis is that by combining radar data and machine learning
methods we can possibly create more precise lightning forecasts. There have been
only few recent studies on this subject and it hasn’t been done using Finnish weather
data.
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2 Theory of thunderstorms

Thunder is a weather phenomenon in which electrical charges formed in clouds
discharge as a lightning strike. During the discharge, the temperature of the air
around the electric arc increases significantly. The air expands while creating a shock
wave. This shock wave and the sound created by it is commonly known as ’thunder’.
Thunderstorms form in convective clouds, in which the hot moist air ascends upwards
and condenses to water. A typical feature of a thundercloud is its height, which is
usually the same vicinity as its diameter. Vertical winds are another typical feature
of thunderclouds; the average wind speed in their vicinity is 10 m/s-50 m/s. [4]

2.1 Electricity in the atmosphere

During the nineteenth century, it was discovered that air is continuously ionized.
This discovery led to the conclusion that the Earth’s charge resided in the upper
atmosphere while being practically constant. [5] The region of interest is presented
in the fig. 1

The electrical currents and processes that occur in the earth’s atmosphere are
referred to as the electric global circuit. It is created mostly by approximately 1 500
tropical thunderstorms occurring at any given moment, which each one charging
the upper atmosphere with a current of 1A [6]. The ionosphere acquires a potential
of 300 kV with respect to the ground. The lower atmospheric air has an electrical
conductivity of 20 fS/m. The conductivity follows an exponential growth pattern of
height, increasing by a factor of ten with every 10 km increase in altitude. In the
upper regions, near the ionosphere, the conductivity increases due to the increase
in the number of free electrons and the effect of Earth’s magnetic field, and the
number of ions in circulation. The electric field becomes anisotropic. At 80 km the
conductivity is approximately 1 S/m [7]. The current returning to earth from the
ionosphere experiences a resistance, described by the column resistance, Rc in the
Fig. 1 Cosmic rays and radiation from radon gas cause ionization in the atmosphere
which also contribute to the global circuit.
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Figure 1. Visualization of the electric global circuit. The potential difference
can be seen from the negative and positive signs, electrical discharging and the
contribution on cosmic rays and radon.

The magnitude of the electric field near the ground on fair weather is on average
100 V/m. In fair weather, there is a flow of electric current from the atmosphere
to the ground, with an average current density J of 2.8 pA/m2 in southern Finland,
and an average of approximately 2 pA/m2 worldwide [8] Ohm’s law usually governs
the relationship between current density J, conductivity σ, and electric field E, at
least approximately,

J = σE. (1)

The land surface shapes affect the magnitude of the electric field, but the changes
need to be quite drastic to have any meaningful effect on lightning strikes [8].



15

2.2 Formation of a thunder cell

The development of convective clouds requires a favorable change in air temperature
in the troposphere. A significant drop in temperature can shift the temperature
distribution in the cloud to an unstable state; if such an event happens it can cause
strong vertical air currents. The term unstable refers to the lapse rate occurring in
the cloud, ie., in "normal" conditions the temperature decreases as you go higher in
the atmosphere. In unstable conditions, the warm air can rise so that it is cooler
than its surroundings. The center of current in which the air flows upwards is called
a convection cell. As the convection cell develops, the cloud grows in height, and at
the same time the area of the convection cell increases. If there is enough humidity
in the cloud, the formation of thunderclouds is possible. Condensing water vapor
has a higher temperature which slows down the cooling process of the air while
increasing the vertical air flow. The condensing droplets form a cumulus cloud.
As the cumulus grows large enough, it transforms into cumulonimbus. The upper
region of cumulonimbus is called the anvil and there small ice crystals are formed.
Favorable circumstances can lead to electric charging in the cumulonimbus which
can eventually discharge as lightning. This type of cumulonimbus is more commonly
called a thundercloud. On average the area of a thunder cell is a few kilometers in
size. Thunder cells can cluster together forming larger thunderclouds with diameters
up to 40 - 50 km. It is nearly impossible to distinguish separate thunder cells in such
clusters. [8, 9]

2.3 Electric charging of a thunder cell

As mentioned previously the atmosphere under 100 km is electrically conductive
due to tropical thunderstorms, cosmic rays, and the ions caused by the Earth’s
natural radioactivity. The single most contributing factor to the conductivity of
lower atmosphere above 1 km are the small ions whose diameter is in the vicinity
of 0.1 nm - 1 nm. Ions can collide with one another and doing so form neutral
gas molecules. Ions can also stick to aerosol or water particles while charging or
neutralizing them. [9] The electrical mobility of small ions is k = 1.2 · 10−4 m2/Vs
and the conductivity λ is the sum of positive- and negative-ion components:

λ = λ+ + λ− = ke(n+ + n−) (2)
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where n+ and n− are the the small ion densities and e is the elementary charge.

An essential factor in the charging of a thundercloud is the physical properties of
water in its frozen state. There are many theories about the effect of water and ice
crystals in the electrical charging of the thundercloud. The most commonly accepted
model is based on the collision of ice crystals and water droplets. Convection currents
convey the subcooled water upwards so that it forms ice crystals. These ice crystals
collide with graupel in the upper regions of the cloud. During a neutral collision, the
electrical charge is transferred from one particle to another; the reasons behind this
phenomenon are suggested to be the crystal structure of ice and the temperature
change. Induction collision happens when there is a stronger charge on one of the
colliding particles. Charge transfer occurs in the collision of graupel and droplets
and the particle with greater charge falls towards the ground in the direction of
the electric field. Due to the internal charges the falling particle is polarized. The
charges in the collision point are neutralized and only a net charge is left. [5, 10, 11]
It is worth mentioning that snow itself is a fairly poor conductor but due to the
impurities and contaminants, it can acquire a certain level of conductivity [12].

The rate of change of charge Q of a large particle (snow grain) is proportional
to the collision frequency v between it and small particles (ice crystals and cloud
droplets)

∂Q

∂t
= v[Q′ + βE + γQ] (3)

The charge transferred from the small to the large particle in a single collision is
Q’. The coefficient β describes the effectiveness of the electric field E in causing
inductive charging and the coefficient γ indicates that the rate of charge dissipation
is proportional to the charge Q itself. The collision frequency is approximately

v = πR2wn (4)

Where R is the radius of the large particle, w is the velocity difference between the
small and large particles and n is the density of small particles. Coefficient v is then
approximately 4s−1 The induction coefficient is approximately

β ≈ (4π3/3)ϵ0r
2 (5)
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where ϵ is the permittivity and r is the radius of the small particle. Coefficient β is
approximately 1.5 ×10−19Cm/V [8].

The sign of charge is affected essentially by the prevailing temperature. Ice
crystals charge negatively and the graupel positively if the temperature is below
-15°C. If the temperature is higher then the signs are reversed. For this reason, a
typical thundercloud is polarized so that the top of the cloud is positively charged and
the bottom is negatively charged. Alternatively, the top of the cloud can be positively
charged, the middle part negatively, and then the bottom positively charged; this is
most common in fully developed Cumulonimbus incus (anvil clouds). The charge
structure of thunderclouds is presented visually in Fig. 2

Figure 2. Structure of electrical charge distribution in thunderclouds, adapted
from MacGorman [13].

