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Suomenkielinen tiivistelmä: Pelisuunnittelu, pelin audiovisuaalinen esitys sekä vaikeusta-

son räätälöinti luovat optimaalisen pelikokemuksen videopeleissä. Tämä pro gradu -tutkimus

käy läpi tekoälyn suunnitteluprosessia sekä ehdottaa pelijännitettä mittaava viitekehystä video-

pelien tekoälyn arviointiin. Lisäksi ehdotettu viitekehys arvioitiin tapaustutkimuksen aikana.

Tapaustutkimuksessa kehitettiin tekoälyagentti proseduraalista tasojen generointia varten ’rogue-

like’ pelissä.

Avainsanat: Dynaaminen vaikeustason säätäminen, Pelijännitettä mittaava viitekehys, Pelisu-

unnittelu, Proseduraalinen tasojen generointi
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Glossary

Activation function A function that transforms neural network input into neuron’s

activation (Fausett 1994).

Adaptivity In the video game context, an automated adaptation of such

game elements as content, game mechanics or game diffculty

to the player or other type of interactive experience personali-

sation (Millington and Funge 2009).
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Agent In artifcial intelligence, a computer program autonomously

operating, perceiving environment it is operating in, adapting

to changes and capable of taking actions in order to achieve a

certain goal (Russell and Norvig 2003).

Agent function Maps any given percept sequence to an action, an abstract

mathematical description, which also allows to measure a suc-

cess of an agent’s action (Russell and Norvig 2003).

Artifcial intelligence A computer science feld specialising in intelligent agents de-

sign and implementation, which are able to act independently

in changing environment.

DDA Dynamic diffculty adjustment is a play diffculty adjustment

within a game using a feedback loop to create a game ex-

perience anticipating players’ abilities, behaviour and perfor-

mance (Salen and Zimmerman 2004). Some researchers dis-

tinguish offine DDA as a challenge tailoring (Zook and Riedl

2015). In this work, DDA means game diffculty adjustments

done both during the game session and between game sessions.

Game AI Game artifcial intelligence is a part of a video game responsi-

ble for such computer-controlled elements as non-player char-

acters to make decisions and take certain actions for a given

state of the world (Schwab 2009).

Gameplay Players’ interaction with a game defned and controlled by the

rules of a game (Salen and Zimmerman 2004).



Game design An iterative activity creating optimal experience in games through

game mechanics, storytelling, game aesthetics and technolo-

gies.

Magic circle An imaginary game world defned and limited by game rules,

that player voluntarily enters while playing a game. In addi-

tion, the real world with its rules are suspended during a game-

play. (Salen and Zimmerman 2004)

Neural networks, NNs Information processing systems consisting of multiple simple

processing units connected to each other by weighted connec-

tion paths. Neural networks produce output signal(s) deter-

mined by input patterns and related to them weights. (Fausett

1994)

PLG Procedural level generation is a method for a video games

generation algorithmically instead of manual level creation.

As a rule, procedural level generation is performed relying on

human-generated assets and blocks and algorithms using them.

Rational agent Is an agent that acts to achieve either the best outcome or

the best expected outcome in case of uncertainty (Russell and

Norvig 2003).

Rogue-like games A genre of dungeon crawling video games with procedurally

generated levels, where a player can only take grid-based move-

ments. The gameplay is a turn-based and requires the game

restart and the lost of the progress being made in case of char-

acter death.

Task environment

Utility-based agent

A description of an agent behaviour (Russell and Norvig 2003).

An agent acting based on the utility function to maximise the

expected outcome (Russell and Norvig 2003).

Weight A value associated with a specifc feature, and can be used

to modify the strength of the feature. As a rule, weights are

used for neural networks training in learning algorithms for

achieving desired outcomes from the input data. (Fausett 1994)
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1 Introduction

Since the beginning of the so-called "golden age of video games" at the end of 1970s, the

video game industry has been growing at a great rate (Charles et al. 2008). Both progress in

hardware design and production, and signifcant improvement in technologies boosted game

aesthetics and complexity of games introducing a great variety of video games for different

groups of players.

High competition in gaming industry is increasing a demand for tools allowing to keep play-

ers interested in games and to provide higher player retention. Careful game design process,

thoroughly created game aesthetics combined with procedural level generation (PLG) and

dynamic diffculty adjustment (DDA), create optimal game experience allowing players to

enter the state of fow. Hence many of the research projects on benefts of DDA and PLG

and approaches to them are carried out. Furthermore, functional near-infrared spectroscopy

(fNIRS) shows diffculty of the game to impact player’s state of fow in one of the recent

studies (Yu et al. 2023). Moreover, some studies focusing on gradual increase of the physical

activity based on the person’s capabilities for exercise or rehabilitation games (e.g. Huber et

al. 2021 or Streicher and Smeddinck 2016) reveals not only higher motivation but also faster

recovering progress. However, most of the researchers focus on the advantages of diffculty

adaptation for education and rehabilitation games or on platformer games with players as

prototype models for a further diffculty pattern matching.

The subject of this research covers three key topics related to procedural content generation

with dynamic diffculty adjustment for facilitating optimal experience in video games. The

outlined key topics are as follows:

• an overview of artifcial intelligence basics,

• a proposed game tension framework,

• a design case study on adaptation agent integration into video games.

The frst part of the research overviews artifcial intelligence basics. Furthermore, general

artifcial intelligent agent design process including some of the existing algorithms mod-

elling its behaviour and their application in video games are reviewed. Secondly, the re-
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search proposes the approach to game agent performance evaluation without players’ direct

involvement, i.e. game tension framework. Lastly, the design case study is carried out for ex-

amining incremental adaptation agent design process and practical implementation in video

games context. The design case study includes a rogue-like 2D game with incremental adap-

tation agent prototype development. Moreover, the design case study aims to validate the

proposed game tension framework. In order to gain suffcient knowledge for conducting the

design case study, it is also necessary to get acquainted with the related felds and the back-

ground. Consequently, the defnition of games should be provided, i.e. what games are and

what they are not. In addition, some of the terms and components of game design, such as

fow, should be discussed due to their infuence on the dynamic level adjustment.

The chosen research questions combine two felds of the author’s utmost interest namely arti-

fcial intelligence and game design. It is captivating that game development applies different

techniques and requires various skills from the developers starting from elaboration of con-

cepts and design and up to software development and testing. As for artifcial intelligence,

the topic is controversial and much spoken about nowadays. Thereby game AI, i.e. the com-

bination of AI and games, has brought a new turn to the video game industry allowing game

developers to apply new techniques to improve gamers’ experiences.

The body of the thesis consists of seven chapters, including the introductory chapter. The fol-

lowing two chapters, Chapters2. and 3, give an overview of an artifcial intelligence basics. In

addition, they introduce a brief history of the feld including currently used techniques, espe-

cially artifcial neural networks and machine learning. Moreover, the background overview

justifes both agent’s program selection and implementation in the design case study. Chap-

ter 4 covers defnition of games and a game design creating a base for game tension frame-

work and the design case study. Chapter 5 describes proposed game tension framework as a

possible approach to agent’s evaluation. In Chapter 6, the design case study is dwelt upon,

where a rogue-like 2D game with an incremental agent prototype is developed. Also, this

development process is discussed in Chapter. Furthermore, the design case study both as-

sesses and extends the game tension framework in evaluating and development of the agent’s

prototype. The fnal chapter contains conclusions with mapping up possibilities for future

research on the subject.
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2 Artifcial Intelligence

Artifcial intelligence is a computer science area, that focuses on machine learning and ma-

chine perception with wide range of applications from a video game opponent creation to

text composition. As artifcial intelligence is able to systematise and automate tasks, it can

be used in almost any sphere related to the intellectual activity. (Russell and Norvig 2003)

The frst part of this research is artifcial intelligence basics overview, which starts with

the term artifcial intelligence defnition in the following section. In addition, a general

approach to artifcial intelligent agent design is reviewed. However, greater focus is on

artifcial intelligence application in games (especially in Section 2.2). Hence, brief history

of artifcial intelligence usage in games is studied, which is to gain working knowledge

about several most common techniques used in the game development. Neural networks and

machine learning are separately covered in Chapter 3 due to their reassuring and viable input

to game development.

2.1 Defnition of Artifcial Intelligence

As a rule, when speaking about artifcial intelligence, people picture a robot, which is de-

signed to perform a predefned set of actions and possibly make simple decisions based

on the available information. Although this may be true, the described notion is not the

only concern of the domain. According to "International Dictionary of Artifcial Intelli-

gence" (Raynor 1999) artifcial intelligence as a computer science feld focuses on a devel-

opment of methods that allow computer to perform actions and to make decisions as a human

would.

Over decades various researches has taken different approaches for artifcial intelligence def-

inition depending on the focus of the study. Nonetheless, it is possible to break down the do-

main into three core aspects, which prove to be common to all defnitions. Firstly, a computer

needs data in order to perform any action (Russell and Norvig 2003). The needed data has

to be represented in simplest format and structure for a computer to store and operate them.

Secondly, artifcial intelligence has to be able to make intelligent decisions, i.e. to draw con-
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clusions or otherwise operate available information using automated reasoning (Russell and

Norvig 2003). Additionally, AI should use machine learning to adapt to changing conditions

and expand already learnt patterns (Russell and Norvig 2003). Artifcial intelligence systems

should not only fulfl at least one of the mentioned features, but also behave either rationally

or act as a human would. In this context, rational behaviour means that a machine should

make decisions only based on the available knowledge (Russell and Norvig 2003). It is worth

mentioning, that the ability to act like a human being is not necessarily the same as the ability

to make rational decisions. That is because people sometimes behave irrationally yielding to

feelings, and some of good decisions can be made without any proper deliberation.

The main building block of the artifcial intelligence is an intelligent agent (Russell and

Norvig 2003), the model of which is represented by Figure 1. As seen on Figure, an agent

can perform certain actions and interact to some extent with the environment it is operating

in. In addition, the agent can receive information about the world through sensors such as

cameras, fles content or network packets. Once the data is processed and decisions are made,

it is possible for the agent to take some actions through actuators, which can be motors or

mechanisms, for example. In general, agent’s actions and decisions depend on observed and

Figure 1: Agent model (Russell and Norvig 2003, p. 33)
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perceived complete information at any period of time. This information is then mapped by

an agent function (Russell and Norvig 2003).

Furthermore, based on taken actions and a state of environment, it should be possible to

assess agent’s performance by analysing whether the change in the state of the environment

has been a desired one. For this reason, task environment should be carefully specifed.

According to Russell and Norvig (Russell and Norvig 2003), there are several features that

should be taken into account when designing task environment and selecting techniques for

agent implementation. First of all, it is important to determine whether an agent can perceive

the surrounding world completely or only relevant to the agent parts of it. So a designer of

an agent should consider whether any environment state change is possible to predict based

on the current state and the agent’s taken actions so far. Additionally, it should be studied

how the current decision can impact the upcoming one(s). Finally, when designing an agent,

the state of world should be considered as either constantly changing and developing or as

a static one. This allows to enforce agent’s ability to compensate missing or incorrect prior

information about the environment. All four mentioned above characteristics provide an

agent designer with dimensions of task environment for a best suited agent design approach

selection, data collection, and possibly behaviour adjustments.

While task environment is a description of an agent, the actual implementation is provided by

an agent program. An agent program of Figure 2 illustrates a simple agent program triggered

by a new input, while storing the input sequence history. Generally speaking, agent programs

can be divided into six basic types: table-driven agents, simple refex agents, model-based

refex agents, goal-based agents, utility-based agents and learning agents (Russell and Norvig

2003). Each type can be treated as a successor of the following one. The simplest agent

program, table-driven agent grounds its decisions on table entries describing all possible

inputs and corresponding response actions. The "evolution" of agent programs continues

through a single input condition matching to the complex system that is able to discover the

state of the surrounding world with almost zero prior knowledge in order to reach measurably

the best possible outcome (Russell and Norvig 2003). The latter represents a learning agent,

which is described next. The remaining basic types are covered in detail by the following

sections related to agent programs algorithms.
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Figure 2: A simple agent program example (Russell and Norvig 2003, p. 45)

As it has been noted, a learning agent can be gradually trained to discover the current state

of the environment and adjust its behaviour basing on the received feedback upon the taken

actions. Russell and Norvig point out four vital components involved in the decision-making

process of such an agent (see Figure 3). The core learning agent element is the performance

element, which processes inputs into actions. At the same time, each taken action is eval-

uated by the critic based on pre-specifed performance standards. The feedback allows the

learning element to modify the decision-making process of the performance element in or-

der to achieve better results next time. Meanwhile, there should be a problem generator

responsible for new experiences and actions. The fourth element of the agent would suggest

adding new behaviours to performance element repertoire even if new optimal actions and/or

solutions seem to be suboptimal ones for the current state. (Russell and Norvig 2003)

Considering all the points discussed in this section, artifcial intelligence can be described

as a feld specialising on intelligent machine agents design and implementation that are able

to make intelligent decisions and that can act independently in changing conditions based

on the data received from the environment. Agent’s relevant performance demands from an

agent designer a careful selection of data structure for storing environment state information.

The choice is tied to a task environment describing the functioning infrastructure, sensors,

actuators, an environment and a perception. An agent program can be constructed with

the task environment and together with the data structure being defned. Decision-making
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Figure 3: A general model of a learning agent (Russell and Norvig 2003, p. 53)

process is specifed by an agent program. Each of agent program types is described by a

family of algorithms, which allow to generate a step-by-step solution to the problem that

the agent needs to solve. The next section expands artifcial intelligence application to the

context of video games and introduces some of the most common agent program algorithms.

2.2 Artifcial Intelligence in Games

It is now possible to review artifcial intelligence in the context of video games in keeping

with its defnition given in Section 2.1. Artifcial intelligence agent can be used for game

artifcial intelligence, game AI, and for a procedural level generation. The former one fo-

cuses on a computer opponent and non-player characters (NPC) creation with a human like

behaviour and decision-making processes within a game. The three basic building blocks

of the game AI agent are the ability to move in the game world, to decide upon the next

movement and to think tactically or strategically (Millington and Funge 2009). In turns, pro-

cedural level generation, including dynamic diffculty adjustment (DDA), is responsible for

automated game world generation and customisation. This requires complete information
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about game states, adjustment mechanisms and the way to measure player’s performance in

case of dynamic diffculty adjustments (Streicher and Smeddinck 2016).

In the previous section, the core aspects of the artifcial intelligence has been raised, namely

data and suitable data structures, automated reasoning and adaptation to changing conditions.

These core features are important for well-designed artifcial intelligence in games as well.

According to Neil Kirby (Kirby 2011), actions of a game AI agent should be or at least

should seem to be intelligent. This requires constant analysis of incoming information about

changes in the game environment and its state, and gathered information mapping into data

structures that can be easily processed and stored by the machine. This allows the agent to

react promptly and relevantly to the changes by taking actions, that a human player should

be able to notice. However, decision-making process itself or data infuencing it should not

be evident to the user (Kirby 2011).

One more major component of artifcial intelligence applicable to games is intelligent decision-

making process. Specifcally, game AI agents should not take take too obvious actions and

thus appear to be dull. In order to avoid such a problem, game developers need to focus on

preventing the artifcial intelligence from being perceived as dumb rather that create an im-

pression of being smart. An interesting point made by N. Kirby (Kirby 2011), is the fact that

a player might interpret random actions as a sign of intelligent decisions and as an ability

to learn from experience and the environment feedback. This leads to the conclusion that

a human player needs to be provided with the evidence of agent’s intelligent behaviour in

order to enjoy the game, even though intelligent reasoning would be only imitation. For this

reason, it is more important to match the expected behaviour of the agent to correct algo-

rithms than to design and implement complex artifcial intelligence components (Millington

and Funge 2009).

