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ABSTRACT 

Mahini Sheikhhosseini, Reza 
Consensus clustering for group-level analysis of event-related potential data 
Jyväskylä: University of Jyväskylä, 2023, 71 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 733) 
ISBN 978-951-39-9863-9 (PDF) 

Understanding human brain activity through spatiotemporal electroencephalo-
gram (EEG) analysis has gained prominence, with cluster analysis emerging as a 
valuable tool. While traditional event-related potential (ERP) analysis techniques 
for identifying interesting ERPs involve subjective time window selection, 
conventional cluster analysis focusing on spatial dynamics amplifies the risk of 
component identification errors when data is imperfect. Consequently, they do 
not offer a unified, appropriate time window determination approach for testing 
experimental hypotheses. 

This thesis introduces a series of consensus clustering-based approaches for 
examining brain responses in spatiotemporal ERP/EEG data. Specifically, the 
first study proposed a data-driven approach for determining the optimal number 
of clusters by evaluating the inner similarity of the estimated time window. A 
consensus clustering method from diverse clustering methods was also designed, 
including an M-N plot method for configuration. The second study proposed a 
multi-set consensus clustering approach across individual subjects to determine 
an appropriate (i.e., precise and stable) time window of ERP of interest. The time 
window determination method we developed examined two criteria for selecting 
a representative cluster map: inner similarity and hypothetical temporal 
coverage. The third study presented a multi-set consensus clustering approach 
for clustering analysis of single-trial EEG epochs that aimed to identify 
individual subjects’ evoked responses (ERP components). This study also 
introduced a standardized approach for evaluating scores from signal processing 
methods. Lastly, the fourth study introduced an ensemble deep clustering 
pipeline for reliably determining the time window when data quality is imperfect, 
revealing the adeptness of deep neural networks in feature extraction and time 
window determination. 

In conclusion, this thesis offers a promising computational framework for 
ERP identification in group-level analysis. The aforementioned studies enhance 
our understanding of human brain function, have broad implications for 
computational neuroscience, and suggest adaptable solutions for future 
neuroimaging investigations. 

Keywords: Electroencephalography (EEG), Event-related potentials (ERPs), 
ensemble learning, consensus clustering, time window, cognitive process, deep 
clustering, cluster aggregation. 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Mahini Sheikhhosseini, Reza 
Konsensusklusterointi tapahtumakohtaisten potentiaalien ryhmätason analyysiin 
Jyväskylä: Jyväskylän yliopisto, 2023, 71 s. (+ artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 733) 
ISBN 978-951-39-9863-9 (PDF) 

Tämä väitöskirja esittelee konsensusklusterointipohjaisia lähestymistapoja aivo-
jen vastausten tutkimiseen ERP/EEG-datasta saatavan tiedon avulla. Tutkimuk-
sessa ehdotetaan datavetoista lähestymistapaa optimaalisen klusterien lukumää-
rän määrittämiseksi arvioimalla estimoidun aikaluokan sisäistä samankaltai-
suutta. Tutkimuksessa suunniteltiin myös monipuolisia klustereita soveltava 
konsensusklusterointimenetelmä, joka sisältää M-N-kaaviomenetelmän konfigu-
rointia varten. Lisäksi väitöskirjassa ehdotetaan monijoukkoista konsensusklus-
terointimenetelmää yksittäisille koehenkilöille, jotta löydetään sopiva (tarkka ja 
vakaa) aikaluokka kiinnostaville ERP:lle. Kehitetty aikaluokan määritysmene-
telmä tarkastelee kahta kriteeriä edustavan klusterikartan valintaan: sisäinen 
samankaltaisuus ja hypoteettinen ajallinen kattavuus. Kolmas tutkimus esittelee 
monijoukkoisen konsensusklusterointimenetelmän yksittäisten koetilaisuuksien 
klusterianalyysille. Sen tavoitteena on tunnistaa yksilöllisten koehenkilöiden ai-
heuttamia vastauksia (ERP-komponentteja). Tämä tutkimus esitteli myös stan-
dardoidun lähestymistavan signaalinkäsittelymenetelmien pisteiden arvioimi-
seksi. Viimeiseksi neljäs tutkimus esitteli ryhmän syväklusterointiputken aika-
luokan määrittämiseksi luotettavasti, kun datan laatu on epätäydellistä. Tut-
kimus paljasti syvien neuroverkkojen soveltuvuuden ominaisuuksien erotteluun 
ja aikaluokan määritykseen. 

Tämä väitöskirja tarjoaa lupaavan laskennallisen kehyksen ERP:n tunnis-
tamiseen ryhmätasolla. Edellä mainitut tutkimukset lisäävät ymmärrystä ihmis-
aivojen toiminnasta. Ne vaikuttavat laajasti laskennalliseen neurotieteeseen eh-
dottaessaan mukautuvia ratkaisuja tuleviin neurokuvantamistutkimuksiin. 

Avainsanat: Elektroenkefalografia (EEG), tapahtumakohtainen potentiaali (ERP), 
ensemble-opetus, konsensusklusterointi, aikaluokka, kognitiivinen prosessi, sy-
vä klusterointi, klusterien yhdistäminen. 
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13 

If everything around seems dark, 
look again, you may be the light. 

― Rumi 

Electroencephalography (EEG) is a noninvasive neuroimaging technique that 
records neurological brain activities via electrodes on the scalp, capturing voltage 
potentials generated by neurons (i.e., from the flow in and around neurons). 
These electrophysiological cortical activities manifest as consistent brain 
responses spanning tens to hundreds of milliseconds (Laganaro, 2014; Lehmann 
et al., 1994). Event-related potentials (ERPs) are brain electrical signals recorded 
in a time-locked manner to experimental or cognitive events. ERP techniques 
have become a popular approach for investigating brain neural activities, 
employing signal-averaging techniques to identify and validate evoked 
responses resulting from external stimuli, such as sensory, cognitive, and motor 
stimulation (Kappenman & Luck, 2012a). Brain activity can be characterized as 
voltage deflections, termed ERP components or peaks that are labeled with P and 
N followed by a number, indicating their polarity and time of occurrence (Luck, 
2014). These components are critical for understanding brain functions and 
information processing examination (Brandeis et al., 1995; Lehmann et al., 1994; 
Makeig et al., 2002). Defining an appropriate measurement interval, known as 
the time window, is crucial for measuring the spatiotemporal properties of neural 
activity in the brain.  

This thesis investigates spatiotemporal ERP data modeling across different 
resolutions (group and individual subjects) through cluster analysis, with the aim 
of identifying target ERP components. 

1.1 Conventional ERP Component Identification and Limitations 

This section describes two types of traditional methods of measuring ERP 
components from spatiotemporal ERP data: conventional and objective. 

1 INTRODUCTION 
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1.1.1 Conventional ERP Identification 

Conventional ERP component identification consists of two main approaches: 1) 
quantifying peak amplitude and latency within the experimentally defined time 
window and 2) computing the mean amplitude over a specified time window. 
Both approaches assume that the brain’s response in the time window or peak 
latency is associated with the same brain activity in individuals. Nevertheless, 
these approaches can overlook important cognitive information if the time 
window is poorly chosen (Luck, 2014). Despite their limitations, these methods 
have been widely employed in ERP research. 

Specifically, the first approach for detecting a given ERP component 
involves visually inspecting a prominent peak or targeting significant effect sizes 
within an experimentally interesting interval (Kappenman & Luck, 2012a; Kiesel 
et al., 2008). This method remains susceptible to noise and baseline interference, 
potentially affecting accuracy. However, it can report the effect size obtained 
from high-frequency noise, leading to biased results. Problems arise when time 
window selections are predicated upon invalid assumptions. Analyzing peak 
latency to detect larger effect sizes can be misleading or result in problematic 
estimations of brain responses. Kappenman et al. (Kappenman & Luck, 2012a) 
highlighted that “peaks are not the same as components,” underscoring these 
limitations and stressing that the real ERP experiment often allows the elicitation 
of only a few precise components due to design complexities and component 
overlap. 

The second approach offers greater robustness against noise due to 
averaging. However, the mean amplitude method is sensitive to component 
overlap, potentially yielding false findings if component latency varies across 
conditions. A primary solution to this is the signed area measures method 
(Sawaki et al., 2012), which relies on defining positive and negative areas relative 
to the baseline. By applying an appropriate time window, the targeted 
component can be isolated based on its position relative to the waveform’s zero 
line. A narrower time window is recommended for overlapping components, 
while a wider window suits cases with fewer components (Luck, 2014). 

An alternative, popular approach to time window selection involves the 
moving fixed time window technique (Mu & Han, 2010; Qi et al., 2003; Rotshtein 
et al., 2010; Van Overwalle et al., 2009; Wills et al., 2014). This method often spans 
a reasonable window (e.g., 50 ms or a fine resolution range) following stimulus 
onset to identify substantial effect sizes. Statistical tools, such as analysis of 
variance (ANOVA; Manly, 2018) and the t-test, are employed to identify the time 
window. Additionally, high-resolution time-bin analysis (e.g., 5 ms duration or 
point-by-point analysis) and topographic analysis of variance (TANOVA; Koenig 
& Melie-García, 2010) are used in this context (Wills et al., 2014). However, it is 
important to note that while moving time windows provide a perceptible time 
window determination, they can significantly elevate the risk of Type I errors 
(Luck & Gaspelin, 2017b). In the following section, we discuss objective 
techniques for identifying ERP. 
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1.1.2 Objective ERP Identification 

In recent decades, the cluster-based permutation method has gained popularity 
as an advanced technique for estimating ERP time, particularly in 
magnetoencephalogram (MEG)/EEG data (Maris & Oostenveld, 2007). This 
method explores multiple dimensions (sensor, time) to detect clusters of samples 
with significant p-values from t-tests, defining temporal adjacency as the time 
window. This method has been widely used in the neuroscience community by 
some open-source toolboxes, such as 'FieldTrip' (Oostenveld et al., 2011). This 
method provides a robust platform for investigating temporal and sensory 
properties of brain responses in M/EEG data (i.e., both EEG and MEG data) 
utilizing temporal-sensor adjacency called cluster where the effect size is 
significant. Nevertheless, this method has limitations, such as the potential 
oversight of spatial distribution changes, high-frequency noise considerations, 
and parameter adjustments (Sassenhagen & Draschkow, 2019). 

Some sophisticated statistical techniques have been used to explore ERP 
components, such as principal component analysis (PCA; Donchin & Heffley, 
1978) and independent component analysis (ICA; Makeig et al., 1995), which are 
based on the blind source separation approach. The underlying assumption for 
qualifying an ERP is that the principal and independent components associated 
with the ERP of interest are fixed across all subjects (Makeig et al., 1997). In the 
ICA method, statistical calculations are employed to extract shared ERP 
components among subjects in a group. However, validating an interesting ERP 
component involves the subjective determination of the spatiotemporal 
properties of the ERP of interest (Jung et al., 2001). Some advanced methods from 
this category have been developed to extract the spatiotemporal features of ERPs 
of interest from single-trial EEG or individual subjects (Cong et al., 2010; Huster 
et al., 2020; Rissling et al., 2014). Conversely, PCA decomposes the ERP waveform 
into isolated components from the calculated latent variables (Dien et al., 2007). 
ICA and PCA are particularly useful for untangling overlapping ERP 
components (Makeig et al., 1997). 

While conventional methods have been popular for decades, they lack the 
systematic investigation of spatial and temporal dynamics of the brain inherent 
in brain information processing. The following sections present advanced 
methods for investigating and qualifying brain neural responses using machine 
learning techniques, specifically focusing on spatiotemporal cluster analysis. 

1.2 Conventional EEG/ERP Microstate Analysis and Its 
Limitations 

Lehmann (1989) introduced the intricate relationship between brain function and 
its functional states, illuminating a fundamental parameter in cerebral 
information processing. Brain electric fields, characterized by transient spatial 
distributions, reflect neuronal population engagement at specific temporal 
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moments (Lehmann et al., 1998). The rationale of the microstate analyzing 
method is that the electric field of the brain stays stable for milliseconds of time 
range (e.g., 50–150 ms on average) during a neurological response, known as a 
microstate/state that continuously changes along with the information 
processing of the brain. The EEG’s fine temporal resolution (in the millisecond 
range) enables the investigation of cognitive functions, including attention, 
memory, sensory-motor activities, EEG states, spontaneous behaviors, and 
disorders (Khanna et al., 2015). These microstates are segmentable blocks (quasi-
stable elements), often described as “atoms of thoughts” (Lehmann, 1990), that 
can be presented as a group of momentary topographical brain states. 

1.2.1 Microstate Analysis: Insights and Limitations 

Microstate classification (i.e., cluster analysis of EEG/ERP microstates) was 
initially introduced by Lehmann et al. (1994, 1987), and microstate clustering was 
formalized by Pascual-Marqui et al. (1995) through the development of a 
modified version of the k-means algorithm. Conventional microstate cluster 
analysis uses two clustering techniques: modified k-means and atomize and 
agglomerate hierarchical clustering (AAHC; Murray et al., 2008). This method 
considers global field power (GFP)—i.e., the standard deviations of electrode 
potentials—or GFP peaks derived from time samples as a foundation for 
clustering spatiotemporal EEG/ERP data. For decades, EEG microstate analysis 
has been extensively applied and has undergone many minor refinements 
(Michel & Koenig, 2018). It has been a popular tool in neuropsychological studies 
due to its integration into various open-source software tools, such as Cartool 
(Brunet et al., 2011), Ragu (Koenig et al., 2011), LORETA (Pascual-Marqui, 2002), 
Microstate EEGlab (Poulsen et al., 2018), and the KeyPy EEG Analysis toolbox 
(Milz et al., 2016). This method holds promise for potential biomarker 
development (Antonova et al., 2022; Khanna et al., 2015), qualifying information 
processing in neuroscience studies such as cognitive processes (Ruggeri et al., 
2019; Zappasodi et al., 2019), and brain disorder studies (Lehmann et al., 2005; 
Nishida et al., 2013; Ville et al., 2010; Wunderlin et al., 2022). 

While microstate analysis is widely employed to isolate brain responses, it 
has faced criticism for lacking thorough investigation from an information theory 
perspective. Moreover, the concept of a “state” remains ambiguously defined. 
One notable limitation related to the deterministic nature of this approach is that 
it neglects the high variance and multidimensional characteristics of sensor 
signals (Mishra, 2021). Additionally, the method’s disregard for the polarity of 
time samples, while the time samples are in the same cluster (considering their 
GFP values), makes the rationale for this method unclear. Furthermore, the 
“winner-takes-all” strategy, predicated on the assumption of a limited set of four 
canonical template maps in EEG and the utilization of global explained variance 
(GEV) to identify dominant template maps in ERP data, imposes a constraint on 
this analytical method (Dinov & Leech, 2017; Shaw et al., 2019). 

Moreover, spatial clustering from transformed data, particularly GFP peaks, 
ignores many time samples, especially in the context of low signal-to-noise ratio 
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(SNR) data. More specifically, noisy data and possibly bad channels influence 
GFP peaks, resulting in spike-like artifacts within the GFP dataset (Michel & 
Koenig, 2018), resulting in many narrow clusters if no post hoc method is applied. 
Therefore, post hoc procedures, such as smoothing and backfitting, become 
essential for deriving meaningful outcomes (Ahmadi et al., 2020). 

1.2.2 Advancements in Time Window Estimation Using Microstate Analysis 

Microstate analysis offers three approaches for determining the time window. 
The first approach employs standard repeated measurements ANOVA or 
multivariate statistical approaches (MANOVA) within a fixed time window—i.e., 
encompassing the interesting cluster map(s) and predefined electrode sites across 
subjects. The second approach involves employing statistical tests, such as t-tests, 
across time points to identify temporal areas of significant effect size, utilizing 
representative cluster map(s) associated with the target ERP. Subsequently, the 
obtained time window and preselected electrode sites (i.e., relying on a 
significant effect size) can result in bias when low SNR data or high-frequency 
noise exists in the data—i.e., a high rate of false positives (Luck & Gaspelin, 
2017a). Thus, a robust statistical technique known as multivariate randomization 
analysis was introduced in the literature on microstate analysis (Koenig & Melie-
García, 2010; Michel et al., 2009). This method conducts iterative statistical tests 
on GFP values (in time sample resolution) and evaluates global map dissimilarity 
(GMD) for temporal distribution (time window) measures (Michel et al., 2009) at 
various resolutions (single trials or subjects). While this approach is valuable, it 
may underestimate the temporal distribution and stability of neural responses, 
potentially limiting its ability to capture a comprehensive neural profile. 

They additionally established statistical tests such as point-by-point 
topographic consistency (TCT; Koenig & Melie-García, 2010), which assesses 
map differences across subjects, and TANOVA (Koenig & Melie-García, 2010) 
that is utilized to compare variations in map characteristics among statistical 
factor levels (Habermann et al., 2018; Ruggeri et al., 2019). While these 
randomization techniques offer robust statistical support for exploring effect size, 
they are computationally expensive and may lack interpretative insights. Further 
investigation of component latency involving electrode-by-electrode t-tests on 
mean maps within predefined time windows is needed (Michel et al., 2009). As a 
third approach, some ERP studies utilize microstate clustering results to guide 
time window selection based on cluster maps (Bailey et al., 2019; Berchio et al., 
2019; Michel & Koenig, 2018). Likewise, the first approach, this method considers 
statistical tests, i.e., point-by-point TANOVA, besides considering cluster map(s) 
as the brain response (Ruggeri et al., 2019) or solo cluster map as the brain stable 
response representative (Koenig et al., 2014). 
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1.3 Cluster Analysis of Spatiotemporal EEG/ERP Data 

Spatiotemporal EEG/ERP cluster analysis explores groups of time samples 
(although continuous) that share similar properties. In this thesis, a time sample 
refers to an observation with spatial attributes (topographical map) at each 
timestamp. Therefore, the rationale for clustering time samples is that the 
consecutive time samples within a cluster exhibit corresponding stable spatial 
patterns, revealing a very high spatial correlation (one, in theory) over tens of 
milliseconds. Cluster analysis of EEG may be crucial due to the complexity of 
EEG signals and critical neurological activities that carry linked patterns (cluster 
maps) that might be associated with the brain’s information processing (Milz et 
al., 2016). Apart from learning strategies, cluster optimization, and similarity 
metrics, the primary goal of cluster analysis is to optimally group time samples 
into K clusters, maximizing inter-cluster similarity while minimizing intra-
cluster variance (Abu-Jamous, Fa, & Nandi, 2015). 

1.3.1 Conventional Methods for Selecting the Number of Clusters 

One challenging aspect of clustering neuroimaging data is determining an 
optimal number of clusters to appropriately model the data and effectively 
characterize the underlying structure. In neuroimaging data such as EEG/ERP, 
the trade-off between cluster count and data compression is crucial. Fewer 
clusters increase data compression but reduce interpretability, while more 
clusters enhance interpretability at the cost of compression (Handy, 2009; Murray 
et al., 2008). Evaluating the quality of clustering is also essential for estimating 
the optimal number of clusters. Notably, existing measurement methods for this 
purpose (Milligan & Cooper, 1985) may not be tailored for isolating nuanced 
brain neurophysiological activities. Among the most popular methods, the Dunn 
index (Dunn, 1974), which is based on evaluating variances between cluster 
members and separation, as well as methods based on explained variance 
measurement (Goutte et al., 1999; Lleti et al., 2004), the Silhouette index 
(Rousseeuw, 1987), and Gap statistics (Charrad et al., 2014), have received 
considerable attention from the neuroscience community. 

Furthermore, microstate analysis employs cross-validation analysis 
(Pascual-Marqui et al., 1995) and Krzanowski-Lai (Tibshirani & Walther, 2005) to 
address this problem. However, while these techniques help determine the 
number of clusters, they may not comprehensively address the quality of the 
identified brain neurophysiological activities. These studies commonly validate 
the existence of established dominant microstate classes (four canonical EEG 
microstate classes). Nevertheless, some ERP studies attempt to estimate the 
optimal number of clusters using data-driven techniques that optimize the 
quality of isolated ERP components (Koenig et al., 2014; Mahini et al., 2022). 
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1.3.2 Strategies for Clustering Spatiotemporal ERP Data 

Typically, two primary clustering strategies are used for cluster analysis of 
spatiotemporal ERP. The first strategy, known as polarity-invariant clustering, 
employs GFP representation of the data for clustering, concurrently integrating 
microstate analysis. This method (microstate analysis) assumes that the time 
samples corresponding to GFP peaks represent comprehensive brain activities 
encapsulated within the EEG/ERP data, disregarding sample polarity. 
Alongside the aforementioned microstate clustering methods (modified k-means 
and AAHC), standard clustering techniques, as shown by von Wegner et al. 
(2018), can effectively cluster GFP peaks, similarly to conventional microstate 
clustering. In the context of microstate analysis, two perspectives are significant. 
One approach assigns four registered canonical patterns (Britz et al., 2010; Michel 
& Koenig, 2018) as microstate classes to EEG time samples. However, some 
researchers have explored an alternative number of clusters, such as seven 
canonical clusters (Custo et al., 2017), to analyze EEG data. The underlying 
assumption is that canonical maps (patterns) explain a significant portion (65–
84%) of the variance; i.e., they occur in similar experimental EEG settings (Michel 
& Koenig, 2018). For ERP data, template maps—dominant ERP maps based on 
high GEV, with, e.g., 70% from grand/group averaged ERP clustering (in the 
form of GFP)—are assigned to time samples (Koenig & Melie-García, 2010; 
Koenig et al., 2014; Murray et al., 2008; Pourtois et al., 2008). At the individual-
subject level, the template maps are assigned to ERP time samples based on their 
spatial correlation. 

By contrast, the second strategy adopts a polarity-sensitive stance, 
emphasizing polarity’s role in spatiotemporal ERP clustering. This framework 
encompasses a wide range of clustering techniques, such as conventional k-
means clustering (Poulsen et al. 2018) and fuzzy clustering on PCA features 
(Geva & Pratt, 1994), as well as advanced clustering methods, such as a 
probabilistic-based method (Dinov & Leech, 2017) involving standard k-means 
(Pena et al., 1999) and fuzzy c-means (FCM; Bezdek, 1981). In this sense, 
consensus clustering has been studied by exercising standard clustering 
techniques to robustly identify the ERP of interest from the group average ERP 
(Mahini et al., 2022) and within individual subjects’ ERP data (Mahini et al., 2020), 
and isolating spatiotemporal patterns in EEG data (Song et al., 2019). 

One limitation of both cluster analysis strategies is that their performance 
can be compromised in situations where data quality remains uncertain post-
preprocessing. Therefore, factors such as data quality, incoherency, noise ratio, 
and selected features can lead to noisy and fragmented clusters, highlighting 
challenges due to data quality intricacies. In recent years, deep learning has 
demonstrated substantial power in capturing intricate data features that 
represent the dominant ERP components. Deep neural networks (DNNs) have 
excelled in various EEG designs (Bashivan et al., 2015; Cecotti & Graser, 2011; 
Sikka et al., 2020; Zhang et al., 2019). Within this evolution, the context of deep 
clustering emerged, empowering DNNs to create cluster-oriented feature 
representations. DNNs with an embedded clustering module are materialized to 
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transform data points into cluster-friendly representations (Aljalbout et al., 2018; 
Ren et al., 2022). However, two prominent strategies, semi-supervised and 
unsupervised techniques, have been introduced for deep clustering (Aljalbout et 
al., 2018; Min et al., 2018). Notably, deep clustering has been applied in recent 
EEG studies, including microstate extraction with GFP peak labeling (Sikka et al., 
2020), EEG signal grouping (Peterson et al., 2022), and ensemble deep clustering 
for time window determination (Mahini et al., 2023). 

1.4 Research Motivation 

This thesis explores the cluster analysis of spatiotemporal ERP to qualify the ERP 
component of interest. The following studies address key research questions and 
motivations within this context. 

Article I: This study focused on developing a data-driven mechanism for 
determining the optimal number of clusters in spatiotemporal ERP data through 
consensus clustering. Appropriate data compression was recognized as crucial 
for identifying distinct ERP components. This study systematically tested various 
clustering methods from polarity-dependent approaches to configure consensus 
clustering. Group-averaged ERP data underwent clustering across options (e.g., 
2–15 clusters) in multiple iterations. During each iteration, the ERP-related time 
window was estimated using topographical similarity among time samples as a 
criterion. The optimal number of clusters was determined where inner-time 
sample similarity was consistently high across clustering options. The 
framework was rigorously evaluated using simulated and prospective memory 
ERP data (Chen et al., 2015), enhancing precision in ERP component 
identification and advancing spatiotemporal ERP analysis techniques. 

Article II: Given determining the optimal number of clusters from Article I, this 
study addresses the intricate task of determining the time window of ERP 
through cluster analysis of individual-subject ERP data. A multi-set consensus 
clustering framework combines polarity-invariant and polarity-dependent 
methods for subject-specific consensus clustering. Building upon this, a 
subsequent round of consensus clustering was performed to identify shared 
brain electrical activity patterns across subjects, leading to the determination of a 
realistic time window for the target ERP component. A modified time window 
determination method was introduced to guide this process. The proposed 
approach was comprehensively evaluated using simulated ERP data for accuracy 
and authentic data from a prior study (Chen et al., 2015). Article II enhances 
precision and robustness in time window determination for spatiotemporal ERP 
analysis. 