2.4 Lightning

Lightning is the term used to describe the discharge of electrification of thunder cells.
A detailed review of the discharge is quite difficult due to its complex nature. This
section focuses on a general description of different kinds of lightning discharges. The
simplest physical model of thunderclouds can be represented with a dipole model.
The electrical charging of thunder cells can be reduced so that the upper part of the
cloud is positive and the middle/lower part is negative, as explained in the previous
chapter. As the negative lower part of the cloud is physically closest to ground it is
induced with a positive voltage. When the voltage grows sufficiently enough between
the ground and the cloud, the breakdown threshold is exceeded and the current is
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discharged as lightning. The discharge happens through a so-called lightning channel.
In this specific channel, the gases of the atmosphere are ionized and the conductivity
is increased. During the discharge, the gases are heated up to 30 000°C and expand
explosively. This can be observed as bright glowing lightning and a loud thunder.
[14]. Lightning can strike from cloud-to-ground (CG), from ground-to-cloud (GC),
or cloud-to-cloud (CC). Because of this lightning can be classified as cloud lightning
and ground lightning. Different types are presented in Fig. 3

Intracloud lightning Cloud-to-ground lightning

A) Dipole

B) Tripole

Figure 3. Different kind of lightning types presented, the upper row represents
CC and CG lightning starting from the left, the lower row in the same order but
with a tripole charge distribution.
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2.4.1 Negative ground lightning

Negative ground lightning is estimated to be the most common CG lightning type.
This type of lightning transfers a negative charge from the cloud to the ground.
About 90 % of CGs are negatively charged [9]. The discharge usually begins with a
leader stroke from the cloud which induces a return stroke from the positive side
(ground). The return stroke neutralizes the leader when the two pairs connect. There
is photographic evidence that the negative leader stroke travels towards the ground
with intermittent steps. The time interval of these steps is approximately 10-100 µs
and the length is 5-200 m. [15] Lightning flash consists of one or more strokes which
happen in the previously introduced lightning channel.

Lightning can occur from the same lightning channels or fork into two or more
channels. This is affected by the location of lightning and the physical shape of the
surrounding area in the ground. Negative ground lightning can also initiate from the
ground when the discharge begins from the ground level. This is known as upward
negative lightning.

2.4.2 Positive ground lightning

Positive ground lightning accounts for about 10 % of CG lightning. Due to its rarity,
there are relatively few studies about positive lightning. There are few theories on
how they occur. One is that the charge structure of the thundercloud is reversed so
that the bottom region is positive and the top region negative. Another one is that
the charge structure remains the same as usual so that the positive charge remains
at the top, but the geometry of the cloud is tilted so that there is a clear path to
the ground from the top. These are visualized in the Fig. 3. [16] The leader and
return stroke pairing happens the same way as in the negative CG lightning. The
notable difference is that positive lightning usually has only one stroke, whereas the
negative lightning usually has multiple. Positive lightning leader strokes can move
continuously or in a stepped fashion. A final note on the interesting qualities of
positive lightning is that they hold the record of lightning currents (near 300 kA).
[17] Positive lightnings are also more common during winter thunderstorms and and
thunderstorms formed over forest fires or contaminated by other smoke. [18, 19]
There are many theories for these correlations, for example, that winter clouds
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might have a dominantly positive charge [20]. There is yet to be an unambiguous
explanation.

2.4.3 Cloud lightning

Cloud lightning (also known as intracloud lightning) or cloud discharge is a type of
lightning in which there is no contact made with the ground. Intracloud lightning
(IC) covers approximately 75 % of all lightning. Williams also states that typically
10 or more cloud flashes occur before the first cloud-to-ground lightning [21]. The
upper dipole region experiences charge separation due to differential motions and
collisions between ice particles, resulting in the phenomenon known as IC lightning.
IC lightnings dominate the early stages and are evidently correlated with the upward
development of the thundercloud. When the upward draft settles down, the IC
lightning rates reduce. CG lightning typically initiates 5-10 minutes after IC lightning
peak. Cloud lightning is less studied than ground lightning. This is due to the
difficulty of getting photographic records of cloud lightning and the inability to
measure direct currents in the clouds during discharge events. Modern satellite
imagery has helped with the study of IG lightning. [22]
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3 Techniques of measurement and assessment of
thunderstorm related data

3.1 Weather radars

Weather radars emit short bursts of electromagnetic energy into the atmosphere,
typically in the form of microwave radiation, to detect the presence of hydrometeors
- which refer to any form of atmospheric moisture that condenses or precipitates
into solid or liquid particles. The size of hydrometeors depend on the surrounding
conditions. Fog has diameter of 50 µm, whereas hail has around 1-15 mm. When
these bursts hit a hydrometeor such as rain, hail, or snow, Rayleigh scattering
occurs, causing some of the energy to be reflected to the radar receiver. Rayleigh
scattering occurs when the wavelength of the energy is greater than the diameter of
the hydrometeor particles, and the different wavelengths can help identify particles
of different sizes. [23, 24]

Weather radar systems are usually composed of five components: the transmitter,
antenna, radar processor, receiver, and display system. The transmitter produces
electromagnetic pulses, which are subsequently transmitted into the atmosphere by
the antenna and it also receives the reflected pulses. The antenna has the capability
to perform a full 360-degree horizontal rotation and conduct atmospheric scans at
different elevation angles. Weak signals are amplified by the receiver, and the radar
processor analyzes the received data. This data can be stored in a preferred format
or presented directly on a display.

The three main frequency bands used in weather radar are S, C, and X. S-band
radar has a longer wavelength and can detect rainfall up to 300 km away, while
C-band radar has a medium range and can measure up to 200 km. X-band radar
has the smallest wavelength and is can be used for detecting precipitation up to a
range of 50 km. There are two more bands which are less common in weather radars.
L-band radar is used for studying clear air turbulence and has a frequency of 1-2
GHz, while K-band radar is more sensitive than the X-band and is used for heavy
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rain detection, with a frequency of 27-40 GHz and 12-18 GHz. Rayleigh scattering
becomes less accurate for hydrometeor diameters larger than 2-3 cm when using the
X-band. [25]

Except for the northernmost Lapland, radar measurements cover nearly all of
Finland as long as the data is taken out to the maximum measurement range of 250
km. The network of radar measurements was created by strategically placing radars,
taking advantage of the country’s relatively flat topography. This approach has
resulted in a network with minimal gaps due to beam blockages caused by terrain,
buildings, or other obstructions. [26]

The radar used by the Finnish Meteorological Institute (FMI) is VRM200 by
Vaisala. The radar uses dual-polarization technology, which transmits and receives
both horizontal and vertical polarization signals. This capability enables the system
to obtain additional information about the shape, size, and type of precipitation
particles. The technical specifications can be found on the data sheet [27].

3.2 Precipitation analysis based on weather radar data

Precipitation estimates can be obtained using different measurement techniques
such as weather radar networks, and meteorological satellites. Rain gauge networks
measure the rainfall directly.