The last core aspect of artifcial intelligence is the agent’s ability to act in changing condi-

tions. In video games context, this means the ability of a game agent to adjust its behaviour

in reaction to players’ movements and decisions. This is important for video games because

a key driver is a player, who can unpredictably affect the environment of games, in some

cases even the way game designers did not envisioned (Millington and Funge 2009). It is re-

markable, that this allows an artifcial intelligence in games to make seemingly "intelligent"
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decisions and thus appear to be smart in most of the games, when it is impossible to predict

the player’s next move and the resulting change in the game state.

It is important to note that artifcial intelligence in games should not be mixed with game

physics (Kirby 2011). In other words, game objects that change their shape or position in the

game world must not be always regarded as artifcial intelligence. For example, falling drops

or leaves cannot be perceived as agents but preprogrammed physical or nature forces similar

to the ones existing in the real world: the leaf or the drop do not receive any information about

the surrounding world, analyse it and then decide that it is time to fall. At the same time,

game world updates similar to city life simulations in Grand Theft Auto 3, can be categorised

as non-agent based artifcial intelligence due to some of the game state changes can impact

level generation (Millington and Funge 2009). For example, in the aforementioned GTA3,

traffc and pedestrian fows are impacted by the time of the day and part of the city the player

is located in.

To sum it up, the core features of artifcial intelligence are applicable to games resulting in

either game AI or procedural level generation agents. Moreover, "intelligent" artifcial intel-

ligence in games should not necessarily be either too complex or too simple and predictable.

For this reason, game developers should mainly focus on implementation of credible agents,

that would appear to have intelligent decision-making process even if the actual implemen-

tation is relying on simple semi-random condition matching. The next section is devoted

to a brief history of artifcial intelligence in video games and to currently used techniques

matching specifc agent program type.

2.3 A brief History of Artifcial Intelligence and Currently Used Tech-

niques in Games

The frst notion of game artifcial intelligence could be seen already in such classic video

games as Pong, Space Invader or Pac-Man. The period when mentioned above and many

other classic games were developed is known as a so-called golden age of video games,

a period from the end of 1970s until the beginning of the 1980s. Even though the frst

video game is said to be created already in 1958 by William Higinbotham, the concept of
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playing against a computer opponent had been developed only by the beginning of the golden

age. (Charles et al. 2008)

As video games began to evolve into a separate feld, artifcial intelligence was introduced

mainly for computer opponent creation. The frst basic game AI mimicking an opponent

player was created for Pong, a video game published by Al Alcorn and Nolan Bushnell in

1972. Primarily Pong was designed to be a multiplayer game. However, basic game AI also

made single player versions possible. In the early version of a single player Pong, the second

player is simulated by tracking AI, where the agent tracks the current position of a human

player and a ball to be able to move in the right direction at a limited speed. Later versions

introduced a computer opponent implemented with cheating AI. This technique allows the

agent to adjust its position based on complete information of game world, including the one

hidden from a human player. None the less, neither tracking AI nor cheating AI are able to

provide a suffcient level of challenge to players. In addition, there is higher likelihood for

a machine agent to either win or lose constantly to a human player, which reduces interest

towards the game. (Charles et al. 2008)

By the beginning of 1980s, an implementation of game AI was still based on the simplest

techniques like tracking or cheating AIs. However, a few new methods were emerged. For

example, game developers applied so-called pattern AI in Space Invaders. The pattern AI

agent controls spaceship following only a specifc set of patterns. Nonetheless, such game

AI has been seen as an unintelligent one due to predictability of a non-player character’s

actions, when a pattern is noticed and solved by a human player. (Charles et al. 2008)

Another technique introduced during the golden age of video games was based on a ran-

dom behaviour. The latter allows to create an illusion of intelligent game AI as the next

movement of the computer agent is not always possible to predict (Charles et al. 2008).

One of the greatest examples of non-player video game characters with seemingly random

behaviour is Pac-Man. All its ghosts are implemented relying on a fnite state machine al-

gorithm, where each state could semi-randomly change the next available action (Millington

and Funge 2009). This particular approach makes players believe the ghosts having a com-

plex collective strategy and thus impacts a gameplay for the frst time.
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Nevertheless, the game AI remained at the level of PacMan ghosts’ implementation till mid-

1990s, proving to be the next milestone in the history of game AI. During the period, game

publishers started to take an advantage of artifcial intelligent for the marketing purposes

only. Algorithms for a computer agent implementation were still as simple as in Pong or Pac-

Man, because there was no demand for anything more complex. Moreover, the game AI was

implemented as the one relying on more sophisticated state machines creating impression of

smarter computer opponents. The most noticeable step in the progress was done for Warcraft

in 1994, where pathfnding algorithms were observed to be widely used for NPCs behaviour

implementation. (Millington and Funge 2009)

As computers and gaming platforms become more powerful, it is possible for game devel-

opers to create game with more realistic game aesthetics. As a result, a need for game AI

improvements and development arises as early techniques proved to create agents with pre-

dictable behaviour. Even though a wider range of techniques was introduced, most of the

modern video games use earliest simple state machines or tree searches as they fulfl basic

needs for a NPC behaviour or role-play games interactions (Millington and Funge 2009).

Still, real time strategies are more likely to use some of the newest algorithms, such as neu-

ral networks, introduced by academic artifcial intelligence studies (Millington and Funge

2009). The following subsections cover some of algorithms, such as simple hard-coded AI

and searching with A*, as they are widely applied in many of the commercial games.

2.3.1 Simple hard-coded AI

At the early stages of video games production, a game AI development relied on the simplest

and straightforward agent program type called simple refex agent. As shown on Figure 4,

the agent consults a predefned set of condition-action rules based on the only available state

of the environment, the current state. Usually, matching rules are described by a collection

of logic gates (Russell and Norvig 2003). As simple refex agents are very limited in ac-

tions defned by the condition-action rule set, this type can only be applied in case of fully

observable environment for a very simple decision making (Russell and Norvig 2003).

Features of simple refex agent program implementation can be seen already in mentioned
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Figure 4: A simple model of a refex agent (Russell and Norvig 2003, p. 47)

earlier tracking and cheating AIs used in Pong for creating a computer opponent. More

generic naming for these algorithms is hard-coded AI or scripted AI (Kirby 2011). However,

scripted AI is very limited in applications due to its several disadvantages. First of all, prede-

fned rules set should be kept as simple as possible, otherwise the game AI becomes unstable

and too sensible to changes. In turns, unexpected changes in the environment can lead to an

infnite decision-making loop. More than that, complex condition-action rules can severely

impact the debugging process, and thus make the agent highly prone to mistakes (Kirby

2011).

Earlier in Section 2.1, it has been mentioned that an agent should be able to act in changing

conditions and to make intelligent decisions. In order to achieve this, exhaustive design work

should be done for defning correct behaviours corresponding to all possible state changes of

the environment. Moreover, condition-action rules should include rules allowing the game

AI agent to act without any direction provided. Such work would require a big effort and

design time from a game developer, especially in case of a complex game agent and video

game environment. In some cases, it is recommended to use rule-based systems, which store

information not only about a current state of the game world but also several previous states

of it allowing to activate one or several matching rules (Kirby 2011).
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All things considered, a simple refex agent program implemented by hard-coded or scripted

AI are most useful for those game agents, which behaviour is very simple, but does not

need to be intelligent and is not highly impacted by the state of the game environment. Hard-

coded and scripted AIs guarantee fast execution and minimal overhead, especially if the code

is kept simple, clean and straightforward. In addition, this kind of artifcial intelligence can

allow players to develop own behaviour for NPCs or even game levels extending the game

world (Millington and Funge 2009).

2.3.2 Finite state machines, FSM

The more sophisticated agent program widely used for a non-player characters implementa-

tion is a model-based refex agent. Compared to a simple refex agent, a model-based refex

agent can operate in a partially observable environment by maintaining internal state of the

surrounding environment. In addition to environmental changes, the agent needs feedback

about the impact of its actions on the world. In general, the agent is modelled to update

perceived world state information frst (see Figure 5). Then it looks for a rule matching the

state change and the related action to be taken. (Russell and Norvig 2003)

Figure 5: An example of a simple model-based refex agent (Russell and Norvig 2003, p. 49)

The simplest, yet powerful and hence the most common artifcial intelligence model, imple-

menting model-based refex agent programs, is a fnite state machine, FSM. A state machine

consists of a fnite number of predefned states, transitions between these states and trig-
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gers causing transitions from one state to another, which models AI behaviour (Charles et

al. 2008). More importantly, this approach takes into account not only the state of surround-

ing world but also agent’s internal state (Millington and Funge 2009).The transition from

one state to another is reaction to the change in the state of the surrounding world. In turns,

these transitions meet one of three requirements for “intelligent” artifcial intelligence in

games (Kirby 2011). Neil Kirby (Kirby 2011) mentions two main requirements for a good

state machine. Firstly, states should have rather local than global transitions. This means,

that any state should be connected only with a subset of other states. Secondly, an effcient

FSM should have simple transitions. In other words, only a few other states should depend

on the particular fragment of available information, otherwise it will be diffcult for an agent

to make an optimal decision.

Usually, a FSM is modelled by a state transition diagram, where the states are represented

as circles, for example, while transitions and triggers are arrows with a text above or below

them. For example, Figure 6 illustrates a simple agent for an enemy behaviour. The states of

Figure are “hide”, “attack” and “fee”, while transitions are "player noticed", "no player(s)",

"low health" and "high health". In addition, the default state, "hiding" state, is highlighted

by a transition from the initial state, a black circle (Kirby 2011).

Figure 6: A FSM for a simple enemy AI (Kirby 2011, p. 45)

However, fnite state machines have several limitations, especially in the context of video

games. First of all, the technique is applicable only to the game AI agent that can be only in

one state at a time. For example, a Sims game character can be bored, hungry and unhappy at

the same time, which is not suitable for state machine implementation. One possible solution
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for the problem could be the division of states into independent ones, even the better result is

achievable with other more effcient and appropriate algorithms. Another issue, which game

developers might encounter, is game AI failure to make right decision in case two or more

transitions have been triggered simultaneously. The reason for several movements presence

from one state to another is the fact that the change in state of many game objects might

happen before the agent has an opportunity to act. As a result, the behaviour of game AI will

be missing a desired level of intelligence. In order to manage ambiguous state transition, full

specifcation with prioritised triggers and states should be done. Again, a better result can

be achieved by replacing a FSM agent with more sophisticated approach, for example, with

rules-based systems. (Kirby 2011)

As it is already mentioned, the technique is useful for non-player characters intelligent be-

haviour creation in video games. For instance, in Halo, a warrior will stand still at his

position until a player approaches him, hence changing the state into attack mode, taking

cover and fring (Millington and Funge 2009). Finite state machines are not only suitable

for game AI implementation, but also are good tools for artifcial intelligence functionality

analysis. In other words, FSMs help game developers to specify how the game agent should

behave, specifcally how it should react to changes in the game environment, and what kind

of actions it should be able to perform. Moreover, the consideration of each transition sup-

ports examination of possible problems in the behaviour, and thus allows to avoid undesired

unintelligent behaviour (Kirby 2011).

2.3.3 Search strategies: A* search

Another mentioned in Section 2.1 and widely used basic agent program type is a goal-based

agent. This basic type suits the best situations when information about the current state of

the environment is not enough for deciding upon the next action move. Moreover, in such

cases the evaluation depends on the descriptions of desired outcomes and considers future

situation to some extent. This means that an impact of each action has to be evaluated

from both environment state changes and reaching certain goals point of views. (Russell and

Norvig 2003)
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One kind of a goal-based agent is a problem-solving agent. Problem-solving agents con-

sider sequences of actions and the degree of wished outcomes in order to fnd the next best

step, leading to the desired state (Russell and Norvig 2003). As Figure 7 illustrates, a sim-

Figure 7: A simple model of a problem-solving agent (Russell and Norvig 2003, p. 61)

ple problem-solving agent operates in a "formulate-search-execute"-loop. The process starts

with a goal formulation by limiting objectives and organising behaviour according to the

situation. At this point, an agent designer should make sure, that the environment is static

and is known by the agent. In case of an unpredictable state change or missing informa-

tion, the decision-making process might end up in an infnite loop without any goal being

reached (Russell and Norvig 2003). Next, given the objectives and the goal, the agent can

proceed with a problem formulation in order to consider possible future states and to decide

on actions to be taken. Now the agent can evaluate various feasible sequences of actions and

select the best suited one for the execution.

Generally speaking, the "formulate-search-execute"-loop of any problem-solving agent is

a process of navigating through a search tree or a search graph, for example, in order to
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fnd the shortest path to the leaf node corresponding to the end goal (Russell and Norvig

2003). One of the most frequently used search techniques is a A* path-fnding algorithm for

problem-solving agent program implementation. In video games, a search problem is usu-

ally modifed in such a way that an agent examines an abstract space evaluating the next best

or optimal action. As a rule, search space is represented as a graph, where each node corre-

sponds to possible behaviour or decision and is connected with another node by a weighted

line (Charles et al. 2008).

A* search is one of the most known search algorithms, which main idea is to generate min-

imal weighted path from the start to the goal node (Millington and Funge 2009). The eval-

uation of each node combines a cost of reaching the node with a cost of reaching the goal

from the node. As the cost of each connection is known beforehand, it is possible to predict

what would be the best route from the root node till the desired action or solution (Russell

and Norvig 2003). The result of a search is a minimal cost path with the information about

connections between the starting point and the goal, if any path exists (Kirby 2011).

However, the effciency of the A* path-fnding algorithm depends on the chosen heuristics,

which guarantees a good or a better solution for the search within computationally expensive

and hence partially missing information (Kirby 2011). Also, heuristics allows to estimate

potentially the shortest distance from any node to the goal node in the graph. Knowing the

estimated distance, it is possible to prune some paths that are less likely to include suboptimal

solution, without the need to examine those paths. (Russell and Norvig 2003)

Given these points A* search algorithm can be reasonably fast as it examines the most

promising routes frst, in comparison to other search algorithms such as depth- or breadth-

frst algorithms. Additionally, A* search takes advantages of pruning some of the paths with-

out any evaluation. A correctly estimated distance guarantees lower computational times for

an optimal solution search. However, A* search should be limited in computational memory

as all generated nodes are stored in memory during the algorithm execution (Russell and

Norvig 2003). For these reasons, the algorithm is the best suited for optimal route search for

a non-player character or other similar small-scale problems in video games.
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2.3.4 Search strategies: Minimax

In addition to A* search algorithm, a minimax algorithm is used for a problem-solving agent

program with a "formulate-search-execute"-loop. Minimax algorithm was one of the frst

algorithms applied in video games for computer opponent implementation. This method

is specifcally suitable for chess and checkers -like games. The main idea of the minimax

algorithm is to select the move with the largest score through the evaluation of all available

moves. That is why there is a "max" -part in the name of the algorithm. The "minimum"

comes from the assumption that a human player will aim at a move minimising the score of

an agent. (Charles et al. 2008)

The entire search tree should be analysed every time the state of the game world changes

in order to decide on the next best movement. As it takes time to compute all the available

moves, the method is said to have slow performance. Especially this is noticeable to a player,

when the calculation time can have a great impact on the gameplay. Another minimax pro-

gram issue of a greater likelihood is inability to predict accurately a human player moves.