Article III: This study aimed to estimate the time window of the brain evoked 
response of individual subjects through a cluster analysis of single-trial EEG 
epochs. It also presented an evaluation mechanism for assessing the 
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reproducibility of the obtained scores corresponding to the identified cognitive 
processes of individuals. We designed a multi-set consensus clustering 
framework, enabling an in-depth investigation of target ERP component at the 
level of individual trials. Each trial was evaluated for similar brain response 
compared to the identified ERPs from grand average ERP data. A multi-level 
consensus clustering approach was then meticulously executed within 
individual subjects and across trials, yielding clustering results. This approach 
revealed brain responses linked to intriguing potentials in individual subjects 
and enhanced our understanding of brain activity at the individual level. By 
investigating the shared information across individual trials and subjects, as 
opposed to relying solely on averaged ERP data, Article III presented a 
perspective that enhances our understanding of neural responses in the context 
of single-trial EEG analysis. 

Article IV: This study addressed the challenge of reliable time window 
determination when data quality remains imperfect post-preprocessing. 
Residual noise after preprocessing can lead to uncertain cluster maps during 
conventional cluster analysis, significantly impacting the reliability of the 
selected time windows. To address this issue, we proposed an ensemble deep 
clustering pipeline that combines diverse deep clustering models from semi-
supervised and unsupervised approaches. Leveraging the robust learning 
capabilities of DNNs, this approach resulted in potent data feature labeling and 
enhanced clustering within a transformed feature space. Inspired by this dual-
pronged approach, the method combines clusterings from diverse perspectives 
to obtain the most dependable clusters capable of pinpointing the most 
influential components. The proposed methodology was rigorously evaluated 
using simulated and real ERP data (Kappenman et al., 2021), incorporating 
varying noise intensity levels. This study contributes a comprehensive 
understanding of reliable time window determination by harnessing the 
capabilities of deep cluster analysis and complementing current knowledge on 
cognitive processes. 

1.5 Research Design and Structure of the Thesis 

Here, we describe the research design employed in this thesis to address the 
diverse challenges inherent in spatiotemporal EEG/ERP data cluster analysis. 
The initial investigation sought to determine the optimal number of clusters to 
identify an ERP of interest. The significance of this inquiry is that, without a 
proper number of clusters (in the worst-case scenario), the ERP components can 
likely be divided into subclusters or be assigned to multiple components within 
a single cluster map. Thus, a reliable estimation of the number of clusters is 
essential for precise ERP identification. Once the optimal number of clusters was 
determined, the next challenge was to establish a robust (i.e., stable and accurate) 
time window determination mechanism. The goal was to achieve stability and 
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accuracy in delineating time windows using a reliable clustering of individuals. 
Following that, we extended the investigation of cognitive processes through 
EEG single trials to the intricate landscape of individual subjects’ brain responses 
to enhance our understanding of cognitive dynamics, ultimately contributing to 
individual subjects’ neural activity. A final imperative addressed the common 
issue of imperfect preprocessing. Therefore, powered by DNNs, a new 
framework was developed to enable researchers to identify the major 
components of ERP data. Figure 1 presents a relationship between the studies, 
method, data resolution, and the goal of them. 

 

 

FIGURE 1 The relationships between the studies included in this thesis (methods, data 
resolution, and goals). TW= Time window. 

The organizational structure of this thesis is as follows:  
Chapter 1 introduces the fundamental concept of EEG/ERP cluster analysis, 

identifies limitations of existing methods, and defines the research 
objectives.  

Chapter 2 describes ERP cluster analysis, the methods, and solutions in more 
detail, including the mathematical concepts of the methods used in 
this thesis.  

Chapter 3 provides a comprehensive summary of the included studies and lists 
the authors’ contributions to each one.  

Chapter 4 concludes with a discussion that summarizes the key findings, 
implications, and limitations of the studies and suggests avenues for 
future research. 
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This chapter presents a theoretical introduction to spatiotemporal ERP data 
cluster analysis methods, including spatial clustering, consensus clustering, 
multi-set consensus clustering, and ensemble deep clustering. Figure 2 illustrates 
an overview of the steps of the clustering analysis mechanism in this thesis. This 
chapter also provides concise explanations of the metrics used in this thesis, 
categorized into four groups. Furthermore, we detail the design of a specialized 
method for determining the time window for qualifying interesting ERPs. 

2.1 Theoretical Introduction to Spatiotemporal ERP Cluster 
Analysis 

The core objective of spatiotemporal ERP cluster analysis is to provide an abstract 
and informative representation of brain signals in ERP data. Despite the 
continuous nature of the recorded cortical signal, each time sample within the 
data can be conceptualized as a topographical map. The significance of cluster 
analysis of brain signals lies in the inherent relationship between cluster maps 
and their variations in brain functions (e.g., see Figure 3) and information 
processing mechanisms (Brandeis & Lehmann, 1989; Brandeis et al., 1995; Koenig 
& Lehmann, 1996). In this context, an effective clustering method is expected to 
reveal coherent cluster maps, aligning with the “state” concept explained in 
Section 1.2. The term “perfect cluster map” refers to consecutive time points 
within a cluster with high topographical correlation (ideally, one). 
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 FIGURE 2 Consensus clustering steps for processing spatiotemporal ERP data.  

Theoretically, cluster analysis of ERP/EEG data requires clear definitions 
of two key factors: the data configuration for clustering and the similarity 
measure used to optimize clustering assignments. In this context, time samples 
serve as observations, and electrode voltages act as features. For instance, 
microstate analysis predominantly relies on spatial similarity (topographical 
similarity; see Section 2.2.2). Formally, the clustering problem of 𝑁𝑁 time samples, 
𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁}  into 𝐾𝐾  groups can be formulated, where each cluster is 
represented by a centroid 𝜇𝜇𝑘𝑘, 𝑘𝑘 = {1,2, … ,𝐾𝐾} and 𝑥𝑥𝑡𝑡 ∈  ℝ𝐹𝐹, 𝑥𝑥𝑡𝑡 = {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝐹𝐹} (i.e., 
a topography map), 𝑡𝑡 = {1,2, … ,𝑁𝑁} , and 𝐹𝐹  denote the number of features 
(electrodes on the EEG scalp). Given that the role of a clustering method is to 
assign time samples to one of the K clusters 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾}, which is labeled 
by the cluster’s number, i.e., 𝐶𝐶𝑘𝑘 = {𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡 = 𝑘𝑘,∀𝑡𝑡 ∈ 1,2, , … ,𝑁𝑁}. 

 



 
 

25 
 

 

FIGURE 3 Spatiotemporal ERP clustering and topographical pattern dynamics with a 6 
ms moving window. 

2.2 Metrics 

This section outlines the metrics utilized in cluster analysis, specifically those 
relevant to this thesis, which are: similarity/dissimilarity metrics, spatial analysis 
metrics, similarity measurement indices, and reproducibility metrics. 

2.2.1 Similarity/ Dissimilarity Metrics 

There are different proximity measurements, such as similarity, dissimilarity, 
correlation, and distance, which are conceptual measurements of the distance 
between two given objects (two time samples). For the cluster analysis of 
spatiotemporal EEG/ERP, given its non-stationary and quantitative nature, 
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along with multiple electrode recordings, a selection of widely used similarity 
measures for objects with continuous features is presented in Table 1. 

TABLE 1 Similarity/dissimilarity metrics and formulas and a brief description of each 
metric. 

No. Measure Formula Comments 

1 Minkowski distance 𝐷𝐷𝑢𝑢,𝑣𝑣 = ��|𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|𝑝𝑝
𝐹𝐹

𝑖𝑖=1

�

1/𝑝𝑝

 

Minkowski distance 
between two time points, u 
and v, from F electrodes is a 
metric of Euclidean space 
with a p dimension. It is also 
considered a generalization 
of Euclidean, Manhattan, 
and Chebyshev distances. 

2 Euclidean distance 𝐷𝐷𝑢𝑢,𝑣𝑣 = ��|𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|2
𝐹𝐹

𝑖𝑖=1

�

1/2

 
Euclidean distance is a 
special form of Minkowski 
at p=2. 

3 Manhattan distance 𝐷𝐷𝑢𝑢,𝑣𝑣 = �|𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|
𝐹𝐹

𝑖𝑖=1

 
Manhattan distance is a 
special form of Minkowski 
distance at p=1. 

4 Chebyshev distance 𝐷𝐷𝑢𝑢,𝑣𝑣 = max
1≤𝑖𝑖≤𝐹𝐹

|𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|  
Chebyshev distance is a 
special case of Minkowski at 
p→ ∞. 

5 Mahalanobis 𝐷𝐷𝑢𝑢,𝑣𝑣 =  �(𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖)Σ−1(𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖) ∑ is the covariance matrix. 

6 Pearson correlation 𝑆𝑆𝑢𝑢,𝑣𝑣 =
∑ (𝑢𝑢𝑖𝑖 − 𝑢𝑢�)(𝑣𝑣𝑖𝑖 − �̅�𝑣)𝐹𝐹
𝑖𝑖=1

�∑ (𝑢𝑢𝑖𝑖 − 𝑢𝑢�)2𝐹𝐹
𝑖𝑖=1  �∑ (𝑣𝑣𝑖𝑖 − �̅�𝑣)2𝐹𝐹

𝑖𝑖=1

 

This is equal to the spatial 
correlation between two 
time points. Dissimilarity 
(correlation distance) can be 
expressed by 1 − 𝑆𝑆𝑢𝑢,𝑣𝑣. 

7 Jackknife correlation 
𝐽𝐽𝑢𝑢,𝑣𝑣 = min �𝑆𝑆𝑢𝑢,𝑣𝑣

(1), 𝑆𝑆𝑢𝑢,𝑣𝑣
(2), … , 𝑆𝑆𝑢𝑢,𝑣𝑣

(𝐹𝐹)�, 
𝑆𝑆𝑢𝑢,𝑣𝑣 = (1 + 𝐽𝐽𝑢𝑢,𝑣𝑣)/2 

Jackknife correlation is 
robust to the single outlier; 
𝑆𝑆𝑢𝑢,𝑣𝑣

(𝑖𝑖)  is the correlation 
between u and v when 
ignoring the ith feature. 

8 Cosine similarity 𝑆𝑆𝑢𝑢,𝑣𝑣 =
𝑢𝑢 ∙ 𝑣𝑣

‖𝑢𝑢‖ ∙ ‖𝑣𝑣‖
 

Cosine similarity has been 
used in many information 
retrieval applications. 

 

2.2.2 Spatial Metrics 

Understanding spatial parameters is critical for EEG/ERP spatial cluster analysis, 
particularly in microstate analysis, as emphasized in Section 1.2. We briefly 
introduce the criteria frequently utilized in microstate analysis and other 
clustering methods presented in this thesis. Table 2 summarizes the list of spatial 
metrics used in this thesis. 
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TABLE 2 Spatial metrics for clustering EEG/ERP data. 

No. Measure Formula Comments 

1 
Average reference 

𝑢𝑢� =
1
𝐹𝐹�𝑈𝑈𝑖𝑖

𝐹𝐹

𝑖𝑖=1

 
Average reference 
calculation for the 
recording voltages. 

2 

Global field power 
(GFP; Lehmann & 
Skrandies, 1980) 

𝐺𝐺𝐹𝐹𝐺𝐺𝑢𝑢 = �1
𝐹𝐹  � (𝑢𝑢𝑖𝑖 −  𝑢𝑢�)2

𝐹𝐹

𝑖𝑖=1
, 

𝐺𝐺𝐹𝐹𝐺𝐺𝑢𝑢 =  𝜎𝜎𝑢𝑢 

GFP at a given time point 
𝑢𝑢 that is the same as the 
standard deviation. 

3 

Spatial correlation 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢,𝑣𝑣 =  

∑ 𝑢𝑢𝑖𝑖𝐹𝐹
𝑖𝑖=1 ∙ 𝑣𝑣𝑖𝑖
‖𝑢𝑢‖ ∙ ‖𝑣𝑣‖ , 

‖𝑢𝑢‖ = �∑ 𝑢𝑢𝑖𝑖2𝐹𝐹
𝑖𝑖=1  , ‖𝑣𝑣‖ = �∑ 𝑣𝑣𝑖𝑖2𝐹𝐹

𝑖𝑖=1  

Pearson cross-correlation 
coefficient between two 
time points. 

4 

Global map 
dissimilarity (GMD) 

𝐺𝐺𝐺𝐺𝐷𝐷𝑢𝑢.𝑣𝑣 = �1
𝐹𝐹� �

𝑢𝑢𝑖𝑖 − 𝑢𝑢�
𝐺𝐺𝐹𝐹𝐺𝐺𝑢𝑢

−
𝑣𝑣𝑖𝑖 − �̅�𝑣
𝐺𝐺𝐹𝐹𝐺𝐺𝑣𝑣

�
2𝐹𝐹

𝑖𝑖=1
 

Dissimilarity of two maps 
from two time points or 
two conditions (𝑢𝑢 ≠ 𝑣𝑣); 
𝑢𝑢 � , 𝑣𝑣 �  denotes the mean of 
electrodes for the first and 
second maps. 

5 

Global explained 
variance (GEV) 

𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 =
∑ (𝐺𝐺𝐹𝐹𝐺𝐺𝑐𝑐(𝑡𝑡) ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐,𝑇𝑇𝑡𝑡)

2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡=1

∑ 𝐺𝐺𝐹𝐹𝐺𝐺𝑐𝑐2(𝑡𝑡)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡=1

 , 

𝐺𝐺𝐺𝐺𝐺𝐺 = �𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

GEV for a given cluster 
map. 𝐺𝐺𝐹𝐹𝐺𝐺𝑢𝑢(𝑡𝑡) is its GFP in 
condition 𝑢𝑢 , and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢,𝑇𝑇𝑡𝑡 
is the spatial correlation 
between the topography 
at the time point 𝑡𝑡 and the 
assigned template map 
𝑇𝑇𝑡𝑡 . 𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘  is the GEV of 
cluster k from K clusters. 

6 

Inner similarity  

𝐷𝐷𝑐𝑐𝑐𝑐 = 𝑑𝑑�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣,𝑢𝑢,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣,𝑣𝑣� ,𝑢𝑢 ≠ 𝑣𝑣 
𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼 = 1 − 𝐷𝐷𝑡𝑡𝑣𝑣𝑎𝑎 
𝐷𝐷𝑡𝑡𝑣𝑣𝑎𝑎 = 1

𝑛𝑛𝑐𝑐𝑐𝑐
∑ 𝐷𝐷𝑐𝑐𝑐𝑐
𝑛𝑛𝑐𝑐𝑐𝑐
𝑖𝑖 (i) 

𝑑𝑑�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣,𝑢𝑢,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣,𝑣𝑣�  is the 
distance between each 
element of the correlation 
matrix (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) with self-
correlation (i.e., 1); 𝐼𝐼𝑐𝑐𝑐𝑐  is 
the number of elements in 
the cluster map. 

 

2.2.3 Clustering Similarity Metrics 

Similarity measures are defined to measure the similarity between two given 
clustering results (clusterings) in the same dataset. These indices quantify the 
information changes from clustering 𝐶𝐶 to clustering 𝐶𝐶′, including both lost and 
gained information. The comparison of clusterings is often articulated through 
the confusion matrix or the contingency table, also known as the association 
matrix of two clusterings 𝐶𝐶,𝐶𝐶′. Mathematically, the confusion matrix is a 𝑘𝑘 × 𝑘𝑘′ 
matrix where 𝑘𝑘𝑘𝑘′𝑡𝑡ℎ is the number of data points in the intersection of 𝐶𝐶𝑘𝑘, 𝐶𝐶′𝑘𝑘′ —
i.e., the elements of 𝑘𝑘𝑡𝑡ℎ  cluster of 𝐶𝐶𝑘𝑘  and 𝑘𝑘′𝑡𝑡ℎ  cluster of 𝐶𝐶𝑘𝑘′′,where 𝑘𝑘𝑘𝑘′𝑡𝑡ℎ  can be 
calculated as: 

𝐼𝐼𝑘𝑘𝑘𝑘′ = |𝐶𝐶𝑘𝑘 ∩ 𝐶𝐶𝑘𝑘′′ |.    (1) 
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We introduce parameters that define the criteria for agreement or 
disagreement between two clusterings. Given a dataset of 𝐼𝐼 samples, the pairs of 
points are classified into four classes: 

• 𝑁𝑁11: the number of pairs in the same cluster under both 𝐶𝐶,𝐶𝐶′ 
• 𝑁𝑁00: the number of pairs in the different clusters under both 𝐶𝐶,𝐶𝐶′ 
• 𝑁𝑁10: the number of pairs in the same cluster under 𝐶𝐶 but not in 𝐶𝐶′ 
• 𝑁𝑁01: the number of pairs in the same cluster under 𝐶𝐶′ but not in 𝐶𝐶 

These four classes always satisfy the following equation: 
𝑁𝑁11 + 𝑁𝑁00 + 𝑁𝑁10 + 𝑁𝑁01 = 𝐼𝐼(𝐼𝐼 − 1)/2,   (2) 

which is derived from the confusion matrix [𝐼𝐼𝑘𝑘𝑘𝑘′]. The similarity measurements 
used in this thesis are listed in Table 3. 

TABLE 3  Agreement/disagreement indices for two clusterings. 

No. Measure Formula Comments 
1 Fowlkes and 

Mallows index 
(Fowlkes & 
Mallows, 1983) 

𝑊𝑊𝐼𝐼(𝐶𝐶,𝐶𝐶′) =
𝑁𝑁11

∑ 𝐼𝐼𝑘𝑘(𝐼𝐼𝑘𝑘𝑘𝑘 − 1)
2�

, 

𝑊𝑊𝐼𝐼𝐼𝐼(𝐶𝐶,𝐶𝐶′) =
𝑁𝑁11

∑ 𝐼𝐼′𝑘𝑘′(𝐼𝐼′𝑘𝑘′𝑘𝑘′ − 1)
2�

, 

ℱ(𝐶𝐶,𝐶𝐶′) = �𝑊𝑊𝐼𝐼(𝐶𝐶,𝐶𝐶′)𝑊𝑊𝐼𝐼𝐼𝐼(𝐶𝐶,𝐶𝐶′) 

For given two clustering results 
𝐶𝐶,𝐶𝐶′ , two asymmetric indices 
called Wallace distance 
𝑊𝑊𝐼𝐼  𝑎𝑎𝐼𝐼𝑑𝑑 𝑊𝑊𝐼𝐼𝐼𝐼  for calculation of 
Fowlkes and Mallows index that 
ℱ denotes. 

2 Rand index 
(Rand, 1971) ℛ(𝐶𝐶,𝐶𝐶′) =

𝑁𝑁11 + 𝑁𝑁00
𝐼𝐼(𝐼𝐼 − 1)

2�
 The similarity results in the 

range of [0, 1]. 

3 Adjusted Rand 
index (ARI) 
(Hubert & 
Arabie, 1985) 

𝐴𝐴𝐴𝐴𝐼𝐼(𝐶𝐶,𝐶𝐶′) =
ℛ(𝐶𝐶,𝐶𝐶′) − 𝐺𝐺[ℛ]

1 − 𝐺𝐺[ℛ]  

The reason for adjusting indices 
(e.g., ℛ and ℱ) is the observation 
that the unadjusted ℛ, ℱ do not 
range over the entire [0, 1] 
interval (i.e., min ℛ,ℱ > 0). 

4 Jaccard index 
(Ben-Hur et al., 
2001) 

𝒥𝒥(𝐶𝐶,𝐶𝐶′) =
𝑁𝑁11

𝑁𝑁11 + 𝑁𝑁01 + 𝑁𝑁10   
The Jaccard index is calculated 
from the parameters mentioned 
above. 

5 Accuracy 
(Nguyen & 
Caruana, 2007) 

𝐴𝐴𝐶𝐶𝐶𝐶(𝐶𝐶,𝐶𝐶′) = max
∑ 1{𝐶𝐶(𝐼𝐼) = 𝐼𝐼(𝐶𝐶′(𝐼𝐼))}𝑁𝑁
𝑖𝑖=1

𝑁𝑁  

Given the known clustering 
𝐶𝐶 (i.e., ground-truth) and the 
clustering result 𝐶𝐶′. 
𝐼𝐼  function provides overall 
possible one-to-one mappings 
between clusters and labels 
(Kuhn, 1955). 

6 Adjusted mutual 
information 
(Vinh et al., 2010) 

𝐴𝐴𝐺𝐺𝐼𝐼(𝐶𝐶,𝐶𝐶′)

=
𝐼𝐼(𝐶𝐶,𝐶𝐶′) − 𝐺𝐺{𝐼𝐼(𝐶𝐶,𝐶𝐶′)}

max {𝐻𝐻(𝐶𝐶),𝐻𝐻(𝐶𝐶′)} − 𝐺𝐺{𝐼𝐼(𝐶𝐶,𝐶𝐶′)}, 

𝐻𝐻(𝐶𝐶) =  � 𝐼𝐼𝑖𝑖 log
𝐼𝐼𝑖𝑖
𝐼𝐼

𝐾𝐾

𝑖𝑖=1
 

 See Section 2.5.5 for more 
details. 
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2.2.4 Reproducibility Evaluation 

In the context of this thesis, reproducibility refers to the predictability and 
consistency of estimated stimulus-locked response properties, known as scores, 
at the individual trial/subject level. Unlike repeatability, which assesses the 
consistency of repeated results, reproducibility is a measure of obtaining 
consistent results from different generators (e.g., trials, subjects) that are not 
necessarily identical. Reproducibility can be defined at both the experimental and 
data-processing levels. The score refers to spatial and temporal properties of the 
brain response in the estimated time windows, such as latency, mean amplitude, 
inner similarity, and time window properties of the identified ERP of interest. 

Mathematically, the reproducibility of a score is a function of the standard 
measurement error (SME; Luck et al., 2021). Given that, we described the 
reproducibility of the two groups, the analytical assessment in which the error of 
the scores was calculated from trials of individual subjects denoted by “aSME” 
and error through a bootstrapping process denoted by “bSME.” The standard 
error from 𝑁𝑁 results (scores) is calculated as follows: 

𝑆𝑆𝐺𝐺𝐺𝐺 =  
𝑆𝑆𝐷𝐷
√𝑁𝑁

 , (3) 

where 𝑆𝑆𝐷𝐷  represents the standard deviation of the scores. The idea of 
bootstrapping is that, given an experiment, instead of repeating the experiment 
many times, the experiment can be simulated by generating sufficient repeats 
(e.g., a minimum of 1,000) “with replacement” of samples and calculating the 
scores from them iteratively. For instance, given 𝐴𝐴 repeats and the calculation of 
scores from single-trial epochs of a given subject 𝑠𝑠 = {1,2, … , 𝑆𝑆} in condition 𝑐𝑐, the 
bootstrap error 𝑏𝑏𝑆𝑆𝐺𝐺𝐺𝐺� 𝑠𝑠

𝑐𝑐 can be calculated as follows: 

𝑏𝑏𝑆𝑆𝐺𝐺𝐺𝐺� 𝑠𝑠
𝑐𝑐 = �

1
𝐴𝐴
�𝑆𝑆𝐺𝐺𝐺𝐺𝑟𝑟2�
𝑅𝑅

𝑟𝑟=1

, (4) 

where the estimated standard measurement error (𝑆𝑆𝐺𝐺𝐺𝐺�𝑟𝑟) for each of the repeats 
𝐶𝐶 = {1,2, … ,𝐴𝐴} is calculated as follows: 

𝑆𝑆𝐺𝐺𝐺𝐺𝑟𝑟� =  
𝑆𝑆𝐷𝐷𝑟𝑟�

�𝑁𝑁𝑐𝑐𝑠𝑠
 , (5) 

where 𝑁𝑁𝑐𝑐𝑠𝑠  denotes the number of trials for subject 𝑠𝑠  in condition 𝑐𝑐  in each 
generation of bootstrapping. 