The dBZ radar reflectivity product displays the intensity of echoes in decibels. The
color scheme used to represent the intensity of echoes varies depending on the software
or user preference. Typically, green or light blue indicates weak echoes related to
light rain with dBZ values around 20. Yellow represents moderate precipitation with
values approximately 35 dBZ, while red indicates heavy precipitation with values
around 50 dBZ. The highest reflectivity values, approximately 65 dBZ, indicate
the presence of hail mixed in with liquid hydrometeors. [25] An example of this
can be seen on the first image on the left in Fig. 7. Rain gauge networks measure
accumulated rainfall over time, with a temporal resolution from 1 minute up to 24
hours. Unlike disdrometers that measure the statistical distribution of drop size, rain
gauges use point measurements to determine the amount of precipitation. [28]
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3.3 Lightning location system

A lightning location system (LLS) is a device used in estimating the location of
occurrence of a lightning discharge. Different types of LLS can be used to detect cloud
flashes, ground flashes, or total lightning. LLS typically comprises multiple sensors
and a central processor. The sensors are responsible for detecting the signals emitted
by lightning discharges on certain frequencies and transmitting this information
to the central processor.The central processor then uses this data to estimate the
location of the discharge, which is ultimately relayed to end-users. LLS with multiple
sensors requires a small sensor baseline (the distance between sensors) for efficient
lightning detection, as the signal weakens with distance. However, covering the
entire Earth with sensors is not practical, so different needs must be fulfilled. [29]
LLS can be a network of ground sensors as explained previously or a satellite-based
electromagnetic or optical sensor, or a network of sensors.

The frequencies used by sensors can range from ELF to UHF. Lightning location
precision refers to how effectively an LLS can detect lightning in comparison to
actual lightning events. This performance can be evaluated using various methods
and can be determined for specific lightning parameters. The Finnish Meteorological
Institute (FMI) is a member of the NORDLIS network, which measures lightning.
NORDLIS network is presented in fig. 4. The location accuracy of NORDLIS
network is approximately 0.5 - 1 km.

The primary and most commonly used output parameters of an LLS are the
spatial and temporal information of a lightning strike. These parameters reveal
where and when the lightning occurred. While temporal information based on
GPS is highly precise, the spatial accuracy can vary widely depending on both the
lightning strike itself and the performance of the LLS. Additionally, the position of
the strike in relation to the network geometry also affects the LLS’s performance.
Lightning data also includes other parameters, such as peak current and multiplicity,
which refer to the number of strokes in a ground flash. Finland is using at the
time a LLS system called SAFIR 3000 which is controlled by a central processor.
The system employs Very high frequency (VHF) interferometry to detect lightning
discharges in its coverage area, and it also utilizes a distinct Low frequency (LF) E-
field measurement technique to identify ground strokes.The system has the capability
to process raw data from both IMPACT and SAFIR sensors. While VHF data is
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Figure 4. NORDLIS network, the squares, triangles and dots represent different
kind of sensors and the dotted area is the coverage area of the network. [Mäkelä,
Tuomi, 2010]

processed separately, the system uses the temporal information from the SAFIR
sensors’ LF data in conjunction with the IMPACT sensors.

The efficiency of LLS can depend on multiple variables. Detection efficiency (DE)
is directly affected by both the quantity and the type of sensors within the network
along with the networks overall performance. By increasing the sensitivity of sensors
and the number of sensors in the network, weaker flashes can be detected, leading to
an increase in overall flash count but a decrease in average peak current. However,
an excessive number of weak events can raise questions about their nature, whether
they are cloud or ground flashes. The number of sensors also greatly impacts the
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accuracy of the location of detected flashes. Central processor and sensor settings
also have a direct effect on the accuracy of results. [30]

The data used in this thesis is based on the LLS sensors and is more accurately
presented in Section 4

3.4 Lightning forecasting using weather radar data

Lightning forecasting is a subject of study that focuses on predicting the potential
areas affected by thunderstorms. Specific locations of plausible lightning strikes
are rather difficult to define, due to the large area of thunder cell and potential
strike locations. Two distinct methods are employed for lightning forecasting: the
first relies on cloud electrification physics (explicit), while the second employs cloud
microphysics and dynamics (diagnostic). The diagnostic approach is computationally
more feasible for real-time applications, as it does not entail the use of additional
prognostic equations for electrical variables [31, 32]. A recent trend in the field is
to combine both lightning and radar data to achieve better forecasts. The main
differences in studies are the use of certain weather data, for example, some studies
have focused on the effect of heavy rainfall and graupel on lightning strikes, and
some focus on the thermodynamical properties of thunderclouds [33, 34]. Mattos et
al. [35] have demonstrated a strong correlation between the intrusion of supercooled
raindrops into the mixed layer and the VHF source rate density. Specific differential
phase (KDP ) is radar product that can be used to pinpoint areas of heavy rainfall.
Rising KDP suggests a growth in both the dimensions and density of raindrops,
resulting in an increase of the rainfall intensity. Additionally, a distinct negative
KDP is predominantly observed in higher altitudes in situations with the highest
lightning density.

Another study [36] focused on utilizing data from the first C-band polarimetric
radar for observing tropical convection, along with a network of Advanced Lightning
Direction Finders, a flat plate antenna, and a field mill. It was illustrated that the
generation of lightning in tropical island, convection is strongly tied to ice-related
processes. While it is not possible to establish a direct causal relationship from
remote measurements, a significant correlation between the mass of mixed-phase
ice and lightning has been established in a severe tropical island thunderstorm.
The relation of intracloud lightning (IC) as an indicator of cloud to ground (CG)
lightning has also been studied [37], and it was found that utilizing the first IC flash
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as a predictor for the occurrence of CG lightning has been shown to statistically
outperform other predictors.
The results of previously examined studies give a premise for the focus of this thesis;
Defining the correlation between meaningful weather data variables and lightning
strikes and investigating the the coefficient of determination.

3.5 Sensor data

In this section, we analyze the most important variables related to forecasting
thunderstorms and lightning strikes. The dBZ (Decibel relative to Z) is a logarithmic,
dimensionless technical unit commonly employed in weather radars. It serves the
purpose of comparing the equivalent reflectivity factor (Z) of a distant object
(expressed in mm6 per m3) to the reflection from a rain droplet with a 1 mm diameter
(equivalent to 1 mm6 per m3) For an exponential distribution of reflector diameters,
Z is expressed as:

Z =
∫ Dmax

0
N0e

−ΛDD6dD (6)

Where N0 is number and Dmax is size of hydrometeors. When dividing the
equivalent reflectivity factor (Z) by the reflection from a 1 mm droplet within a cubic
meter (Z0) and then taking the logarithm of the quotient,the logarithmic reflectivity
value (LZ) in dBZ can be obtained. [38].

LZ = 10 log10
Z

Z0
. (7)

Values of dBZ can be converted to rainfall rates (R) in millimetres per hour using
the Marshall-Palmer formula [39].

R =
(

10(dBZ/10)

200

) 5
8

. (8)

Dual-polarization radars that are used as the source of weather radar data in this
thesis can produce information called differential reflectivity (ZDR). ZDR measures
reflectivity in both horizontal and vertical directions. The reflected data is converted
with a logarithmic ratio that compares the size of the reflectivity return in both
directions. The formula for the differential reflectivity is given by:
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ZDR = 10 · log10

(
Zh

Zv

)
, (9)

where: ZDR represents the differential reflectivity measured in decibels (dB), Zh

corresponds to the radar reflectivity factor observed in the horizontal polarization
and Zv is the radar reflectivity factor in the vertical polarization. [40]

3.6 Machine learning

Machine learning (ML) has been trending for the past decade, making its way towards
natural science and its applications. The main goal of ML algorithms is to imitate the
decision-making process of the human brain while gradually improving accuracy. The
most common trends in machine learning today, based on the number of publications,
are neural networks (Artificial Neural Networks - ANNs). Machine learning is used in
physics to replace theoretical methods and improve the calculation speed. Machine
learning has also gathered interest in problems that contain multiple variables so
that it can be used to replace numerical approximations. It can be described as a
set of algorithms, that adapt to changes in the desired way. The idea is that the
computer’s ability to solve a problem evolves through experience. Such a situation
can be created by providing the computer with training data, typically consisting of
the initial state, or input, and the desired outcome. The training data is used to
create an algorithm that should arrive at a similar result for all inputs that resemble
the training data. [41]

3.7 Training of neural networks

Patter and image recognition fall in the category of supervised machine learning. It is
defined by the use of features and labeled datasets to train algorithms. The learning
process can be divided into three phases; training, testing and validation. During the
training phase, the training data serves as input and the learning algorithm extracts
features of interest. This constructs the learning model. In the testing phase, the
model provides predictions for the test data. The labeled data produced by the
learning model represents the final predictions. The sets needed for the process are:
training, validation and testing set. The validation set is used after the model has
been trained with the initial training set. This helps evaluate the models performance
without bias from the training data and is necessary for fine tuning the parameters in
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the networks architecture. Validation data can also aid in regularization by stopping
training when validation error increases, indicating overfitting, a situation where the
model corresponds too closely to a particular set of data.