As a result, the agent has to rearrange the search tree and to recalculate possible movements

after every move being made. Moreover, considering the aforementioned drawbacks, the

minimax algorithm consumes more time and resources as the number of available moves

grows. (Ertel 2011)

Minimax algorithm as an agent program suits best to the agent, which will not need to search

through a graph or a tree with a large number of nodes. However, reinforced with other

techniques, the algorithm makes it possible to create an agent that would be able to compete

successfully with human players in such games as chess, for example. (Charles et al. 2008)

Chapter 2 introduced artifcial intelligence concept and a brief history of game AI. In ad-

dition, different types of existing agent programs and approaches to task environment de-

scription were discussed. Furthermore, several algorithms modelling some of the simplest

agent programs were described in the context of game AI. It should be also mentioned that

researchers recommend applying covered programs and models for creating an intelligent

and even rational game AI agent in specifc cases. However, the more sophisticated algo-
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rithms or their combination are needed for the more complicated environment and for the

agent to remain intelligent, while learning from previous experience to take the most optimal

decisions. For this reason, the following chapter introduces and discusses neural networks

as one of the models of a learning agent program.

19



3 Artifcial Neural Networks

Section 2.1 briefy introduced a learning agent, one of the most complex agents, which is able

to adjust its behaviour based on the environment feedback. Due to feedback and learning el-

ements this agent is able to improve its performance to achieve the most optimal results. For

at least previous hundred years, mathematicians and computer scientists have been looking

for possible nature and human brain inspired solutions for a better uncertainty handling by

learning agents. Numerous attempts have been made to create artifcial intelligence mimick-

ing the human brain activity, including the information processing by the neural networks.

Existing artifcial intelligence is already successfully applied in such tasks as automatic data

generalisation and search, while learning agents are useful also in data categorisation and

game design and development. The most valuable features adopted from the human brain

activity are parallel data processing and learning capabilities (Charles et al. 2008).

In order to understand basics of artifcial neural networks (further, ANNs) design, it is nec-

essary to introduce briefy biological neural networks. In addition, a closer look is taken at

machine learning due to its good potential in video games application.

3.1 A Brief Introduction to Biological Neural Networks

Human brains have approximately 95-100 billion neurons. In turns, each neuron can have up

to ten thousand connections to other neurons. Although neurons are not actually connected

to each other, but dendrites of one neuron cell are close enough to axons of the other neuron

to pass an electric signal. (Buckland and Collins 2002)

Figure 8 illustrates a basic simplifed structure and main components of a single nerve cell.

Each neuron has axons to transmit information as electrical pulses, or action-potentials. In

turns, these pulses are passed between two neurons through neuron’s dendrites and another

neuron’s axons junctions, called synapses. The effciency of synapses can change through-

out the cell’s lifetime. Once the information in a form of an electric charge arrives at the

synapse, it is transmitted to the body of the neuron, called soma. Neurons sum the incoming

signals and process the result further by a so-called function. In case the function value (or
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Figure 8: The structure of a biological neuron (Buckland and Collins 2002, p. 236)

the electrical charge) is large enough, the neuron transmits the signal to the neurons it is

connected to. (Buckland and Collins 2002)

The electrical charge required for the neuron to fre will decrease eventually, in case a neuron

transmits signals to other neural cells (or fres) often enough. Besides, synapses will become

more sensitive to an electric charge difference, while neuron will be forming new connections

to other units. This is how the unit is “learning” to respond to the same stimuli with a smaller

action-potentials instead of accumulating a larger electrical charge. On the contrary, the less

signals are going through the soma, the bigger electric charge will be required to pass the

signal to another unit. In turns, the neuron’s connections to other cells will become atrophied

as it almost never fres. (Schwab 2009)

One of the most signifcant characteristics of the biological neural network is a parallel com-

putation. Due to massively parallel computation, the power of the human brain increases

allowing to learn, to generalise and to derive meaning from a complex, imprecise or noisy

data. Consequently, biological neural networks are able to solve complex problems, which

have been an interest of many researchers in the computational modelling feld. (Charles et

al. 2008)
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3.2 Artifcial Neural Networks (ANNs)

Artifcial Neural Networks, ANNs, is a rapidly developing research area of biologically in-

spired AI. In turns, studies in ANNs techniques drive human brain research, and specifcally

biological neural networks. Inspired by the power of human brain, computer scientists are

working on agents able to learn new information or to generalise it without any supervision.

Figure 9: A simple artifcial neuron (Buckland and Collins 2002, p. 239)

Similarly to biological neural networks, ANNs consist of artifcial neurons, which are a sim-

plifed version of biological neural cell (Buckland and Collins 2002). However, the number

of neurons in artifcial neural network is limited to thousands of neurons and depends on

the application feld of the ANN. Figure 9 illustrates simplifed representation of an artifcial

neuron. In the same way as in a biological neural network, weights of the artifcial unit de-

termine its behaviour and are summed by the activation function. The unit will send received

value or the result of activation function further in case the value of the activation function is

big enough, meaning that the resulting value is equal or bigger than a threshold for a neuron

to fre. (Buckland and Collins 2002)

As a rule artifcial neurons are grouped into layers, comparing to biological neural network.

Typically, each neuron from a single layer is connected to every neuron in the adjoining

layers. Also, units within one layer usually have similar behaviour defned by a common

activation function. Many neural networks have an input layer, one or several hidden ones

and an output layer. For example, in the simplest multilayered variation of a network archi-

tecture called feed-forward network, the input is propagated through the network based on
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Figure 10: A simple multilayer artifcial neural network (Charles et al. 2008, p. 17)

the assigned weighted vectors until it reaches the output layer (see Figure 10). In case of a

single-layer network architecture, a perceptron, input layer units are connected directly to

output units by a layer of weights, which suits the best linearly separable problems. (Charles

et al. 2008)

Similarly to biological neural networks, artifcial neural networks are able to learn via assign-

ing and adjusting weights in the network. This process is called machine learning, and it can

be very useful for creating video game ANNs. The machine learning allows agents to adapt

more effciently to changing conditions. This is especially important for solving such prob-

lems as input data mapping, constrained optimisation, pattern association and classifcation.

The following section introduces three general approaches to ANNs training.

3.3 Machine learning in Artifcial Neural Networks

As a rule, ANNs model learning agents. The key principle of neural networks learning

algorithms is weights adjustment based on the training set to minimize errors. Learning

allows neural networks to adapt faster in changing or novel environments. ANNs learning
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can be seen also as an optimisation search in a weight space, where the learning rate defnes

a decreasing frequency of errors occurring. In general, an input and an output of the network

are boolean values (i.e. true/false or 0/1) or probabilistic values ranging from 0 to 1. The

learning algorithm runs several times on a training set and modifes weights, this cycle is

called an epoch. Usually, one training epoch lasts until the agent is able to act according to

certain condition or requirement. The next epoch is started by adjusting the expected result

to be achieved and possibly by selecting a different training set. (Russell and Norvig 2003)

Depending on the end goal or task, artifcial neural networks can be trained relying on al-

gorithms with simple heuristics or on complex learning algorithms. Regardless of the com-

plexity of selected algorithms, it requires many resources to structure the network correctly

and test it (Russell and Norvig 2003). Machine learning researchers distinguish three major

approaches for modelling neural networks learning, namely supervised, unsupervised and

reinforcement learning. The following subsections shortly introduce these methods.

3.3.1 Supervised Learning

Supervised learning, or learning with a teacher, is one of the simplest learning algorithms

for artifcial neural networks. It is based on the input data and corresponding desirable output

sequence, i.e. training vectors. The result is compared to a corresponding expected output,

once the input is propagated through artifcial network. In case the result does not match

the expected output, weights are adjusted to ensure the match between the agent actions and

the expectations. The difference between a target output and a result is called error value.

As a rule, primary weights are not accurate and set to minimum possible values for the frst

epoch. Consequently, these values are adjusted throughout the learning process. (Charles

et al. 2008)

Algorithm 1 A simplifed backpropagation algorithm (Buckland and Collins 2002)

1: Initialise weights at random with a small values.

2: For each input, calculate the error between result output layer and the target output value.

3: Adjust weights in the output layer.

4: For each hidden layer, calculate an error of a hidden layer and adjust its weights.
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In general, a supervised learning follows similar steps as a simplifed version of a back-

propagation algorithm represented by Algorithm 1. According to this algorithm, a network

with one or more hidden layers is created. All weights in the network are randomized as

a frst step. Next, inputs and expected outputs forming a pattern are fed to the network.

The error value between expected and received results determines, how the weights from the

layer above the output layer should be adjusted. The same actions are applied to the weights

on different layers, once the weights for a particular layer have been adjusted. The whole

process of adjusting weights is repeated for a whole data set, until the error value is within

acceptable limits. The name of the algorithm comes from the fact that the error is propagated

backward through the network. (Buckland and Collins 2002)

The backpropagation algorithm and the supervised learning in general are good for training

networks, when all possible patterns for the learning process can be specifed and taken into

account. Also, several techniques (such as momentum, speed of convergence or adaptive

parameters) allow to improve signifcantly the algorithm. However, the described method

is ineffcient, when the outputs are unknown or the number of inputs and outputs is too

high. (Charles et al. 2008)

The main purpose of supervised learning is to create an ANN that is able to generalize

unseen data after the training. For this reason, neural networks with supervised training are

mainly applied for a pattern classifcation or association. In case of pattern classifcation, an

input data is classifed as belonging or not belonging to a specifc category. Most common

approaches for a pattern classifcation in a single-layer neural networks are the Hebb rule,

the perceptron learning rule and the delta rule. Moreover, some algorithms allow supervised

learning to be applied not only to sort objects belonging (or not belonging) to a specifc

category, but also to recognize the pattern for a classifcation. (Fausett 1994)

3.3.2 Reinforcement Learning

Less commonly used reinforcement learning is based on the trial-and-error search method.

According reinforcement learning, network is not told what actions it should take in a certain

situation, but it has to discover the most rewarding move by itself. This leads a successful
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action to increase assigned weights and hence to reinforce a specifc behaviour. This type of

learning is the most benefcial for those cases, when good and representative examples of a

desired behaviour are not possible to provide for the agent. Moreover, the training approach

is especially valuable for complex domains, when possible environment states consistent

evaluation is not feasible and time consuming. Consequently, the agent can actively explore

the environment and try out various actions corresponding to different situations. (Charles

et al. 2008)

Reinforcement learning system consists of four main elements. The frst element is policy,

which determines actions allowed for an agent in a certain state. Policies help the agent

to discover suitable actions to be taken based on the available information. They can be

implemented as a look-up table or as a set of probabilities associated with each state. Action

probabilities enforce an optimal policy and allow to avoid only the best action from being

always selected. An agent able to explore consequences of random actions has a beneft

of environment predictive model construction, which eventually improves decision making

process of the agent. (Charles et al. 2008)

Another major element of reinforcement learning system is a model of the environment nec-

essary for an agent’s future actions planning. The model reinforces the agent to predict the

changes in the state of the world relying on the current state and on the taken actions. More-

over, environment modelling facilitates an agent’s reaction to every unknown or unforeseen

change in the state of the environment through try-and-error search. (Charles et al. 2008)

Further, reinforcement learning requires a reward function. The reward function specifes a

desirable goal by rewarding the agent for getting into a certain state. The agent shall not have

access to a reward function and shall not be able to change it at any point. However, better

results and considerable rewards can be achieved by an agent through adjustments in agent’s

policies. In other words, if the estimated reward is less than a received reward, the agent

should continue policies exploration in order to fnd an optimal one. It is worth mentioning,

that a reward can be either positive or negative (i.e. penalty) to distinguish good and bad

choices. (Charles et al. 2008)

Finally, the forth element is a value function, which indicates the long term value of a par-
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ticular state using a certain policy. For example, a possible value function can be described

by the state-value function for a policy π:

V π (s) = Eπ {Rt |st = s} = Eπ { ∑ 
k=0

γ
krt+k+1|st = s}, 

∞

where s indicates a particular state operating under the policy π . Value functions provide

a long term reward value resulting from a certain policy. In other words, long term values

provide a feedback to an agent and highlight the actions leading to the desired outcome.

Moreover, an agent is not able to learn anything without feedback provided as a reward and

a long term value. (Charles et al. 2008)

Even though reinforced learning is considered to be one of the best techniques, it can en-

counter several issues. First of all, an agent is inclined to stop the best solution search at

a local maximum. In other words, the best known action might be selected with a higher

probability instead of searching for another option because of try-and-error approach. In

some cases, a non-optimal solution should be taken into consideration because of a delayed

substantial reward instead of immediate low reward it can bring. Such situation is called

an exploitation or exploration dilemma. Furthermore, reinforced training can turn out to be

very complex and unpredictable, if a learning agent has to consider not only the state of the

world, but also actions taken by other parties such as human players, other game AIs and the

agent itself in case of video games. (Charles et al. 2008)

3.3.3 Unsupervised Learning

Unlike supervised learning, unsupervised learning does not have any external “teacher” or

any training set. For this reason, ANNs with unsupervised learning are often referred to

as self-organising neural networks. The learning process depends only on specifc neuron

input information. The network organises itself as a response to the presented data and

learns to assign similar input vectors to the corresponding output unit. The most common

application of unsupervised learning is data statistical relationships detection for better data

nature understanding. (Russell and Norvig 2003)

Neural network self-organisation is considered to be a reaction either to redundancy or to

clustering of the input data. This means the well structured data support ANNs learning with-
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out any supervision. That is why the most common unsupervised learning algorithms applied

for ANNs training are Hebbian learning and competitive learning (Charles et al. 2008).

The frst method named Hebbian learning relies on the following principle: “if the weights

between inputs and outputs are already large, the chances of the weights growing are high;

in other words, input has a strong impact on output(s)”. For this reason, the learning rule

and its outcome greatly depend on the inputs’ simultaneous fring magnitude. However,

NN’s weights will grow at a great rate because of this principle. Hence, such preven-

tive measures as weights normalisation or weights’ minimum and maximum defnition are

needed. Moreover, such limitations allow pay less attention to the resource distribution per

synapse. (Charles et al. 2008)

Contrary to Hebbian learning, competitive learning allows a neuron to fre only if its calcu-

lated activity is the highest one compared to other neurons. This approach allows competitive

learning to classify the data by forming clusters. The technique attempts to ensure the small-

est possible difference within one cluster and similarities among several other clusters. As

a result, network frstly looks for a so-called winning unit and then updates the winner’s

weight by increasing its likelihood to “win” with the same input in future. In turns, some

of the neurons might become the dominating ones and others might never win due to the

approach. Weights normalisation after each can solve the problem of winning neurons dom-

ination. Another way to prevent one or several neurons from prevailing is leaky learning,

where weights of other neurons are also updated to some extent. (Charles et al. 2008)

In the context of video games, trained ANNs can be used for animation selection in case

of potentially expensive computation. Also ANNs are good for the player modelling to

predict player’s actions and thus allowing to create a more intelligent non-player character

or enemy behaviour. Artifcial neural networks implementation in games requires not only

ANNs set up, but also specifc data set creation for training and integrating the agent into

the game (Schwab 2009). Moreover, agent’s training sessions take of lot of time requiring

hundreds of epochs to be run. Hence, ANNs require careful design to create a viable and

tangible agent.
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3.4 A Summary of Artifcial Intelligence Overview

To sum it up, Chapters 2 and 3 covered the concept of artifcial intelligence and overviewed

intelligent agent design process. Moreover, some of the existing algorithms were introduced

in the context of video games.