Therefore, one can calculate the scores from each generation, followed by 
obtaining the measurement error for all the individual subjects as: 

𝐺𝐺𝑆𝑆�𝑆𝑆𝐺𝐺𝐺𝐺�� =
𝑆𝑆𝐺𝐺𝐺𝐺�1

2 +  𝑆𝑆𝐺𝐺𝐺𝐺�2
2 + ⋯+  𝑆𝑆𝐺𝐺𝐺𝐺�𝑆𝑆

2

𝑆𝑆
, (6) 

where 𝑆𝑆 is the number of subjects in the group. Additionally, a parameter known 
as total error 𝐺𝐺𝑎𝑎𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐�  is calculated from the individual subjects 𝐺𝐺𝑎𝑎𝐶𝐶� 𝑝𝑝𝑡𝑡𝑟𝑟 called true 
variance, and the measurement error (calculated from Eq. 6). This calculation can 
be expressed as follows: 

𝐺𝐺𝑎𝑎𝐶𝐶� 𝑡𝑡𝑐𝑐𝑐𝑐 =  𝐺𝐺𝑎𝑎𝐶𝐶� 𝑝𝑝𝑡𝑡𝑟𝑟 + 𝐺𝐺𝑆𝑆(𝑆𝑆𝐺𝐺𝐺𝐺� ).          (7) 
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The confidence in the obtained scoring results is quantified to evaluate the 
reliability of the applied measurement. The reliability of the measurement can be 
calculated as follows: 

Reliability� =  1 −  
𝐺𝐺𝑆𝑆�𝑆𝑆𝐺𝐺𝐺𝐺��
𝐺𝐺𝑎𝑎𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐� , (8) 

Cronbach’s alpha and standard error of measurement (SEM) are used to calculate 
the reliability, estimating the error in individual scores within the subjects. 
Cronbach’s alpha is calculated as follows: 

𝛼𝛼 =  
𝑞𝑞

𝑞𝑞 − 1
�1 −  

∑ 𝐺𝐺�𝑖𝑖
𝑞𝑞
𝑖𝑖=1

𝐺𝐺�𝑡𝑡𝑡𝑡𝑡𝑡
� , (9) 

where 𝑞𝑞  is the number of items (i.e., scoring tests), 𝐺𝐺�𝑖𝑖  denotes the variance 
associated with each measure, and 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡  is the variance associated with all the 
scores. The 𝑆𝑆𝐺𝐺𝐺𝐺�  is then calculated as follows: 

𝑆𝑆𝐺𝐺𝐺𝐺� = 𝑆𝑆𝐷𝐷�  ×  √1 − 𝛼𝛼.     (10) 

2.3 Data Preparation for Clustering 

ERP data from a multiple sensor array represents multiple active neural sources 
with a time resolution of milliseconds. Generally, two prevalent data preparation 
methods have been used in the cluster analysis literature (Calhoun et al., 2009; 
Murray et al., 2008). The first involves creating a large tensor for each subject 
from temporal concatenating datasets across all conditions. In the second, the 
ERP datasets prepared for each subject using the first approach are group 
averaged within each group of subjects. Given a subject s, the temporal 
concatenated ERP data from 𝐶𝐶  conditions is denoted by 𝑋𝑋(𝑠𝑠) =
𝐶𝐶𝐶𝐶𝐼𝐼𝑐𝑐(𝑋𝑋1𝑠𝑠,𝑋𝑋2𝑠𝑠, . . ,𝑋𝑋𝐶𝐶𝑠𝑠), where 𝑋𝑋𝑐𝑐𝑠𝑠 is the ERP dataset of condition 𝑐𝑐 = {1,2, … ,𝐶𝐶}, 𝑠𝑠 =
{1,2, … ,  𝑆𝑆𝑎𝑎} , and  𝑆𝑆𝑎𝑎  denotes the number of subjects in 𝑔𝑔𝑡𝑡ℎ  group. The 𝐶𝐶𝐶𝐶𝐼𝐼𝑐𝑐 
function concatenates the individual datasets in the temporal domain. Averaging 
concatenated datasets across the subjects of each group as 𝑋𝑋𝑎𝑎 =
𝐼𝐼𝑒𝑒𝑎𝑎𝐼𝐼(𝑋𝑋(1),𝑋𝑋(2), … ,𝑋𝑋� 𝑆𝑆𝑎𝑎�) builds a group-averaged concatenated ERP. Figure 4 
shows the temporal concatenating of the ERP datasets at the subject and group 
levels. Consequently, the dataset for clustering has a size of (𝑁𝑁𝐶𝐶) × 𝐹𝐹 , where 
𝑁𝑁 represents the number of time samples and 𝐹𝐹  is the number of features 
(electrodes). 
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FIGURE 4 Temporal concatenating ERP datasets at the individual-subject and group 
levels. 

2.4 Determination of the Optimal Number of Clusters 

In ERP cluster analysis, one popular method for estimating an appropriate 
number of clusters is to calculate the explained variance by assessing eigenvalues 
in the dataset (Cong et al., 2014). This entails using PCA to calculate eigenvalues 
from the covariance matrix and selecting dominant eigenvalues that collectively 
explain, for example, 95% of the total variance. Mathematically, the covariance 
matrix, 𝐶𝐶𝐶𝐶𝑣𝑣𝑋𝑋 = 𝑋𝑋𝑋𝑋𝑇𝑇  or 𝐶𝐶𝐶𝐶𝑣𝑣𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑋𝑋 , is calculated in descending order, where 
each eigenvalue corresponds to one component. The eigenvalue order can be 
shown as follows: 

𝜆𝜆1 ≥  𝜆𝜆2 ≥ ⋯ ≥  𝜆𝜆𝑘𝑘 = ⋯ =  𝜆𝜆𝐸𝐸 =  𝜎𝜎2,  (11) 
where {𝜆𝜆𝑘𝑘}𝑘𝑘=1𝐸𝐸  represents the eigenvalues of the covariance matrix 𝐶𝐶𝐶𝐶𝑣𝑣𝑋𝑋 and E=
min{𝑁𝑁,𝐹𝐹}. Figure 5 illustrates an example of Eq. 11, wherein the first eigenvalue 
signifies the highest explained variance, followed by subsequent eigenvalues in 
descending order. 

As mentioned, conventional microstate analysis employs methods such as 
cumulative explained variance (Huster & Raud, 2017) and cross-validation 
(Pascual-Marqui et al., 1995) to optimize the ratio between the GEV and the set 
of cluster maps. Advanced techniques such as the Krzanowski-Lai criterion 
(Tibshirani & Walther, 2005), which addresses dimensionality concerns of cross-
validation (Murray et al., 2008), and metacriterion (Bréchet et al., 2019; Custo et 
al., 2017) have been investigated in several studies. Among the conventional 
methods used to determine the optimal number of clusters, cross-validation 
(Pascual-Marqui et al., 1995) has received more attention. This method optimizes 
the ratio between the GEV while trying different sets of cluster maps. 
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FIGURE 5 Example of estimating the number of clusters/components using the eigen-
values calculation via PCA  for the first 30 components (left panel) and their 
explained variance illustration (right panel). 

The data-driven strategies in Section 1.3.1 focus on optimally determining 
significant components versus modeling the entire dataset. For example, Koenig 
et al. (Koenig et al., 2014) introduced a method based on measuring the variance 
explained by n-maps (e.g., 𝐼𝐼  ranging from 2 to 20 cluster maps) through 
randomization optimization. Another study (Mahini et al., 2022) estimated the 
optimal number of clusters by assessing a subset of ERP components (the ERPs 
of interest) using the inner similarity criterion to assess candidate cluster maps. 
The candidate cluster maps are the clusters with high inner similarity (e.g., > 0.95) 
within the experimentally relevant range. The details of this method are 
explained in Section 3.1. 

2.5 Clustering Approaches for ERP Data 

This section introduces three clustering approaches—EEG/ERP microstate 
clustering, consensus clustering, and ensemble deep clustering—and focuses on 
the consensus clustering of ERP data. 

2.5.1 ERP Microstates Clustering 

Originating from early studies on resting-state EEG (Brandeis & Lehmann, 1986; 
Brandeis & Lehmann, 1989; Lehmann & Skrandies, 1984), a dominant set of four 
microstate classes (traditionally labeled A, B, C, and D) reveals rapid transitions 
(Michel & Koenig, 2018). A primary metric, global map dissimilarity (GMD; 
Table 2, Eq.4), indicates shifts between successive maps (Brandeis et al., 1995). 
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The two-step process of EEG microstate clustering involves identifying dominant 
cluster maps, either predefined or map derived, accounting for a significant 
portion of the total variance (e.g., 65–70%). These canonical maps are then 
adapted to individual maps (in group-averaged or individual-subject data) based 
on spatial correlations via a post hoc backfitting procedure (Pascual-Marqui et al., 
1995). 

Likewise, for ERP microstate analysis (Koenig et al., 2014; Murray et al., 
2008; Pourtois et al., 2008), the group-derived template maps (i.e., obtained from 
clustering of group-averaged ERP data) with an explained variance of 65–84% 
are assigned to individual data despite polarity differences. Figure 6 provides an 
overview of ERP microstate clustering, illustrating peaks of the GFP signal and 
neglecting the polarity of the cluster maps (e.g., assigning the same cluster map 3 
to different polarities that potentially correspond to the N1 and P2 components) 
in the clustering results. Microstate clustering methods, including k-means 
clustering (Pascual-Marqui et al., 1995) and topographic atomize and 
agglomerate hierarchical clustering (TAAHC; Murray et al., 2008), leverage 
spatial similarity to delineate these dynamic patterns.  

The methodologies are the following: 

Modified k-means 
Similar to the standard k-means, this method randomly initializes k cluster 
centers and iteratively refines assignments based on spatial correlations. The 
iterative process converges by improving the centroid by calculating new seeds 
by averaging the assigned map in the previous step until coverage in the optimal 
assignment is achieved. The clustering quality is evaluated using GEV (see Table 
2, Eq.5). 

Topographic Atomize and Agglomerate Hierarchical Clustering 
The TAAHC method (Murray et al., 2008) begins by treating the original maps as 
distinct clusters. In each iteration, the worst cluster is identified and split into 
component cluster maps (atomized). The worst cluster map is the cluster with 
the lowest sum correlation (Table 2, Eq. 3) between its constituent maps and the 
average cluster map. Then, the “free” maps are agglomerated to any other 
remaining cluster maps based on the highest spatial correlation. 
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FIGURE 6 ERP microstate clustering using modified k-means or topographic atomize 
and agglomerate hierarchical clustering (TAAHC).  Clustering is performed 
on the peak global field power (GFP) points (i.e., only the time points of the 
GFP maxima). For instance, some ERP components, such as large P3 compo-
nents, can be elicited by cluster map 6 (indicated in yellow). Furthermore, 
two cluster maps from cluster 3 (indicated in blue) have been assigned to two 
ERP components (i.e., N1 and P2) but with opposite polarities. 

 

2.5.2 Theory of Consensus Clustering 

Consensus clustering addresses the problem of combining multiple clustering 
solutions into a unified, informative, and robust result, often outperforming 
individual methods (Strehl & Ghosh, 2003). Consensus clustering is assumed to 
result in robust, high-quality, multi-view, and knowledge-enriched outcomes 
(Acharya & Ghosh, 2011; Strehl & Ghosh, 2003). One core reason for using 
consensus clustering is that even popular clustering algorithms might fail 
spectacularly for certain datasets that do not match the corresponding modeling 
assumptions (Acharya & Ghosh, 2011). Hence, combining information at 
different levels, such as datasets, clustering methods, and multiple sources, 
yields novel insights into neuroimaging data processing. Another reason to use 
consensus clustering for ERP data is its tremendous success in processing 
biological data (Abu-Jamous et al., 2013; Abu-Jamous et al., 2015; Monti et al., 
2003) as well as human brain functional magnetic resonance imaging (fMRI) and 
EEG analysis research (Liu, Abu-Jamous, et al., 2017; Liu, Brattico, et al., 2017; 
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Song et al., 2019). We describe the theory of consensus clustering in two primary 
steps: the generation and consensus phases. 

2.5.2.1 Generation Mechanism 

The primary role of the generation phase is to informatively supply the 
consensus function with clusterings from diverse strategies and methods. The 
main challenge is deciding what to combine and how to do so, given that even 
different initial conditions can result in various clustering outcomes. Specifically, 
the generation step involves the exploration of distinct subsets of samples, 
features, and parameter settings, including various subspace transformations. 
Different generation strategies can be designed, such as applying a single 
clustering method with uniform or varying parameters (e.g., number of clusters, 
similarity metrics) or combining multiple methods from different categories 
(Abu-Jamous, Fa, & Nandi, 2015; Golalipour et al., 2021; Vega-Pons & Ruiz-
Shulcloper, 2011). Arguably, there is no straightforward solution for selecting 
appropriate clustering methods for the consensus clustering configuration 
(Topchy et al., 2005). This is primarily due to the absence of a ground-truth 
solution, which leads to uncertainty about the explanatory power of different 
clustering approaches (Abu-Jamous et al., 2015). Nevertheless, several general 
approaches based on an elimination approach to the generation problem have 
been employed (Onan et al., 2017; Ryali et al., 2015). 

We designed two simple strategies for configuring the generation phase in 
ERP cluster analysis. The first method utilizes the M-N plot evaluation technique 
(Abu-Jamous et al., 2014) on group-averaged temporal concatenated ERP data to 
assess the performance of widely used clustering methods used in neuroimaging 
(Mahini et al., 2022). This method uses the inner similarity and duration of the 
estimated time windows as two criteria. ERP microstates polarity-invariant 
clustering methods, such as modified k-means and AAHC (after labeling 
adjustment), were also used alongside polarity-dependent clustering (Mahini et 
al., 2023a). Figure 7 illustrates the use of the M-N plot method for selecting the 
appropriate clustering configuration. The satisfied duration threshold (e.g., 50 ms) 
can be changed depending on the experiment and ERP of interest. 

The second strategy leverages a state-of-the-art method, such as modified 
k-means, as a benchmark. It selects clustering methods with higher similarities to 
the benchmark across the subjects within each group or condition using a voting 
mechanism (Mahini et al., 2020). The adjusted Rand index (ARI; Meila, 2007; 
Strehl & Ghosh, 2003) is utilized to quantify the similarity between the results of 
individual clustering methods and benchmark clustering. 
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FIGURE 7  Example of M-N plot method results examining a calculated time window 
obtained from the presented clustering methods in, e.g., 20 repeats and 6 
clusters. KM = k-means, HC = hierarchical clustering, FCM = fuzzy c-means, 
SOM = self-organizing map, DFS = diffusion map spectral clustering, SPC = 
spectral clustering, KMD = k-medoids clustering, GMM = Gaussian mixture 
model, and CC = consensus clustering. Notably, the GMM and SPC cluster-
ing methods provided weak cluster maps and need to be eliminated. The 
DFS clustering is suspicious but can be included due to overall suitable clus-
ter map generating. 

 

2.5.2.2 Consensus Mechanism 

Once clusterings are obtained in the generation step, the consensus function 
explores the best-aggregated clustering outcome by assessing the similarity 
between the clustering sets. From a wide range of existing methodologies for 
ensemble clustering (Acharya & Ghosh, 2011; Vega-Pons & Ruiz-Shulcloper, 
2011), four primary categories can be addressed: partition- and cluster-based 
approaches, voting, and matrix partitioning (Abu-Jamous, Fa, & Nandi, 2015; 
Boongoen & Iam-On, 2018; Golalipour et al., 2021). Alongside those methods, this 
thesis focuses on consensus approaches based on hypergraph partitioning, which 
involves assessing cluster similarity through hypergraph representations. 

Within hypergraph-based strategies, three approaches can be investigated: 
the cluster-based similarity partitioning algorithm (CSPA), the hypergraph-
partitioning algorithm (HGPA), and the meta-clustering algorithm (MCLA) 
(Strehl & Ghosh, 2003). The primary objective of these consensus functions is to 
transform the clusterings into a hypergraph representation and calculate the 
most aggregated clustering results upon them. A hypergraph is defined as a set 
of vertices and hyperedges, where a hyperedge (i.e., a generalization of an edge 
context in the graph theory) connects the set of vertices. For each labeling, 
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denoted as 𝐿𝐿𝑟𝑟, 𝐶𝐶 = 1,2, … ,𝐴𝐴 from 𝐴𝐴 clusterings, a binary membership matrix 𝐻𝐻(𝑟𝑟) 
with a column of the cluster (named hyperedge) is defined. For example, Table 4 
shows the creation of a hypergraph from five sets of clustering results with 𝐾𝐾 =
3. An adjacency matrix of a hypergraph 𝐻𝐻 is constructed from the clusterings by 
concatenating 𝐻𝐻(𝑟𝑟) , {𝐶𝐶|𝐶𝐶 ∈ {1,2, … ,𝐴𝐴}} to calculate H as follows: 

𝐻𝐻 = 𝐻𝐻(1,…,𝑅𝑅) = �𝐻𝐻(1) …𝐻𝐻(𝑅𝑅)�,    (12) 
where the number of hyperedges 𝐻𝐻𝐺𝐺 is calculated as follows: 

𝐼𝐼 = � 𝐾𝐾(𝑟𝑟)
𝑅𝑅

𝑟𝑟=1
, (13) 

where 𝐻𝐻  characterizes the relationships among 𝐼𝐼  objects, 𝐻𝐻𝐺𝐺  represents the 
hyperedges, and 𝐾𝐾(𝑟𝑟) denotes the number of clusters in the 𝐶𝐶𝑡𝑡ℎ method. 

So far, we have shown hypergraph calculations from the generation phase. 
Hypergraph clustering (dependent on the chosen policy) collapses cluster groups 
within the meta-cluster to explore the combined clustering outcome.  

TABLE 4  Cluster ensemble problem employing five clustering methods , number of 
clusters (K=3), and number of time samples in the data (n=6). Original label-
ing (left) and the hypergraph representation with 15 hyperedges (right). Each 
cluster map is transformed into a hyperedge. 

       𝐻𝐻(1)
   𝐻𝐻(2)

   𝐻𝐻(3)
   𝐻𝐻(4)

   𝐻𝐻(5)
   

 𝑙𝑙1 𝑙𝑙2 𝑙𝑙3 𝑙𝑙4 𝑙𝑙5  ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10 ℎ11 ℎ12 ℎ13 ℎ14 ℎ15 

x1 1 1 1 1 2  1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 

x2 1 2 1 2 1  1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 

x3 2 2 1 1 2 ⇔ 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 

x4 1 3 3 3 2  1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 

x5 3 3 3 3 3  0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 

x6 3 3 2 2 3  0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 

 
We outline the principal methods employed in hypergraph clustering: 

Cluster-based similarity partitioning algorithm (CSPA) 
Once the hypergraph is computed using the 𝐴𝐴  clustering methods, the CSPA 
calculates the similarity matrix from all clustering sets. This method generates a 
similarity graph in which clusters represent vertices, and the similarity between 
clusters is measured as the edge weights (Huang et al., 2017). More formally, the 
heuristics used in this method is that samples within the same cluster are 
considered fully similar, while those in different clusters are dissimilar. The 𝐼𝐼 × 𝐼𝐼 
similarity matrix (binary matrix) is computed as 𝐴𝐴 = 𝐻𝐻(𝑟𝑟)𝐻𝐻′(𝑟𝑟), for the given 𝐶𝐶𝑡𝑡ℎ 
clustering. Hence, entry-wise averaging of R clusterings is yielded as the overall 
similarity matrix S with a high granular resolution using Eq. 14. Figure 8, for 
example, shows the calculation of similarity matrices from six clustering methods 
and the combined similarity matrix for examining a new cluster set. 

Each entry in 𝑆𝑆 indicates the fraction of clusterings in which two objects 
share the same cluster, which is obtained through a sparse matrix multiplication: 

𝑆𝑆 = 1
𝑅𝑅
𝐻𝐻𝐻𝐻′,    (14) 
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which is referred to as the cluster-based similarity matrix. The obtained large 
matrix (𝐼𝐼 × 𝐼𝐼 ) is then employed to recluster the time points into 𝐾𝐾  clusters. 
Although CSPA offers reliability, it demands significant memory and processing 
resources (Karypis & Kumar, 1998). 

 

 

FIGURE 8 Example of a cluster-based similarity partitioning algorithm (CSPA) for hy-
pergraph partitioning problem using six clustering methods. Each clustering 
method is associated with a similarity matrix. The yellow proportions indi-
cate the similarity of the samples. The average similarity matrix is used for 
reclustering of the samples in the yielded consensus clusters.  

Hypergraph-partitioning algorithm (HGPA) 
The HGPA aims to repartition objects (time samples) into strongly connected 
segments by cutting the hypergraph into a minimum number of hyperedges 
(Strehl & Ghosh, 2003) in a process known as a minimum cut. In this method, all 
hyperedges have uniform weights, and all vertices are treated equally. Thus, the 
HGPA partitions the hypergraph into 𝐾𝐾 unconnected modules in approximately 
balanced-size clusters. Equality is obtained by satisfying the following equation: 

𝐾𝐾 ∙ max
𝑘𝑘∈{1,2,..,𝐾𝐾}

𝐼𝐼𝑘𝑘
𝐼𝐼
≤ 𝛽𝛽, (15) 

where 𝛽𝛽  ensures balance among clusters, given 𝐼𝐼  samples and 𝐼𝐼𝑘𝑘denotes the 
number of samples at 𝑘𝑘𝑡𝑡ℎpartition. Unlike CSPA, which focuses on pairwise 
cluster similarity, HGPA considers the global relationships among the objects 
across the clusters. 

Meta-clustering algorithm (MCLA) 
The MCLA estimates groups of clusters (clustering clusters) based on a similarity 
measurement (e.g., binary Jaccard measurement) between the clusters, involving 
four steps: constructing a meta-graph, hyperedge clustering, meta-cluster 
computation, and object assignment (Strehl & Ghosh, 2003). With the prepared 
hypergraph, MCLA groups the related hyperedges and assigns each 
object/sample to the grouped hyperedges, where it participates strongly. 
Formally, hyperedges ℎ𝑗𝑗 , 𝑗𝑗 = {1.2.3 … . ,𝐼𝐼}  serve as meta-graph vertices, and 
hyperedge weights express similarity. The graph partitioning (Karypis & Kumar, 
1999) clusters 𝐼𝐼 = ∑ 𝐾𝐾(𝑟𝑟)𝑅𝑅

𝑟𝑟=1  meta-graph hyperedges into K-balanced meta-
clusters (the clusters of hyperedges). Each 𝐾𝐾 meta-cluster produces a single meta-
hyperedge by collapsing hyperedges and calculating object association for each 
meta-hyperedge. Objects are then assigned to the meta-cluster with the highest 
value based on the winner association confidence ratio compared to others. 
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However, this method does not guarantee the assignment of at least one object 
to each meta-cluster. 

In summary, the hypergraph partitioning-based consensus functions 
described above exhibit complexities: CSPA 𝑂𝑂(𝐾𝐾𝐼𝐼2𝐴𝐴) , HGPA 𝑂𝑂(𝐾𝐾𝐼𝐼𝐴𝐴) , and 
MCLA 𝑂𝑂(𝐾𝐾𝐼𝐼2𝐴𝐴2). CSPA is the slowest method, and HGPA is the fastest method. 
It has been shown that CSPA’s reliability exceeds the two other methods in noisy 
data (Strehl & Ghosh, 2003). CSPA’s memory complexity is high and may be 
impractical for a large 𝐼𝐼. 

2.5.3 Consensus Clustering for Spatiotemporal ERP 

Given preprocessed ERP data, the generation phase of consensus clustering 
incorporates a set of clusterings from polarity-invariant and polarity-
independent clustering methods with suitable within-clustering consistency 
(Mahini et al., 2020; Mahini et al., 2022). Figure 9 illustrates an example of 
clustering results on an ERP dataset and the consensus clustering result from 
combining four clustering results using the CSPA consensus function. 

Formally, let 𝑋𝑋 represent the prepared ERP dataset (as described in Section 
2.3) with 𝑁𝑁 time points and 𝐹𝐹 electrodes. Given that clustering outcomes yield 𝐾𝐾 
clusters denoted as {𝐶𝐶𝑘𝑘|𝑘𝑘 = 1,2, … ,𝐾𝐾}  with numerical labels 𝐿𝐿 ∈ ℕ𝑁𝑁  from 𝐴𝐴 
clustering methods, a set of 𝐴𝐴 clusterings �𝐿𝐿𝑟𝑟�𝐶𝐶 ∈ {1,2, … ,𝐴𝐴}�  denoted by ʌ  is 
constructed. These clusterings are used to compute the combined clustering 𝐿𝐿 
through an objective function defined as follows: 

𝛤𝛤: �𝐿𝐿𝑟𝑟�𝐶𝐶 ∈ {1,2, … ,𝐴𝐴}� → 𝐿𝐿,   (16) 
where 𝛤𝛤  represents the consensus function from ℕ𝑁𝑁×𝑅𝑅 → ℕ𝑁𝑁  that maps the 
generated cluster sets into the final clustering. 

 

 

FIGURE 9 CSPA partitioning of group-averaged ERP data using four different cluster-
ing methods. 
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Theoretically, the consensus function is expected to identify the most robust 
clustering that shares maximum mutual information across all clusterings (Cover 
& Thomas, 1991). The mutual information between the two clustering results 
𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗  is denoted as 𝐼𝐼(𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗) (Eq. 18), with 𝐻𝐻(𝐿𝐿𝑖𝑖) representing the entropy of 𝐿𝐿𝑖𝑖 . 
Normalized mutual information (NMI) between 𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗  using geometric means 
can be expressed as follows: 

𝑁𝑁𝐺𝐺𝐼𝐼�𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗  � =
𝐼𝐼�𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗  �

�𝐻𝐻(𝐿𝐿𝑖𝑖)𝐻𝐻(𝐿𝐿𝑗𝑗)
, (17) 

in which 
𝐼𝐼�𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗  � ≤ min �𝐻𝐻�𝐿𝐿𝑖𝑖�,𝐻𝐻�𝐿𝐿𝑗𝑗�� , (18) 

𝐻𝐻�𝐿𝐿�� =  � 𝑁𝑁𝑡𝑡 log
𝑁𝑁𝑡𝑡
𝑁𝑁

𝐾𝐾

𝑡𝑡=1
, (19) 

where 𝑁𝑁𝑡𝑡  denotes the number of samples in cluster 𝐶𝐶𝑡𝑡  according to a single 
clustering like 𝐿𝐿� . Therefore, for two clustering outcomes 𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗 , the mutual 
information (ranging between 0 and 1) is computed as follows: 

𝛤𝛤(𝑁𝑁𝑁𝑁𝐼𝐼)�𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗� =  
∑ ∑ 𝑁𝑁𝑡𝑡,𝑏𝑏 log �

𝑁𝑁.𝑁𝑁𝑡𝑡,𝑏𝑏
𝑁𝑁𝑡𝑡𝑁𝑁𝑏𝑏

�𝐾𝐾
𝑏𝑏=1

𝐾𝐾
𝑡𝑡=1

��∑ 𝑁𝑁𝑡𝑡 log𝑁𝑁𝑡𝑡𝑁𝑁
𝐾𝐾
𝑡𝑡=1 � �∑ 𝑁𝑁𝑏𝑏 log𝑁𝑁𝑏𝑏𝑁𝑁

𝐾𝐾
𝑏𝑏=1 �

, (20) 

where 𝑁𝑁𝑡𝑡 , 𝑁𝑁𝑏𝑏 indicate the number of samples in clusters 𝐶𝐶𝑡𝑡, 𝐶𝐶𝑏𝑏 based on 𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑗𝑗, 
respectively. 𝑁𝑁𝑡𝑡,𝑏𝑏 represents the number of samples in cluster 𝑎𝑎 according to 𝐶𝐶𝑡𝑡 
and cluster 𝑏𝑏 according to 𝐶𝐶𝑏𝑏. Thus, the mutual information among 𝐴𝐴 clusterings 
(ʌ) can be defined as the average NMI (ANMI): 

𝛤𝛤(𝐴𝐴𝑁𝑁𝑁𝑁𝐼𝐼)�ʌ, 𝐿𝐿�� =
1
𝐴𝐴
� 𝛤𝛤(𝑁𝑁𝑁𝑁𝐼𝐼)

𝑅𝑅

𝑟𝑟=1
�𝐿𝐿� , 𝐿𝐿𝑟𝑟�. (21) 

As a result, the optimal labeling from 𝐴𝐴  clusterings can be expressed as 
follows: 

𝐿𝐿∗ = argmax𝐿𝐿∈𝕃𝕃  � 𝛤𝛤(𝑁𝑁𝑁𝑁𝐼𝐼)
𝑅𝑅

𝑟𝑟=1
(𝐿𝐿𝑟𝑟), (22) 

where 𝛤𝛤  denotes a similarity measurement (e.g., NMI), evaluating mutual 
information between a set of 𝐴𝐴  clusterings, and 𝐿𝐿∗  represents the optimal 
combined clustering outcome that exhibits maximum average similarity to all 
other clusterings 𝐿𝐿𝑟𝑟. Importantly, 𝐿𝐿∗ shares the same size with individual labeling 
𝐿𝐿𝑟𝑟. In this thesis, 𝛤𝛤 represents an unsupervised method known as the “supra” 
consensus function (Ghosh et al., 2002), which can embody the selected 
consensus function with the highest ANMI from the hypergraph-based 
consensus functions. 