A feature is a specific measurable aspect or trait of the subject of interest.
Features are usually in numerical format but graphs and images can also be used
[42]. Numeric feature can be described as feature vector, which can be used as
input for perceptron, an algorithm used in binary classification. Labeling focuses on
identifying and tagging details of interest in data.

Loss function can be used to measure how well the neural network predicts the data.
For binary classification problems, the most commonly used loss function is called
binary cross-entropy (BCE), also known as softmax loss function. Mathematically, it
is defined as:

H(y, ŷ) = − 1
N

N∑
i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi)) (10)

BCE measures the dissimilarity or error between the true binary labels and the
predicted values for each example in a dataset. [43]

To increase the size of the training data sets, data augmentation can be used. The
main point of data augmentation is to create modified copies of the data that can be
used to improve the model. It is useful when the datasets available are small in size.
Data augmentation can be used to avoid overfitting issues. For image augmentation
geometric transformations are the most straightforward option. The training data
can be for example randomly cropped, flipped, zoomed or stretched. [44]

3.8 Binary classification

Binary classification is a machine learning task that involves categorizing elements into
one of two predefined groups or classes. This method is applied using a classification
rule and is particularly useful for assigning new probabilistic observations to these
predefined categories. When the classification task involves only two categories, it is
commonly referred to as statistical binary classification.

A decision tree is a classifier used in data analysis, expressed as a recursive
partitioning of the instance space. This tree structure comprises nodes forming
a rooted tree where there is one node designated as the "root" with no incoming
connections. Other nodes in the tree have precisely one incoming connection. Nodes
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with outgoing edges are termed internal or test nodes, while the rest are referred to
as leaves. These leaves either assign a class or provide a probability vector for target
values. Instances traverse the tree from root to leaf based on test outcomes. [45]

One of the most commonly used methods in this field is called random forest,
also known as random decision forests. [46] A Random Forest consists of a collection
of decision trees, with each tree being autonomously built using a distinct subset of
the training data. This procedure, known as bootstrapping, introduces randomness
that effectively mitigates overfitting, enhancing the model’s robustness against data
noise.

3.8.1 Convolutional neural network

Convolutional neural network (CNN) is a type of ANN that is typically used to
analyze visual imagery. Typical structure of CNN network is presented in Figure 5.
CNN consists of input, output, and several hidden layers. Input is the data from

Figure 5. Structure of CNN

which features, and the properties used in prediction are extracted. Generic hidden
layer consists convolutional layer, a pooling layer, and a fully connected classifier.
Each layer contains nodes, which are called neurons. Each neuron performs a defined
calculation which is then passed on to other neurons deeper in the network. To
clarify, there can also be other possible configurations. The critical component,
the convolutional layer, is responsible for feature extraction. Convolution involves
the mathematical operation between the input image and a convolution kernel,
which is small matrix of a specific size MxM . Discrete convolution is expressed
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mathematically:

g(x,y) = ω · f(x,y) =
a∑

i=−a

b∑
j=−b

ω(i,j)f(x − i, y − j) (11)

where: g(x,y) is the filtered image, f(x,y) is the original image, ω is the filter kernel.
Every element of the filter kernel is considered for a ≤ i ≤ a and b ≤ j ≤ b. The
kernel is slid across the input image, computing the dot product between the kernel
and the corresponding regions of the input image, each of which matches the size
of the kernel M × M . The output is called a feature map, which is then fed to the
other layers, which then extract and learn more features of the input image. The
pooling layer has the purpose of reducing the size of the convolved feature map to
reduce the computational cost of the process. The classifier is a perceptron that
processes the features obtained on the previous layers.

Assume that the input image I consists of R rows, C columns and D channels.
The input can be defined as a three-dimensional function I(x, y, d). The function’s
domain is defined by 0 ≤ x < R, 0 ≤ y < C, and 1 ≤ d < D, which represent the
spatial coordinates, and the values I at any given (x,y,d) coordinate is the intensity
of the d:th color component at spatial coordinates (x,y). The process of acquiring
features in convolutional layers of arrays can be expressed as

If (x,y) = b +
t∑

i=−t

t∑
j=−t

D−1∑
k=0

WijkI(x + i, y + j, k), (12)

where: If is a feature map, Wijk is w × w × D convolution kernel for processing
D two-dimensional color channels, b is offset and t = w−1

2 [47]. Therefore it can
be said that are a type of regularized multilayer perceptrons. Typically, multilayer
perceptrons refer to fully connected networks, where each neuron in a given layer is
connected to all neurons in the subsequent layer.

One of the key factors in the CNN models architecture is the activation function.
Activation function is a mathematical function applied to each neurons output in a
layer. The purpose of this function is to introduce non-linearity into the network.
It has a crucial role in enabling the model to approximate intricate, continuous
relationships in the input data. In other words, the activation function determines
which pieces of information within the model should be used and which ones should
not be active as the network reaches its conclusion. The activation occurs in a process
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called forward propagation, in which the data is fed through the network. Relatively
little preprocessing is required, meaning that the network learns to optimize the
kernels through automated learning which makes CNN preferable option to be used
in this thesis.

3.8.2 Recurrent Neural Network

Recurrent Neural Network (RNN) algorithm is a specialized artificial neural network
designed to learn from repetitive and sequential data, features an internal cyclic
structure. The cyclic structure reflects past learning in the current learning situation
through the use of weights. Weights represent the connections established between
two units within a neural network. To train these units to progress through the
network, adjustments need to be made to the weights associated with the unit signals,
either increasing or decreasing them. RNNs are suitable options for weather and
reflectivity nowcasting since they handle time-sequence data well. Structure of RNN
is shown in Fig. 6

Figure 6. Structure of RNN, x is the input layer, h the hidden layer and o is
the output layer

One limitation of RNNs comes from the limited capacity to maintain long-term
dependencies. The reason behind this is that the gradient of the loss function
decays exponentially with the number of layers through which it is propagated. The
backpropagation process involves adjusting the weights of a neural network based
on the error rate, also known as loss, obtained in the preceding epoch (iteration).
Essentially, during the process, the initial weights can be updated with such small
gradients that their values effectively become stagnant.This means that in a multilayer
RNN, the weights of the initial layers have very little influence on the final layers
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over time. As a result, the networks learning ability is degraded. This is known as
the vanishing gradient problem. [48]

There has been an increasing amount of published studies about the usage of
RNN combined with CNN in complex visual feature recognition problems. [49]
Weather prediction models have also been developed using the same methodology
[50]. The main challenge with RNN and weather nowcasting is that it has a poor
ability to consider future input of the state, due to the vanishing gradient problem
so creating future predictions of lightning locations is not directly obtainable with
this model.