Chapter 2 described artifcial intelligence as a feld focusing on intelligent machine agents

design and implementation. These agents should be able to make intelligent decisions and

act in changing environments. An agent designer needs to select carefully the data structure,

that should store the environment state information, for an agent’s relevant performance.

Moreover, an agent program described by an algorithm should be constructed, which allows

an agent to solve a given problem. In addition, rational and ‘intelligent’ behaviour are the

fundamental requirements for an agent. In the context of video games, this means the ability

of a game agent to adjust its behaviour quickly and reasonably in reaction to players’ or other

agents’ actions.

In addition, several algorithms modelling some of the simplest agent programs were de-

scribed in the context of game AI in Chapter 2. However, researchers recommend applying

covered programs and models for creating an intelligent and even rational game AI agent

for solving specifc problems. Furthermore, more complicated environments require more

sophisticated algorithms or their combinations for the agent to remain intelligent. Especially

the selected algorithm can be crucial for learning agents, that are able to consider previous

experience to make the most optimal decisions.

Chapter 3 introduced and discussed neural networks as one of the models of a learning

agent program. Artifcial neural networks are a good tool for player modelling to predict

the player’s actions and thus allow to create a more intelligent non-player character’s or

enemies’ behaviour. In addition, trained ANNs can be used for animation selection in case

of potentially expensive computation. However, ANNs application in games requires not

only ANNs set-up, but also specifc data set creation for training and integrating the agent

into the game, if compared to simpler algorithms reviewed in Chapter 2. Moreover, agent’s

training sessions take a lot of time, requiring hundreds of epochs to be run. Hence, ANNs

require careful design to create a viable and tangible agent.
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4 Game design

The second part of this research proposes a framework for game agent performance evalua-

tion and visualisation described in Chapter 5. Furthermore, the last step of the research (i.e.

Chapter 6) carries out a design case study examining incremental adaptation agent design

process and its practical implementation in video games context. Both of the parts require

suffcient knowledge of game design. That is why Chapter 4 is dedicated to some of the

terms and components of game design.

Game design has not been considered as separate feld until fast development of computer

technologies favoured the progress in video games. Nowadays, the feld allows game devel-

opers to design and to produce games providing thorough combination of meaningful play,

optimal experience and pleasure from competition or from achievements in the game.

A defnition of games is given in the following section. Section 4.2 introduces both principles

of a game design and a concept of the state of fow, Section 4.2.1. The end of Chapter,

Section 4.2.2, deals with adaptive game design, and specifcally dynamic level adjustment.

4.1 Defnition of Games

Games have been an important part of people’s lives for centuries. Playing games children

and adults can discover world surrounding them, gain social and develop problem-solving

skills. Over the centuries games have evolved from simplest children’s games like hide-and-

seek to a wide variety of complex board- and video games such as role-playing Dungeons

and Dragons or a massively multiplayer online game World of Warcraft. Therefore, it is

necessary to defne what games are and what they are not, for such activities as sports and

free-form play can be considered as games.

First of all, words game and play should be distinguished from each other. Salen and Zim-

merman (Salen and Zimmerman 2004) have introduced two mutually exclusive points of

view on the subject. On the one hand, initially the word play could be understood as a larger

concept including game as its part. In this case meaning of a play is considered to be as a
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set of activities, from horsing around to playing boardgames, which do not necessarily have

any formal rules or goals. On the other hand, play can be seen as a subset of a game. In

contrast to informal activities, a play can be described as a part of the experience that one

gains while playing a game. (Salen and Zimmerman 2004) Given these, a breakdown of the

game defnition should make a point on the aforementioned interpretations of the word play.

To continue expanding the defnition of the word game, it is necessary to review several

opinions on the matter, for game design as a feld is quite young and the term game has not

been properly defned yet. For example, John Von Neumann, the founder of the game theory,

in "Theory of Games and Economic behaviour" (Schwab 2009), describes games as “an

undertaking in which several agents strive to maximise their pay-off by taking actions, but

the result relies on the actions of all the players". However, Von Neumann’s interpretation

of the term games is too broad and vague as both a stock market or traffc and a platform

video game would match it. Moreover, the given defnition does not distinguish terms play

and game from each other as it was required earlier.

Instead of plain games term defnition, a computer game designer, Chris Crawford had rather

identifed four qualities characterizing games in his book "The Art of Computer Game De-

sign" (Salen and Zimmerman 2004). According to Chris Crawford the most common feature

of games is a representation, meaning that games are simplifed and self-suffcient subsets of

reality. The next characteristic of games is an interaction among players or between a player

and the game objects. As a rule, such interactions impact the state of the game and help the

players to adjust their strategies accordingly reaching the goals defned within the game. In

addition to representation and interaction, games always have a confict. A game confict is a

consequence of actions taken by the player in order to achieve a certain result by overcoming

obstacles and thus changing a state of the game. Finally, games can be characterised as sys-

tems that help players to learn and discover safely the reality because the created danger will

never become true in real life (Salen and Zimmerman 2004). The aforementioned qualities

make it possible to derive that games have a certain goal and they are systems, which distin-

guish games from a play. However, these features are not complete enough for full defnition

of games. For instance, the situation where a dog playfully chasing another dog can be still

seen both as a game and as a play. In this case one of the dogs will have a goal to catch the
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other dog, but in real life achieving the goal will have certain tangible consequences, which

does not happen in a game.

Greg Costikyan, another infuential game designer, discusses only the most common char-

acteristics of games in his article "I Have No Words and I Must Design" (Costikyan 2002),

which altogether defne games as interactive and structured systems. Within the systems, a

participant strives to achieve a certain goal by making decisions and considering resources

he or she has, providing a meaning for a play. Moreover, the author spots the difference

between a game and a play by highlighting that games allow meaningful interaction such as

game world exploration or goal achievement within pre-set rules. Compared to characteris-

tics given by Chris Crawford, in Greg Costikyan’s vision games are also structured systems

with their own rules. These characteristics could be seen as a good starting point for the

defnition of games and for distinction between a game and a play.

A game and gaming philosopher Bernard Suits in his book "The Grasshopper: Games, Life

and Utopia" brings attention to four elements of a game, similarly to Greg Costikyan and

Chris Crawford. So the frst and the most important element is a goal of the game. Though

Suits argues that only the second (i.e. meaning achieving the goal) and the third (i.e. the

means of reaching the goals described by the rules) elements add the true value to the game

outcome. Finally, the game player always adopts a lusory attitude (originated from the Latin

ludus game) that he or she agrees to use only the means defned by the rules even if permitted

actions are not necessary the most effcient ones for meeting game objectives (Salen and

Zimmerman 2006). Bernard Suits shortly summarises the interaction of these four elements

as "playing a game is the voluntary attempt to overcome unnecessary obstacles" (Salen and

Zimmerman 2006). As a conclusion of all above stated ideas, it could be said that a game is

an activity where a player attempts to achieve specifc outcomes relying only on the means

permitted by the rules that she or he has accepted only because they shape existence of the

activity.

In addition, Katie Salen and Eric Zimmerman (Salen and Zimmerman 2004) make rather

an interesting comparison of eight game defnitions, including those ones by Costikyan and

Crawford, and obtain their own defnition of games. As a result, they defne games as “sys-

tems in which players engage in an artifcial confict, defned by rules, that results in a quan-
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tifable outcome". The major emphasis is put on the concept of games as systems formed

out of rules with a certain outcome. Moreover, the authors point to the difference between

play and game, which lies in a quantifable outcome (i.e. such as earned points or winning a

game), and rules that form a play by specifying possible player’s moves.

Jesper Juul derives another interesting and worth of mentioning defnition of the term games

in his book "Half-Real: Video Games Between Real Rules and Fictional Worlds". His def-

nition is based on several other defnitions including the ones discussed earlier. Juul defnes

games as rules-based systems with variable and quantifable outcomes, which players are

trying to reach (Juul 2005). Also, according to Juul, players tend to be emotionally attached

to the outcomes of the games. Moreover, the author abstracts these features into a concept

of a generic classic game model to which mostly video games conform. For example, com-

pared to classic board games like chess, rules as well as a state of the game are processed and

stored by the computer in case of video games. In some cases, this does not allow a player

to notice necessarily what series of events or actions has led to particular consequences. As

a result, video games are slightly more dependent on strict and clear rules as they form play-

ers’ experience. At the same time players can focus on the experience of playing a game

because it is a computer that will monitor the game progress and will make sure rules being

followed. The classic game model has core features for defning games and unifying what

was previously discussed.

Given above points make it possible to conclude that games should have a measurable out-

come and rules allowing players to aim at a certain goal. Finally, summarising all the defni-

tions reviewed, games can be seen as interactive and separate from the real world systems,

which create meaning and experience for players through predefned clear rules. Games also

have various measurable outcomes, which players strive to reach by resolving arisen con-

ficts. Lastly, every player’s action creates an internal value, because some elements of the

game world are valid only during this particular play and do not matter in the real world.

Having defned the term games makes it possible to introduce the feld of the game design in

the following section. The concept of a state of fow is discussed and a closer look is taken

on adaptive game design.
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4.2 A Brief Introduction to Game Design

Due to the conclusion made in the previous section, games are systems with predefned rules

creating a meaningful experience for players. Hence, regardless of the game type, game

creators team with a game designer as a part of it starts by defning iteratively a set of rules,

game world boundaries and aesthetics, conficts, risks and reward system which would help

the players to see their progress and make decisions. The whole process is called game

design. Game design should be seen as a feld combining design in general, various fne arts,

anthropology, business, psychology and computer science in case of video games, taking

into consideration what game designers and game developers need to pay attention during

the game development process to.

In order to get a profound understanding of game design, it is worth to have a look at four

major basic elements which according to Jesse Schell (Schell 2015) a game designer needs

to take into account. First, the most crucial element for any game is game mechanics. Game

mechanics defnes rules of the game and what a player can and cannot do in order to reach

the goal of the game. Moreover, the game easily turns into a toy or a play without clear rules

as the defnition of games shows. Second important building block is game aesthetics, for

visual and audio representation helps players to enter the so called magic circle of the game.

Interestingly, Schell also notes that game aesthetics can even enforce or clarify game me-

chanics in some cases. In the same way, Jesper Juul remarks that usability and familiarity of

interface might become a bottle neck for a player while learning tools provided by a game for

mastering game mechanics (Juul 2005). Third signifcant element for a game design is a plot.

The story of a game can explain the limitations of the game mechanics and what happened

and happens behind the scenes of the game world. The last component to be considered

during game creation is technologies to be used. In case of board games, technologies mean

materials used in game publishing. Regardless of the game type, decisions on technologies

can have a major impact on the game experience, especially in case of video games. For

example, a complex AI used for a non-player character behaviour can consume most of the

memory resources and have a major impact on game performance. Hence a smooth game-

play would only beneft from simpler algorithm implementing NPC decision making, rather

than a player being frustrated with a buggy or slow gameplay. In some cases, technologies
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limitations can impact decisions regarding the game mechanics, the plot or the visual repre-

sentation. The same applies to all the other elements of game design. On the other hand, it is

not required to pay always equal attention to all four elements, because a gameplay can only

beneft from prevailing one or two basic elements. However, the most valuable from players’

perspective is the existence of a theme cementing all four basic elements into a game with

unique experience. (Schell 2015)

Nevertheless, the process of making decisions, in terms of the four above mentioned basic

game elements, offers a very broad description of game design. For better clarifcation, it

is important to come back to the defnition of games formulated in the previous section.

According to the defnition, games are meant to create a specifc experience for players via

predefned rules. Thus, the main goal of game design is to defne what elements and rules

will form the experience and how those elements should be combined with each other to

create a game world. The frst step of the game design for this reason would be to defne the

experience the game designer is aiming at, i.e. what feelings, emotions, visual perceptions

and thoughts should arise during the gameplay. In other words, game development team in-

cluding a game designer should validate during each iteration what is crucial for the players’

experience and what elements could be omitted due to low or even zero value to the game

experience. As a result, good experience can lead a player to entering and remaining in the

state of fow (the concept of fow is discussed in the following subsection) during the game-

play, and it can maintain interest towards the game. Summing up the points above, game

design is a process of designing gameplay by means of rule, structures and objects careful

construction to form a game world resulting in meaningful experience for players.

Therefore, the defnition of game design implies a meaningful experience creation for a

player. Hence, it is important to take a look at how game mechanics, plot, game aesthetics

and used technologies impact on players’ experience. As games are created for players, it

is essential to describe who is the most likely to play the game. Consequently, interests and

hobbies, the end users might have, can be turned into attractive elements of the game. In

some cases, it is also necessary to evaluate the likelihood of players belonging to a specifc

age and gender group as this has an impact on the learning curve and the diffculty of the

game. Once the game development team has an idea about the target player group, reviewing
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the Bartle’s taxonomy of player types (or a similar one) might be useful to expand this group

by adding elements that different types of players enjoy the most in the game. (Schell 2015)

In order to defne and provide optimal and meaningful experience for a player, the core el-

ement of games, game mechanics, relies on the knowledge about the target group. Rules

design describes specifcally players’ limitations and basic actions leading towards a mea-

surable goal (Schell 2015). As a result, rules form a game structure and add meaning to the

game. At the same time rules allow to describe game world as a state machine with multi-

ple scenarios corresponding to certain actions taken by players (Juul 2005). Hence, while

designing rules, it is important to pay careful attention to the simplicity of the rules and to

the challenges that can be constructed from them, because the rules defne and impact the

enjoyment of the play. Together with rules, game mechanics includes object descriptions and

characteristics. Sometimes game objects can be a part of rules design, if players can interact

with them to overcome obstacles or to achieve an intermediate goal. Game mechanics and

rules can be roughly divided into two groups, where the frst one depends on players’ skills

and the second one depends on circumstances. Game mechanics that relies on circumstances

does not give the player any control over the situation but can bring uncertainties and sur-

prises that will keep the players interested in the game (Schell 2015). At the same time, a

player needs to see clearly how her or his physical or social skills and intelligence allow to

reach the goal and how they can evolve over the time and keep the player in the state of

fow (Schell 2015).

To sum it up, the game design is an iterative activity of optimal experience creation in games

through game mechanics, storytelling, game aesthetics and technologies. The enjoyment of a

game depends on easy-to-master rules, through which a game designer can create challenges

and obstacles for a player to pass through. Although rules might require a particular set of

skills in order to pass successfully the game through, these skills evolve as a player fghts

off one challenge at a time. The following sub-section will introduce a concept of state of

fow, that results from reaching optimal experience. The means to reach the state of fow are

discussed further.
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4.2.1 State of Flow

A game design and its utmost importance for an iterative game development process is dis-

cussed at the beginning of Section 4. It is said that the main focus of a game design is

experience creation for players and allowing a player to improve eventually repertoire of his

or her skills during the play. Hence the game should be balancing the number of obstacles to

overcome and risks to take in order for a player to be able to reach a game goal without los-

ing interest towards the game. Moreover, suitable challenge amount within the game results

in a possibility to enter a state of fow during the gameplay. This subsection introduces the

phenomenon of fow and prerequisites for it. The following subsection covers the elements

that game designers can adjust in game mechanics to balance the gameplay and to enable the

fow.