2.5.4 Multi-Set Consensus Clustering 

Multi-set consensus clustering (Abu-Jamous et al., 2015; Filkov & Skiena, 2004; 
Hoshida et al., 2007; Liu et al., 2015) involves combining cluster sets obtained 
from a prior ensemble clustering procedure across multiple datasets. This process 
is aimed at extracting a new set of collective insights (clusters) from all 
individuals/datasets. In the context of EEG/ERP data from multiple subjects 
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across different conditions and numerous trials, multi-set consensus clustering is 
used to capture the most informative patterns shared among similar sources 
(multiple recordings from individuals/trials; Mahini et al., 2020). In contrast, a 
conventional cluster-based approach (microstates analysis) to address this 
challenge involves assigning template cluster maps derived from group-
averaged data or canonical microstate classes to individuals (Berchio et al., 2019; 
Koenig et al., 2014; Michel & Koenig, 2018; Murray et al., 2008; Ruggeri et al., 
2019). 

Mathematically, let 𝐿𝐿𝑠𝑠𝑟𝑟 = {𝐶𝐶1,𝑠𝑠
𝑟𝑟 ,𝐶𝐶2,𝑠𝑠

𝑟𝑟 , … ,𝐶𝐶𝐾𝐾,𝑠𝑠
𝑟𝑟 } represent the clustering results 

for the 𝐶𝐶𝑡𝑡ℎ clustering method 𝐶𝐶 = 1,2, … ,𝐴𝐴, for the 𝐼𝐼𝑡𝑡ℎ subject, 𝑠𝑠 = 1,2, … , 𝑆𝑆 with K 
clusters. Here, 𝐶𝐶𝑘𝑘,𝑠𝑠

𝑟𝑟  indicates the 𝑘𝑘𝑡𝑡ℎ cluster, 𝑘𝑘 = 1,2, … ,𝐾𝐾 from the 𝐶𝐶𝑡𝑡ℎ method for 
the 𝑠𝑠𝑡𝑡ℎsubject. The first level of consensus clustering for each individual dataset 
is performed as described in Section 2.5.5: 

𝐿𝐿𝑠𝑠
∗−𝑡𝑡𝑝𝑝𝑡𝑡 = argmax𝐿𝐿∈𝕃𝕃𝑋𝑋�𝛤𝛤(𝐿𝐿𝑠𝑠𝑟𝑟)

𝑅𝑅

𝑟𝑟=1

, (23) 

where 𝐿𝐿𝑠𝑠
∗−𝑡𝑡𝑝𝑝𝑡𝑡  represents the optimal consensus clustering results of the 𝑠𝑠𝑡𝑡ℎ 

subject from all possible k-partitions on dataset 𝑋𝑋 . Second-level consensus 
clustering involves clustering the results obtained at the first level across all 
datasets: 

𝐿𝐿∗∗−𝑡𝑡𝑝𝑝𝑡𝑡 = argmax𝐿𝐿∈𝕃𝕃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝛤𝛤�𝐿𝐿𝑠𝑠
∗−𝑡𝑡𝑝𝑝𝑡𝑡�

𝑆𝑆

𝑠𝑠=1

, (24) 

where 𝐿𝐿∗∗−𝑡𝑡𝑝𝑝𝑡𝑡  denotes the result of consensus clustering across the 
subjects/datasets. Together, the optimal ensemble clustering across the subjects 
can be denoted as follows: 

𝐿𝐿∗∗−𝑡𝑡𝑝𝑝𝑡𝑡 = argmax𝐿𝐿∈𝕃𝕃𝑋𝑋,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� � 𝛤𝛤(𝐿𝐿𝑠𝑠𝑟𝑟)
𝑅𝑅

𝑟𝑟=1

𝑆𝑆

𝑠𝑠=1
. (25) 

This approach facilitates the integration of information from multiple 
homogeneous sources (e.g., single trials, subjects, clusterings), aiding in 
identifying interesting ERP components from a set of those sources (Mahini et al., 
2020; Mahini et al., 2023b). 

2.5.5 Deep Clustering Analysis for ERP Data 

Deep clustering involves encouraging DNNs to learn a cluster-oriented feature 
representation that is suitable for cluster analysis. DNNs with clustering modules 
group similar features, enhancing cluster assignments (Aljalbout et al., 2018; Min 
et al., 2018). Two primary strategies exist. The first is a two-step process in which 
DNNs are trained in the initialized labels or input data, with a focus on 
minimizing non-clustering losses (exclusive to DNN’s loss). Afterward, a 
clustering method such as k-means is used for clustering transformed data in the 
latent space. The second approach involves joint training of the DNN and 
clustering to minimize both DNN and clustering losses, often using measures 
such as Kullback-Leibler divergence (Kullback & Leibler, 1951) to optimize 
clustering. 
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Specifically, for spatiotemporal ERP/EEG data 𝑋𝑋 from 𝑁𝑁 time points and 𝐹𝐹 
electrodes, along with initial clustering labels 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑁𝑁} corresponding 
to time points, the transformation function is denoted as 𝑆𝑆∅: 𝑋𝑋 →  𝑌𝑌 , in which ∅ 
representing learnable parameters by the network. In the first step, the DNN 
learns to map each time point 𝑥𝑥𝑡𝑡 = {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝐹𝐹} (i.e., a topography map) to a 
cluster label 𝑦𝑦𝑡𝑡, 𝑡𝑡 ∈ 1,2, … ,𝑁𝑁, ensuring high similarity between shared features. 
Hence, the input space 𝑋𝑋 is assigned to K clusters 𝐿𝐿 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾}, where 𝐶𝐶𝑘𝑘 =
{𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡 = 𝑘𝑘,∀𝑡𝑡 ∈ 1,2, , … ,𝑁𝑁} in the labeling space 𝑌𝑌. The transformation from the 
input space to the latent space is facilitated by a nonlinear mapping function fθ : 
X → Z, where θ represents learnable parameters and Z represents an embedded 
feature space in Z ∈ ℝ𝐾𝐾. Together, the role of DNN is to predict clustering labels 
using a classifier such as 𝑔𝑔𝜔𝜔  on top of the features 𝑓𝑓𝜃𝜃(𝑥𝑥𝑡𝑡) to minimize network 
loss: 

min
𝜃𝜃,𝜔𝜔

1
𝑁𝑁
�𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡�𝑔𝑔𝜔𝜔(𝑓𝑓𝜃𝜃(𝑥𝑥𝑡𝑡)�,𝑦𝑦𝑡𝑡)
𝑁𝑁

𝑡𝑡=1

, (26) 

where 𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡  denotes the multinomial logistic loss (e.g., negative log-softmax 
function) and 𝜔𝜔 and 𝜃𝜃 are classifiers and mapping parameters, respectively. 

In an unsupervised context, a DNN model, often of the end-to-end 
autoencoder (AE) structure, learns to represent the input space. In unsupervised 
models, the network is optimized using the 𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡 known as reconstruction loss: 

min
𝜃𝜃1,𝜔𝜔1

𝐿𝐿𝑟𝑟𝑛𝑛𝑐𝑐 = min
1
𝑁𝑁
��𝑥𝑥𝑡𝑡 − 𝑔𝑔𝜔𝜔1 �𝑓𝑓𝜃𝜃1(𝑥𝑥𝑡𝑡)��

2
𝑁𝑁

𝑡𝑡=1

, (27) 

where the network consists of two groups of layers corresponding to the encoder 
𝑓𝑓𝜃𝜃1(. )  and decoder 𝑔𝑔𝜔𝜔1(. ) , often with bottleneck layer(s) in between. During 
cluster analysis and fine-tuning, the encoder is isolated to transfer weighted data 
to the DNN’s latent space, which assumes a size of 𝑁𝑁 × 𝐾𝐾 for the spatiotemporal 
ERP dataset. 

Given the two general strategies of DNN designs, in semi-supervised 
methods, an initialized clustering such as k-means configures the DNN. 
Afterward, transformed weighted data from the latent layer are used for fine 
clustering (e.g., using k-means for final clustering). In unsupervised deep 
clustering, an embedded clustering layer optimizes clusters within the DNN. 
Apart from the design of the clustering module, deep clustering methods 
minimize both network and clustering losses. The combined loss is given by 

𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠 =  𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡 + 𝛾𝛾𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 , (28) 
where 𝐿𝐿𝐶𝐶𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐  denotes the clustering loss and 𝛾𝛾  is a hyper-parameter used to 
balance the two learning components. 
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2.6 Time Window Determination 

Conventional methods for time window selection have often relied on 
identifying pronounced peaks and effect sizes, a practice that hinges on statistical 
significance. However, a paradigm shift toward objectivity has given rise to more 
robust techniques. Although objective solutions such as cluster permutation 
(Maris & Oostenveld, 2007) and multivariate randomization analyses (Michel et 
al., 2009) have led to the exploration of a robust time window relying on 
quantifying significant effect size, these methods result in a fixed time window 
and are computationally expensive. 

Clustering analysis, however, selects the time window of ERP using two 
strategies. The first group, particularly in microstate analysis studies (Bailey et 
al., 2019; Berchio et al., 2019; Murray et al., 2008), identifies an ERP of interest in 
a fixed time window for all conditions that might involve multiple cluster maps. 
The second group identifies the time window of each condition from the group-
averaged ERP data. Different time windows relying on cluster maps can be 
obtained for conditions/groups in this category (Mahini et al., 2020; Mahini et al., 
2022; Pascual-Marqui et al., 1995; Ruggeri et al., 2019). 

From the second category, we proposed a pipeline to examine clustering 
results to determine the time window for each condition in two steps (Mahini et 
al., 2022): 1) Candidate cluster maps in the experimental interval (i.e., a roughly 
expected interval for the target ERP component) are sought. Candidate cluster 
maps are clusters with very high inner similarity (e.g., > 0.95, depending on data 
quality). 2) The cluster map with sufficient duration (e.g., > 50 ms, depending on 
the component of interest) and high overlap with the experimental interval is 
selected as the representer map of the time window. Nevertheless, this method 
determines a fixed time window for all the subjects from the group-averaged 
concatenated ERP data. 

A consensus clustering method and a time window determination method 
have been introduced to combine clustering results across subjects, resulting in a 
more precise time window using a similar algorithm (Mahini et al., 2020). 
However, the methods described above underestimate the imperfection of the 
data, and the remaining noise, even after preprocessing and averaging, 
inherently helps improve the signal’s SNR. A modified time window 
determination method has been reported based on adjusting the sensitivity 
parameters if needed (Mahini et al., 2023a). Moreover, time window 
determination for individual subjects has also been considered in the clustering 
of single-trial EEG epochs of individual subjects. This approach uses the spatial 
correlation of candidate cluster maps with the identified ERP from the group-
averaged ERP data as additional criteria to deduce the risk of selecting 
inappropriate components (Mahini et al., 2023b). 
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This chapter presents an overview of the involved articles, including the study 
objective, developed methods, and the results and conclusions. The authors’ 
contributions in each article have been described as well. 

3.1 Article I: Optimal number of clusters by measuring similarity 
among topographies for spatio‑temporal ERP analysis 

Reza Mahini, Peng Xu, Guoliang Chen, Yansong Li, Weiyan Ding, Lei Zhang, 
Nauman Khalid Qureshi, Timo Hämäläinen, Asoke K. Nandi, and Fengyu Cong 
(2022). Optimal number of clusters by measuring similarity among topographies 
for spatio-temporal ERP analysis. Brain Topography, 35, 537–557. 
https://doi.org/10.1007/s10548-022-00903-2.  

Objective 
The conventional approaches for selecting the optimal number of clusters for 
spatiotemporal ERP data rely on intra-cluster tightness and inter-cluster 
separation to assess the whole dataset (Goutte et al., 1999; Lleti et al., 2004; Mur 
et al., 2016). Given the nature of ERP data, it has been shown that only a few 
components can be distinctly elicited (Kappenman & Luck, 2012b) due to the 
overlapping of components. Article I explores the optimal number of clusters 
through a data-driven technique to identify an ERP of interest, examining the 
impact of selecting an appropriate number of clusters on the quality of estimated 
ERPs. Moreover, we introduce a novel consensus clustering mechanism for 
group-averaged spatiotemporal ERP data (see Figure 10). To this end, 
topographical similarity was used as a criterion to qualify the estimated time 
windows when varying cluster numbers were examined. 

 

3 OVERVIEW OF INCLUDED ARTICLES 

https://doi.org/10.1007/s10548-022-00903-2
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FIGURE 10 Optimal number of clusters determination using consensus clustering of spa-
tiotemporal group-averaged ERP data. a) Generation step of consensus clus-
tering and combining the results. b) Example of seeking an optimal number 
of clusters where the inner similarity of estimated time windows is high and 
stable. 

Methods 
Two simulated and real ERP datasets were used to assess the proposed pipeline. 
We used simulated data involving six predefined components (P1, N1, P2, N2, 
P3, and N4) within “Cond1” and “Cond2” conditions from a group of 20 subjects 
and a simulated scalp with 65 electrodes. Two state-of-the-art ERP components, 
N2 and P3, were tested for real ERP data that illuminated the prospective 
memory domain (Chen et al., 2015) within EEG records adorned with 10/20 
configuration and 32 electrodes. This exploration involved 20 symptomatically 
remitted patients with schizophrenia (RS) and 20 healthy controls participants 
engaged in prospective memory and ongoing tasks, revealing insights within our 
proposed pipeline. 

First, an M-N plot (Abu-Jamous et al., 2014) was developed to configure 
consensus clustering from the polarity-independent clustering methods by 
considering two criteria: the inner similarity (e.g., > 0.95) and the duration 
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(e.g., > 50 ms) of the examined time windows. A set of clustering algorithms was 
selected for the real ERP data, including k-means (Pena et al., 1999) with 
correlation similarity, FCM (Bezdek, 1981), self-organizing maps (SOMs; 
Kohonen, 1990), diffusion map spectral (DFS) clustering (Sipola et al., 2013)—
consisting of k-means with Euclidean similarity—and k-medoids (KMD) 
clustering (Park & Jun, 2009) with correlation similarity. For the simulated data, 
the set of clustering methods involved k-means, hierarchical clustering (HC; 
Tibshirani & Walther, 2005) with correlation similarity, SOMs, spectral clustering 
(SPC), and KMD clustering. 

The hypergraph partitioning CSPA was employed to explore the best 
cluster representation, which was carefully selected using the “supra” test on 
hypergraph-based consensus functions (Strehl & Ghosh, 2003). When a range of 
clusters (e.g., 2–15) is applied through numerous iterations (e.g., up to 100), the 
optimal number of clusters is selected where the average inner similarity of 
estimated time windows across conditions, groups, and repetitions converges on 
satisfactory thresholds. This convergence adheres to predefined thresholds of 
inner similarity (e.g., ≥ 0.95) and stability, ensuring minimal change (e.g., ≤ 0.03) 
in the amplitude of the inner similarities. 

Results and Conclusions 
The optimal number of clusters was estimated in six clusters for both simulated 
and real ERP data. Notably, the effect of the condition was significant for both 
the identified N2 and P3 components in the simulated data, which, as expected, 
measured a larger response in the second condition than in the first condition. 
For the real ERP data, our method confirms previous experimental findings 
(Chen et al., 2015) identifying interesting ERPs (N300 and prospective positivity) 
at predefined electrode sites. Furthermore, our method revealed the relationship 
between the number of cluster determinations and the quality of the identified 
ERP components. The proposed consensus clustering design from polarity-
dependent clustering methods provided a novel complementary understanding 
regarding modeling spatiotemporal ERP data using a synergetic combination of 
diverse clustering strategies. 

Contributions 
Reza Mahini conceived and developed the algorithm, processed the data, coded 
the software, and wrote and revised the paper. Peng Xu expanded the main idea, 
contributed experimental considerations, and collected data. Guoliang Chen 
contributed to data collection, revising the manuscript, and providing 
experimental details. Yansong Li contributed to writing and reviewing the 
manuscript, provided experimental support, and engaged in discussions. 
Weiyan Ding and Lei Zhang participated in the data collection. Nauman Khalid 
Qureshi provided technical support and revised the manuscript. Timo 
Hämäläinen conceptualized and supervised the project and also wrote and 
revised the manuscript. Asoke K. Nandi conceptualized and supervised the 
whole project, provided technical support, and wrote and revised the manuscript. 
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Fengyu Cong conceptualized and supervised the whole project, provided 
technical support, and wrote and revised the manuscript. 

3.2 Article II: Determination of the time window of event-related 
potential using multiple-set consensus clustering 

Reza Mahini, Yansong Li, Weiyan Ding, Rao Fu, Tapani Ristaniemi, Asoke K. 
Nandi, Guoliang Chen, and Fengyu Cong (2020). Determination of the time 
window of event-related potential using multiple-set consensus clustering. 
Frontiers in Neuroscience, 14, 521595. https://doi.org/10.3389/fnins.2020.521595. 

Objective 
Cluster analysis methods are pivotal in estimating the time window of ERP 
components from spatiotemporal ERP data (Bailey et al., 2019; Berchio et al., 2019; 
Koenig et al., 2014; Ruggeri et al., 2019). However, these methods potentially 
overlook individual subjects’ brain responses due to reliance on the averaging 
process in ERP and the mechanism of determining template maps (dominant 
clusters). This study introduces a novel approach based on multi-set consensus 
clustering, which involves brain response identification from a group of subjects 
and aims to derive a robust and dependable time window. 

Methods 
A multiple-set consensus clustering pipeline was designed using polarity-
invariant and polarity-independent clustering methods to identify ERP(s) of 
interest in spatiotemporal ERP data. Figure 11 shows the design of the proposed 
pipeline in this study. Using multi-set consensus clustering consists of combining 
information from cluster sets from diverse clustering methods at the individual 
level and across the individual subjects at the group level. Like in Article I, two 
datasets, the simulated and the real ERP data, were investigated with two target 
ERPs, N2 and P3, in the simulated data, and N300 and prospective positivity 
components in the real data. 

The initial generation phase involved evaluating prominent neuroimaging 
clustering techniques compared to the modified k-means (used as a benchmark), 
using the ARI similarity measurement (see Table 3, Eq. 3) at the individual-
subject level. Then, a voting design was applied to selecting clustering methods 
that achieve sufficient similarity (e.g., > 0.70) from the majority of subjects (not 
necessarily all). We chose k-means, HC, AAHC, and modified k-means for the 
real data, and k-means, FCM, SOMs, DFS clustering, AAHC, and modified k-
means methods to configure the consensus clustering. It is noteworthy that, to 
enhance stability, a consensus clustering-based stabilization method was applied 
(whenever required) to guarantee stable clustering results from the individual 
clustering methods. Subsequently, the second-level consensus clustering was 
executed on the individuals’ clustering results across the subjects using the CSPA 
consensus function. 

https://doi.org/10.3389/fnins.2020.521595
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FIGURE 11 Proposed multi-set consensus clustering (i.e., consensus clustering in and 
across the subject levels) to determine the time window of ERPs from each 
group/condition. 

Finally, the time window determination method examined the clustering 
results to identify the temporal and spatial properties of ERPs. This method 
tested inner similarity (e.g., ≥ 0.95) and coverage with a sufficient response 
duration (e.g., ≥ 50 ms, depending on the experiment) of candidate cluster maps 
that most likely represent the ERP component. 

Results and Discussion 
After obtaining the optimal number of clusters at six clusters for both ERP 
datasets (Mahini et al., 2022), our findings revealed the remarkable stability and 
efficacy of multi-set consensus clustering in identifying the ERP components. 
Compared to the state-of-the-art clustering methods, enhanced precision and 
stability were achieved in identifying the N2 and P3 components in the simulated 
data as well as more stable identification of the N300 and prospective positivity 
components in iterative tests. These findings highlight the reliability of multi-set 
consensus clustering in analyzing spatiotemporal ERP data. This study 
introduces a promising approach that emphasizes the value of combining 
information from individual subjects, departing from the conventional practice 
of processing group-averaged ERP data. It promotes the integration of a 
powerful ensemble of clustering methods to model complex ERP data using a 
range of clustering optimization techniques. 

Contributions 
Reza Mahini conceptualized and conducted the study, including developing the 
algorithm, data processing, coding, and software development, as well as writing 
and revising the paper. Yansong Li contributed to writing and reviewing the 
manuscript, offered experimental support, and engaged in discussions. Weiyan 



 
 

49 
 

Ding participated in data collection. Rao Fu provided the simulated data and 
engaged in discussions. Tapani Ristaniemi conceptualized the study, provided 
technical support, and wrote the manuscript. Asoke K. Nandi conceptualized the 
study, provided technical support, and wrote and revised the manuscript. 
Guoliang Chen collected data, revised it, and provided experimental details. 
Fengyu Cong conceptualized and supervised the whole project, provided 
technical support, and wrote and revised the manuscript. 

3.3 Article III: Brain evoked response qualification using multi-set 
consensus clustering: toward single-trial EEG analysis 

Reza Mahini, Guanghui Zhang, Tiina Parviainen, Rainer Düsing, Asoke K. 
Nandi, Fengyu Cong, and Timo Hämäläinen. (2023). Brain evoked response 
qualification using multi-set consensus clustering: toward single-trial EEG 
analysis. Submitted to Brain Topography, preprint available. 
https://doi.org/10.21203/rs.3.rs-3586574/v1. 

Objective 
Single-trial EEG data includes repetitive neural information about the brain’s 
neurological activities. Due to its crucial role, it becomes particularly significant 
when developing a computational data-driven model to capture brain dynamics 
from many similar datasets. Conventional EEG cluster analysis, notably EEG 
microstate analysis, has been extensively investigated in clinical (Khanna et al., 
2015; Lehmann et al., 2005; Nishida et al., 2013) and cognitive (Britz & Michel, 
2011; Caldara et al., 2004; Ruggeri et al., 2019) neuroscience studies. The 
prevailing approach for obtaining the dominant microstate classes’ EEG data and 
the strategy of “winner-takes-all,” while fitting back the canonical classes to data 
points, can ignore considerable information and obscure essential nuances of 
individual neural processes. 

This study seeks to establish an effective clustering model based on multi-
set consensus clustering of individual subjects’ single-trial EEG epochs to 
identify brain-evoked responses. Additionally, it presents a novel evaluation 
method for evaluating the scores from single trials and individual subjects. 

Methods 
In this study, initiating a trial selection step, we excluded trials that exhibited no 
or low correlation with the identified component from grand average ERP data. 
We retained a minimum of 50% of the trials, adjusting the correlation threshold 
(e.g., >0.40) as necessary. First, trial-level consensus clustering was utilized to 
select trials of each subject, facilitating the exploration of correlated brain 
responses within individual trials. Then, consensus clustering was applied across 
the selected trial clustering (see Figure 12). After obtaining subject-specific 
clustering results, a modified time window was developed, with an additional 
criterion that investigated the spatial correlation between the candidate cluster 

https://doi.org/10.21203/rs.3.rs-3586574/v1
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maps and the identified ERP from group-averaged data, to explore the 
interesting ERPs of individual subjects. 

To design a standardized evaluation (Franceschiello et al., 2022; Luck et al., 
2021), we established a bootstrapping of the obtained scores. We tested the scores, 
including mean amplitude magnitude, the properties of the time window (start, 
end, and duration), the inner similarity of the time window, and spatial 
correlation between the template map and the mean topographical map within 
the time window. Analytical scores from single trials and bootstrapping scores 
from the generated trial clusterings (from each repeat) were evaluated to 
calculate the standard error of the measurements (“aSME” and “bSME”). We 
evaluated our pipeline with the visual oddball paradigm experiment 
(Kappenman et al., 2021) to obtain scores of the identified P3 component. 