3.9 Evaluating the models

The models can be evaluated by different metrics. For CNN and image classification,
accuracy is the most suitable one. Accuracy is number of correct predictions divided
by the number of total predictions. However, accuracy can be biased if the datasets
are imbalanced. Imbalanced datasets can occur when the relation between positive
and negative classes is skewed. If there are too many negative values compared to
the positives, the model will spend most of the time on negative examples and might
not learn enough from the positive ones. Precision indicates the quality of a positive
prediction made by the model. It is defined as, ie.

Precision = TP

TP + FP
(13)

where: TP is the number of True Positives and FP is the number of False Positives.
Recall represents the fraction of positives that were correctly identified as

Recall = TP

TP + FN
(14)

F1 combines precision and recall:

F1 = 2 × Recall × Precision
Recall + Precision (15)

Support is the number of actual occurrences of the class in the specified dataset. [51]
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4 Data and methods

The data acquired from the weather radars in Hierarchical Data Format (ODIM
HDF5 or h5 in short). The datasets contain multiple different variables with different
quantities. The main ones are those presented in Section 4.1; dBZ, ZDR, and the
spatial and temporal information about the lightning strike. Lightning data was
acquired from archives of the FMI. Multiplicity and peak current were not taken
into account, since the main focus of this thesis is to study the ability to predict
the location and time of the strike, not the intensity. Datasets were formed from
suitable thunderstorm days, in which there was notable lightning strikes recorded.
The areas with multiple lightning strikes were cross-referenced with areas that had
high reflectivity in terms of dBZ. Depending on the duration of lightning activity,
data was gathered for the sets. For example dataset consisted lightning strikes and
the relative development of reflectivity as mentioned in section 2.3 from an time
interval of 50 minutes in total.

4.1 Preparations of the weather radar and lightning data

Weather radar data used in this thesis is in h5 format. The data contains multiple
sweeps on different heights based on the beam angle and multiple variables from which
the DBZ and ZDR are extracted. The variables of interest from the lighting location
(LL) data are the time of measured discharge and the geographical coordinates of the
strike. The distance is limited to 120 km from the measurement point of the weather
radar. Distances that are longer than that could contain too much attenuation and
radar beam broadening, which would make the data inaccurate for usage in these
machine learning applications.

The radar data can not be used directly for multiple of reasons. Attenuation
happens when the radar beam comes in contact with a large hail or storm so that
the beam does not penetrate properly and scatters. By applying the attenuation
correction, one can obtain more accurate reflectivity which is better suitable for
ML input. [52] Attenuation can be corrected in multiple ways. Since there was a
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lack of research and information about attenuation correction methods compared to
each other, the simplest one was chosen for the data preprocessing. Another factor
is that the data is in polar coordinates by the standard due to the nature of the
radar scan. The lightning data is in geographical coordinates, therefore the weather
data needs to be adjusted so it is in the same coordinate format as the LL data.
As a side note, this process could have been done the other way around as well.
The corrections were made using ωradlib and Py-ART Python libraries. [53, 54].
After the attenuation and coordinate corrections, the data is normalized so that the
features are transformed to be on a similar scale. Afterwards it can be used as input
for the ML models.

After the radar data has been adjusted so that it is compatible with lightning
location data, data sets for the ML algorithm can be created. The data arrays are
first converted to image arrays so that they can be used as input to the CNN. For
this thesis, the goal is to make accurate nowcasts to a 10×10 km area. The lightning
data is first converted to a scatter plot, based on the distance to the measurement
point (the site of lightning location measurement system). After that the plot is
converted to a binary image, in which a single cell contains a 1×1 km area, and
if there is a recorded lightning strike inside the cell a value of 1 is given. If there
isn’t a strike the value is 0. The lightning location image array is used as the
validation set. Based on the same area reflectivity and differential reflectivity values
are extracted from the weather data sets and suitable plots are created with the same
sized grid. As mentioned in the theoretical section, the development of a thunder
cell happens primarily 30 minutes before the first discharge. Therefore the weather
data of interest is taken in different intervals, from 5 to 30 minutes before the first
recorded lightning on the validation set to see the effect. The development of DBZ
and ZDR is used in 5-minute time resolution to keep track of the development of the
cell. The preprocessing of reflectivity can be seen on the Fig. 7.

The reflectivity and differential reflectivity plots are converted to (256x256) image
arrays due to the compact coverage area and quicker computation time. The binary
images of lightning locations are also converted to the same size so that they are
comparable.

The datasets consisted of 40 minutes of reflectivity development in 5 minute
intervals. Most of the lightning occur usually in the mature stage of the thundercloud,
and the heaviest rain usually happens after the lightning strikes during the dissipating
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Figure 7. Preparing the reflectivity data for model input. Starting with the raw
data on the left, normalized in the middle and finally interpolated to Cartesian
grid on the right.

stage. The model was tested so that the reflectivity plots corresponded the lightning
strike time interval and also so that the reflectivity plots were taken 10 minutes
before the first lightning strike.

For the RNN model, the reflectivity data had to be first sequenced to the proper
time length. The data set consisted of 60 minutes of lightning activity that was
modified to sequences with 5 minute in between. Lightning images were used as labels
and reflectivity plots as features. The reflectivity was paired with the corresponding
lightning data so that there was a 20-minute gap from the starting time, i.e. the first
reflectivity feature image was from time 1:15, and the corresponding label pair was
from 01:35 (utm+2). Smaller intervals were also tested but no notable difference
could be noticed, so based on theoretical background the 20 minutes was the final
choice.

4.2 Machine learning models

The models were constructed using TensorFlow library [55]. The code is represented
more accurately in the appendix A.

The CNN model consisted of a 2D convolutional layer of 32 kernels, with kernel
size of (3,3) so that the computational cost would be reasonable, rectified linear unit
(ReLU) activation function and the input shape of (256, 256, 3) based on the 256x256
pixels and with 3 color channels (RGB) and a pooling window size of (2,2). Then
another 2D convolution layer, but with 64 kernels and a duplicate of the pooling layer.
Finally a flattening layer and one fully connected layer. The output layer consisted
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of 1 unit, indicating binary classification, and sigmoid activation function to output
probabilities. The output is an image of the predicted lightning strikes based on
the reflectivity that occurred in the previous 10 minutes. To create a sequence of
predicted images, a combination of CNN and RNN could be suitable.

The model used Adam optimizer and the loss function was binary-cross entropy
based. [56] Loss function was selected due to the nature of predicting binary hit or
miss labels. The same loss function could be used even if there were more features
involved. Taking more classes beyond that would have then required categorical
cross entropy function. The model was evaluated using accuracy as a metric.

The RNN model consisted of sequential model with an Long Short-Term memory
(LSTM) layer. LSTM is designed to overcome the challenges of learning long-term
dependencies in sequence data using structure that includes memory cells and gating
mechanisms. [? ] The layer had 64 units and with expected input sequences of
(64,64) and a dense layer with 1 units that served as the output layer. Mean absolute
error (MAE) was calculated between the true test labels and the model predictions.
The timescale was kept at the 5 minute as explained in Section 4.1. Due to small
size of training sets and the lack of features, increasing the timescale would have
only decreased the accuracy due to the gradient vanishing.