Flow as a concept was introduced by a Hungarian-American psychologist Mihaly Csikszent-

mihalyi in 1990. According to the researcher, a state of fow is "the state in which people

are so involved in an activity that nothing else seems to matter; the experience itself is so

enjoyable that people will do it even at a great cost, for the sheer sake of doing it" (Csik-

szentmihalyi 1991). Applying the defnition to games, a state of fow can be reached during

a gameplay if the game arises strong, positive or negative emotions, pushes its players to their

limits and provides valuable experience(s) to them. In turns, this is one of the conditions for

a player to keep returning to the game over the time.

The main and the most noticeable indicator of the state of fow is a high level of concentra-

tion, that leaves no attention to anything irrelevant to the situation. This is possible because

a conscious attention selects only those available bits of information that are relevant for

the task we are currently involved with. In addition to resources allocation into the activity,

brains spare some of the attention for a current situation evaluation and decision making

based on available data without any considerable effort. Hence one can remember only

what happened thirty seconds ago or think at most fve minutes ahead, for example. As a

consequence of such resourcing limitations, people tend to lose sense of time passed and

self-consciousness, i.e. enter the state of fow. (Csikszentmihalyi 1991)

Alongside with the high level of concentration Csikszentmihalyi (Csikszentmihalyi 1991)
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shares also his ideas about optimal experience as not the only indicator of the fow, but also

as a required condition for the fow to happen:

Optimal experience is a feeling a sense of exhilaration, a deep sense of en-

joyment that is long cherished and that becomes a landmark in memory for what

life should be like.

Considering players’ experience discussed at the beginning of Section 4.2 implies a game

word to provide enough risks and challenges, while players are striving to reach the main

goal of the game. In addition, the state of fow can be supported by adding unexpected and

unpredictable elements to the game or twists of the plot.

Throughout his research, Mihaly Csikszentmihalyi indicates that in order to enter the state

of fow one should enjoy a task being accomplished. The psychologist meant by enjoyment

a state when a person not only achieve some prior expectations of basic needs or desires,

but also goes beyond those expectations and achieves something unexpected or unimagined

before. Interestingly, Csikszentmihalyi also points out that the most enjoyable events occur

when one achieves something unexpected by stretching own limits. Such accomplishments

require extra effort and attention, but the reward as a rule is equal to the amount of resources

invested into the experience. Csikszentmihalyi identifes six major factors that can eventually

lead to the state of fow. The frst and the most important factor is a set of clear and achievable

goals. As a rule, these ones are agreed upon by the time the activity started. For example,

in case of symphonic concert or hockey match, there are certain rules that every participant

follows, and these rules are well known in advance. Sometimes one should defne rules him-

or herself. In case of a small home improvement project, one can set guidelines what needs

to be done and in which order. (Csikszentmihalyi 1991)

The second component of the enjoyment is closely connected to the goals being set. Al-

most immediate feedback from the environment is an indicator whether selected methods

for achieving desired end result really work or something else in the process or behaviour

should be still adjusted (Csikszentmihalyi 1991). Received reaction or evaluation of the sur-

rounding environment helps us to recognize whether something was accomplished or not

within the specifc time period. Also, it is possible to receive clues important for skills im-
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provement as a part of the feedback in order to progress with the activity. For example, in

archery sportsmen need to consider strength and direction of wind in order to hit the target.

Even in case the frst arrow misses the target, an archer has already received the feedback

about the needed adjustments for the next shot to hit the target.

The next two components of enjoyment are awareness of activities and self-consciousness

loss. A person, heavily involved in the process, acts semi automatically due to diminished

self-awareness. As a rule, such engagement with the performed action is brought by goals

matching one’s skills, thus attention can be reallocated from perception of own state to the

task at hand. In addition, attention shift towards goal achievement transforms perception of

time. It has been noticed that in the state of fow time no longer passes as it does in usual

situations. Instead, a usual hour seems to be equal to a minute, or vice versa one minute lasts

as long as an hour. In short, someone can be so involved in the activity, that he or she does

not notice the hunger or the time passed until reaching the set goal. (Csikszentmihalyi 1991)

The change in time perception is also brought by a concentration on the task at hand, the ffth

factor of enjoyment. The state of fow requires one to set aside unrelated feelings or situations

that have no impact on achieving the goal (Csikszentmihalyi 1991). In other words, a person,

who is fully focused on the means allowing to work towards set goals without any distraction,

can easily fnd enjoyment in the current task. Interestingly, this leads to another component of

enjoyment - paradox of control. Whenever someone enters the state of fow, he or she forgets

about worries related to losing control over the situation and facing undesired consequences

in real life. Good examples of such control in everyday life are fear of being laid off, losing

a house because of mortgage, impossibility to control natural forces or reaching perfection.

The last factor affecting the enjoyment and combining all the already mentioned ones is a

challenging activity that requires specifc set of skills. Especially optimal experience can

be achieved through activities that are goal-oriented, bounded by rules and require partic-

ular competence (Csikszentmihalyi 1991). One way to increase complexity is to create a

competitive environment, which will allow to master skills of a person. It is important to

remember the golden ratio between challenges and skills, because enjoyment emerges at the

boundary between boredom and anxiety, especially when it comes to competitions. The most

illustrative example of poorly challenging environment affecting the state of fow, is a tennis
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game between a novice and an experienced player. In this case, neither of the players will be

able to reach the fow with a high probability. That is because of the constant loss and lack

of skills resulting in a complete frustration and in impossibility to master even basic skills

for the new player. While the experienced player will be entirely bored because of luck of

improvement.

As all the factors affecting enjoyment and optimal experience are mentioned, it is time to

introduce several guidelines on a transformation of any action to produce state of fow. First

of all, it is important to set an overall goal and as many feasible sub-goals as possible. This

allows to track the progress and process feedback from the environment. Also, the level of

concentration on the task at hand and the amount of challenges should be kept as high as

possible. In other words, the stakes should rise if the process becomes boring and automatic.

Finally, the skill set, required to proceed in reaching the goal, should be possible to develop

and master. (Csikszentmihalyi 1991)

In a word, one of the major prerequisites for the state of fow is the optimal experience. In

turns that guarantees an activity to have a clear set of goals and means to give immediate

feedback on the progress. Of course, some people are not able to enter the state of fow

and enjoy the optimal experience due to such genetical or character peculiarities as attention

disorder, stimulus over inclusion or self-centeredness. In addition, almost any enjoyable

activity involves a risk of becoming addictive, interfering with other activities. Nonetheless,

the optimal experience is one of the key factors for a person to enhance her or his skills

set and master the task at hand. The following subsection moves on to an employment of

the state of fow to optimal experience creation by game design and means for a gameplay

balancing.

4.2.2 Adaptive Game Design

Getting down to game design and introducing a state of fow into it arises a question, how

game designers can achieve an optimal and meaningful experience for players? The pre-

vious sub-section presents six major factors identifed by Mihaly Csikszentmihalyi that are

required to enter a state fow. Therefore, the next stage is to explore how they are applied in a
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game design and how a gameplay can be balanced to maximise the most valuable experience.

One of the main requirements for the state of fow mentioned by Csikszentmihalyi is setting

clear short- and long-term goals. One of the starting points in game design is a game me-

chanics planning. Rules defned by game mechanics also describe short-term goals, usually

affecting the process within one level. These small achievements can include such activities

as collecting as many as possible stars, coins or food representing points, or successfully

passing a level without encountering enemies or losing life points. The long-term goals

also can include the level walk-through without losing any life points in order to increase

chances fghting against powerful main boss, or more specifc such as a crime investigation

conduction before all evidences are destroyed by powerful natural forces. J. Juul made an

interesting note, that it is easier to head into a goal and to the results of reaching the goal,

when the choices are clear and limited (Juul 2005). Hence game designers should narrow

down game mechanics to the most vital and valuable distinct rules acting as a base for short-

and long-term goals to be reached by the end of a gameplay.

The next factor of enjoyment suggested by Csikszentmihalyi applicable to game design is

a feedback from an environment. A game world should give an immediate feedback to

the players whether the selected strategy helps them to achieve set goals or to choose re-

quired adjustments. In other words, game designers should formulate a suitable approach

to measure player’s progress towards goals of a game. The player’s points increase, extra

resources and powers grant to the game character are the most common ways of providing

feedback in games, which make the players reaching the goal faster. Some games use also

praises, additional gameplay time or a possibility to bypass obstacles. One more interesting

way to provide feedback to players mentioned by J. Schell (Schell 2015) is a potential self-

expression through additional accessories for a game character, though unfortunately they

do not have any impact on progression within the game. On the other hand, feedback can

be provided through punishment mechanisms, such as withdrawing some of the player’s re-

sources (Schell 2015). Both approaches do not only add value to resources of a game world,

but also allow to multiply gameplay enjoyment adding risks to be taken and hence increasing

the game tension.

Another and the most important prerequisite for a state of fow according to M. Csikszent-
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mihalyi is a challenging activity that requires a certain skills set. So one of the game design

pitfalls is initial players’ skills matching to the challenges provided in the game, because it

requires improving players’ skills repertoire during the play in order to achieve the goal of

the game. For this reason, according to J.Schell (Schell 2015), games should always con-

tain at least some elements of the game world familiar to the players beforehand. In fact,

games full of innovations lacking any starting point matching players’ skills are most likely

to cause players losing shortly their interest towards the game. At the same time, according

to J. Juul (Juul 2005), the game designers need to make sure that various parts of a game are

of an appropriate diffculty for the player. Ideally, the diffculty of the game should increase

gradually but steadily, meaning that a diffcult level with many obstacles will be followed by

a simpler level introducing a new challenge and possible solutions to it. This layered or spi-

ral learning approach allow players to master the game and improve their repertoire before

the game becomes too diffcult (Juul 2005).

Many game designers, including J. Juul (Juul 2005) and J. Schell (Schell 2015), emphasize

that the main purpose of a game design is to create a meaningful experience for a player by

allowing her or him to master own skills repertoire. Thus, it is important to take a closer look

at what game development team can consider to enable the skill set improvement of a player

throughout the game. Any game should include a tutorial level helping players to gain basic

skills in order to understand game mechanics and how to interact with the game world (Juul

2005). As a rule, such tutorial levels guide users through a few fundamental rules in a play

format. However, so called hard-core players, might not necessarily need to get acquainted

with a game world through a tutorial level, hence the start of the gameplay by selecting the

game mastering level can be one good option for players. This is necessary due to the fact

that invested effort of a player tends to lead to the attachment to and a greater involvement

in reaching an end goal (Juul 2005).

Furthermore, game designers have two approaches to control player’s experience throughout

a gameplay by providing enough challenge via emergence and progression. The emergence

specifes rules responsible for the structure of the game and impacting decisions made during

a gameplay. Hence, short-time goals adjustments based on the player’s skills can result in

a state of fow. For example, a game development team can set up timers for a player to
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stay on a single level or can add various obstacles to each coming level. On the other hand,

game designers can adjust available actions, which a player can take in order to complete

the game, i.e. they can control player’s experience through progression. As a result, game

creators obtain a better control over the game progress and are able to integrate a more

detailed story telling into games. (Juul 2005)

Therefore one more important question arises, how optimal meaningful game experience can

be achieved by allowing game world being fexible to different types of players? The above-

mentioned tools for a game balancing could help game designers to introduce an adaptive

game design reacting to players’ individual experience by offering a context-adaptive mod-

ifcations to the game world. This approach to game balancing is especially valuable for

learning and health related games, in which personalisation can be crucial for achieving

goals and increasing motivation. Using this particular approach game designers should take

into account elements of the game impacting player’s performance measurement in order to

generate a next level automatically. In other words, if player’s performance is below a certain

threshold, diffculty of the next level should be adjusted accordingly. On-the-fy and indepen-

dent game personalisation can be achieved with machine learning or data mining techniques,

when most of the required for personalisation data can be collected during the gameplay.

Again, prior information about the player can be mapped to one of the most common player

types serving as a base for initial content personalisation. (Streicher and Smeddinck 2016)

Adaptive game design adds value to a meaningful game experience and facilitates a state

of fow. On the other hand, the beneft of adaptive game design can be doubtful in case

the players notice the performance patterns impacting the next level. For this reason, the

drawback of this approach allows not only to adjust game levels at players’ will but also

contradicts with the one of the key prerequisites of enjoyment and fow: mastering skills. At

the same time, diffculty adjustments and attempts to provide means for reaching the state

of fow will become unreasonable if the game is boring and monotonous without fun and

enjoyment from the gameplay.
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5 A Proposed Approach for Game Agent Evaluation:

Game Tension Framework

Creation of meaningful and optimal experience for players is proved to be one of the most

diffcult and important tasks of game design in Chapter 4. Due to this, players are more

likely to enjoy games with clear goals, immediate feedback and challenges meeting players’

skills repertoire within the game. On the other hand, balancing diffculty of a game for

as many players as possible can be challenging due to players’ different background and

experience. For this reason, adaptive game design can be a good tool both for enhancing

game experience and for facilitating state of fow. At the same time, famous for its carefully

crafted puzzle games like sudoku, Japanese game publisher Nikoli raised a valuable point

that so-called mass market games with automatically generated content or dynamic diffculty

adjustment can food games market while keeping players’ interested for a very short period

of time (Drachen, Canossa, and El-Nasr 2013).

Although carefully handcrafted game levels or diffculty adjustment bring game designers

closer to players, there is a need for tools creating invaluable player specifc gaming and fow

experiences, which increase players’ retention. For this reason and due to a high competition

in gaming industry, dynamic diffculty adjustment (DDA) and procedural level generation

(PLG) have been widely studied in context of video games. Most importantly, there has been

also studies showing that dynamic diffculty adjustment really motivates and even enables

fow state while playing games. For example, functional near-infrared spectroscopy (fNIRS)

used in one of the recent studies showed that diffculty of a game impacts the players’ state

of fow, though the impact made on a video game player and board game players differs

greatly (Yu et al. 2023).

Above all, a dynamic diffculty adjustment or a procedural level generation can be most

benefcial for education or rehabilitation video games. Many studies focusing on gradual

increase of physical activity based on the person’s capabilities in exercising or rehabilitation

games showed not only higher motivation but also faster recovering process. For example,

A. Streicher and J.D. Smeddinck conclude that DDA helps reaching individual health goals
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faster and more effectively through serious games, as personalised content facilitates higher

and longer engagement allowing steady work towards long-term goals and taking into ac-

count the player’s needs and current situation (Streicher and Smeddinck 2016). Similarly,

Huber et al. agree that physical training is more effcient in a long run due to adaptation

of physical challenges and decreasing repetition of exercises provided by exergames (Huber

et al. 2021).

Besides research work done on benefts of adaptive education or rehabilitation video games,

there are also many related studies of platformer or massively multiplayer online role-playing

games. Such research works explore approaches helping to adjust the game content or dif-

fculty based on the player type mapping or player’s clustering according to gameplay. As

a rule, the general approach is to ft each player either to one of the predefned types (for

example, as suggested by Richard Bartle into socializer, achiever, killer or explorer (Hamari

and Tuunanen 2014)) or to a predefned diffculty level. For instance, as a part of player-

centric framework for player’s dynamical modelling and categorisation, D. Charles and M.

Black suggest generating game content based on similar player profles in order to avoid

players getting stuck, detecting deviant players and adapting gameplay to end users’ prefer-

ences (Hamari and Tuunanen 2014).