 

 

FIGURE 12 Proposed single-trial EEG epochs multi-set consensus clustering pipeline to 
determine the time window of ERPs at the individual-subject level. 
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Results and Conclusions 
This study revealed the feasibility of exploring an ERP of interest from EEG 
single trials and elucidating individual cognitive responses. We observed an 
average spatial correlation of 0.65 between the P3 components identified from 
the individual subjects and the group P3 component. Both bootstrapping and 
analytical results consistently supported this finding. Furthermore, the reliability 
tests yielded a Cronbach’s alpha of 0.70, indicating strong test reliability. These 
results enhance our understanding of individual-level cognitive contributions to 
group-level cognitive responses, thus validating the effectiveness of our 
approach. 

Contributions 
Reza Mahini conceptualized and conducted the study, including developing the 
algorithm, data processing, coding, and software development, as well as writing 
and revising the paper. Guanghui Zhang contributed to writing and reviewing 
the manuscript, offered experimental support, and engaged in discussions. Tiina 
Parviainen conceptualized the study, provided technical support, and revised 
the manuscript. Rainer Düsing provided technical support and revised the 
manuscript. Asoke K. Nandi conceptualized the study, provided technical 
support, and wrote and revised the manuscript. Fengyu Cong conceptualized 
and supervised the whole project, provided technical support, and wrote and 
revised the manuscript. Timo Hämäläinen supervised the whole project, 
provided technical support, and wrote and revised the manuscript. 

3.4 Article IV: Ensemble deep clustering analysis for time 
window determination of event-related potentials 

Reza Mahini, Fan Li, Mahdi Zarei, Asoke K. Nandi, Timo Hämäläinen, and 
Fengyu Cong (2023). Ensemble deep clustering analysis for time window 
determination of event-related potentials. Biomedical Signal Processing and Control, 
86, 105202. https://doi.org/10.1016/j.bspc.2023.105202. 

Objective 
One important challenge when processing neuroimaging data (particularly EEG) 
is the uncertainty of data quality (after preprocessing), which causes poor results. 
This uncertainty can lead to unreliable identification and interpretation of brain 
neural activities. Cluster analysis of neuroimaging data, such as ERP data, often 
assumes that the data is preprocessed. However, various sources of uncertainty, 
especially noise in the signal, can cause cluster analysis failure, particularly due 
to low spatial correlation (for microstate analysis) or unreliable similarity 
definitions in popular clustering methods. 

https://doi.org/10.1016/j.bspc.2023.105202
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Methods 
We developed an ensemble deep clustering pipeline from semi-supervised and 
unsupervised deep clustering methods (as shown in Figure 13) to identify an ERP 
of interest from group-averaged ERP data with additional noise (e.g., adding 20 
dB to -5 dB white Gaussian noise) applied. We used the M-N plot (Mahini et al., 
2022) to configure the consensus function in both initializing consensus 
clustering and deep clustering ensemble. Semi-supervised deep clustering with 
fully connected multi-level perceptron (FC_MLP), long short-term memory 
(LSTM), and one-dimensional convolutional neural network (1DCNN) DNN 
models were designed and initialized through consensus clustering. The 
unsupervised deep clustering methods were designed with autoencoder (AE), 
variational AE (VAE), and deep embedded clustering (DEC) models. The latent 
layer of the semi-supervised models was connected to the clustering module for 
clustering of the transformed weighted data. The transformed data from the 
encoder part of the unsupervised models (except DEC, which had an integrated 
clustering layer) was used for clustering. 

 

 

FIGURE 13 Ensemble deep clustering pipeline for determining the time window of an 
ERP in group mean spatiotemporal ERP data. TW=time window. 

Among different strategies for ensemble clustering (Cao et al., 2020; Sagi & 
Rokach, 2018), we combined the clustering results of individual methods to 
calculate the ensemble result from non-heterogeneous elements (i.e., various 
DNNs strategies). Once the results from the deep clustering methods were 
obtained, the hypergraph-based consensus function CSPA was used to explore 
the most aggregated clustering results. We assessed our approach by applying 
the simulated data (from Article I) and the real ERP data (used in Article III). The 
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modified time window determination method was adapted by automatically 
adjusting the inner similarity threshold (e.g., 0.7 ≤ minimum inner similarity ≤ 
0.95) and the duration of candidate cluster maps (e.g., 30 ms ≤ minimum number 
of time points ≤ 50 ms) as required. 

Results and Conclusions 
Our findings revealed the power of deep clustering methods in isolating the ERP 
components, including both semi-supervised and unsupervised designs. 
Compared to conventional clustering methods, the proposed ensemble method 
yielded more robust clustering results in terms of the spatiotemporal properties 
of estimated time windows considering the added noise in data. The new design 
also disclosed the untapped potential of deep learning methods as tools for 
exploring intricate, interesting patterns within neuroimaging data and offering 
new insights into the complexities of the human brain. 

Contributions 
Reza Mahini conceptualized and conducted the study, including developing the 
algorithm, data processing, coding, and software development, as well as writing 
and revising the manuscript. Fan Li provided technical support and tested the 
method and software. Mahdi Zarei contributed to discussions as well as writing 
and reviewing the manuscript. Asoke K. Nandi conceptualized the study, 
provided technical support, and wrote the manuscript. Timo Hämäläinen 
conceptualized the study, provided technical support, and wrote and revised the 
manuscript. Fengyu Cong conceptualized and supervised the whole project, 
provided technical support, and wrote and revised the manuscript. 
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This thesis discussed cluster analysis in the context of a group-level analysis of 
ERP data. In this chapter, we provide an overview of our findings for each 
research study, address methodological limitations, and consider avenues for 
future research. 

4.1 Summary of New Findings in Group-level ERP Analysis 

Article I introduced a novel data-driven approach for determining the optimal 
number of clusters and proposed a consensus clustering pipeline to process 
spatiotemporal ERP data and identify the ERP of interest. One key challenge in 
determining the appropriate number of clusters is the overlapping nature of ERP 
components, as improper clustering can result in the combination or division of 
distinct components. Article I addressed estimating the optimal number of 
clusters by proposing a data-driven approach, investigating two ERP 
components. Our results highlight the relationship between the determining 
number of clusters and the identifying time window of ERP. This is achieved by 
evaluating the inner similarity of candidate cluster maps under different 
clustering options (e.g., 2–15 clusters).  

Article II proposed developing a time window determination method and 
introduced a multi-set consensus clustering approach in individual subjects and 
group levels. This method captures mutual information by combining clustering 
results from individual subjects, yielding a robust estimation of ERP time 
windows. Article III took a step further by establishing a multi-set consensus 
clustering mechanism for single-trial EEG epochs to isolate the ERP response of 
individual subjects. A standardization mechanism was developed to evaluate 
signal processing on single-trial EEG data through a bootstrapping test to test the 
reproducibility of the scoring, i.e., obtained from designed multi-set consensus 
clustering for processing single-trial EEG data. This mechanism aims to explore 
realistic evoked responses from individual subjects. While the methodologies 

4 CONCLUSION AND DISCUSSION 
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presented in Articles I and II underscore the reliability of consensus clustering, it 
is imperative to note that even the most robust clustering method can encounter 
challenges in noisy data, which leads to unstable clusters.  

Article IV addressed this challenge by applying an ensemble deep 
clustering approach based on various deep clustering strategies, focusing on 
clustering group-averaged data, especially in scenarios where significant noise 
persists after preprocessing and averaging. Our findings in Article IV highlight 
the effectiveness of deep clustering methods in identifying the major ERP 
components under varying levels of additive noise. 

4.2 Limitations of Methodological Designs 

The primary contribution of this thesis is the design of a reliable clustering 
approach for qualifying an ERP of interest, assuming a foundational 
understanding of existing ERPs and their spatial properties. While our studies 
and methods contribute significantly to addressing spatiotemporal ERP cluster 
analysis, certain limitations warrant consideration. 

Specifically, in Article I, a consensus clustering framework was applied to 
group-averaged ERP data to determine the optimal number of clusters. The 
challenge of selecting appropriate configurations for generating consensus 
clusters persists. Although this study adapted configurations using the M-N plot 
technique to assess inner similarity and estimated time window duration for 
different ERP data, a straightforward solution to the consensus clustering 
configuration problem remains elusive. 

Another limitation is that although group-averaged ERPs encapsulate 
dominant information from individual subjects’ brain responses, this overlooks 
potential variations stemming from physiological differences and dataset-
specific characteristics. These aspects, crucial for accurate representation, can be 
neglected when calculating group-averaged ERPs. Notably, group-averaged ERP 
signals represented the average of trials within each condition across the 
participant group and thus did not reflect their actual brain responses. However, 
Article II addressed this issue by proposing a multi-set consensus clustering 
(Mahini et al., 2020) approach as a more cautious approach, assuming that 
combining brain responses from similar sources (individual subjects) would be 
feasible via this method. However, both consensus clustering-based solutions 
(Mahini et al., 2020; Mahini et al., 2022) assume a fixed configuration for all 
individual subjects, omitting systematic investigation to determine the optimal 
number of clusters and cluster configurations for each subject. While modified 
multi-set consensus clustering for single-trial EEG analysis in Article III delved 
deeper into investigating individual subjects’ brain responses (Mahini et al., 
2023b), this should be further explored in future research. 

In Article IV, we applied various standard deep clustering methods to 
determine a reliable time window for group-averaged ERP data with additional 
noise. However, this approach may have underestimated complex data 
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uncertainties, such as the data recorded from the disorder groups. While 
demonstrating reliability in detecting larger effects, a more comprehensive 
exploration is required to identify the limits and accuracy of deep learning in 
identifying neurophysiological activities. Lastly, across Article I–IV, a consistent 
ensemble learning mechanism utilizing the hypergraph-based consensus 
function CSPA was applied at multiple levels. Despite CSPA’s reliability in terms 
of tolerance for missing label problem, as well as its consistency across varying 
cluster counts, its high computational and memory demands necessitate 
advanced hardware, particularly for local machines. 

An additional drawback of the consensus clustering mechanism employed 
in these studies is its shortcomings in guaranteeing optimal clustering results 
when employing clustering approaches, including the standard and microstate 
clustering methods. This issue is known as the exploitation problem in machine 
learning, where consensus clustering aims to identify the optimal clustering 
solution from various clustering solutions by exploring the most robust 
aggregation from diverse clustering approaches. However, consensus functions 
such as CSPA inherently consider temporal dynamics more than spatial 
dynamics of cluster maps. 

4.3 Future Directions 

There are several promising avenues to explore based on the frameworks 
presented for group-level EEG/ERP analysis. First, the techniques developed in 
this thesis can be extended to process MEG data (Hansen et al., 2010; Lopes da 
Silva, 2013). 

Specifically, while Article I and II investigated consensus clustering using 
standard and microstate clustering methods, one direction to enhance the 
proposed consensus clustering is to optimize the configuration mechanism 
during the generation phase. This optimization is expected to overcome 
individual clustering limitations and provide an adaptive configuration 
mechanism, such as testing the consistency of employed clustering methods 
(Mahini et al., 2022) and involving the advanced clustering method (i.e., 
incorporating variations of microstate clustering) as suggested by von Wegner et 
al. (2018). Furthermore, the determination of the optimal number of clusters can 
also be extended to individual-subject data. In addition, identifying the ERP of 
interest for each subject could constitute a more realistic investigation. 

Cluster analysis of EEG signals (evoked and resting states) is crucial due to 
the quality of the data, resulting in lower sample similarities and unstable 
clusters. This arises from the inherent limitation of the proposed multi-set 
consensus function to directly account for changes in microstate dynamics and 
spatial configuration within the obtained cluster maps. To enhance the efficacy 
of the proposed multi-set consensus function in Articles I, II, and III, a post hoc 
procedure could be implemented to enhance the quality of cluster maps derived 
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from clustering outcomes. Therefore, additional refinement based on spatial 
correlation analysis would optimize the proposed consensus clustering. 

An important way to build on Article IV would involve investigating the 
synergy between deep learning and clustering methods. Further inquiry is 
needed to analyze advanced learning strategies for DNN models and the design 
of ensemble deep clustering to optimize clustering quality. More specifically, 
divisions and ensembles can be performed on datasets, on training models, or at 
the clustering level. While the quality of extracted features from model training 
can be evaluated using methods such as PCA or t-distributed stochastic neighbor 
embedding (Van der Maaten & Hinton, 2008) representation, clustering quality 
evaluation lacks a straightforward method. 

Expanding these methodologies to other domains (e.g., time-frequency, 
spectral analysis) and types of neuroimaging data, such as MEG and fMRI, would 
open exciting avenues for future research that could continue to advance the field 
of neuroimaging cluster analysis. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Tässä väitöskirjassa käsitellään klusterianalyysiä konsensusklusterointipohjai-
sessa (ERP) ryhmätason analyysissä. Väitöskirjan päätulos on luotettavan klus-
terointimenetelmän suunnittelu ERP:n laadulliseen arviointiin olettaen, että ole-
massa olevat ERP:t ja niiden spatiaaliset ominaisuudet tunnetaan perusteellisesti. 

Artikkelissa I esitellään uudentyyppinen datavetoinen lähestymistapa opti-
maalisen klusterien lukumäärän määrittämiseen ja ehdotetaan yhteisymmärrys-
klusterointiputkea, jolla käsitellään spatiaalis-temporaalisia ERP-tietoja ja tun-
nistetaan kiinnostava ERP-komponentti. Yksi keskeinen haaste optimaalisen 
klusterien lukumäärän määrittämisessä on ERP-komponenttien päällekkäisyys, 
sillä virheellinen klusterointi voi johtaa erillisten komponenttien sulautumiseen 
tai jakautumiseen. Artikkelissa käsitellään optimaalisen klusterien lukumäärän 
arviointia ehdottamalla datavetoista lähestymistapaa ja tutkimalla kahta ERP-
komponenttia. Tulokset korostavat yhteyttä klusterien lukumäärän ja ERP:n 
aikaikkunan tunnistamisen välillä. Tämä saavutetaan arvioimalla ehdokasklus-
terikarttojen sisäistä samankaltaisuutta eri klusterointivaihtoehdoilla (esim. 2–15 
klusteria).  

Artikkelissa II ehdotetaan aikajakson määritysmenetelmän kehittämistä ja 
esitellään monijoukkoiseen konsensusklusterointiin perustuva lähestymistapa 
yksittäisille koehenkilöille ja ryhmätasoille. Tämä menetelmä sieppaa yhteistä 
tietoa yhdistämällä klusterointitulokset yksittäisiltä koehenkilöiltä, tuottaen va-
kaan arvion ERP:n aikaluokista. Artikkeli III esittää monijoukkoista konsensus-
klusterointimekanismia yksittäisten koetilaisuuksien EEG-epookkeihin eristääk-
seen yksittäisten koehenkilöiden ERP-vasteen. Standardointimekanismi kehitet-
tiin arvioimaan signaalinkäsittelyä yksittäisillä EEG-tietojaksoilla bootstrapping-
testin kautta testaamaan niiden pisteiden toistettavuutta, jotka saadaan suunni-
tellusta monijoukkoisesta konsensusklusteroinnista yksittäisten EEG-tietojen 
käsittelyssä. Tämä mekanismi pyrkii tutkimaan realistisia aiheutettuja vastauk-
sia yksittäisiltä koehenkilöiltä.  

Artikkeleissa I ja II esitellyt menetelmät korostavat konsensusklusteroinnin 
luotettavuutta. On tärkeää huomata, että jopa tehokkain klusterointimenetelmä 
voi kohdata haasteita kohinaisessa datassa, mikä johtaa epävakaaseen kluste-
rointiin.  

Artikkeli IV käsittelee tätä haastetta soveltamalla ryhmäkeskitetyn datan 
syvään klusterointiin perustuvaa monijoukkoista lähestymistapaa erityisesti ti-
lanteissa, joissa merkittävää kohinaa esiintyy esikäsittelyn ja keskiarvoistamisen 
jälkeen. Artikkelin tulokset korostavat syvien klusterointimenetelmien tehok-
kuutta merkittävien ERP-komponenttien tunnistamisessa vaihtelevilla kohinata-
soilla. 
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Tutkimuksen myötä on löytynyt useita tutkimussuuntia tässä väitöskirjassa 
esitetyn EEG/ERP-analyysin viitekehyksien perusteella. Kehitetyt tekniikat voi-
daan laajentaa prosessoimaan MEG-tietoja (Hansen et al., 2010; Lopes da Silva, 
2013). Lisäksi näiden metodologioiden laajentaminen muihin alueisiin (esim. 
aika-taajuus, spektrianalyysi) ja neurokuvantamistietoihin (kuten MEG ja fMRI) 
avaa mielenkiintoisia mahdollisuuksia tulevalle tutkimukselle neurokuvantami-
sen klusterianalyysin kehittämiseksi. 
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Abstract

Averaging amplitudes over consecutive time samples (i.e., time window) is widely used to calculate the peak amplitude of 
event-related potentials (ERPs). Cluster analysis of the spatio-temporal ERP data is a promising tool to determine the time 
window of an ERP of interest. However, determining an appropriate number of clusters to optimally represent ERPs is still 
challenging. Here, we develop a new method to estimate the optimal number of clusters utilizing consensus clustering. Vari-
ous polarity dependent clustering methods, namely, k-means, hierarchical clustering, fuzzy c-means, self-organizing map, 
spectral clustering, and Gaussian mixture model, are used to conigure consensus clustering after assessing them individually. 
When a range of clusters is applied many times, the optimal number of clusters should correspond to the expectation, which 
is the average of the obtained mean inner-similarities of estimated time windows across all conditions and groups converge 
in the satisfactory thresholds. In order to assess our method, the proposed method has been applied to simulated data and 
prospective memory experiment ERP data aimed to qualify N2 and P3, and N300 and prospective positivity components, 
respectively. The results of determining the optimal number of clusters meet at six cluster maps for both ERP data. In addi-
tion, our results revealed that the proposed method could be reliably applied to ERP data to determine the appropriate time 
window for the ERP of interest when the measurement interval is not accurately deined.

Keywords Event-related potentials · Optimal number of clusters · Topographical analysis · Time window · Microstates · 
Consensus clustering
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Introduction

Event-related potentials (ERPs) have been considered 
as a fundamental neuroimaging technique for cognitive 
neuroscience. Measuring the mean peak amplitude of an 
ERP in a speciic temporal interval so-called time win-
dow, undertakes a signiicant role in the statistical power 
analysis (Luck 2014). The underlying assumption of this 
measurement is that the brain response in the time win-
dow is associated with the same brain activity as the indi-
viduals. This response can be considered as a quasi-stable 
synchronized network activation (topographical maps) at 
this certain time (Lehmann 1990). Inspiring by explor-
ing stable brain response, clustering of spatio-temporal 
electroencephalogram (EEG)/ERP data is employed as a 
promising tool to identify the time window of the ERP of 
interest (Brunet et al. 2011; Koenig et al. 2014; Murray 
et al. 2008). Therefore, the clustering quality for qualify-
ing ERP components has become more and more critical. 
The vital issue in clustering is the trade-of between the 
number of clusters and segmentation quality. Indeed, the 
number of clusters impacts data compression level follow-
ing the qualifying ERP components. If the number of clus-
ters is low, the dataset will be highly compressed (based on 
the explained variance), whereas increasing the number of 
clusters decreases data compression (Murray et al. 2008).

Numerous traditional methods were used to determine 
the optimal number of clusters in the data analysis litera-
ture. Various policies such as similarity within the time 
points (Kaufman and Rousseeuw 2009; Rousseeuw 1987), 
distance within each cluster and between the clusters 
(Dunn 1974), explained variance measurement (Goutte 
et al. 1999; Lleti et al. 2004) were widely used as the clas-
sic methods for inding the optimal number of clusters. 
Furthermore, hybrid methods using thirty diferent indices 
(Milligan and Cooper 1985), combining Silhouette validity 
index and local scaling (Mur et al. 2016) were consid-
ered. Numerous of those methods were addressed in the R 
software package NbClust (Charrad et al. 2014; Kassam-
bara 2017), which are available for the researchers. More 
approaches based on information theory (Jonnalagadda 
and Srinivasan 2009; Pelleg and Moore 2000; Sugar and 
James 2003) were proposed to assess clustering quality. 
For example, x-means (Pelleg and Moore 2000) and Gap 
statistics (Charrad et al. 2014) found more attention in 
the recent decade by employing evaluation within-group 
dispersion. Together, the studies mentioned above focused 
on analyzing the quality of clustering by evaluating the 
tightness and distance between all the clusters.

For EEG brain imaging clustering, cross-validation 
(Pascual-Marqui et al. 1995) and Krzanowski–Lai Index 
(Murray et al. 2008) were used as the popular methods for 

determining the optimal number of clusters. Some other 
studies (Bréchet et al. 2019; Custo et al. 2017) consid-
ered a meta-criterion from multiple indices for a better 
determination of the appropriate number of clusters. Yet, 
the predeined four canonical template maps have been 
widely observed in the clustering of resting-state EEG data 
(Michel and Koenig 2018). In this approach, the template 
maps are assigned to the microstate maps called “Back-
itting” (Bréchet et al. 2019) based on spatial correlation. 
Then, the temporal smoothing needs to be performed due 
to neglecting the temporal order.

To the best of our knowledge, two groups of partition-
ing methods exist for EEG/ERP data depending on either 
considering or ignoring polarity in data. In the irst and 
prevalent group, the calculated global ield power (GFP) 
from the data (i.e., GFP peaks or the entire GFPs) is used 
for clustering EEG (especially resting-state EEG) or ERP 
microstates. Two of the most popular clustering methods, 
modiied k-means (Pascual-Marqui et al. 1995) and hier-
archical clustering (Murray et al. 2008), are used to clus-
ter EEG/ERP data by ignoring the polarity of time points. 
Likewise, clustering spatio-temporal ERP data (i.e., from 
the GFP peaks) is investigated in numerous studies using 
polarity-invariant clustering methods (Koenig et al. 2014; 
Murray et al. 2008; Pourtois et al. 2008; Ruggeri et al. 2019) 
on mostly grand average ERP (i.e., to determine template 
maps). In this method, a post-hoc procedure is required to 
reassign the time samples (i.e., based on spatial correla-
tion) to the dominant template maps. Those template maps 
are commonly selected by considering the maxima global 
explained variance (GEV) and dissimilarity between them 
in ERP and using four predeined classic microstate template 
maps in EEG analysis (Michel and Koenig 2018).

In the second group, recently, a number of researchers 
argued the limitations of the microstate analysis on GFPs, 
which potentially increases the uncertainty of the results 
(Dinov and Leech 2017; Mishra et al. 2019; Shaw et al. 
2019). Therefore, some researchers applied polarity depend-
ent clustering methods such as probabilistic-based clustering 
(Dinov and Leech 2017). The standard k-means clustering 
for ERP (Poulsen et al. 2018) was also used in the Microstate 
EEGlab toolbox in addition to popular microstate analyz-
ing methods. Furthermore, a clustering method on multiple 
domains, i.e., (sensor, time)-samples, called cluster-based 
permutation (Maris and Oostenveld 2007), was proposed 
to determine the time window in the popular toolbox called 
FieldTrip (Oostenveld et al. 2011).

Together, both mentioned clustering strategies 
assumed that a typical clustering method could be suf-
ficiently suitable to be applied on EEG/ERP data without 
considering the inconsistency and quality of the datasets. 
However, even the popular clustering algorithms could 
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fail spectacularly for certain datasets that do not match 
the corresponding modeling assumptions (Acharya 
and Ghosh 2011). Therefore, consensus clustering has 
received remarkable attention in biological data process-
ing (Abu-Jamous et al. 2014, 2015a, b), particularly in 
brain imaging, e.g., functional magnetic resonance imag-
ing (fMRI) and EEG/ERP data processing (Liu et  al. 
2015, 2017a, b; Mahini et al. 2020; Song et al. 2019). We 
used consensus clustering from the polarity independent 
clustering methods to investigate ERPs in the entire data-
set. The idea is to provide the most reliable and firmest 
mutual clustering among the suitable polarity dependent 
clustering methods without being influenced by their dif-
ferences in optimization for ERP data.

The rationale of the proposed method is that in an 
ERP experiment, several ERP components are inevita-
bly generated; however, a few of them are targeted ERP 
components, which are more probably elicited if the ERP 
experiment is rerun. Those targeted ERP components are 
more likely elicited among multiple subjects. Besides, 
for an interesting ERP component, clustering the ERP 
dataset into different numbers of clusters may affect its 
analysis. This is because of two reasons: the first reason is 
that the ERP component can be associated with a certain 
brain activity that has its own topography in the spatial 
(i.e., topographic) domain and its own starting time point 
and the ending time-point in the time domain. The other 
reason is that the inappropriate number of clusters used 
for the clustering may result in separating one true cluster 
into two or more clusters in practice. Finally, the ideal 
number of clusters used for the clustering can result in 
the perfect cluster of interest in theory. The topographies 
of different time points in a time window will be iden-
tical for the perfect cluster since the cluster represents 
an ERP component of certain brain activity. Therefore, 
the correlation coefficient of the topographies between 
any two time points in the time window (called inner-
similarity), which is found by the clustering, should be 
1 in theory. Our proposed method investigates the mean 
inner-similarity of the selected time windows (i.e., using 
a newly developed time window determination method) 
from many times running consensus clustering for dif-
ferent options (e.g., from 2 to 15 clusters based on the 
past experiences, which can be changed if needed) to find 
an optimal number of clusters. Further, we assess our 
proposed method on two ERP datasets: simulated ERP 
data and prospective memory (PM) ERP data. We illus-
trate that the proposed consensus clustering provides a 
robust clustering result for identifying the most suitable 
time window for ERPs of interest. On this basis, we also 
demonstrate the determination of the optimal number 
of clusters to be carried out via assessing the quality of 
obtaining time windows.