The RNN model model was a Simple Recurrent Neural Network layer (Sim-
pleRNN) configured with 64 units. This layer was tailored to handle input sequences
with a shape of (64, 64), which corresponds to the sequence length and feature
dimension of our dataset. After the recurrent layer a Flatten layer was integrated.
The inclusion of this layer was to convert the 2D output from the RNN layer into a
1D array. This transformation was necessary to facilitate the transition of data to the
subsequent dense layers. A Dense layer was incorporated consisting of 64 neurons,
employing a ’relu’ activation function. This layer served as an intermediate stage,
enhancing the models ability to learn patterns from the flattened data received from
the previous layer. Finally a dense layer equipped with a single neuron was applied.
This layer utilized a sigmoid activation function. The use of sigmoid activation is a
common in binary classification tasks.
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5 Results and error analysis

The CNN performed sufficiently compared to the size of used datasets. Reflectivity
alone isn’t optimal way to predict lightning accurately and more features from
weather radar data would be preferable. Data augmentation methods had to be used
in order to prevent overfitting from the CNN model. A simple random forest model
was also built and trained to show that a less complex solution could be viable when
using small data sets. The RNN model performed similarly as the CNN.

5.1 Simple Convolutional Neural network

The results for the CNN are presented in Table 1

Table 1. Classification Report for the CNN model

Class Precision Recall F1-Score Support
0 0.76 1.00 0.86 134
1 1.0 0.64 0.78 121
Accuracy 0.83 255
Macro Avg 0.88 0.82 255
Weighted Avg 0.87 0.83 255

The model performs much better identifying the absence of lightning (class 0)
but struggles much more with correctly identifying actual lightning (class 1) with a
recall of 0.64. The training and validation accuracy converge to 0.83, which suggests
that the model is not overfitting. Macro average computes the metric independently
for each class. With values of 0.82 and 0.88 it suggests that on average, the model
performs well on both classes. The weighted average computes the metric for each
class but takes the support into account. Precision, recall and F1-score are 0.87, 0.83
and 0.82 respectively. The values are very close with the macro averages, indicating
that there is no significant imbalance. Even though the classes seem to be balanced
by metrics, the dataset did not contain all possible scenarios for class 0. For example
there wasn’t situations with high reflectivity and no lighting strikes. This can explain
the perfect score for class 1, even though on larger datasets it might not perform so
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well. Another reason might be the model complexity. The training data might not
be diverse enough and the model may memorize the data rather than learning to
generalize. The models accuracy plot is represented in 8.

Figure 8. Plots representing the models accuracy and loss over epochs (itera-
tions) for both training and validation data

Overall increasing training accuracy indicates that the model is indeed learning
and generalizing. The fluctuations at epoch 7 could be due to several factors. For
example the model could be learning noise from the data or there might be variability
in the difficulty of the test set samples. The variability in test accuracy and loss
suggests that the model could be improved with more data.

5.1.1 Alternative approach for model complexity

Even though the CNN are so called state-of-the-art performance in complex tasks
and have been proven on multiple occasions to work with problems such as presented
in this thesis, it can be said that more novel approaches can also be made. Especially
if the focus is to keep the training samples small in size and the computational cost
low. If the goal is the make simple nowcasts on short timescale a random forest
model is a suitable solution. The required training time is smaller, results can be
more straightforward and the model is less sensitive to noise.

In the Figure 9 is the result visualized from a simple and small run of a random
forest model. The confusion matrix is presented in Table 2 and the classification
report is presented in Table 3. The confusion matrix compares actual vs. predicted
classifications. The matrix was calculated from the test data.

In this case, True Positive (TP) = 7058, meaning the correctly predicted positive
values. True Negative (TR) = 165303, which was just as expected because the
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Figure 9. Visualization of the results of random forest model. Normalized
reflectivity is on the left, true label on the middle and the models predicted label
on the right.

Table 2. Confusion Matrix from test data

Predicted
Class 0 Class 1

Actual Class 0 7058 17844
Class 1 6403 165303

statistical area of the lightning strikes in the grid is relatively small. False Positive
(FP) = 17844 which is defined as actually negative but predicted as positive. Finally
False Negative (FN) = 6403, actually positive but predicted as negative.

Table 3. Classification Report for the Random Forest model

Class Precision Recall F1-Score Support
0 0.52 0.27 0.36 24,902
1 0.90 0.96 0.93 171,706
Accuracy 0.88 196,608
Macro Avg 0.71 0.62 196,608
Weighted Avg 0.85 0.88 196,608

Table 3 shows the values for precision which indicates the quality of a positive
prediction made by the model, recall is value for how many times the model was
able to detect a specific category, F1 combines these both and support is the number
of actual occurrences of the class in the specified dataset.

Precision for class 0 is 0.52, and for class 1, it’s 0.90. Recall for class 0 is 0.27,
and for class 1, it’s 0.96. The low result of class 0 in terms of the recall, are due to
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low volume of training data. The model could also benefit from even smaller scales
so that the area in where lightning doesn’t strike (0 in the binary images) would be
smaller compared to the area of strikes. The results visualized are shown in fig 9

In summary, while the model exhibits proficient precision in identifying instances
of class 1, there is a conspicuous deficiency in its ability to accurately detect and
predict instances of class 0. That being said, this model was constructed as an
example to prove that the concept works and may be more beneficial than the the
CNN.

5.2 Recurrent Neural network

The results for the RNN model are presented in table 4. Precision for class 0 is 0.77

Table 4. Classification Report for the RNN model

Class Precision Recall F1-Score Support
0 0.77 0.88 0.82 134
1 0.84 0.71 0.77 121
Accuracy 0.80 255
Macro Avg 0.81 0.80 255
Weighted Avg 0.81 0.80 255

and for class 1 its 0.84, meaning that the model is more reliable when predicting
if lightning is occurring. With recall value of 0.88 of all actual class 0 instances
indicates good sensitivity towards the no lightning events. For class 1 the recall is
0.71 indicating that there is room for improvement. An overall accuracy of 0.80 that
is equal with the macro and weighted average indicates a good balance between the
classes. The dataset used for this model was smaller than for the random forest, so
the results are not directly compatible.

5.2.1 Data formatting

To address the obtained results and the lack of sufficient accuracy, it is essential
to perform a comprehensive error analysis. The primary factors contributing to
the performance limitations are related to attenuation correction, alterations in the
coordinate system, and unfavorable dataset size.

The radar data and the used libraries had some unresolved issues with data
formatting. Originally the used data was in the h5 format provided by the FMI.



41

Using wradlib and pyart in the prepossessing did not make any difference in the
data, so it was noted that the raw data should be used instead. Curiously, the raw
data has same data structure as the .h5 but still works better with the used libraries
and for that the proper attenuation calculations can be conducted. The corrections
for differential reflectivity ended up blurring the plots, with no notable differences on
the plots and as the reason for this lies in the data itself, it needs more researching
what library or libraries would be more suitable for this. One one option would be
to transfer the data first on some other format, but noting that Vaisala radar data
has been used globally with similar models and with viable results, the topic needs
more investigating.

Coordinate system transformation was originally planned to be done using the
wradlib [53] library. With the unresolved issues with data format and differential
reflectivity, approach to use only pyart [54] was made. The pyart contains function
that provides gridding to Cartesian coordinates for the radar data. However the
results were quite similar as with wradlib. Reflectivity corrections and the plotting
works without issues but with differential reflectivity the issue persisted. The issues
were checked with the access to the FMI radar archive where the same data was
inspected. Pyart has previously worked in similar usage, so the main cause of the
issue has yet to be resolved.