An interesting, focusing on procedural level generation approach was worked out by Smith

et al. in a launchpad project implementation, which was developed for a level design of 2D

platformers. The launchpad is a design grammar that uses ready segments called “rhythm

groups” for level generation. In their work, the authors defne game rhythm and pace as

player actions rhythm, where level components corresponding to these actions form basic

building blocks. Hence actions mapped from controllers develop the rhythm while the player

hits controller buttons during the gameplay. In other words, the approach is based on the for-

mal modelling of the components establishing level structure and methods for generated

content evaluation. The authors start by the defnition of the so-called set of beats, which

correspond to specifc actions allowed within the game. Next, beats are mapped onto level

using design grammar within the set of constraints including an intermediate point for a small

break during the gameplay. The dexterity based launchpad model follows such rhythmic

player movements as jumping and running, which require perfect timing for a successful ob-
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stacle overcome. Due to this modelling, game designers can defne general level design and

appearance frequency of the game components, while procedurally creating fully playable,

unique levels from segments. One of the drawbacks of the launchpad is an implication of

an average platformer games player, who runs at maximum speed and perform actions like

jumping at a perfect timing. Hence the diffculty adjustment works best only for the players

matching the ideal player profle. (Smith et al. 2011)

Nonetheless, the main goal of the mentioned earlier study together with other similar re-

searches is to study the ways to create meaningful experience for players, which is discussed

in Section 4.2.1, and hence the ways to increase players retention. At the same time, both

procedural content generation and dynamic diffculty adjustment implementations are con-

sidered as artifcial intelligence. Section 2.1 also emphasises agent’s performance evaluation

for confrming its actions as being desired ones. For this reason, there appears to be a need

for a universal tool evaluating such agents. A possible place to start designing such a tool

is an interesting point regarding game experience raised by Marc LeBlanc. According to

the designer, it is easier for a human cognition to follow rhythmic data fow matching the

so-called “drama curve” pattern (Salen and Zimmerman 2006). Indeed, drama within games

is built around conficts, i.e. challenges and obstacles player should overcome.

Figure 11: A drama curve (Salen and Zimmerman 2006)

Considering the drama curve presented by Figure 11, games as a rule lead players through-

out the gameplay to a climax and consequently to a successful resolution, when players start

to realise the outcome of the gameplay. Moreover, the same pattern is applied on a smaller

scale to each level of a game. For this reason, it should be possible to evaluate game dif-

fculty adjustments, generated levels or game AI based on the “game drama curve”, i.e. a
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game rhythm matching obstacles a player has to overcome. Furthermore, evolving “drama

curve” can be used for artifcial neural networks’ training in order to achieve faster and better

adjustments of the consequent level and hence facilitating a player’s state of fow regardless

of the video game genre.

Relying on the fact, that each level or part of the game has own confict, climax and res-

olution, the frst step for evaluation tool implementation is to map core game mechanics

elements to represent the game rhythm. A game rhythm drama curve can be mapped within

two axis for visual representation as a diagram (see Figure 12). A game play action at a

given point of play time is marked along the horizontal axis. The vertical axis describes a

game tension unit of a given action. This means that each action can be rated depending

on the scale of the confict it has brought to the game and how close to the climax or to the

resolution within the level it happened. Game tension per action can be counted as ratio of

the action to the player’s score, hence the approach is named game tension framework. For

Figure 12: A game rhythm representation example based on the drama curve

example, a move in any direction on the feld can be treated as a basic neutral activity with

almost zero value tension as it does bring the player closer to the end of the level without

any confict. On the contrary, in case of an extra life power-up gained during the movement,

the game tension can be counted as negative because the player turns out to have higher

chance to pass the level now. Similarly, being attacked by an enemy not only impacts the
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player’s score but also involves a direct confict, hence introducing a higher tension to the

game. Preferably, most of the higher tension actions should occur in the middle of a level

gameplay for it brings the highest peak of the drama curve.

The game tension curve created after one level completion can be used in evaluating artifcial

intelligence agents for procedural level generation with a dynamic diffculty adjustment. For

example, in case of a simple scripted agent, a game designer will be able to adjust parameters

manually after “game tension” graphs analysis is done for each game session. Alternatively,

“game tension curves” can be used for artifcial neural network training. Game tension

framework can be used for validating how close the created level follows a desired drama

curve. Another possible application of the framework is to balance expected game tension

by adjusting enemies and power ups positions, the amount of power ups impacting points

required for an extra life. Hence, this will allow the agent to increase or decrease the diffculty

of the level more accurately.

One of the benefts of the approach is its universality and independence from the imple-

mentation of the agent responsible for the level generation and adjustments or for NPCs

behaviour. Moreover, a learning agent can be designed to generate levels possibly encour-

aging players to try new tactics during the game play. Game tension evaluation has potential

to be adapted easily to other video games genres even if there is no clear level separation.

None the less, the most important assumption is that this approach should aspire a smoother

and more intelligent diffculty adjustment, making the game level to appear human designed.

What is most important, it should be more challenging for players to spot the PLG and DDA

patterns, and hence to trick the system by playing purposefully dummy to ease the next level

walk-through. Of course, not every player might be looking for more challenges in a game,

thus for this case the “drama curve“ will change slowly, but still the player would be able to

gain new experience and stay within the fow channel.
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6 Design case study: Cybernetic Fox Conquest

Given the background presented in the frst two parts of the research, the fnal part is dedi-

cated to design case study. The design case study validates proposed game tension frame-

work and suggests game mechanics components to be utilized in player’s game tension ob-

servations and game diffculty adjustment component implementation in a 2D rogue-like test

game. Moreover, the study analyses the impact of DDA on decisions being made regarding

to game design and implementation. There are two limitations to take into account in results

evaluation. The frst one is resources limitation for the case study conduction. The second

is the assumption that other components responsible for overall game experience are not go-

ing to impact the gameplay. Ideally, such an element of game world aesthetics as graphical

interface can have vital impact on players experience. However, from the point of view of

dynamic diffculty adjustment they can be omitted.

The design case study begins with a basic game design by creating a game plot and by

introducing ground rules of the game. The next step is to select those game elements and

rules, that can be a base for level creation in general. Afterwards, the selected rules and

elements need to be mapped to the game tension extending the game tension framework

introduced in Chapter 5. Finally, an agent for consequent level generation with dynamic

diffculty adjustment is designed and implemented relying on the game tension framework.

Each section represents a summary of the design case study steps and discusses assumptions

and possible issues encountered during the game design and development process.

6.1 Game Design

The design case study starts with basic elements description of the ‘Cybernetic Fox Con-

quest’ game. This serves as a base for the game, for the incremental adaptation agent proto-

type development and as well as for a game tension framework incorporation into the game.

Game aesthetics and possible player’s background descriptions are omitted, due to resources

limitations and to the game non-commercial purpose. However, it should be kept in mind

that both of them are important for game design and can have crucial impact on players’
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experience. The story of the game and some of its basic rules can be found in Appendix A.

Game mechanics based on the game narrative is described in detail below.

Following multidimensional typology of games (Aarseth, Smedstad, and Sunnanå 2003),

game mechanics elements can be divided into fve groups: space, time, player structure,

control and rules. The latter includes goals, objects and actions, which serve as fundamental

elements for procedural level generation with dynamic diffculty adjustment. Space as a

frst game mechanics element group allows to create a so-called magic circle once a player

starts a gameplay. ‘Cybernetic Fox Conquest’ contains static, 2D and space limited levels.

Visual representation of each level can slightly differ in tiles used for the walls and the foor

generation. The player sees the entire level at a time and is able to move only within the level

grid.

‘Cybernetic Fox Conquest’ is a turn-based, rogue-like game. Each player’s move is followed

by the movement of all enemies present on each level grid. When the enemies are absent, the

player takes immediately his or her next action. Time is arbitrary as real life time patterns

are not followed within the game. Though there is no direct time limitation, the player’s

actions are limited in time represented by the game score. This means that each action costs

one score point. Hence, this approach allows to utilise time for a diffculty adjustment by

changing amount of points subtracted from the score per move, if there is need for that.

Hence the game can be considered as infnite due to a missing clear winning state, especially

due to procedurally generated levels.

The next two groups are player structure and control. Though game enemies can be con-

sidered as the player’s opponents, ‘Cybernetic Fox Conquest’ is a single-player video game

with no adversaries. The players’ behaviour is not controlled through power ups. Their main

purpose is just to reward the players with score points prolonging a gameplay. None the

less, temporary game mutability is offered by the enemies’ deviant behaviour and it can be

enabled in two possible ways. The player can temporarily disable enemies by a powerful

magnet or by leading them into foor cracks. Both actions are discussed in detail in the part

describing the game rules. Furthermore, the player is not be able to save the current state of

the game and each game session starts from the frst level. The players’ interest towards the

game is kept through a dynamic diffculty adjustment performed by an incremental adapta-
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tion agent.

Finally, the most crucial group of the game mechanics elements is a set of rules composed of

goals, objects and actions. In general, the game rules are universal regardless of the player’s

position on the level grid, and they do not change due to the gameplay or specifc conditions

being met. As ‘Cybernetic Fox Conquest’ game can be infnite, its main goal is score points

collection during as many levels as possible. Secondly, the aim of each level is to navigate

from the entrance to the exit without being caught by the guardian robots. One of the game-

defned sub-goals is power-ups gathering for multi-functioning robots repair or for loading a

magnet. Primarily the game is supposed to be a PC platformer, so the player uses a keyboard

to control the game character: arrow keys for moving on the level and the space bar for the

magnet activation.

Figure 13: A level structure model of ’Cybernetic Fox Conquest’ game

Finally, the core of a game is built around the rules group. The player controls a multi-

functioning robot, F0x13. At the beginning of the game, the player has three attempts to pass

through the facility rooms in order to reach the control panel. The player is able to perform

several either basic or strategic actions. Forward and backward, left and right movements on
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the level grid are considered to be basic actions. In addition, the player can take strategical

actions using movement aids. Strategical actions also include picking up collectible items

as they help the player to progress in the game. Figure 13 illustrates the level structure and

the game object types excluding a player character. Two groups of level objects, foor tiles

and walls, are the safest for the player to interact with. The foor tiles indicate the surface a

player can safely walk on. The walls, on the contrary, limit the player’s moving area.

The next group of level objects is defned by obstacles. These elements can either damage

a player or interrupt the game fow in different manners. The key element of this group is a

guardian-robot. In fact, the guardian-robots are malfunctioning robots initially responsible

for taking care of the production unit, but now they attack everyone and everything entering

the building. The robots have a bad visibility over the room, hence they notice “invaders”

only at a short distance and start chasing them just after that. The robots cannot plan well

in advance their route during a chase, so they can be easily trapped into foor cracks, i.e.

damages in the facility room foor. Also, they can temporary be “blinded” by a powerful

magnet. At the same time, the player stepping onto a foor crack causes the F0x13 fall into

it, which means the level restart. None the less, the movement aids allow the players to

navigate through a level by taking actions different from core movements and to pass by the

enemies.

Finally, a collectible items group can guide the players through the level and can be given as

a reward for the successful walk-through of the previous level or for avoiding a dangerous

point. Such collectible items as gears or energy load do not only add score points prolonging

gameplay, but also are turned into one extra life once their certain amount is accumulated.

In turns, magnet load allows the player to use the magnet in case there are too many enemies

chasing the F0x13.

6.2 Development process

The initial version of the ‘Cybernetic Fox Conquest’ game design helped to start developing

the game prototype. It also needs to be mentioned, that game design has evolved throughout

the game prototype implementation. Hence the design case-study and Appendix A describe
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the fnal version of the game design.

The frst two stages of software development include requirements gathering and designing.

The game design is considered to be requirements gathering. On the contrary, software

design defnes technical aspects of the game implementation. It was decided to use Unity as

a game development engine, due to its smooth learning curve for a beginner game developer.

Also Unity, as a multi-platform game engine, allows to some extent ignore the platform on

which the resulting game will be started, because the game engine can adjust the end game

making it runnable on any platform during the build. Moreover, Unity’s tutorials helped

defning the initial architecture of the game prototype.

The game development process was started with the game graphics creation. It was decided

to produce the needed graphical assets for the game objects from scratch, because the assets

matching the game theme were not available in the Unity’s assets store by the time game

development started. Furthermore, pixel graphic style was selected for the game. Pixel

graphics allow to create game sprites quickly and even to add some animations to the game

requiring little previous experience and effort from the developer.

At the beginning, the prototype game was created with a class managing a state of the game,

a class responsible for level generation and enemies and player classes. As the game devel-

opment proceeded, some of the game manager functionalities were moved to own classes.

Namely, separate classes for score, life balance and level diffculty managing were added.

Later, it became evident that the game needs a database for storing the level data and the

player’s actions by the time the game tension curve and its generator construction have

started. SQLite database was selected for the game prototype, because the game is not for

commercial use and is developed only for the design case study. The database selection is

determined by SQLite database lightweight, and it is simple to be added to Unity as a plug-

in. The database required an abstract class for database transactions handling. Furthermore,

classes corresponding to the database tables were added. These classes handle insertion, up-

date and fetching queries to specifc tables. In addition, easier data processing was achieved

by mapping database rows to class instances, which handles database transactions.

Finally, several classes responsible for the game tension graphs generation were imple-
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mented. Some of available ready plug-ins do not match the requirements or require more

time than it had been allocated to the tool generation development, hence it was decided

to develop the needed tool from scratch, due to the game tension graphs internal use only.

Several libraries were tested for the graphical representation of the game tension curve. The

best available option turned out to be the OxyPlot library. However, the library’s documenta-

tion was not up-to-date within the development time. This required reverse-engineering and

try-and-failure approach to understand its classes and their methods usage.

The more advanced classes required not only manual testing, but also adding unit tests.

Furthermore, test driven development is considered to be good practice in software develop-

ment. Yet, unit tests were added mainly for the database and the game tension generation

tool classes. Nonetheless, some unit tests cover also classes, which do not require Unity

integration testing. Due to the unit tests, it was also possible to spot early enough the faws

in game tension tool calculations or in the database queries implementation.

In general, the development process followed the game design defnition. So each game

object was added and tested through separating one object and the related features at a time.

Moreover, the game design was changed, because the development process made it evident

that some features and requirements were not feasible to be developed in the given time

frame.

6.3 Player’s Game Tension Evaluation

Section 4.2.1 introduced requirements for state of fow. Its frst two conditions, namely

clear goals and feedback from an environment arise from the rules of the ‘Cybernetic Fox

Conquest’ game. The third and the most important requirement for state of fow is optimal

experience having enough challenges. An incremental adaptation agent, which is described

in Section 6.4, is responsible for optimal experience creation in the test game. However,

agent’s behaviour and its possible impact on fow should be possible to evaluate according

to Chapters 2 and 5. For this reason,the game tension framework is extended and integrated

as a game tension curve generator into the ‘Cybernetic Fox Conquest’ game next.

The game tension analysis is based on the game analytics for the game tension framework
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adaptation to the design case study. Generally speaking, the most valuable variables for

game analytics are the ones that show possible changes in a game world resulting from the

player’s interactions with the game. In some cases, it is benefcial to combine or to sort

selected variables by a domain (such as health or enemies) for studying their impact on a

gameplay. The frst and the most important step is to flter what should be tracked, once all

game variables are defned. Tracking attributes fltering is important because every variable

requires resources such as development time, storage constraints and, in some cases, query

execution time. Hence careful selection saves resources devoted to telemetry implementa-

tion, and it improves a gameplay as the delay in performance is less noticeable by players.