Materials and Methods

ERP Data

Simulated ERP Data

In order to validate the proposed methodology, simulated 
data was conducted using Berg’s Dipo (2006) simulator 
(http:// www. besa. de/ updat es/ tools/). We deined six com-
ponents, namely, P1, N1, P2, N2, P3, and N4, and two con-
ditions named ‘Cond1’ and ‘Cond2’ from a group of 20 
subjects. A simulated scalp with 65 electrodes was deined 
for representing the spatial dimension. Each epoch started 
from 100 ms pre-stimulus to 600 ms post-stimulus with a 
429 Hz sampling rate. The averaged reference method was 
used for the referencing. The waveforms of the deined 
components and corresponding topographical maps have 
been illustrated in Fig. 1. Two state-of-the-art ERP com-
ponents, the N2 component that refers to the maximum 
negative peak in 183–278  ms and the P3 component 
that refers to the positive response in 231–350 ms, were 
selected for a more detailed investigation. Meanwhile, the 
signal was manipulated using the MATLAB function awgn 
(i.e., adding white Gaussian noise) to add some noise, i.e., 
signal-to-noise ratio (SNR) = 20 dB, to the signal power 
measured for each individual dataset. Further, a random 
silent movement of two ERP components (e.g., by ran-
domly increasing/decreasing a maximum of 5 time points) 
was applied to the signal. Thereby, the conducted ERP 
data was supposed to be preprocessed, time-locked, and 
phase-locked. The electrode sites for measuring statisti-
cal amplitude power diferences were deined in P6/PO4 
for N2 and CPz/Cz for P3, which was associated with the 
deinition of each component.

Real ERP Data

The prospective memory experiment (Chen et al. 2015) 
data was employed from the publication of our group as 
real ERP data. The real data contained 20 symptomati-
cally remitted patients, i.e., with schizophrenia (RS) and 
20 healthy control (HC) participants. Two tasks were 
investigated, namely, prospective memory (PM) and 
ongoing task. The EEG data was recorded with 32 elec-
trodes (SynAmps amplifier, NeuroScan) and epoched 
from 200 ms pre-stimulus to 1000 ms post-stimulus. Fur-
thermore, a 30 Hz (24 dB/octave) digital low-pass filter 
was applied. Two target ERP components were investi-
gated. Following the previous study, the N300 component 
refers to the maximum negative voltage over the occipi-
tal region (hypothetically between 190 and 400 ms), and 
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the prospective positivity represents the maximum posi-
tive voltage over the parietal region (between 400 and 
1000 ms).

Proposed Method

The proposed method contains the main procedure (Pro-
cedure 1) and a subprocedure for the time window deter-
mination (Procedure 2). The graphical representation of 
the steps of the proposed method is illustrated in Fig. 2, 
and the pseudo-code is shown in Procedure 1. A more 
detailed explanation is as follows:

Procedure 1: Optimal number of clusters 

Input: ERP data, ERPs of interest info. (Experimental intervals)

Output: Optimal number of clusters, time window

Procedure

Step1. Temporal concatenating datasets;

     FOR 100 independent runs

            FOR each ERP component

    FOR Number of clusters 2 to 15

Step2. Consensus clustering;

Step3. Time window determination (Procedure 2);

    End of FOR (Number of clusters)

            End of FOR (ERP)

    End of FOR (100 runs)

Step4. Optimal number of clusters determination;

End of Procedure

Data for Clustering

First, a temporal concatenated dataset is provided using the 
group-averaged ERP data across all conditions/groups of 
the experiment (Calhoun et al. 2009; Murray et al. 2008). 
Thereby, samples for clustering are the time points, and the 
features are represented by the topographical map (i.e., the 
electrodes’ value). The goal of clustering is to ind the con-
secutive time points sharing similar topographies in which 
the neural responses remain stable for a period of time (i.e., 
time window).

Consensus Clustering

Consensus clustering refers to synergistically combining 
multiple clusterings of a dataset(s) into a consolidated clus-
tering result (Acharya and Ghosh 2011). There is, however, 
no predeined or straightforward solution for selecting clus-
tering methods in consensus clustering literature. It is due to 
the fact that there is no ground-truth solution (in the cluster-
ing) when the data generation process (the recorded data) is 
complicated (i.e., there is no conirmed information about 
how well clustering explains the data).

We conigured our proposed consensus clustering from 
the widely used clustering algorithms in neuroimaging, par-
ticularly polarity independent clustering methods. This was 

Fig.1  Visualizing the topo-
graphical maps and correspond-
ing waveforms of six predeined 
ERP components, namely, P1, 
N1, P2, N2, P3, and N4, in the 
simulated ERP data
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because of two reasons; irst, our method for processing ERP 
data uses the entire time points, taking their polarity into 
account; second, to ensure consistency between the methods 
in the generation step. We used the M–N plot evaluation tech-
nique (Abu-Jamous et al. 2014) from the individual clustering 
methods on the grand average ERP data to qualify clustering 
methods. Two criteria were considered, the inner-similarity 
and number of samples in the estimated time windows. The 
procedure was repeated several times, testing each method 
(e.g., 20 to keep the plot readable) with the number of clusters 
obtained from the explained variance analysis, i.e., four and 

six cluster maps for the simulated and the real data. A num-
ber of polarity dependent clustering methods were used for 
assessing and coniguration of consensus clustering, namely, 
k-means (Pena et al. 1999) and hierarchical clustering (Tib-
shirani and Walther 2005) with correlation similarity func-
tion, fuzzy c-means (FCM) (Bezdek 1981), self-organizing 
maps (SOM) (Kohonen 1990), difusion map spectral cluster-
ing (Sipola et al. 2013) consisting of k-means with Euclidean 
similarity, standard spectral clustering (SPC) (Ng et al. 2002), 
k-medoids clustering (KMD) (Park and Jun 2009) with corre-
lation similarity function, and Gaussian mixture model cluster-
ing (GMM) (De Lucia et al. 2007; Dempster et al. 1977) with 
repetitive k-means structure.

Afterward, the proposed method generates many parti-
tions in over 100 independent runs (via the selected clus-
tering methods) for each option (e.g., 2–15 clusters) and 
applies the consensus clustering for each independent run. In 
the ensembling phase, cluster-based similarity partitioning 
algorithm (CSPA) (Karypis and Kumar 1998; Nguyen and 
Caruana 2007), based on pairwise similarity, is utilized as a 
measurement between partitions. The goal of the consensus 
clustering method is to ind aggregate labeling such as L∗ 
which could better represent the properties of each labeling 
in L in terms of speciicity and coverage of the information 
in the dataset. Mathematically, L∗ can be deined as:

where Γ denotes a similarity measurement (i.e., cluster-based 
similarity), which can measure mutual information between 
a set of R clusterings. From Eq. 1, the cluster ensemble L∗ 
is an optimal clustering with maximum similarity to other 
clusterings. Hence, the consensus function puts the samples 
in clusters where they have clustered in the same group from 
most clusterings. Once the clustering labels are assigned 
via clustering methods (generation phase), the consensus 
function (i.e., CSPA) explores the maximum aggregation 
between the clusterings. Therefore, the inal clustering car-
ries the mutual information (Eq. 1) from diferent methods 
(i.e., topographical coniguration, polarity, and similarity 
in temporal domain with coniguration changes). In other 
words, the consensus function combines mutual informa-
tion about the cognitive processes in the data from diferent 
results.

To assess the role of the selected clustering methods, 
ARI was used to measure the mutual similarity (Meila 2007; 
Strehl and Ghosh 2003) between each clustering method and 
consensus clustering. Rand index (1971) can be calculated 
using the following equation:

(1)L∗
= argmaxL∈�

R
∑

r=1

Γ
(

Lr

)
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Fig. 2  Illustration of the proposed method for determining the opti-
mal number of clusters. a The learning step includes data prepara-
tion (temporal concatenating), generation phase of consensus func-
tion, and the time window estimation. b Processing of the estimated 
time windows properties along with the previous step’s results and 
determining the optimal number of clusters. The optimal number of 
clusters is obtained from analyzing the average of the means of inner-
similarities among the conditions (i.e., obtained from many times 
running the method). CC consensus clustering, Cond condition
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and by calculating the expectation of R ( E[R] ), ARI is cal-
culated as the following:

where n denotes the number of observations and N
00

 denotes 
the number of object pairs in diferent clusters from both L 
and L′ clusterings. While N11 denotes the number of object 
pairs in the same clusters in L and L′.

Time Window Determination

The time window determination method analyzes the tempo-
ral and spatial characteristics of the result cluster maps for 
estimating an appropriate time window (see Procedure 2). 
The candidate cluster maps’ inner-similarity and overlapping 
(with the experimental deined ERP component), i.e., the maps 
in the experimental measurement area, were investigated for 
qualifying the time windows. It is noteworthy that, following 
the literature (Kappenman and Luck 2012) and our experi-
ence, we rely on the experiment mechanism that undertakes 
an important role in deining the experimental interval of the 
components. The inner-similarity of consecutive time points 
is calculated in the candidate cluster maps, which is aimed at 
selecting the cluster maps with a higher spatial correlation. 
The inner-similarity of a cluster map refers to the mean of 
correlation coeicients between topographical maps of each 
two diferent time points.

Procedure 2: Time window determination

Input: Clustering result, ERPs of interest info. (Experimental intervals)

Output: Time windows, Inner-similarities 

Procedure

Step1. Detecting the candidate cluster maps;

FOR Each candidate map

Step2. Calculating inner-similarity and overlapping;

Step3. Detecting cluster maps with high inner-similarity;

Step4. Selecting higher overlapping within maps;

End of FOR

End of Procedure

In order to calculate the inner-similarity of a cluster map, 
irst, the spatial correlation coeicient (Micah et al. 2009; 
Murray et al. 2008) of the time points is calculated. Then, for 
each row (in the correlation matrix), the distance matrix is 
calculated as:

where D denotes the distance matrix in which each row is 
the distance between each element in the row and Cor

v,v (i.e., 

(2)R
(

L, L�
)

=
N11 + N00

n(n − 1)∕2

,

(3)ARI
(

L, L
�
)

=
R
(

L, L
�
)

− E[R]

1 − E[R]
,

(4)D
v
= d

(

Cor
v,u, Cor

v,v

)

, u ≠ v,

self-correlation) from the correlation matrix ( Cor).Cor
v,u 

denotes the correlation coeicient between the topographi-
cal maps of u and v as two time points in the cluster map. 
For the variance-stabilizing transformation of the calculated 
correlation, Fisher z-transform (1921) was used for each vec-
tor D

v
 (i.e., every row of distance matrix) before calculating 

the mean of the distance matrix D
avg

 . Finally, an inverse 
z-transform of D

avg
 was used for calculating the inner-simi-

larity as shown below:

Therefore, among the candidate cluster maps, the clus-
ter maps with a higher inner-similarity than the threshold 
(e.g., ≥ 0.95) were selected for overlap testing. Hypotheti-
cally, in the ERP component, the spatial correlation between 
the time points is close to 1, indicating consecutive time 
points representing a cognitive process. Speciically, the 
minimum acceptable time interval, which is a suicient 
number of time points for selecting the candidate cluster 
maps, was determined, e.g., ≥ 50 ms (Luck 2014) depending 
on the experimental goal, to avoid noise efect in measur-
ing peak latency of components. Next, among the candidate 
cluster maps, the cluster map with a higher inner-similar-
ity and overlap (i.e., with the experimental interval) was 
selected as the suitable cluster map for representing the time 
window. The temporal properties of the selected cluster map 
(start, end, and duration) are used for further steps. The 
implementable procedure of determining the time window 
was presented in Procedure 2.

Optimal Number of Clusters

The inner-similarities of the estimated time windows are 
calculated from many times independent running of con-
sensus clustering. Afterward, the optimal number of clusters 
for the prepared ERP dataset is calculated from the average 
inner-similarities’ mean across the conditions and groups. In 
addition to the parameter with the inner-similarity threshold 
(e.g., ≥ 0.95), the stability threshold, which is a very small 
change (e.g., ≤ 0.03) in the amplitude of inner-similarities, 
has been considered to determine the appropriate number of 
clusters. In other words, the optimal number of clusters can 
be expected when inner-similarity is satisfactorily high and 
stable (i.e., the minimum change concerning other nearby 
options) from the clustering options. Noteworthy to mention 
that, in our updated toolbox, we have provided a dynamic 
mechanism for adjusting the sensitivity parameters (i.e., the 
inner-similarity and stability thresholds) whenever needed 
to provide a better adaptation when the data is not well 
preprocessed.

(5)InnSim = 1 − Davg.
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Statistical Analysis

In order to assess the statistical performance of the new 
methodology, a repeated-measures ANOVA was per-
formed with the within-subject factor, Task (‘Cond1’ and 
‘Cond2’) in the electrode sites (P6/PO4 for N2 and CPz/
Cz for P3) in the simulated data. This was set up to the 
mean amplitude of N2 and P3 in the estimated time win-
dows. The standard analysis was carried out to determine 
whether these efects of the noted factors for each study 
were statistically signiicant. Likewise, another statistical 
analysis (for N300 and prospective positivity) was per-
formed by a repeated-measures ANOVA (i.e., mixed 2 × 2) 
with the addition of a between-subject factor: Group (RS 
and HC) and within-subject factors, Task (PM and Ongo-
ing) in the electrode sites following the previous study 
(Chen et  al. 2015) (i.e., electrode sites are O1/Oz/O2 
for N300 and P3/Pz/P4 for prospective positivity). This 
was accomplished for the mean amplitude of N300 and 
prospective positivity measured in the selected time win-
dows. The statistical comparisons were made at p-values 
of p < 0.05.

Results

As explained earlier, the M–N plot method has been used 
for selecting the clustering methods that conigure consensus 
clustering. Figure 3 illustrates the test results for each data-
set. Therefore, in order to provide an appropriate conigura-
tion of consensus clustering, we eliminated GMM, HC, and 
SPC methods from clustering of the real data (Fig. 3a), and 
GMM, DFS, and FCM from simulated data (Fig. 3b).

Results for Simulated ERP Data

We provided a feasibility test for the proposed clustering 
performance on the simulated data. Figure 4 illustrates the 
clustering result and the topography maps of identified 
ERP components by the cluster maps. Observably, the pro-
posed method has successfully isolated all the predeined 
ERP components assigning seven cluster maps (i.e., all the 
components with the corresponding topography maps). 
Therefore, the P1, N1, P2, N2, P3, and N4 components are 
qualiied with the cluster maps 1, 4, 3, 5, 6, and 7, respec-
tively. Therefore, the predeined ERP components are quali-
ied based on the spatial correlation between the predeined 
spatial coniguration (topographic maps) and the obtained 
cluster maps from the proposed clustering method. It should 
be stated that cluster map 2 refers to the brain state before 
stimulus onset and does not present any predeined ERP 

component. However, in practice, it is not always possible to 
distinctly qualify all the ERP components in the real experi-
mental data due to the overlapping between the components 
and experimental conditions.

Inner-similarity and the Optimal Number of Clusters

Figure 5 shows the changes of the inner-similarity of the 
estimated time windows in over 100 independent runs from 
the clustering options (i.e., from 2 to 15 clusters). As out-
lined before, our strategy is to ind the optimal number of 
clusters wherein the mean of the inner-similarities (of the 
obtained time windows) tends to be reasonably high and 
stable. Therefore, the proposed method explores the optimal 

Real Data

Simulated Dataa)

b)

Fig. 3  The results of assessing clustering methods for consensus 
clustering coniguration. The M–N plot method from the obtained 
time window results by each clustering method for the ERPs of inter-
est from 20 repeats and the number of clusters calculated from the 
expressed maximum 90% of explaining variance, i.e., four and six 
cluster maps for the simulated and the real data. a GMM, DFS, and 
FCM for simulated data, and b GMM, HC, and SPC for the real 
data, are excluded from the consensus clustering coniguration. KM 

k-means, HC hierarchical clustering, FCM fuzzy c-means, SOM self-
organizing map, DFS difusion map spectral clustering, SPC spec-
tral clustering, KMD k-medoids clustering, GMM Gaussian mixture 
model, CC consensus clustering
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number of clusters from the average inner-similarities mean 
of all conditions (see Fig. 5c). Accordingly, the optimal 
number of clusters for N2 and P3 components was obtained 
in six maps. Table 1 shows the temporal properties (in aver-
age) of the estimated time windows applying the obtained 
optimal number of clusters. As can be seen from the table, 
there is no reasonable aggregation between the results of 
various methods, which can lead to unreliable interpretation 
while investigating those results. This phenomenon indicates 
the efect of the existing overlapping between the compo-
nents and the compression level of clusterings. Particularly, 
Gap statistic and Dunn methods carried out a trivial per-
formance (i.e., the optimal number of clusters cannot be 
determined in the deined range); thus, we eliminated their 
results from the table.

Cluster Analysis and Time Window Determination

Figure 6 illustrates the clustering result (one randomly 
selected result) when applying the optimal number of clus-
ters to isolate the N2 and P3 components. It is observable 
that the N2 component (marked by blue color) is distinctly 
isolated by cluster map 4 for both conditions from 203 
to 262 ms and 201 to 262 ms, respectively. Likewise, P3 
(marked by pink color) is isolated by cluster map 1 from 
268 to 353 ms and 268 to 360 ms post-stimulus for Cond1 
and Cond2, respectively. Comparison between the temporal 
properties of the estimated time window results in Table 1 
and the ground-truth time window reveals that the N2 and P3 
components were successfully estimated using the proposed 
method. Notably, we have reported the mean of the obtained 
time windows over 100 independent runs in Table 1.

Statistical Results of Peak Amplitudes

We measured the mean amplitude of grand-means data in the 
selected time windows from the previous step for each con-
dition/group in the deined electrode site. Regardless of the 
methods (for determining the optimal number of clusters), the 
statistical power analysis results revealed that the main efect 
of Task was signiicant (p < 0.0001) in the identiied N2 com-
ponent. Similarly, a signiicant (p < 0.0001) main efect of Task 
was detected in the P3 component. For both components, the 
measured amplitudes were larger in Cond2 as our expectation 
(i.e., from the simulation mechanism). Notably, these results 
disclose that the proposed time window determination success-
fully isolates the N2 and P3 components.

Static Properties Analysis

The mean of inner-similarities from the obtained time win-
dows over many runs of the studied clustering methods is 
illustrated in Fig. 7. It illustrates the role of studied cluster-
ing methods in the proposed clustering, disclosing a similar 
trend in studied clustering methods and consensus cluster-
ing for both components of interest. This also indicates the 
stable performance of consensus clustering in terms of the 
inner-similarity of the estimated time windows. Besides, 
Table 2 provides more apparent evidence for the existing 
similarity between the studied clustering methods (i.e., the 
aggregation between the clusterings). This provides infor-
mation about the contribution of each clustering method to 
the proposed clustering. The ARI measurement (see sec-
tion “Consensus Clustering”) was used to calculate the simi-
larity between the clustering results.

Fig. 4  The proposed consensus 
clustering results on grand-aver-
aged ERP (i.e., condition 2) in 
the selected electrode sites (Pz, 
Fz, CP5, P6, Cz, and CPz). The 
qualiied P1, N1, P2, N2, P3, 
and N4 components correspond 
to the cluster maps 1, 4, 3, 5, 6, 
and 7, respectively (cluster map 
2 refers to the brain state before 
stimulus onset)
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Results for Real Data

Inner Similarity Analysis and the Optimal Number 

of Clusters

Figure 8 shows the inner-similarity variations (i.e., in the 
estimated time windows) with the number of cluster options 
for each condition and group. As mentioned before, the opti-
mal number of clusters can be estimated from the average 
of mean inner-similarities across the conditions and groups. 
Hence, the optimal number of clusters for real data met in 
six clusters (Fig. 8e) by satisfying the inner-similarity and 
stability thresholds. On the other hand, the optimal number 
of clusters from the studied conventional methods is reported 
in Table 3. Observably, missing a suitable aggregation dis-
closes challenges about the reliability and probable mislead-
ing interpretation issues for the clustering results upon the 
selected number of clusters via the conventional methods.

Cluster Analysis and Time Window Determination

The clustering results, including the identiied time win-
dows (indicated by the colored areas), the corresponding 
topographical maps, and the spatial correlation of time sam-
ples (from one randomly selected clustering result), have 
been illustrated in Fig. 9. As shown in the igure, N300 is 
qualiied with cluster map 5 for RS and HC and both tasks. 
Accordingly, N300 (the marked area with blue color) is 
identiied in 164–244 ms and 165–319 ms post-stimulus for 
PM and ongoing tasks in the RS group, where it is identi-
ied in 156–312 ms and 162–333 ms post-stimulus from the 
HC group, respectively. Similarly, the prospective positivity 
(marked by pink color) is identiied in 256–1000 ms and 

Fig. 5  Illustration of the optimal number of clusters estimation from 
the mean of inner-similarities of the time windows over 100 inde-
pendent runs for N2 and P3 in the simulated ERP data. a The inner-
similarities of the obtained time windows for N2 in two conditions 
(‘Cond 1’ and ‘Cond 2’). Likewise, b the inner-similarities for P3 in 
two conditions. c The yielded the optimal number of clusters (indi-
cated with vertical black hidden line), using the threshold of 0.95 
(highlighted with black horizontal hidden line) and the stability 
threshold of 0.03 (diference between the previous and next values), 
from the average of inner-similarities from conditions (illustrated 
by the dark orange line). N2-Cond1 mean inner-similarity in condi-
tion 1 and N2, N2-Cond2 mean inner-similarity in condition 2 and 
N2, P3-cond1 mean inner-similarity in condition 1 and P3, P3-Cond 

2 mean inner-similar in condition 2 and P3, Mean-all-Conds average 
inner-similarities mean across all the conditions
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360–922 ms post-stimulus for PM and ongoing tasks in the 
RS group (i.e., isolated by map 2 and map 1, respectively), 
and 313–695 ms and 376–783 ms for PM and ongoing tasks 
in HC group by map 4 and map 1, respectively. Table 3 illus-
trates the mean of time windows temporal properties apply-
ing the obtained number of clusters from diferent methods.

Statistical Results of Peak Amplitudes

The mean of p-values in over 100 independent tests was 
reported in Table 4. The results showed that the main efect 
of Group (p < 0.0001) was signiicant. Likewise, the signii-
cant main efect of Task type (p < 0.002) was observed for 
qualifying the N300 component. Importantly, the interaction 
between Task and Group was also signiicant (p < 0.048). 
However, the interaction between Task and Group was 
not suiciently stable (SD = 0.020) along with the results. 
Furthermore, the statistical analysis revealed that N300 in 
HC was qualiied by a signiicantly more negative potential 
over the occipital-central electrodes (p < 0.001). Besides, a 
silently more negative potential was observed over occipi-
tal-central electrodes (p < 0.001) in the ongoing task from 
both RS and HC groups in the N300 component. Likewise, 

investigating the prospective positivity component showed 
that the main efect of Task was signiicant (p < 0.0001). 
However, the main effect of Group (p < 0.393) and the 
interaction efect between Task and Group (p < 0.085) were 
not signiicant. Furthermore, a larger positive potential was 
localized over central electrodes (p < 0.0001) in the ongoing 
task compared to the PM task for both groups.

Static Properties Analysis

Table 4 shows the mean p-value regarding the studied factors 
(Group, Task, and interaction between Task and Group) for 
the N300 and prospective positivity components. As observ-
able in Table 4, the proposed method seems to aford rela-
tively more stable analyzing results in the estimated optimal 
number of clusters than the result yielded from other meth-
ods. Note that the clustering results from modiied k-means 
(in many times) were applied to the time window determina-
tion method to calculate the statistical analysis results.

From the information theory perspective, Fig. 10 demon-
strates similar behavior of the studied clustering methods, 
with observing their mean inner-similarity in both N300 

Table 1  The obtained number 
of clusters from the studied 
methods and the average time 
window properties results, i.e., 
from 100 runs, to qualify the 
N2 and P3 components in the 
simulated ERP data

The bold font marks the results representing the signiicant outcomes considering the ground-truth time 
windows. The reported format is, averaged time windows (ms)/standard deviation error, SD (ms)

Cond1 condition 1, Cond2 condition 2, OptNC optimal number of clusters

Method OptNC Properties N2 P3

Cond1 Cond2 Cond1 Cond2

Ground truth – Start 201.0 201.0 266.0 266.0
End 261.0 261.0 357.0 364.0
Duration 60.0 60.0 91.0 98.0

Silhouette NbClust optimal 3 Start 203.7/0.8 201.5/1.0 268.6/2.3 268.0/2.2
End 264.3/1.0 264.3/1.0 354.2/1.4 359.1/2.9
Duration 60.6/1.4 62.8/1.5 85.5/3.4 91.1/5.0

x-means elbow 4 Start 203.7/0.8 201.7/1.1 268.6/1.9 268.5/1.9
End 264.4/1.6 264.4/1.5 354.6/1.2 359.4/2.2
Duration 60.7/2.0 62.8/2.0 86.0/2.6 91.0/3.5

Proposed method 6 Start 203.3/0.0 201.4/0.9 268.5/0.5 267.9/0.9

End 262.3/1.6 262.4/1.6 354.9/0.5 360.7/1.3

Duration 59.0/1.6 60.9/1.9 86.3/0.7 92.8/1.7

Cross-validation 11 Start 203.5/0.6 201.2/0.6 268.8/0.7 268.8/0.7
End 262.6/2.2 261.6/2.7 353.0/1.2 359.6/0.7
Duration 59.1/2.3 60.4/3.1 84.3/1.7 90.8/1.3

Modiied k-means 11 Start 203.3/0.0 201.0/0.0 271.2/1.5 271.2/1.5
End 265.59/2.3 265.6/2.3 352.6/1.2 359.2/2.0

Duration 62.25/2.3 64.6/2.3 81.4/2.7 88.0/3.4
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and prospective positivity components. This can be attrib-
uted to the role of each individual clustering method in the 
proposed consensus clustering approach for real ERP data. 
The smoothness and overall high performance of consensus 
clustering (i.e., indicated with bold light blue line) can be 
observed in terms of robustness and the obtained high inner-
similarities. The calculated averaged similarity between the 
clusterings, i.e., in the obtained optimal number of clusters 
(see Table 5), provides a suitable criterion for evaluating the 
contribution of individual clustering to consensus clustering.