5.2.2 Resolution

Lightning location accuracy on 1×1 km grid isn’t in any means accurate, since the
location data can be achieved much more accurately from the sensors. Reflectivity
data on the other hand is difficult to accurately represent in such resolution. For
example, if there is 3×3 1 km grid boxes in which half have measured lightning
strikes, the reflectivity can still be the same on all the grids due to the resolution.
Therefore accurate nowcasting on smaller resolution isn’t probably achievable with
reflectivity alone. On the other hand if resolution is increased to a larger area by
making the grid larger, singular lightning strikes become very difficult to predict due
to the large area of high reflectivity.

Both differential reflectivity and reflectivity should nevertheless give reasonable
resolution even for grid sizes 5×5 km, so the creating accurate smaller grids would
require large amounts of data and/or more features. In hindsight, lightning density
map would have been a more suitable label for this model, since it could be done on
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a larger sized grid. With larger grid the normalization would have resulted in more
visible differences.

5.2.3 Data Augmentation

Data augmentation methods were applied to CNN model with modest results.
Geometric transformations had no viable effect to the accuracy. This most likely
to the previously mentioned resolution difference and hence, making changes to
the model geometry had no improving effect. It should be also mentioned that the
augmentation methods used were flipping and zooming, and neither one of them had
notable positive or negative effect. The goal was to figure out if the lack of training
sets was affecting the model, but based on the observed results it was not having a
considerable effect.
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6 Conclusions and future work

As the results show, the accuracy and selected methods were not suitable for the
nowcasting task, at least in the limited form presented in this thesis. First and
foremost, one of the main research papers that influenced the topic of this thesis
was that research paper of Leinonen and the usage of multiple data sources in the
predicting model.[3] Due to this bias, even though the one of topics of this thesis
is to find out if the same could be done with as few sources as possible, the model
choice was no optimal. In hindsight, a hybrid model combining RNN and CNN
would probably been the most suitable.

The usage of reflectivity as the only input feature is not an optimal method for
making efficient nowcasting models, with the purpose of getting accurate lightning
location data. Reflectivity itself doesn’t contain enough information that could
explain the electrification locally. For larger areas, the thunder cells and the possible
discharging of them could be nowcasted and tracked based on reflectivity alone. This
could be possibly examined in the future, the tracking of suitable thunder cells could
be combined with radar data to make efficient nowcasts about the lightning strikes.
With the models proposed in this thesis, a more suitable choice for the use and
prediction of lightning location would be predicting the number of flashes or strikes
in a certain area. The area could be 10×10 km or 20×20 km and the task would be
to identify such ’hotspots’ of discharging, with the highest activity. The relation to
reflectivity would be more suitable for this case and the usage of reflectivity data
alone could be sufficient. On the other hand, combining other features to the model
could also be used, such as the intensity of wind and its trajectory. To take the model
even further, geographical data could then be taken into account, if the trajectory
could be forecasted in advance.

A more appropriate approach for nowcasting models might involve a shift in
perspective, focusing on predicting rain and high reflectivity patterns based on the
spatial distribution of lightning strikes. This model would also benefit from the usage
of lightning density mapping instead of binary ’hit-miss’ -data. The difficulty would
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probably then be the physical shape of the thunder cell(s) and the possible merging
of said cells.
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A Code

A.1 Data preprocessing

A.1.1 Lightning data processing

The following Python code demonstrates how to process the lightning data:

1 # Initialize empty lists to store extracted values

2 flash_ids = []

3 peak_currents = []

4 latitudes = []

5 longitudes = []

6 utctimes = []

7

8 # Iterate over the list of dictionaries to extract the

required information

9 for data in results :

10 flash_ids . append (data[’flash_id ’])

11 peak_currents . append (data[’peak_current ’])

12 latitudes . append (data[’latitude ’])

13 longitudes . append (data[’longitude ’])

14 utctimes . append (data[’utctime ’])

15

16 # Define the boundaries of the 1x1 km grid

17 min_lon , max_lon = min( longitudes ), max( longitudes )

18 min_lat , max_lat = min( latitudes ), max( latitudes )

19 # 1 degree of longitude is approximately 111.32 km

20 lon_step = 10.0 / 111.32

21 lat_step = 10.0 / 111.32

22

23 # Create a grid of lon and lat values

24 grid_lon = np. arange (min_lon , max_lon , lon_step )

25 grid_lat = np. arange (min_lat , max_lat , lat_step )
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26

27 # Create an empty binary grid ( initialized with zeros)

28 binary_grid = np.zeros (( len( grid_lat ), len( grid_lon )), dtype=

int)

29

30 # Populate the binary grid based on lightning data points

31 for lon , lat in zip(longitudes , latitudes ):

32 if min_lon <= lon <= max_lon and min_lat <= lat <=

max_lat :

33 col_idx = int (( lon - min_lon ) // lon_step )

34 row_idx = int (( lat - min_lat ) // lat_step )

35 binary_grid [row_idx , col_idx ] = 1

36

37 # Create a binary grid plot

38 plt. figure ( figsize =(10 , 6))

39 plt. imshow ( binary_grid , cmap=’binary ’, extent =[ min_lon ,

max_lon , min_lat , max_lat ], origin =’lower ’)

40

41 # Customize the plot as needed

42 plt.grid(True , linestyle =’--’, color=’gray ’, alpha =0.5)

43 plt. tight_layout ()

44 plt.ylim ()

45 plt.xlim ()

46 # Remove tick labels while keeping the grid lines

47 plt. xticks (ticks=plt. xticks ()[0] , labels =[])

48 plt. yticks (ticks=plt. yticks ()[0] , labels =[])

49

50 # Show the plot

51 plt.show ()
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A.1.2 Radar data processing

The following Python code illustrates the processing of radar data:

1 import numpy as np

2 import pyart

3 import wradlib

4 import matplotlib . pyplot as plt

5 from osgeo import gdal

6 from osgeo import osr

7

8 file_names = []

9

10 for fname in file_names :

11 # Load radar data from the current file

12 radar = pyart.io.read(fname , include_datasets =[" dataset1 "

, " dataset2 ", " dataset3 ", " dataset4 ", " dataset5 ", "

dataset6 "])

13

14 # Extracting correct values from data

15 z_values = radar. fields [’reflectivity ’][’data ’]

16 zdr_values = radar. fields [’differential_reflectivity ’][’

data ’]

17 timestamp = radar.time[’units ’][14:]

18

19 latitude = radar. latitude [’data ’][0]

20 longitude = radar. longitude [’data ’][0]

21 altitude = radar. altitude [’data ’][0]

22 sitecoords = (27.38147004 , 62.86260009 , 269) # example

23 sitecoords = list( sitecoords )

24

25 # Defining proper frequency used by the radar

26 frequency = 5.33

27 radar. instrument_parameters = {" frequency ": {"data": np.

array ([ frequency * 1e9])}}

28

29 # Perform attenuation correction with modified parameters

30 cor_z = pyart. correct . calculate_attenuation_zphi (
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31 radar ,

32 fzl =4000 ,

33 smooth_window_len =1000 ,

34 c=frequency ,

35 refl_field =’corrected_reflectivity ’,

36 phidp_field =’differential_phase ’,

37 zdr_field =’differential_reflectivity ’,

38 temp_ref =’fixed_fzl ’

39 )

40

41 cor_z_data = cor_z [2]

42 cor_zdr_data = cor_z [5]