In addition, a new variable introduction can be costly to adjust, to retrain or to retest an

artifcial intelligence agent if one exists. Also, a complexity of fnding possible faws and

their causes grows with the increasing number of variables. Data log is one of the most ef-

fcient approaches for storing the game analytics, because it is not biased to the developers’

assumptions, though it requires regular data clean-up. (Drachen, Canossa, and El-Nasr 2013)

Game data collection is fundamental for a player’s gameplay and performance tracking and

also for a game tension analysis in the design case study. Movements within one level,

progression speed, items collected, power ups used and damage taken are the most common

telemetric stored for 2D platformers and rogue-like games (Drachen, Canossa, and El-Nasr

2013). For this reason, the initial data set to be stored is selected as the one consisting

of an action type (such as movement, damage or a item collection), a diffculty level, a

player’s position on the grid and a timestamp in case of ‘Cybernetic Fox Conquest’ game.

The frequency of tracking is once per player’s action, which result is stored separately for

each level in a game session.

Selected initial data, which needs to be stored and collected per level, should be validated

from a game tension framework point of view. First, each action type is assigned with

a weight for a single game tension unit calculation. Some actions impact the gameplay

negatively increasing the probability of a successful level walk-through, so a negative integer

value is assigned to them:

• -15 for magnet activation,

• -15 for collecting extra life,
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• -5 for a movement while magnet protection is on,

• -3 for a failed movement, i.e. player’s move was blocked by a inner or outer wall.

On the contrary, the remaining actions are assigned positive values indicating excitement

added to a game:

• 25 for exiting the room,

• 12 in case player was attacked by an enemy robot,

• 10 for collecting points per gear,

• 7 if the player fell into foor crack,

• 5 for collecting points per tiny gear,

• 3 for collecting points per energy load,

• 1 for gaining extra magnet load.

Relying on these weights, it is now possible to calculate a game tension value per action,

which is the ratio of an action tension to a player’s distance to an exit. In turns, action

tension is the ratio of the earlier described action weight to a diffculty level. As a result, a

game tension per action was initially calculated as

actionCoe f f icient
T (a) =

di f f icultyLevel ∗distanceToExit

in order to confrm game tension framework assumptions.

Figure 14: Initial examples of game tension curves generated

After the game tension per action was initially defned and the data collection needed for

calculations was implemented, several game sessions were played to validate the selected
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method. As a result, it was noticed that a game tension curve showed the mostly tension

growth with a maximum game tension value at a room exit point. The results were following

a logarithmic-like function (see Figure 14, for example), especially if compared to a drama

curve. Neither basic movements within a level grid, which could have a major impact on the

representation of game tension curves, were displayed.

The next step included addition of a basic movement weight equal to -1 to the stored data.

Furthermore, it was decided to change timestamps represented as a date and time into mil-

liseconds passed from the beginning of the level till the moment of the taken action. Dozens

of player game sessions proved the expected drastic change to appear in the game tension

curve appearance. It became evident that selected ratio of action tension to distance from

the player to an exit shows close to zero game tension. In addition, several peaks and drops

occurred at those graph points, where the player took a non-basic action (see Figure 15, for

example).

Figure 15: Examples of game tension curves generated after the second iteration

The game tension function hereby followed zero axis and had the highest peak at the room

exit point after the second iteration. Hence the calculation was decided to adjust further by

replacing the distance to an exit with an average distance from a player to an exit and to all

enemies being present on the level grid. As a result, a game tension per action was calculated

as follows:

actionCoe f f icient
T (a) = .

di f f icultyLevel ∗averageDistanceToExitAndEnemies

In addition, x axis notation was changed from milliseconds to seconds for smoother graph

57



analysis, as the latter are easier and faster for human brains to perceive visually. Moreover,

action tension weights were adjusted in keeping with probability distribution function. It

was decided to reduce action tension weight of an exit to balance function maximum from

the room exit:

• 0.8 in case the player was attacked by an enemy robot,

• 0.65 if the player fell into foor crack,

• 0.2 for a failed movement, i.e. the player’s move was blocked by a inner or outer wall,

• 0.15 for exiting the room,

• 0.05 for a basic movement,

• -0.05 for a movement while the magnet protection is on,

• -0.15 for collecting points per a tiny gear,

• -0.25 for collecting points per a gear,

• -0.35 for collecting points per energy load,

• -0.75 for the magnet activation,

• -0.8 for gaining extra magnet load,

• -0.95 for collecting extra life.

Figure 16: Examples of game tension curves generated relying on average distance to ene-

mies and to exit

The introduced changes (for example, Figure 16) showed some improvement in the game

tension graph. However, the game tension function curve became a non-increasing function

with the maximum still being at the end of the level.

As action tension is also dependent on the time passed since the beginning of the level, it was

58



actionCoe f f icient ∗di f f icultyLevel averageDistanceToExitAndEnemies
T (a) = − .

2 timeFromLevelBeginning

decided to introduce a time unit into the game tension function. Considering that the game

tension shows an acceleration of game, the game tension function was adjusted to follow

Torricelli’s equation for velocity. This means that action tension is the composition of action

weight and a diffculty level divided by two. The second part of the function included the

ratio between an average distance both to the exit and to the enemies and the time when the

action was taken. A game tension function per action is defned as the following:

Indeed, example Figure 17 demonstrates the increasing non-monotonic graph close to the

Figure 17: Examples of game tension curves generated following adjusted Torricelli’s equa-

tion for velocity

desired drama curve representation. Yet, the problem of maximum game tension value at the

end of the level persisted.

Finally, it was decided to replace the average distance to the exit and enemies by distance to

the closest enemy, in order to move the maximum of the game tension function from a room

exit:

actionCoe f f icient ∗di f f icultyLevel minimumDistanceToEnemies
T (a) = − .

2 timeFromLevelBeginning

In addition, action tension weight of an exit was changed from 0.15 to -0.65 as exiting the

level, i.e. reaching all the set goals, does not add any tension to the game anymore. Required

drama curve like game tension graphs were created during the gameplay (see Figure 18 as

example illustration) due to the changes performed. Of course, the function curves can differ
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Figure 18: Examples of game tension curves generated following adjusted Torricelli’s equa-

tion for velocity

depending on the level grid layout. However, for more maze-like levels a game tension

framework allows to create graphs for game tension evaluation as expected.

6.4 A Proposed Approach for Dynamic Level Diffculty Adjustment

In the previous section the tool for game tension curve generation is developed further from

game tension framework. This tool allows now to validate the performance of an agent

responsible for procedural level generation with dynamic level diffculty adjustment. The

next step of the case study is to design the prototype of an agent responsible for game levels

generation with tailored challenges and to integrate it into the ‘Cybernetic Fox Conquest’

game. Objects appearance pattern during each level generation is adjusted by the incremental

adaptation agent based on diffculty level coeffcient and player’s performance evaluation.

These adjustments are the main tasks of the agent.

Artifcial agent creation starts with defning the task environment, considering Chapter 2.1

and the example of the launchpad model (Smith et al. 2011) described in Chapter 5. The

game world should be fully observable by the incremental adaptation agent for the next level

generation in case of the ‘Cybernetic Fox Conquest’ game. The game environment is consid-

ered to be static, especially at the moment of level generation. On the one hand, the agent can

predict the next state of the world as it is responsible for the world generation. On the other

hand, the player’s actions bring some level of uncertainty as they cannot be predicted by the

agent. Moreover, the next level generation is dependent on how well the player performed at
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the previous level, so the next level diffculty is determined by the player’s performance.

With the task environment defned, an incremental adaption agent can be designed following

a general agent model described in Section 2.1 also illustrated by Figure 1. The frst step in

the agent defnition is input percepts selection and desired agent’s actions outcome descrip-

tion. The most important input is a grid of the future level with initial objects allocation for

the agent to evaluate and to adjust. The expected level diffculty coeffcient for the upcoming

level is needed in addition to the level grid. The agent should be able to validate a future

level candidate and make the necessary changes based on these inputs.

Before moving on to an agent function defnition, it is important to defne the input data,

i.e. the initial generated level. Moreover, some approaches of the previous studies had taken

for the similar task are important to examine, in order to select the approach for the level

grid base generation. Most of the studies reviewed at the beginning of Chapter 6 focus on

2D platformers like Mario or Angry Birds, hence, they can be a good starting point for the

‘Cybernetic Fox Conquest’ game initial level generation. For example, a launchpad model

related work (Wheat et al. 2015) relies on generative grammar for syntactically correct levels

creation. In some other cases, level generation depends on the actions taken by the players

during the previous level. In other words, if a player has to jump at a certain point of the level,

the next level is to have a different type of block placed at the same point with a higher prob-

ability (Zafar 2013). D. Charles and M. Black (Charles and Black 2004) suggest using neural

networks for different players and patterns of their gameplay identifcation. Equally, Huber

et al. apply deep reinforced learning for level generation in exercise games, which allows to

place effectively exercises with appropriate level of repetitions and diffculty level (Huber et

al. 2021). However, the best suited approach for the ‘Cybernetic Fox Conquest’ game, is ge-

netic algorithm modifcation. A similar algorithm was selected by M. Kaidan et al. (Kaidan

et al. 2015) for PLG and DDA computations for Angry Birds, which work is the closest to

the design case study.

All things considered, the input for an incremental adaption agent is selected to be populated

from a seed of ten randomly generated level grids and maximum of ten previously played

level grids. The level is generated at random with no adjustment done by the agent, in case it

is the frst level being played at the current game session. For this reason, it was decided to
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store each level data in a vector-like format, L(x,y) = (c0,0,c0,1, ..,cx−1,y−1), where x is the

amount of columns and y is the amount of rows in a level grid. Next, based on the parent

Figure 19: A level grid vector generation using genetic algorithm for ‘Cybernetic Fox Con-

quest’ game

seed, a seed of offspring is generated following a genetic algorithm (see Figure 19) without

ftness evaluation as it will be performed by the adaptation agent. Namely, an offspring is

generated for each pair of parents from the seed by combining the frst half of the level grid

vector of the frst parent and the second half of the vector belonging to the second parent.

In addition, each generated offspring receives an arbitrary mutation at randomly selected

position, when a value of some cell is replaced with another one at random.

The second important input provided to the incremental adaptation agent is an expected

level diffculty coeffcient. As mentioned in Section 2.1, an intelligent and rational agent

should be able to perform well in changing environment and react to player’s actions in case

of video games. The only level adaptation variable is the expected diffculty coeffcient,

which infuences the player’s performance calculation and is defned by it, in case of the

‘Cybernetic Fox Conquest’ game. As each level contains collectible items and obstacles, the

player’s performance can be calculated from the difference of basic game diffculty level and

multiplicative inverse of the current level diffculty multiplied by the difference between lost

and gained points:

1
P(l) = 1− .

currentLevelDi f f iculty∗ (gainedPoints− lostPoints)

Hence the consequent level diffculty can be adjusted by D(l) = λ ∗ (1−|Pi −Pi−1)|. λ is a

threshold coeffcient, which makes sure that the diffculty level changes even if the player’s

performance does not change from one level to another.
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At last, the function and the program for the incremental adaption agent can be constructed

to select the best level grid candidate from the offspring seed input for further adjustments.

Considering the game design described in Section 6.1, it is important to keep in mind fol-

lowing notes, when designing the agent program:

a. Number of obstacles, i.e. the number of enemies and foor cracks, present on the grid

as some obstacles act as a movement aid for players.

b. Considering future game tension curve, how close should obstacles be located to the

player?

c. As enemies notice the player only from certain distance, this distance can change

depending on the level diffculty.

d. How quickly the enemies should reappear on the level, if they were destroyed by the

player?

e. How long the movement aid can impact a gameplay if activated?

f. How quickly the player can gain movement aid?

g. How many points the player needs to collect for health power-up to appear on the

level?

h. What is the total amount of collectable items on the level?

Furthermore, an agent function and its implementation depend on the agent type. As men-

tioned in Chapter 2, programs can be table-driven agents, simple refex agents, model-based

refex agents, goal-based agents, utility-based agents and learning agents. A hard-coded sim-

ple refex agent program would require an exhaustive defnition of rules set. In case of the

design case study game, the rules set for a complex condition action mapping would require

extensive and thorough testing and still it will not be generic enough. Also, it would be easier

for the players to spot the level generation pattern, thus impacting the game experience.

A model-based refex agent implemented as a fnite state machine is not appropriate for the

‘Cybernetic Fox Conquest’ game either. That would mean states defnition for each cell

and transitions between those states, but it will not guarantee unifed playable level creation.

Similarly, search algorithms modelling goal-based agents do not match the problem of level

generation either. These algorithms require clear goal setting, which imply a known state of

the world to be reached by the game agent, while it is not possible to defne clearly the exact
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expected and the most optimal end result.

On the contrary, a learning agent can be trained to adjust its behaviour based on the feedback

from the environment of the taken actions. As the feedback allows the learning agent to

modify decision making process for better results and as artifcial neural networks are mainly

used to generalise unseen or unknown input data, neural processing seems like a good option.

While supervised learning is specifcally good for pattern classifcation and unsupervised

learning for data clustering and pattern recognition, the best approach would be reinforced

learning for a level grid validations and adjustments. However, this would require the players

to provide feedback on each level grid. Hence, the given feedback combined with the game

tension curve should teach the incremental adjustment agent to fnd the best suited level

grid matching the player’s performance and expected diffculty levels, in case of reinforced

learning. The main disadvantage of learning agents is the fact that they require a big amount

of data for training and many training epochs before the result can be validated. As this is not

feasible for a time being for the ‘Cybernetic Fox Conquest’ game, learning agent program is

not a viable solution either.

In addition to approaches described in Chapter 3, dedicated to artifcial neural networks,

there is a special group of neural networks designed for constrained optimisation problems.

Contrary to ANNs with machine learning, these networks have fxed weights describing

constraints and the quantity to be optimized (Fausett 1994). Examples of such fxed-weight

networks are Boltzmann machine for constraints minimisation (or maximisation) and the

continuous Hopfeld network. Such networks are able to handle weak constraints, meaning

the cases when the outcome is desired, but not an absolutely required one (Fausett 1994).

This approach seems to ft agent function for level grids validations and adjustments. Keep-

ing this in mind, it is possible to proceed with the agent function defnition.

Firstly, the incremental adaptation agent should select the best ftted grid candidate for the

next level. Each offspring from the initial seed is pre-evaluated to satisfy two constraints: a)

there should always be a basic foor tile at the (0,0) and (columns− 1,rows− 1) positions

as these are reserved for a player and an exit tile; b) at least one of the two tiles adjacent

to the player and to the exit tiles should be obstacle free otherwise players will not be able

to proceed in the game. Next, the agent selects a level candidate closest to the desired level
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diffculty. Finally, the adaptation agent validates the grid to be playable and to have matching

to diffculty level number of obstacles, collectable items and inner walls. The missing objects

will be added in case there are not enough objects on the grid, then proceeding with level

grid evaluation. Such an agent program aims at the agent appearing intelligent and rational

with no possibility for a player to predict next level and hence to cheat.