Discussion

The present study shows that the optimal number of clus-
ters for spatio-temporal ERP can be determined based on 
observing the phenomena that correspond with the quality 
of identifying the ERPs of interest. A consensus clustering 
was designed with the aim of obtaining a reliable cluster-
ing (series of stable intervals in time). The time window 
estimation method was applied to identify the ERPs of inter-
est from the clustering result. The main objective of this 
study was to accomplish a robust clustering mechanism for 
determining the optimal identiication of interesting ERP 
by studying the temporal dynamic and sensory information 
about group brain response.

The simulated and real ERP data were used to assess the 
performance of the proposed method. Our results declared 
that the proposed method successfully determines the opti-
mal number of clusters by analyzing the quality of the iden-
tiied ERPs of interest (i.e., a few target components) in 
both ERP data. Our indings also revealed that analyzing 
the quality of time window (i.e., high inner similarity in the 
experimental interest area), which indicates the stable brain 
state (highly probable to be a brain response), can be a useful 
tool for selecting an appropriate number of clusters. Further-
more, we found that the isolated ERP components difer on 
the properties of the time window (i.e., in the start, end, and 
duration) in diferent conditions/groups, which reveals the 
variety in the spatial and temporal dynamics of the brain 
response in diferent conditions and groups.

Fig. 6  Clustering and time window determination results for the 
N2 and P3 components. a The qualiied N2 component by map 4 
(colored blue) for both conditions, the corresponding topography 
map, and the correlation between time points for each condition. b 
The qualiied P3 component by map 1 (colored pink) for both condi-
tions
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Compared with the conventional methods to ind the 
optimal number of clusters and the combination of various 
indexes in literature (Murray et al. 2008; Pourtois et al. 2008; 
Ruggeri et al. 2019; von Wegner et al. 2018; Zappasodi et al. 
2019) for brain imaging clustering, we showed that the com-
pression level (provided by the number of clusters determi-
nation) afects the quality of the estimated time window and 
the statistical power analyzing results. As such, some recent 
works focused on data-driven methods based on using cross-
validation methods for optimizing the quality of the results, 
e.g., based on spatial correlation (Koenig et al. 2014). In the 
discussed method by Koenig et al. (2014), the maximum 
mean correlation obtained by calculating the mean corre-
lation between template maps was used for estimating the 
optimal number of template maps from many times cluster-
ing for each clusters option (e.g., 2–20). This study inspired 
us to design a data-driven analysis by investigating diferent 
quantiies. Although this method is practically useful, the 
authors investigated the whole cluster maps on grand aver-
age spatio-temporal ERP, applying, e.g., the cross-validation 
method and assessing the clustering quality. Besides, fol-
lowing the literature (Kappenman and Luck 2012; Michel 
and Pascual-Leone 2020), only a few ERPs can be distinctly 
elicited in the real experiment. This is because of the exist-
ing overlap between the components, afecting the accuracy 
of isolating the ERP of interest. Thus, the proposed method 
investigates the candidate cluster maps for ERP of interest, 
despite the literature that analyze the whole cluster maps 
in spatio-temporal ERP. Nevertheless, the obtained time 
windows quality needs to be carefully studied in terms of 
reliability and interpretability of the results.

As mentioned in the introduction, both polarity-invari-
ant and polarity dependent clustering methods were used 
to cluster spatio-temporal ERP with the aim of exploring 
the time window of interest. One should note that merely 
ensembling clustering methods without investigating the 
polarity of samples, or composing a consensus of polarity-
invariant with polarity dependent clustering methods, will 
increase the risk of assigning the samples with diferent 
polarities into identical maps. (i.e., a post-hoc procedure 
might be required). Although clustering of GFP values in 
the polarity-invariant methods provides a suitable tool for 
spatial dynamic analysis of the brain, the winner-takes-all 
strategy for determining the dominant template maps and 
GFP peak analysis increase uncertainty in the data and over-
lapping within the ERP components (Dinov and Leech 2017; 
Shaw et al. 2019). However, limited clustering methods are 
available from both strategies. Therefore, considering the 
fact that no clustering method matches the corresponding 
modeling assumptions and to minimize cluster ensemble 
inconsistency, we propose the irmest mutual clustering 
from polarity dependent clustering methods without being 
inluenced by their diferences in optimization for ERP data.

Fig. 7  Mean inner-similarities of the estimated time windows using 
the studied clustering methods from clustering options (2–15 clusters) 
in the simulated data. a The mean inner-similarity of each method for 
N2. b The mean inner-similarity of each method for P3
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Another parallel issue is the investigation of the con-
iguration of consensus clustering considering how well it 
represents the ERPs of interest, besides the lack of ground-
truth segmentation and a straightforward method for select-
ing clustering methods. Our method selects the clustering 
methods satisfying two criteria: inner-similarity and sui-
cient time window duration. Those selected clustering meth-
ods are most likely to be able to isolate ERPs. Furthermore, 
we provided the evaluation by testing the performance of 
single clustering methods based on the inner-similarity cri-
teria (Figs. 7, 10). Our results revealed that almost all the 
selected single clustering methods followed a similar behav-
ior, which is important to obtain more accurate results from 
the consensus clustering. Meanwhile, it was also observed 
that consensus clustering showed more stability and a higher 
inner-similarity (i.e., in most conditions). Furthermore, the 
statistical power analysis in over 100 runs of the proposed 
method entailed suitable robust results that made the pro-
posed method be able to be applied to diferent ERP data. 
However, in some of the statistical results, the proposed 
method is not the best (e.g., compared to the previous study), 
resulting from subjectively selecting a speciic time range to 
get a larger diference of the peaks.

According to the obtained results, two major diferences 
were noticed between the proposed method and conventional 
methods: (i) the comparison results revealed that qualifying 
the ERP components is sensitive to the determination of 
the appropriate number of clusters. Thus, the inappropriate 
number of clusters can inluence isolating the interesting 
components. We designed a data-driven approach investigat-
ing the experiment goal for identifying the ERP components. 
Applying the proposed method to the real data disclosed 
that the obtained cluster maps are interpretable as the real 
cognitive processes. (ii) Considering two important criteria 
for identifying the ERP of interest, the time window param-
eters (the start, end, and duration) and the stability of topo-
graphical coniguration (i.e., high inner-similarity) disclosed 
the fact that the new methodology is complementary to the 
conventional microstates analyzing in terms of isolating the 
ERP of interest. The drawback of the proposed method is 
that if the preprocessing of the data was not perfectly per-
formed or the data has large combined noises, the clustering 

of such data can lead to uninterpretable results. Additionally, 
the high overlapping of the ERP component can challenge 
similar newly developed methodologies.

From the clinical perspective, identifying two ERP com-
ponents in real data can be interpreted as the fact of the 
variety of brain responses from the subjects for diferent 
conditions/groups. In N300 component isolation, for exam-
ple, the diference was shown in cluster maps 1 (i.e., between 
RS and HC groups) in PM tasks. Likewise, the duration 
difered in cluster maps 1 and 2 in the ongoing task between 
the groups. Again, a silently larger negative response was 
observed at the source level in the ongoing than PM task in 
both RS and HC groups. This was relected by the signiicant 
main efect of task type among these two groups. As a result, 
this inding showed a complementary viewpoint to the prior 
studies (Chen et al. 2015; Fukumoto et al. 2014). Therefore, 
our results can be employed for interpreting the advantage of 
the treatment in RS patients in terms of measuring/identify-
ing the diference in ERPs of interest in the observations. 
This can provide further evidence for recent research dem-
onstrating that symptomatic remission in schizophrenia is 
associated with a degree of functional recovery of attentional 
processes.

In summary, our indings are anticipated to be a wel-
comed addition to EEG/ERP studies in terms of apply-
ing the consensus clustering technique and the optimal 
number of clusters determination. This is attained due to 
two main reasons: irstly, analyzing spatio-temporal ERP 
by focusing on a few components of interest instead of 
itting microstates to template microstate classes. Sec-
ondly, despite conventional methods, which have used a 
single clustering method, the proposed method utilizes a 
robust clustering strategy representing neurophysiologi-
cally interpretable ERP identiication. In order to provide 
access to the new methodology, a toolbox has been devel-
oped under the MATLAB platform named OptNC_ERP 
(https:// github. com/ remah ini/ OptNC_ ERP) available with 
the simulated ERP data (i.e., can be used with another 
ERP data), which can be used beside EEGLAB (Delorme 
and Makeig 2004) for testing the researchers’ hypotheses.

Table 2  The mean measured 
similarity and SD value between 
the clusterings in many times 
(up to 100 times) running the 
studied clustering methods for 
the simulated ERP data

Clustering 
method

KM HC SOM SPC KMD CC

KM – 0.81//0.02 0.74/0.02 0.84/0.03 0.74/0.03 0.82/0.03
HC – – 0.72/0.01 0.80/0.00 0.72/0.01 0.79/0.03
SOM – – – 0.76/0.01 0.86/0.04 0.89/0.04
SPC – – – – 0.74/0.02 0.80/0.02
KMD – – – – – 0.89//0.04

CC – – – – – –
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Conclusions and Outlook

This work illustrated the determination of the optimal 
number of clusters using consensus clustering. The pro-
posed method investigated both dynamics of cluster maps, 
i.e., spatial correlation of microstates and temporal prop-
erties (i.e., start, end, and duration), to determine the 
proper time window for an interesting ERP component. 

Fig. 8  Estimating the optimal number of clusters in the real ERP data. 
a The inner-similarities of estimated time windows in over 100 runs in 
the RS group and conditions (PM and OA) for the N300 component. b 
Results for the HC group and both conditions for the N300 component. 
c The inner-similarities of estimated time windows in the RS group and 
both conditions (PM and OA) for prospective positivity. d Results in 
the HC group and both conditions for prospective positivity. e The esti-
mated optimal number of clusters, i.e., six cluster maps (showed with 
vertical black hidden line). The inner-similarity and stability thresholds 
on the average mean inner-similarities across the conditions and groups 
are 0.95 (indicated with red horizontal hidden line) and 0.03, respec-
tively. PP positivity component, PM prospective memory, OA ongoing 
task, RS remitted schizophrenia, HC healthy control

◂

Table 3  The obtained number of clusters from the studied methods and the average time window properties results in over 100 runs

We cluster the dataset using the proposed consensus clustering except for modiied k-means. The proposed time window determination was used 
to estimate each method’s time windows. The reported format is averaged time windows (ms)/SD (ms)

PM prospective memory, OA ongoing task, RS remitted schizophrenia, HC healthy control

Method OptNC Properties N300 Prospective positivity

RS HC RS HC

PM OA PM OA PM OA PM OA

Silhouette 3 Start 160.6/5.6 187.3/19.9 223.4/81.03 178.6/35.8 192.7/46.9 329.0/24.1 331.0/38.0 348.9/16.6
Dunn End 943.3/99.5 300.0/20.9 346.2/37.0 294.6/48.3 991.0/27.2 1000.0/00.0 715.1/29.3 869.4/24.9
NbClust optimal Duration 782.6/100.7 112.7/31.4 122.8/69.3 116.0/63.6 798.3/53.1 670.0/24.1 384.1/41.4 520.5/24.7
Gap statistic
x-means

4 Start 164.3/5.7 166.7/7.0 156.1/8.2 160.3/8.0 259.3/4.7 337.3/11.9 318.4/17.6 355.1/19.2
End 255.7/3.8 329.3/14.4 291.4/26.7 339.3/16.7 1000.0/00.0 995.9/15.1 699.1/5.6 820.8/17.3
Duration 91.3/6.9 162.6/18.9 135.3/29.3 179.0/20.9 739.7/4.7 658.6/22.4 380.7/13.2 465.7/31.5

Previous_study – Start 190.0 190.0 190.0 190.0 400.0 400.0 400.0 400.0
End 400.0 400.0 400.0 400.0 1000.0 1000.0 1000.0 1000.0
Duration 210.0 210.0 210.0 210.0 600.0 600.0 600.0 600.0

Proposed method 6 Start 169.6/7.2 171.1/6.4 160.0/6.1 165.3/4.2 260.2/3.7 334.7/8.7 321.4/2.5 345.4/13.7
Elbow End 255.2/3.4 327.1/4.7 317.3/11.2 331.8/3.6 1000.0/00.0 979.9/32.8 685.2/3.9 811.3/8.4
Cross-validation Duration 85.6/9.0 156.1/7.7 157.3/11.6 166.5/6.2 738.2/3.7 645.2/36.1 363.8/5.3 465.9/15.0

Modiied k-means 6 Start 163.6/2.1 166.3/2.6 157.8/2.9 164.4/2.7 250.2/19.7 341.9/43.8 315.9/4.0 341.5/11.0
End 254.2/19.1 339.7/43.9 301.2/21.1 326.8/6.4 1000.0/0.0 1000.0/0.0 673.0/55.1 814.3/42.6

Duration 90.6/21.1 173.5/46.4 143.4/23.9 162.4/9.0 748.8/19.7 657.1/43.8 357.0/57.6 472.8/52.6

Table 4  The statistical power analysis results (mean p-value/SD) from 100 runs for the real data

The boldly marked results indicate superior performance

NA not available, NS nonsigniicant

Method OptNC N300 Prospective positivity

Group Task Group × Task Group Task Group × Task

Silhouette 3 0.002/0.002 0.003/0.005 0.063/0.060 0.771/0.121 0.000/0.000 0.104/0.077
Dunn
NbClust optimal
Gap statistic 4 0.003/0.003 0.003/0.010 0.019/0.033 0.445/0.073 0.000/0.000 0.083/0.048
x-means
Previous study – 0.001/NA 0.050/NA NS 0.005/NA 0.001/NA 0.010/NA
Proposed method 6 0.000/0.001 0.002/0.003 0.048/0.020 0.393/0.046 0.000/0.000 0.085/0.025
Elbow
Cross-validation

Modiied k-means 6 0.001/0.001 0.006/0.009 0.280/0.109 0.528/0.075 0.000/0.000 0.115/0.058
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The proposed method has successfully extended the pre-
vious research indings on determining the optimal num-
ber of clusters and the ERPs of interest qualiication. It is 
worth mentioning that applying the proposed method to 
the simulated and real ERP data revealed that the stud-
ied standard clustering methods (i.e., polarity dependent) 

could be combined in a synergistic clustering (consensus 
clustering). Furthermore, the proposed method is appro-
priate for either single-trial EEG by considering clustering 
in a higher resolution (single-trials) or investigating difer-
ent domains (i.e., frequency, time–frequency) in the future.

Fig. 9  Consensus clustering and time window determination 
result in the real data. a The identiied N300 component by map 5 
(colored blue), the corresponding topography maps, and the corre-
lation between time points for both conditions (PM and OA) in the 
RS group. b The identiied N300 for the HC group by cluster map 
5 (colored pink) for both conditions, the corresponding topography 

maps, and correlation between the time points. c Identiied PP com-
ponent by cluster maps 2 and 1 (colored orange) in the RS group for 
PM and OA conditions, respectively. d Identiied prospective positiv-
ity by cluster maps 4 and 1 in the HC group for PM and OA condi-
tions, respectively

770

771

772

773

774

775

776

777

778

779

780

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10548 Article No : 903 Pages : 19 MS Code : 903 Dispatch : 26-5-2022

Brain Topography 

1 3

Fig. 10  Mean inner-similarities from the estimated time windows 
using the studied clustering methods in clustering options (2–15 clus-
ters) and over 100 independent runs on the real ERP data. a Results 
in the RS group and two conditions (PM and Ongoing) for the N300 

component. b Results for the HC group and both conditions for the 
N300 component. c Results in the RS group and two conditions for 
the prospective positivity. d Results in the HC group for two condi-
tions for the prospective positivity
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Clustering is a promising tool for grouping the sequence of similar time-points aimed to

identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis.

It is most likely to elicit the appropriate time window for ERP of interest if a suitable

clustering method is applied to spatiotemporal ERP. However, how to reliably estimate

a proper time window from entire individual subjects’ data is still challenging. In this

study, we developed a novel multiset consensus clustering method in which several

clustering results of multiple subjects were combined to retrieve the best fitted clustering

for all the subjects within a group. Then, the obtained clustering was processed by

a newly proposed time-window detection method to determine the most suitable

time window for identifying the ERP of interest in each condition/group. Applying the

proposed method to the simulated ERP data and real data indicated that the brain

responses from the individual subjects can be collected to determine a reliable time

window for different conditions/groups. Our results revealed more precise time windows

to identify N2 and P3 components in the simulated data compared to the state-of-the-

art methods. Additionally, our proposed method achieved more robust performance

and outperformed statistical analysis results in the real data for N300 and prospective

positivity components. To conclude, the proposed method successfully estimates the

time window for ERP of interest by processing the individual data, offering new venues

for spatiotemporal ERP processing.

Keywords: multi-set consensus clustering, time window, event-related potentials, microstates analysis, cognitive

neuroscience

INTRODUCTION

The event-related potentials (ERPs) carry important information about the cognitive process
evoked by the brain response in milliseconds of the temporal domain. Almost all the ERP
components are influenced by the attention corresponding to the latencies from the individual
and a group of subjects (Luck and Kappenman, 2012). The latencies of ERP components can be
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considered as a stable brain electric field configuration
(topography map) in milliseconds associated with the specific
psychological process (i.e., attention module) (Lehmann,
1990). Moreover, measuring the ERP of interest undertakes a
fundamental role in identifying and interpreting the cognitive
process in the experiment. The most common approach to
measure the magnitude and timing of the ERP of interest is
to investigate the amplitude and the latency of peak voltage
in the experimentally defined time window. Thereby, an
important issue in the analysis of ERPs is how to define
or select time windows. This influences both identifying
components and performing statistical analyses. Hence, if the
time window is not appropriately defined, the comparison
between different conditions/groups can lead to unreliable and
wrong psychological interpretations (Luck and Gaspelin, 2017).

The traditional ERP approach is to obtain the mean of
measured potentials over a fixed and/or experimenter defined
time window. The assumption is that the brain electric field
configuration is stable for different conditions/groups, although
this assumption is not empirically verified. Apart from widely
used conventional ERP techniques such as latency peak andmean
amplitude, numerous studies have used moving time-window
technique and high-resolution time-bin analysis (e.g., each 5 ms)
for measuring the peak (Van Overwalle et al., 2009; Mu and
Han, 2010; Wills et al., 2014). Although moving time-window or
point-by-point analysis in spatiotemporal ERP can provide more
fine-grained temporal characterization and significant statistical
results (Rotshtein et al., 2010), they can dramatically increase
the probability of reporting errors (Luck and Gaspelin, 2017).
In the above reviewed methods, the variety of responses, which
dynamically influence the duration of time windows in different
conditions/groups, are neglected.

Another group of researchers investigated the brain response
states by analyzing the topographical changes (Lehmann, 1989,
1990; Lehmann et al., 1994; Micah et al., 2009) to determine
the components of interest. The underlying assumption is that
the electric field configuration does not change randomly as
a function of time, despite exhibiting stability for tens to
hundreds of milliseconds involving intervals of topographic
instability (Lehmann et al., 1987; Murray et al., 2008). The
clustering of spatiotemporal electroencephalogram (EEG)/ERP
was used to capture template maps (i.e., topographies found by
the clustering) which identifies the recorded signal (Lehmann,
1989, 1990). Hypothetically, the brain state (i.e., the brain
electric field configuration) does not change during a specific
response time (Lehmann, 1990; Pascual-Marqui et al., 1995;
Lehmann et al., 2009). Consequently, the spatial correlation of
corresponding topographies of the time-points in the cluster map
is close to 1 (Pourtois et al., 2008). Two clustering algorithms
in EEG/ERP research, namely, modified k-means (Pascual-
Marqui et al., 1995) and agglomerate hierarchical clustering
(AAHC; Tibshirani and Walther, 2005; Murray et al., 2008)
were predominantly used in EEG/ERP researches. Two global
measurements together, namely, global field power (GFP) and
the global map dissimilarity (GMD), and the global explained
variance (GEV) of the template maps (the most important
cluster maps), for quantifying the template maps, were applied.

Furthermore, the topographical analysis for spatiotemporal ERPs
using clustering methods has been explored in several studies
(Murray et al., 2008; Micah et al., 2009; Koenig et al., 2014). So
far in the aforementioned microstates analysis studies (Michel
and Koenig, 2018), determination of template cluster maps
with higher explained variance and post hoc determination of
microstates by fitting those maps to the data (topography maps)
were used. As a result, the time-points are clustered based on
their similarity in the electrode field configuration. Alternative
methods, for cluster or factor analysis, such as optimized k-means
with genetic algorithm and principal component analysis (PCA)
(Williams et al., 2015), topographic pattern analysis, and PCA
in high-density ERP (Pourtois et al., 2008) were utilized to
determine the most dominant spatial components from the
map series. Although independent component analysis and
PCA are standard methods and are used for decomposition of
the EEG/ERP with cluster analysis, the determination of the
event of the interest is subjective instead of being the objective
exploration of ERP.

Importantly, finding the suitable time window for measuring
the ERP of interest using microstates analysis has also been
studied in the numerous literature (Tzovara et al., 2012; Cacioppo
et al., 2014; Koenig et al., 2014; Khanna et al., 2015; Mahe
et al., 2015). The time window has been determined by testing
time-point by time-point, the topographical ANOVA analysis,
and microstate classes on momentary grand-mean maps (Koenig
et al., 2011). Some recent studies, for example, have explored
the most suitable time window from the most fitted microstate
maps via the clustering of spatiotemporal ERP by comparing
the ERPs of individual subjects with the obtained ERPs of
clustering from grand average data (Bailey et al., 2019; Berchio
et al., 2019; Ruggeri et al., 2019). Although obtaining global
optimal cluster maps by clustering both group (grand average)
and individual datasets assigning time-points to template maps
is a straightforward solution (Michel and Koenig, 2018), it is
challenging to set of template maps from grand average ERP,
which reliably represent individual subjects brain responses.

Consensus clustering, as a reliable and stable clustering
method, has been successfully used for processing biological data
(Monti et al., 2003; Abu-Jamous et al., 2013, 2015a; Liu et al.,
2015; Mahini et al., 2017), human brain functional magnetic
resonance imaging and EEG data processing (Liu et al., 2017a,b;
Song et al., 2019), and multidataset consensus clustering (Filkov
and Skiena, 2004; Hoshida et al., 2007; Abu-Jamous et al., 2015b;
Liu et al., 2015). However, there has been little discussion about
the role of multidataset consensus clustering on individual data
from spatiotemporal ERP aimed to identify the ERP components.
This is critical because of the difference between the subjects
regarding the response time and delay and difference in the
quality of recorded data. Therefore, a robust method is required
for processing information about the subjects.

The rationale of the current study is to investigate three major
points; first, in the ERP experiment, several ERP components
are inevitably generated; however, a few of them are targeted,
which are more probably elicited if the ERP experiment is
run again (Kappenman and Luck, 2012b). Those targeted ERP
components are more probably elicited among multiple subjects.
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The proposed method isolates reliable time windows for ERP
of interest for each condition/group. Second, essentially, even
after the well-done preprocessing of the collected data, there are
still some remaining interferences and some overlapped brain
activity with the ERP of interest in the time domain. Therefore,
it is practically expected the time window for measuring the
amplitude of the ERP of interest includes information of the
ERP. One strategy is to check whether the consecutive multiple
topographies of time-points are similar or not. If they are similar
enough, they come from the same brain activity of the ERP
in terms of the linear transformation model of EEG. Thus,
such a time window should be determined. Since the time
window contains mostly the ERP of interest, the analysis of
the brain response can be more accurate. This can result in a
better understanding of cognitive processes. Finally, the ERP
signal is elicited from numerous similar responses from the
subjects. Defining the ERP of interest from the clustering of grand
average data neglects the information about individual subjects.
Thereby, the new methodology explores the ERP of interest from
individual subjects using a multisubject consensus clustering.

In this article, we develop a stabilized multiple-subject
consensus clustering (from the multiset consensus clustering
family) approach for reliably clustering spatiotemporal ERP data
in both individual subjects and group levels. This can provide a
novel mechanism to explore the cognitive functions in ERP/EEG
data. Furthermore, we use a newly proposed time-window
determination method to obtain the most suitable time window
for a given ERP of interest. We do expect the new methodology
can retrieve the consistent response among the subjects in a group
to discover a reliable time window for the ERP of interest. To

assess the efficiency and reliability of our method, the proposed
method is applied to simulated and the prospective memory
experiment data (Chen et al., 2015). The proposed method has
been tested to identify two state-of-the-art ERPs, namely, N2
and P3 components in simulated data, and isolating N300 and
prospective positivity components in the real data.