43 corzdr = cor_zdr_data [’data ’]

44 corref = cor_z_data [’data ’]

45

46 # Remove existing fields

47 radar. fields .pop(’corrected_reflectivity ’)

48 radar. fields .pop(’corrected_differential_reflectivity ’)

49

50 # Create grid coordinates (x, y, z) using wradlib ’s

spherical_to_xyz function

51 azimuths = radar. azimuth [’data ’]

52 elevations = radar. elevation [’data ’]

53 ranges = cor_z_values

54 ranges_zdr = cor_zdr_values

55

56 coords_z_data = wradlib . georef . spherical_to_xyz (ranges ,

azimuths , elevations , sitecoords )

57 coords_zdr_data = wradlib . georef . spherical_to_xyz (

ranges_zdr , azimuths , elevations , sitecoords )

58

59 coords_z = coords_z_data [0]

60 coords_zdr = coords_zdr_data [0]

61

62 field_dict = {’data ’: corref ,

63 ’units ’: ’dBZ ’, # Replace with the actual unit
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64 ’long_name ’: ’Corrected Reflectivity ’,

65 ’standard_name ’: ’corrected_reflectivity ’,

66 ’comments ’: ’Reflectivity corrected for

attenuation ’}

67

68 field_dict = {’data ’: corzdr ,

69 ’units ’: ’dB’, # Replace with the actual unit

70 ’long_name ’: ’Corrected Differential

Reflectivity ’,

71 ’standard_name ’: ’

corrected_differential_reflectivity ’,

72 ’comments ’: ’ZDR corrected for attenuation ’}

73

74 # Add the corrected reflectivity field to the radar

object

75 radar. add_field (’corrected_reflectivity ’, {’data ’:

coords_z })

76 radar. add_field (’corrected_differential_reflectivity ’, {’

data ’: coords_zdr })

77

78 # Add the corrected reflectivity data to the radar object

79 radar. add_field (’corrected_reflectivity ’, field_dict ,

replace_existing =True)

80

81 gatefilter = pyart. filters . GateFilter (radar)

82 gatefilter . exclude_transition ()

83 gatefilter . exclude_masked (" corrected_reflectivity ")

84

85 # Create a grid using pyart.map. grid_from_radars ()

86 grid = pyart.map. grid_from_radars (

87 radar ,

88 grid_shape =(1, 1001 , 1001) ,

89 grid_limits =((0 , 3700) , ( -120000.0 , 120000.0) ,

( -120000.0 , 120000.0) ),

90 fields =[’corrected_reflectivity ’] # If ’x_coordinate

’ is the field you added and want to grid
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91 )

92

93 # Plot the interpolated data

94 fig = plt. figure ( figsize =(8, 6))

95 ax = fig. add_subplot (111)

96 ax. imshow (grid. fields [" corrected_reflectivity "]["data"

][0] , origin ="lower")

97 ax. set_title (f’Corrected reflectivity - Timestamp : {

timestamp }’)

98 plt.show ()

A.2 CNN Model

1 # Import necessary libraries

2 import cv2

3 import numpy as np

4 import tensorflow as tf

5 from sklearn . model_selection import train_test_split

6 from tensorflow .keras. models import Sequential

7 from tensorflow .keras. layers import Conv2D , MaxPooling2D ,

UpSampling2D , Flatten , Dense

8

9 # Define file paths for reflectivity images and lightning

strike images

10 file_paths = []

11 lightning_paths = []# Initialize lists for storing image data

and labels

12 ref_images = []

13 light_images = []

14 ref_labels = []

15 light_labels = []# Load and preprocess reflectivity images

16

17 for path in file_paths :

18 img = cv2. imread (path , cv2. IMREAD_GRAYSCALE )

19 resized_img = cv2. resize (img , (256 , 256))

20 ref_images . append ( resized_img )
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21 ref_labels . append (0) # Label for non - lightning images #

Load and preprocess lightning images

22

23 for path in lightning_paths :

24 img = cv2. imread (path , cv2. IMREAD_GRAYSCALE )

25 resized_img = cv2. resize (img , (256 , 256))

26 light_images . append ( resized_img )

27 light_labels . append (1) # Label for lightning images #

Combine and normalize image data

28

29 all_images = np.array( ref_images + light_images ). reshape (-1,

256, 256, 1) / 255.0

30 all_labels = np.array( ref_labels + light_labels )# Function to

extract image patches

31 def extract_patches (image , patch_size , stride ):

32 H, W, C = image.shape

33 return np.array ([ image[i:i+patch_size , j:j+ patch_size ]

34 for i in range (0, H- patch_size +1, stride

)

35 for j in range (0, W- patch_size +1, stride

)])# Define patch size and stride for patch extraction

36 patch_size = 64

37 stride = 32# Extract patches and corresponding labels

38 all_patches = [ extract_patches (img , patch_size , stride ) for

img in all_images ]

39 all_patch_labels = np. repeat (all_labels , len( all_patches [0]))

# Flatten the list of patches

40 all_patches = np. vstack ( all_patches )# Split data into

training and test sets

41 X_train , X_test , y_train , y_test = train_test_split (

42 all_patches , all_patch_labels , test_size =0.2 ,

random_state =42)# Define the CNN model architecture

43 model = Sequential ([

44 Conv2D (64, (3 ,3) , activation =’relu ’, padding =’same ’,

input_shape =( patch_size , patch_size , 1)),

45 MaxPooling2D ((2 ,2) , padding =’same ’),
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46 Conv2D (128 , (3 ,3) , activation =’relu ’, padding =’same ’),

47 MaxPooling2D ((2 ,2) , padding =’same ’),

48 Conv2D (128 , (3 ,3) , activation =’relu ’, padding =’same ’),

49 UpSampling2D ((2 ,2)),

50 Conv2D (64, (3 ,3) , activation =’relu ’, padding =’same ’),

51 UpSampling2D ((2 ,2)),

52 Conv2D (1, (3 ,3) , activation =’sigmoid ’, padding =’same ’),

53 Flatten (),

54 Dense (128 , activation =’relu ’),

55 Dense (1, activation =’sigmoid ’)

56 ])# Compile the model with optimizer , loss function , and

metrics

57 model. compile ( optimizer =’adam ’,

58 loss=tf.keras. losses . BinaryCrossentropy (),

59 metrics =[’accuracy ’])# Define training

callbacks

60 callbacks = [

61 tf.keras. callbacks . EarlyStopping ( patience =5, monitor =’

val_loss ’),

62 tf.keras. callbacks . TensorBoard ( log_dir =’./ logs ’)

63 ]# Train the model with the training data

64 history = model.fit(

65 X_train , y_train ,

66 epochs =10,

67 validation_data =( X_test , y_test ),

68 batch_size =2,

69 callbacks = callbacks

70 )
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A.3 RNN model

1 #RNN model architecture

2 model = Sequential ([

3 SimpleRNN (64, return_sequences =False , input_shape =(64 ,

64)),

4 Flatten (),

5 Dense (64, activation =’relu ’),

6 Dense (1, activation =’sigmoid ’)

7 ])# Compile the model

8 model. compile ( optimizer =’adam ’,

9 loss=tf.keras. losses . BinaryCrossentropy (),

10 metrics =[’accuracy ’])# Train the model

11 history = model.fit(

12 X_train . reshape (-1, 64, 64) , y_train ,

13 epochs =10,

14 validation_data =( X_test . reshape (-1, 64, 64) , y_test ),

15 batch_size =2

16 )
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