The incremental adaptation agent should next validate the selected best suited level grid can-

didate to ensure its playability. The generated level grid validation and adjustment algorithm

is based on a fxed-weight single layer network, perceptron. The main idea of the algo-

rithm is each cell validation based on surrounding k-nearest neighbours. A value of a single

cell (i.e. output of the perceptron) is assessed and adjusted according to neighbouring cells

weights, WP(item) = ∑(x+1,y+1) w(x,y). This means that a level object can be placed to a cer-
(x−1,y−1) 

tain level grid cell, if it meets a set of conditions. For this reason, the agent can be seen as a

utility-based agent. Probability weights for each perceptron depending on the object type are

defned in Table 1. For example, inner walls should not be attached to outer walls more than

Empty Outer wall Inner wall Enemy Collectable Floor crack

Empty - - 0.8 0.8 0.8 0.75

Outer wall - - 0.65 0.35 0.55 0.35

Inner wall 0.8 0.65 0.8 0.75 0.75 0.8

Enemy 0.8 0.35 0.75 0.1 0.75 0.45

Collectable 0.8 0.55 0.75 0.75 0.1 0.65

Floor crack 0.75 0.35 0.8 0.45 0.65 0.25

Table 1: Likelihood weighting per level object.

one in a row avoiding big blocks formation. The optimal allocation for inner walls should

form a maze-like groups on the level grid. Similarly, the foor cracks should not be located

close to each other or to outer walls. In addition, it is preferred to keep them far enough from

enemies’ initial position, as foor cracks act as moving aids in some cases. Next, the enemies

should be located relatively far from each other. Equally, regardless of the collectible item

type, they should be placed far enough from each other, but closer to the enemies’ initial

position.
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P(¬OuterWall|Empty) = 0.75 (6.1)

P(InnerWall ∨Collectable|OuterWall) = 0.65 (6.2)

P(Enemy∨ FloorCrack|OuterWall) = 0.35 (6.3)

P(Sel f |Enemy∨ FloorCrack∨Collectable) = 0.1 (6.4)

P(Sel f |InnerWall) = 0.75 (6.5)

P(¬InnerWall|InnerWall) = 0.65 (6.6)

P(Collectible|Enemy∨ FloorCrack) = 0.70 (6.7)

P(Enemy|FloorCrack) = 0.45 (6.8)

It is necessary to generalise probabilities weighting in order to simplify perceptron imple-

mentation. First, the most obvious simplifcation deducted from Table 1 is the fact, that the

chances for any game object to appear are close to 0.8 whenever there is an empty cell next

to it (Eq. 6.1). In other words, the neighbouring cell will contain a game object with a prob-

ability of 80% for any empty cell. Next, an inner wall or a collectable item will be located

beside an outer wall with a probability of 65% (Eq. 6.2), while an enemy and a foor crack

will have a 35% probability to appear (Eq. 6.3). At the same time, it is important to keep in

mind, that the chances of the same type object to be placed close to an outer wall should be

opposite to the frst instance of the item type in neighbouring cells. In general, there should

be no enemy, foor crack or collectable item close to the similar type of object (Eq. 6.4).

On the contrary, inner walls are better to be located closer to each other (Eq. 6.5). Finally,

Eq. 6.7 suggests collectible to appear with 0.7 probability next to enemy or foor crack, while

enemies should be less frequently located next to foor cracks(Eq. 6.8)

In short, the incremental adaptation agent program can be described by Algorithm 2, which

represents the pseudo code snipped. For each level grid cell, the agent checks a weighted

probability of an item. Similarly to a perceptron, the item position is considered to be cor-

rectly placed, if the sum of probabilities is more than 50%. On the contrary, the cell is

assigned with an empty object and the item is placed at random to free position on the level

grid, if the calculated weighted probability of the item is less than 50%. The grid should be
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Algorithm 2 An incremental adaption agent program for the ‘Cybernetic Fox Conquest’

game

1: function VALIDATEITEMSBASEDONWEITHGTEDPROBABILITY(levelGrid)

2: for y := 1,y > rows,y++ do

3: for y := 1,x > columns,x++ do

4: if levelGrid[x][y] = Empty then next;

5: end if

6: weightedProbability := sum(itemWeightBasedOnNeighbouringItem);

7: if weightedProbability > 0.5 then

8: RandomlyRelocate(levelGrid[x][y]);

9: levelGrid[x][y] := Empty;

10: end if

11: end for

12: end for

13: end function

re-evaluated in a similar manner, until there are no items to be reorganised or until a certain

number of iteration was reached.

To sum it up, a prototype of the incremental adaptation agent for levels generation with

tailored challenges is implemented for the ‘Cybernetic Fox Conquest’ game. The agent’s

behaviour is divided into three steps. The frst one generates the level grid seed using adapted

and simplifed genetic algorithm. The next step selects the best ftted candidate level grid and

performs its initial evaluation. Finally, the level grid is adjusted relying on a fxed-weight

perceptron. The implemented agent is easier to understand and to adjust it in accordance

with the game tension framework. The next section discusses and evaluates the implemented

prototype of the incremental adaptation agent.
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6.5 Discussion and Evaluation of the Proposed Incremental Adaption

Agent Implementation

The aim of the design case study conducted throughout Chapter 6 is to validate the proposed

game tension framework, which purpose is to evaluate an incremental adaptation agent pro-

totype implemented for the 2D rogue-like test game. Another interest of the study is the

impact of the agent design on game design decisions, and possible issues game developers

can encounter while working on procedural level generation agent with a dynamic diffculty

adjustment.

To begin with, the game tension curve generator, which was implemented following the

suggested game tension framework, required several iterations to develop and to adjust the

tool to represent players’ game play experiences in a form of drama curve. The game ten-

sion curve generator implementation and adjustment was accomplished relying on randomly

generated levels with a slow level diffculty growth. Initially, the game diffculty was defned

by the number of enemies and obstacles placed on the level grid at a logarithmic progres-

sion. Already at this point, interesting results were observed within an intermediate version

of the game tension curve generator. Indeed, it was possible to derive from graphs points

in a gameplay, where the player has encountered into the enemy or he or she picked up the

collectible item, which caused a change in the curve. Hence, knowing the ideal drama curve

model to be achieved, the defned game tension framework turned out to be a good tool for

created players’ experience evaluation.

The implementation of the game tension curve generator integrated into the ‘Cybernetic Fox

Conquest’ game allowed to design and to develop the incremental adaptation agent prototype

following the algorithms described in the previous section. First, a seed of forty levels was

generated following genetic algorithm, from which one level grid was randomly selected.

Several played game sessions confrmed that mechanism for level grid validation is needed.

A clear visible pattern for placing game objects on a grid was easy to spot, as soon as the

second or the third generated level grid was displayed. Moreover, the player was always

forced to restart the game as the room entrance or its exit were mostly blocked (for example,

see Figures 20 and 21). At this point, there was no use for the game tension curve generator
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Figure 20: An example level, when the level Figure 21: An example level, when a player

exit is not reachable. is blocked at the beginning of the level.

yet as no valuable game data was possible to produce.

Level adjustment was added for randomly selected level without blocking objects around

the entry or the exit, during the second iteration of an incremental adaptation agent imple-

mentation. At frst, the game objects requiring relocation on the generated level grid were

moved to the closest free cell. However, this soon proved to be bad decision, as the grid

Figure 22: An intermediate generated example level with a related game tension curve.

re-evaluation and adjustment would end up with an infnite loop. After this issue was fxed
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by proper implementation of the level grid evaluation and adjustment Algorithm 2, the game

tension curves started to show better diversity in game tension. In addition, more events and

clearer local maxima and minima points were now presented on graphs. Furthermore, some

levels seemed to be visually more “carefully“ structured (see Figure 22 for an example).

Finally, some of the agent’s probability weights were adjusted based on test game plays and

related game tension curves. As a result, procedurally generated level grids seem to provide

better experience for a player and to keep his or her attention for a longer period of the

game session if compared to the initial prototype version of the game. Although this may be

true, the players’ opinion about the game play experience should be further studied for better

results.

To sum it up, even though the game tension framework and the resulting game tension curve

generator need more studies, which involve players’ experience and feedback to confrm ini-

tial results of the framework application for an agent performance evaluation, it has potential

for procedural level generation with dynamic diffculty adjustments agent setting up and val-

idation. The framework allows to evaluate the agent’s performance and to see the impact of

small changes added to its behaviour. In addition, it is easier to follow player’s experience

and reverse engineer points, that might require further changes to improve the gameplay.
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7 Conclusions

This research has covered three key subjects related to procedural content generation with

dynamic diffculty adjustment for facilitating optimal experience in video games. The frst

part of the research, Chapters 2 and 3, has reviewed artifcial intelligence basics and intelli-

gent agent design process. Moreover, several existing algorithms including artifcial neural

networks were presented to provide a general picture of agents modelling. This knowledge

was further applied in the case study during agent prototype design phase.

As for the proposed game tension framework covered in Chapter 5 and applied during the

design case study conducted in Chapter 6, the game tension curve generator is concluded

to be a viable tool for the incremental adaptation agent development and assessment. Espe-

cially, the tool allowed to catch the slightest difference between randomly generated levels

and levels generated by the agent, even with limited resources and with little experience in

artifcial intelligence development. Moreover, visually correct and playable levels are gener-

ated by the incrementation adaptation agent and are giving an impression of being created by

a human, because of the game tension framework validations done during the agent imple-

mentation. In addition, the comparison of game tension curves allows to represent a player’s

experience visually and to notice the game tension change.

It is worth mentioning, that game design basics discussed in Chapter 4 allowed to fnd suit-

able building blocks for setting the game tension framework and to prototype the incremental

adaptation agent. Moreover, the gathered knowledge helped to organise development pro-

cess. The division of game rules and objects with clearly defned properties into groups made

it possible to plan what should have been implemented during each iteration and in which

order, without major impact on the game development process.

At the same time, it was interesting to follow the evolution of the game design during iterative

game implementation. For example, some elements of the game were simplifed or even

removed (for example, a magnet replaced a weapon in the fnal version of the test game

design) due to either agent modelling limitations or to lack of resources. Similarly, during

the game development or the play testing, it became evident that some game elements have
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to be changed for a better game story line creation and for the player deeper involvement

into the "magic circle" of the game world. For this reason, a human player character was

replaced by a robot controlled by an invisible player character representing the player, which

allows the player to be part of the game world.

In the fnal analysis, the design case study showed that artifcial intelligence agent intro-

duction into a game requires good architecture design and good game design. In addition,

relying on the initial results produced by the game tension curve generator, it was revealed

that a simple scripted AI can perform relevantly good for a well defned goal with minimum

resources needed for its implementation. On the other hand, a rational artifcial intelligence

agent alone does not guarantee optimal experience creation for a player. For example, during

the early stage of the design case study, when the game prototype was developed, it became

evident that simplest graphics would not keep the player’s attention long enough in the so-

called magic circle even if the levels had complex maze-like structures with enough game

conficts.

As for the important remarks to keep in mind when developing a game AI or a procedural

level generation with a dynamic diffculty adjustment, there could be at least a couple of

possible bottlenecks, which were encountered during an agent development for the design

case study. To prevent these stumbling blocks from impacting game development, developers

have to keep in mind following things. First of all, there should exist an easy to adjust game

prototype as the game design and the agent might evolve rapidly. A good prototype can

save development time and allow to integrate the agent into a game successfully and almost

seamlessly. At the same time, in terms of a learning agent program to be implemented, it is

worth to consider well in advance the data, which might be needed by the agent as a possible

training set, that will allow to log game telemetrics at very early stage and gather enough

data.

Yet another possible blocker resolution while designing an artifcial intelligence agent is an

importance of agent’s purpose clear defnition. In addition, the decision considering the agent

program selection can have a signifcant impact at the design stage. The above mentioned

notes help to select either an existing algorithm exactly matching the expected behaviour

description or to construct possibly a hybrid algorithm with needed heuristics. Thus, it is
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more important to make sure that the agent indeed seems to be rational or not dummy, if that

is possible to achieve with simpler tools. This quickly became evident for even randomly

generated levels to create an impression of human crafted ones from a player’s perspective.

The proposed game tension framework has several options for future studies. First of all,

as already mentioned in Section 6.5, further work is defnitely required to evolve the frame-

work comparing it with players’ feedback. Ideally, the studies should be supported by the

data collected during gameplay by means of functional near-infrared spectroscopy and/or

electroencephalography. This will possibly allow to fnd patterns and to derive additional

game parameters for a better action tension coeffcient calculation.

In addition, it is interesting to continue the design case study by conducting the research

based on players’ feedback, i.e. how they perceive the game with and without the agent.

Moreover, other question to answer whether they would notice any pattern in generated levels

and would try to fool the game. Furthermore, it should be cleared up if the players would

notice any difference, in case one level is purely randomly generated and the other one is

agent generated. Also it needs to be studied how such an approach affects players tactics

from level to level without sticking to one tactic and how that affects the game tension curve.

Finally, the design case study has one more potential branch for the future studies, where

the learning agent instead of utility based agent is implemented. However, the design and

the implementation of an artifcial neural network with reinforced learning, where the levels

are generated from the game tension curve, most likely would need another approach for

agent’s performance evaluation. On the contrary, ANN agent can be trained on generated

game tension curves to improved generated levels, though that is most likely to require many

training sessions and epochs. At the same time, the beneft of such agent implementation is

not evident and requires further validation considering resources required for its training.
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Appendices

A Cybernetic Fox Conquest: Game concept

The idea of a game is based on one of the game concepts described by the Jacques Arsac in

his book focusing on game puzzles programming (Arsac 1985).

Story

It is a distant future. By this time human can easily travel to faraway planets and construct

planet-sized productions, which can function without human supervision. The player is a

young specialist, who was sent to one of such deserted planets. The planet was reported to

have a malfunctioning production unit. However, the production unit is guarded by malfunc-

tioning robots, who due to multiple system bugs attack everybody and everything entering

the building. A robot-guardian is aiming at reaching the outsider. As robots only focus

on one target at a time, they cannot plan their route in advance and hence tend to fall into

foor cracks. The specialist takes a decision to use a multi-functioning robot "F0x13" to pass

through the facility rooms towards the control panel to do the needed investigations and fx

the malfunction.

Core mechanics

The game starts as a player enters the frst room and the door behind automatically closes.

The only possible way out is located on the opposite side of the room. A few seconds later,

guardian robot(s) enter the room and start moving from corners towards predefned positions

inside the game space. The amount of robots will be low at the beginning of the game,

but as the player progresses their amount will grow (as if information about outsider will

be reaching other guardians with the time). After the guardians have occupied preassigned

places, the gameplay starts. The player and robots will take own turns to make a move. At

the beginning each robot will just wonder around as if there is no invader in the room. As

soon as the distance between the player and a robot is small enough, the robot will start

moving towards him or her.
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On player’s turn she or he can either move towards the exit or try to temporary disable or

blind the closest guardians. In order to disable any robot, a the player needs to make a

robot to move towards the foor cracks and fall into one of them. However these robots

will be eventually replaced with new ones, which will appear in the same manner as at the

beginning of the level. The second option for escaping from robots is to use a "powerful

magnet", which will make a "F0x13" invisible to robots for a while. However, the player

should remember that in the second case, the magnet has a limited amount of loading and

takes time to recharge. Additionally, the player needs to avoid falling in foor cracks.

Each game a player starts with 3 attempts, meaning that the specialist has only three multi-

functioning robot "F0x13" to help with a task. This means that the game would not be

over immediately after the frst collision with one of the robots (or possibly falling into a

foor crack), but rather the number of attempts will gradually decrease. Also there will be

a chance to gain extra attempts by collecting the power-ups allowing to "re-build" or fx the

"F0x13".

B Cybernetic Fox Conquest: Source code

A source code of a ’Cybernetic Fox Conquest’ game developed during the design case study

is available at https://github.com/FoxConquestDeveloper/gradu-cybernetic-fox-conquest.git.
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