MATERIALS AND METHODS

This section describes first two ERP datasets including conducted
simulated data and real data. Then, our proposed method is
described in detail. Finally, two classes of statistical analysis for
assessing the studied methods are explained.

ERP Studies
Simulated ERP Data
We conducted a simulated ERP data using the BESA dipole
simulator1 for assessing the performance of the studied clustering
methods aimed to identify the predefined ERP components.
Entirely, six components (i.e., P1, N1, P2, N2, P3, and N4) and
two conditions (i.e., “Cond1” and “Cond2”) from a group of 20
subjects were defined. A simulated scalp with 65 electrodes was
used for representing the spatial (i.e., topographic) information.
Each trial was epoched from 100-ms prestimulus to 600-ms
poststimulus at a sampling rate of 429 Hz. The averaged
reference method was used for referencing. The topography
maps of the components and corresponding waveforms are

1https://www.besa.de/products/besa-simulator/besa-simulator-overview/

FIGURE 1 | Illustration of topography maps and waveforms for the defined six components (i.e., P1, N1, P2, N2, P3, and N4) in simulated ERP data.
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shown in Figure 1. Among the defined components, we studied
N2 referring to the maximum negative voltage in 201- to
265-ms poststimulus [i.e., it was defined in 175–292 ms via
simulator (Figure 1)]. The time window was calculated using
the signed area measurement method (Sawaki et al., 2012).
Similarly, P3 component refers to the positive response (266–
357 ms) poststimulus (i.e., defined in 240–385 ms according
to Figure 1). Meanwhile, the signal was manipulated using the
MATLAB function awgn (i.e., adding white Gaussian noise) to
add a reasonable noise (i.e., signal-to-noise ratio = 20 dB) on
signal power measured for each simulated dataset as a whole.
Furthermore, random movement of two ERPs (e.g., changing
the original signal by randomly increasing/decreasing maximum
five time-points) was applied to the original signal from the 20
individuals’ data. The electrode sites for measuring statistical
amplitude power differences were defined as P6/PO4 and CPz/Cz
for N2 and P3, respectively.

Real ERP Data
The prospective memory experiment (Chen et al., 2015) data
were used as real ERP data to assess the performance of the
proposed method. Following the prior study, the experiment
data included 20 symptomatically remitted patients, i.e., with
schizophrenia (RS) and 20 healthy control (HC) participants.
Two tasks, namely, prospective memory (PM) and ongoing task,
were investigated. The EEG data were recorded with 32 electrodes
(SynAmps amplifier, NeuroScan) and epoched from 200-ms
prestimulus to 1,000-ms poststimulus. Furthermore, a 30 Hz
(24 dB/octave) digital low-pass filter was applied. Two target
ERP components, N300 and prospective positivity components,
were studied. The N300 referred to the maximum negative
voltage, over the occipital region, hypothetically between 190
and 400 ms, and the prospective positivity represented the
maximum positive voltage, over the parietal region, and between
400 and 1,000 ms.

Proposed Method
The graphical explanation of the proposed method is illustrated
in Figure 2. Besides, Procedure 1 and Procedure 2 are presented
for a better representation of the new methodology. Noteworthy
to mention that we have employed a mechanism to obtain the
optimal number of clusters by, first, running the consensus
clustering many times followed by determining the optimal
number of clusters based on the quality of obtaining time
windows (Mahini et al., 2019). The details of the proposed
method are given as follows:

Procedure 1: Proposed Method
Inputs: ERP data, ERPs of interest (experimental intervals)
Outputs: Time windows
Procedure {

Step 1: Temporal concatenating datasets for each
individual subject;

Step 2: Stabilization and generation;
Step 3: Multilevel consensus clustering

Individual level consensus clustering;
Group level consensus clustering;

FOR each ERP of interest
Step 4. Time-window determination;

End of FOR
} End of Procedure

Dataset for Clustering
The collected multiple data points by a high-dense EEG sensor
array consist of the spatial topographies of brain activities
(i.e., each time-point corresponds to a topography). We have
investigated the spatiotemporal ERP data where the time-
points are clustered based on their topographical similarity.
For each subject, a larger dataset was yielded from temporal
concatenating (Murray et al., 2008; Calhoun et al., 2009) the
associated datasets from all conditions together. For example,
given a subject’s ERP data from 300 time-points, 2 conditions,
and 65 electrodes, the temporal concatenated dataset with a
dimension of 600 × 65 is used for clustering. Therefore,
the samples for clustering individual data are the time-points,
and the features are represented by the topography (i.e., the
electrode field configuration). The goal of clustering is to find the
consecutive time-points sharing similar topographies in which
the neural responses remain stable for periods of time called
time window.

Stabilization and Generation
We utilized the cluster-based similarity partitioning algorithm
method (Karypis and Kumar, 1998; Nguyen and Caruana,
2007) as the consensus function based on pairwise similarity
measurement between partitions. This function was used
for each level of consensus clustering and the stabilization
step of the proposed method. Before the generation step,
two important issues, consensus clustering configuration and
stabilized generation, are necessary to be investigated. Several
clustering methods were considered for selecting the appropriate
configuration of consensus clustering. Hence, k-means (Pascual-
Marqui et al., 1995; Pena et al., 1999) and hierarchical clustering
(Tibshirani and Walther, 2005) with correlation similarity
function, fuzzy c-means (FCM; Bezdek, 1981), self-organizing
maps (SOMs; Kohonen, 1990), diffusion map spectral clustering
(Sipola et al., 2013) consisting k-means with Euclidean similarity,
and modified k-means (Pascual-Marqui et al., 1995), and AAHC
(Murray et al., 2008) using spatial correlation, were used for
the generation purpose. Thereby, for appropriate consensus
clustering configuration, modified k-means was used as a
benchmark [i.e., the accepted clustering method in many studies
(Michel and Koenig, 2018)] to be compared with other studied
clustering methods. The clustering methods with higher mutual
similarities with modified k-means in the majority of clustering
results of individuals data (e.g., ≥50% of the subjects), were
selected using in the generation phase. Rand index (Strehl and
Ghosh, 2003; Meila, 2007) was used to measure the mutual
similarity between the results of each clustering method on
individual data and modified k-means. Rand index can be
calculated using the following equation:

R
(
L, L

′) = N11 + N00
n (n − 1)/2

(1)
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FIGURE 2 | Illustration of the steps of the proposed multisubject consensus clustering for processing the ERPs of interest. The scheme of the proposed method on

g groups of subjects is demonstrated. S = subject, T = task.

where n denotes the number of observations andN00 denotes the
number of object pairs in different clusters from both L and L′
clusterings. While N11 denotes the number of object pairs in the
same clusters in L and L′.

Additionally, a stabilization procedure based on consensus
clustering was designed for the clustering generation of
consensus clustering (at the subject level). The stable clustering
refers to the clustering results in which the mutual similarity
between two or more clustering results is closed to 1 in theory.
To measure stability, a mechanism based on the testing similarity
of two clustering results was utilized. If they are highly similar,
the clustering method is robust. The consensus clustering of
grand average ERP data from multiple runs of each stochastic
clustering method (e.g., from 2 to 20 repeats that can be changed
if necessary) was employed to find the appropriate number
of repetitions to get stable clustering. The optimal number of
repetitions should satisfy the following two conditions:

max(|Rr − Rr−1| , |Rr − Rr+1|) ≤ ε (2)

where
Rr = R

(
L∗−r, L∗−(r−1)

)

L∗−r = arg max
L∈LX̄

Mr∑
r=2

� (Lr)

and
min(Rr−1,Rr,Rr+1) ≥ τ (3)

where � denotes the consensus function, L∗−r denotes the
consensus clustering results from r repetitive results (i.e.,
maximum repeats denotes by Mr) of stochastic clustering
method, which is indicated by Lr , and X̄ denotes the grand
average from the individual datasets. Furthermore, Rr denotes the
mutual similarity between the consensus clustering results from
r and r − 1 repetitions. Thus, a proper number of repetitions is
determined bymeasuring themutual similarity among the results
of consensus clustering. In other words, the optimal repetition
option is selected when the mutual similarity between r − 1 and
r, and between r and r + 1 reaches a suitable similarity threshold
(e.g., τ ≥ 90), and the change among mutual similarities tends to
very small values (e.g., ε ≤ 0.03).

Multilevel Consensus Clustering
A two-level consensus clustering was utilized for finding the best
fitted clustering from individual subjects. The proposed two-level
multisubject consensus clustering is explained by the following
notations:

Let S = {
S1, S2, . . . , Sp

}
denotes a set of subjects from

a group, and X = {x1, x2, . . . , xn} denotes a set of time-
points for individual data, in which each time-point xs ={
e1, e2, . . . , ef

}
, s = 1, 2, . . . , n (f denotes the number of

electrodes) is a vector of features/channels (i.e., it can be
represented in the spatial dimension as a topography map).
Besides, Lji = {Cj

1,i,C
j
2,i, . . . ,C

j
k,i} represents the clustering

results for jth clustering method j = 1, 2, . . . ,m, for ith subject,
i = 1, 2, . . . , pwith k number of clusters. Thus, Cj

w,i is defined as
wth cluster,w = 1, 2, . . . , k from jthmethod for ith subject. The
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result of the first-level clustering for each of individual datasets is
denoted as:

L∗−opt
i = arg max

L∈LX

m∑
j=1

�
(
Lij

)
(4)

where, L∗−opt
i denotes the consensus clustering results of ith

subject from all possible k-partitions on X. At the second level,
another consensus clustering is used on the first level clustering
results across the subjects (i.e., in the group level), which is
defined as:

L∗∗−opt = argmax
L∈LS

p∑
i=1

�
(
L∗−opt
i

)
(5)

where, L∗∗−opt denotes the result of consensus clustering
across the subjects.

Taken as a whole, the optimal ensemble clustering across the
subjects can be noted by:

L∗∗−opt = arg max
L∈LX,S

p∑
i=1

m∑
j=1

�
(
Lij

)
(6)

To provide a better sense of implementation of the proposed
method, the multisubject consensus clustering was implemented
in MATLAB platform, as demonstrated in Figure 2 and
Procedure 1.

Time Window Determination
The time window determination procedure explores the
measurement time window by analyzing the temporal and spatial
characteristics of the result cluster maps. The inner-similarity
of the candidate cluster map (the maps in the experimental
measurement area) and their overlapping with the defined
experimental time interval, were considered to estimate the
proper time windows. First, the inner-similarity of candidate
maps is calculated aimed to detect those with the consecutive
time-points with a high spatial correlation. The inner-similarity
of a cluster map is the mean of correlation coefficients between
topography maps of each two different time-points. More in
detail, to calculate the inner-similarity of a cluster map, first, the
spatial correlation coefficient (Murray et al., 2008; Micah et al.,
2009) of time-points was calculated. Therefore Corv,u denotes the
correlation coefficient between the topographical maps of u and
v as two time-points in the cluster map. Then, for each row, the
distance matrix can be calculated as:

Dv = d
(
Corv,u,Corv,v

)
, u �= v (7)

where, D denotes the distance matrix in which each row is
calculated by the distance between each element in the row
and Corv,v (i.e., self-correlation) in correlation matrix (Cor). To
variance-stabilizing transformation of the calculated correlation,
fisher z-transform (Fisher, 1921) was used for each vectorDv (i.e.,
every row of distance matrix) before calculating the mean of the
distance matrix Davg. Finally, an inverse z-transform of Davg was
used for calculating inner-similarity as shown below:

InnSim = 1 − Davg (8)

Hypothetically, in the ERP component, the spatial correlation
between the time-points is close to 1 indicating consecutive
time-points that represent a cognitive process. Therefore, among
the candidate cluster maps, the cluster maps with higher
inner similarity than the threshold (e.g., ≥0.90) were selected
for overlap testing. We have selected a realistic choice of
0.9 as a satisfactory threshold for time-window qualification.
Next, among those cluster maps, the cluster map with the
greatest inner-similarity and overlapping was selected as the
best suitable cluster map for representing the time window
[i.e., via the properties (start, end, and duration)]. More
details for implementing the time-window selection method are
presented in Procedure 2.

Procedure 2: Time-Window Determination
Input:Clustering result, ERPs of interest (experimental intervals)
Output: Time windows
Procedure

Step 1. Detecting the candidate cluster maps;
FOR each candidate map

Step 2.Calculating inner-similarity and overlapping;
Step 3. Detecting cluster maps with high
inner-similarity;
Step 4. Selecting higher overlapping within maps;

End of FOR
} End of Procedure

Statistical Analysis
Two classes of p values based statistical measurements were
used to evaluate the performance of the proposed method. First,
two one-sided tests (TOST; Rogers et al., 1993; Harms and
Lakens, 2018) was performed on simulated data to test the
similarity between ground truth and estimated time windows
by measuring the obtained time-window properties (start, end,
and duration). Second, a statistical power analysis was used
by employing repeated measures ANOVA for both simulated
and real data. Further, for testing the robustness of those
methods, the statistical analysis results were calculated on over
50 independent runs of the studied methods. Overall, we tried
to assess the meaningfulness, accuracy, and robustness of the
proposed methodology.

The TOST test was accomplished by setting equivalence
margin [−δ δ] in [−5 5] ms (can vary depending on the dataset
and quality of discriminability). Two composite null hypotheses
tested the assumption of the differences: H01 : (μ1 − μ2) ≤
−δ and H02 : (μ1 − μ2) ≥ δ, where μ1, μ2 are the mean of
each series in the comparison (e.g., the estimated start points
from all the individual subjects in a group and corresponding
ground truth start points). When both null hypotheses can be
statistically rejected, it can be concluded that the observed effect
falls within the equivalence margins and practically equivalent
(Seaman and Serlin, 1998). In other words, the difference
between the mean of the estimated values and the corresponding
ground truth values should not exceed the equivalence margins.
Furthermore, a repeated-measures ANOVA for the simulated
data with the within-subject factor: task (“Cond1” and “Cond2”)
was considered for statistically analyzing N2 component in the
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electrode sites: P6/PO4 for N2 and CPz/Cz for P3. The test was
applied to the mean amplitude of N2 and P3 in the estimated
time windows separately. Similarly, the statistical power analysis
for real data was carried out via repeated measures ANOVA (i.e.,
mixed 2 × 2) with the addition of a between-subject factor:
group (RS and HC) and the within-subject factor: task (PM
and ongoing). The test was applied to the mean amplitude of
N300 and prospective positivity. The selection of electrodes was
based on prior ERP findings (Chen et al., 2015). Specifically,
the amplitude of N300 over the occipital region (electrodes:
O1/Oz/O2) and prospective positivity over the parietal region
(electrodes: P3/Pz/P4) were measured. Statistical comparisons
were made at p values of p < 0.05 for both data.

RESULTS

To achieve the appropriate clustering result, several important
parameters were adjusted, (i) determination of the optimal
number of clusters: following our previous study (Mahini et al.,
2019), the appropriate number of clusters for simulated and real
data was determined in five and six cluster maps, respectively. (ii)
The configuration of the proposed consensus clustering: among
the studied clustering methods (addressed in “Stabilization
and Generation”), k-means, hierarchical clustering, AAHC, and
modified k-means methods were applied to the simulated
data. Similarly, k-means, FCM, SOMs, diffusion map spectral
clustering, AAHC, and modified k-means methods were selected
for the clustering of real data (Table 1). (iii) Generating stabilized
clustering from stochastic clustering methods: following (section
“Stabilization and Generation”) the optimal repeat for modified
k-means and standard k-means was obtained in five and seven
repeats for the simulated data (Figure 3). Likewise, those
clustering methods met stability in seven repetitions in real data.
Furthermore, a realistic inner-similarity threshold (e.g., ≥0.90)
and a sufficient number of time-points for selecting the candidate
cluster maps, e.g., a minimum of 60 to 100 ms (Grieder et al.,
2016; Koenig and Brandeis, 2016) were determined.

Results of Simulated ERP Data
We applied the proposed consensus clustering in the simulated
data aimed to illustrate all the predefined ERP components.
The clustering in seven cluster maps successfully isolated all

TABLE 1 | The illustration of the clustering method selection by calculating the

similarity of the results with the modified k-means method for individual data.

Data Group KMS HC FCM SOM DSC AAHC

Simulated data G1 19 14 0 0 0 20

Real data RS 19 9 17 17 15 20

HC 19 11 19 19 15 18

The marked methods with bold font are selected where they achieved higher

similarity (rand index) for the majority of individual data (e.g., ≥50% of subjects and

similarity ≥ 0.7). RS, remitted schizophrenia; HC, healthy control; G1, simulated

group; KMS, k-means; HC, hierarchical clustering; FCM, fuzzy c-means; SOM, self-

organizing map; DSC, diffusion maps spectral clustering; and AAHC, atomize and

agglomerate hierarchical clustering.

FIGURE 3 | The illustration of the stability test in 20 runs of studied clustering

methods to the grand average ERP data. Dash lines demonstrate the original

clustering method stability and the continuous lines illustrate the

corresponding stabilized version for each studied clustering method behavior

for the range of repetition (e.g., from 2 to 20). (A) Stabilizing in the simulated

data and (B) stabilizing in the real data.

predefined six components (Figure 4) P1, N1, P2, N2, P3, and N4
correspond with the cluster maps 3, 5, 6, 1, 7, and 2, respectively.
Note that cluster map 4 refers to the brain state before stimulus
onset and does not present any predefined ERP component.

Time Windows and Topographies for ERPs of Interest
Figure 5 illustrates the clustering results and the elicited N2
and P3 components (from one random execution), including the
corresponded topography maps and the spatial correlation of
time-points obtained by the proposed method on the simulated
data. Figure 5A indicates that the N2 component in Cond1 and
Cond2 are elicited by cluster maps 5 (marked blue). Likewise,
Figure 5B illustrates that the P3 component is identified by the
microstate map 1 (marked orange) in both conditions. These
results reveal that a significant main effect of task (p < 0.0001)
was identified inN2 in the duration ofmicrostatemaps. Similarly,
a significant main effect of task (p < 0.0001) was detected
in the P3 component. For both components, the measured
amplitudes were greater in Cond2. This reveals that the N2 and
P3 components seem to be distinctly elicited by the proposed
method in the simulated data.

Comparison Between Estimated and Ground Truth
Time Windows
The proposed method was compared with the state-of-the-
art clustering methods, namely, modified k-means and AAHC,
in spatiotemporal ERP clustering. Our time-window selection
method was applied to the clustering results (i.e., proposed
consensus clustering, modified k-means, and AAHC results) to
identify each ERP of interest. The Start, End, and Duration
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FIGURE 4 | The proposed consensus clustering results in the simulated Cond2 data. Red and blue colors indicate positive and negative potential values,

respectively. Each topography map represents a cluster map. P1, N1, P2, N2, P3, and N4 components are presented with cluster maps 3, 5, 6, 1, 7, and 2,

respectively. Note that cluster map 4 does not show any component in the simulated data.

FIGURE 5 | The illustration of the clustering results (shown in the grand average data) for eliciting N2 and P3, including the corresponded topography maps and the

spatial correlation of time-points, obtained by the proposed method on the simulated data. (A) Selected time window identified by cluster map 5 (i.e., blue area from

205 to 264 ms) for N2 in Cond1 (upper panel). The selected time window by cluster map 5 (i.e., orange area from 203 to 264 ms) for N2 in Cond2 (lower panel).

(B) Selected time window with cluster map 1 (i.e., colored area from 264 to 350 ms) for P3 in Cond 1 (upper panel). Selected time window identified by cluster map

1 (i.e., colored area from 268 to 357 ms), the topographic map for P3 in Cond 2 (lower panel). The range of the color bars is equally associated with the plot

sections. Cond1 = condition 1, Cond2 = condition 2.

parameters of estimated time windows were compared with
that of the ground truth time windows (obtained from the
simulation) on the clustering results of individual data for testing
the accuracy. The TOST result (Table 2) for N2 component
from clustering methods illustrates that the null hypothesis was
rejected for the proposed method, modified k-means, and AAHC

for all parameters in both conditions except End in Cond1
for AAHC. Similarly, the null hypothesis was rejected in all
parameters except Duration in both conditions for the proposed
method. It was, however, not rejected in either of the criteria
in P3 for modified k-means and AAHC. Taken as a whole, the
proposed method achieved a more precise estimation of time
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TABLE 2 | Descriptive two one-sided tests (TOST) equivalence tests between ground truth TWs (time windows) and estimated TWs by the proposed consensus

clustering (CC), modified k-means (MKMS), and atomize and agglomerate hierarchical clustering (AAHC) in individual subjects’ data from simulated ERP data.

Comp-Meth Cond Criteria p1 p2 DiffMu (ms) EQ_interval (ms)

N2_CC C1 Start 0.000 0.003 2.2 0.4 4.1

End 0.000 0.003 2.6 1.0 4.1

Duration 0.000 0.000 0.4 −1.6 2.3

C2 Start 0.000 0.001 1.6 −0.4 3.6

End 0.000 0.002 2.3 0.7 4.0

Duration 0.000 0.000 0.7 −1.2 2.6

P3_CC C1 Start 0.000 0.000 1.9 0.5 3.2

End 0.018 0.000 2.8 −4.7 −0.9

Duration 0.380 0.000 4.7 −6.8 −2.6

C2 Start 0.000 0.000 1.8 0.3 3.2

End 0.008 0.000 2.6 −4.4 −0.7

Duration 0.266 0.000 4.3 −6.4 −2.2

N2_MKMS C1 Start 0.000 0.001 2.1 0.3 3.9

End 0.000 0.041 3.5 1.9 5.1

Duration 0.000 0.000 1.4 −0.3 3.1

C2 Start 0.000 0.001 1.4 −0.6 3.4

End 0.000 0.030 3.5 2.0 5.0

Duration 0.000 0.001 2.1 0.5 3.7

P3_MKMS C1 Start 0.000 0.543 5.1 2.8 7.5

End 0.548 0.000 5.1 −7.3 −3.0

Duration 0.997 0.000 10.3 −13.8 −6.7

C2 Start 0.000 0.554 5.1 3.2 7.0

End 0.654 0.000 5.5 −7.8 −3.1

Duration 0.999 0.000 10.6 −14.0 −7.3

N2_AAHC C1 Start 0.000 0.001 1.8 0.0 3.5

End 0.000 0.104 4.1 2.7 5.5

Duration 0.000 0.000 2.3 0.9 3.7

C2 Start 0.000 0.000 1.3 −0.6 3.2

End 0.000 0.039 3.6 2.1 5.1

Duration 0.000 0.001 2.3 0.8 3.9

P3_AAHC C1 Start 0.000 0.162 4.2 2.7 5.7

End 0.244 0.000 4.3 −6.2 −2.4

Duration 0.999 0.000 8.5 −10.6 −6.4

C2 Start 0.000 0.167 4.2 2.6 5.8

End 0.276 0.000 4.4 −6.3 −2.6

Duration 0.999 0.000 8.6 −10.7 −6.6

Bold marked represent nonsignificant results. Comp-Meth, component of interest and the method; Cond, condition; C1, condition 1; C2, condition 2; p1, p value of lower

bound; p2, p value of upper bound; DiffMu, difference of mean of two sets; and EQ_interval, confident equivalence interval.

windows in individual data. Moreover, for a better sense of
comparison between studied clustering methods, the accuracy
of estimated (i.e., based on Start and End parameters) time
windows for the subjects is exhibited in Figures 6, 7. It is
observable that the consensus clustering method outperforms
modified k-means and AAHC in terms of accuracy of estimation,
especially in P3 component.

Results of Real ERP Data
Time Windows and Topographies for ERPs of Interest
The clustering results (randomly selected) from running the
proposed method on real data for N300 and prospective
positivity components, the corresponding topography maps,

and the spatial correlation of time-points are illustrated in
Figure 8. N300 identified by the cluster maps 1 and 2 in
the RS group, is illustrated by the colored area in Figure 8A
for both PM and ongoing tasks. Furthermore, N300 identified
by cluster map 1 in the HC group and two tasks (PM
and ongoing), is illustrated in Figure 8B. Similarly, the
prospective positivity component is isolated by the cluster
maps 6 and 5 in the RS group for PM and ongoing tasks,
respectively (Figure 8C). The identified prospective positivity
by cluster maps 4 and 5 in the HC group for PM and
ongoing tasks are illustrated, respectively (Figure 8D). The
average topographies shown in Figure 8 are obtained from
the selected time windows identified by the cluster maps.
Hence, the statistical power analysis revealed that HC was
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FIGURE 6 | The difference between the estimated time windows from corresponding ground truth time windows (i.e., based on start and end criteria) for individual

data in N2. (A) The estimation results of the proposed method. (B) The estimation results by MKMS method. (C) The estimation results by AAHC method. MKMS,

modified k-means; AAHC, atomize, and agglomerate hierarchical clustering.

characterized by a more negative potential over the occipital-
central electrodes (p < 0.001). Additionally, a silently larger
positive potential was localized over frontal-central electrodes
compared to the RS group in N300. Moreover, a slightly more
negative potential was observed over occipital-central electrodes
(p < 0.001) in the ongoing task from both RS and HC groups
in the N300 component. Our results revealed no significant
difference for prospective positivity regarding group factor;
however, a larger positive potential was localized over central
electrodes (p < 0.0001) in the ongoing task comparing to the
PM task.

Statistical Analysis and Stability Test Results
The mean p value and standard deviation (SD) were obtained
from over 50 independent runs of the studied clustering methods

and statistical analysis on the individual data (Table 3). Rendering
to stability analysis, the proposed method (SD = 0.003) was
more stable compared to modified k-means (SD = 0.006)
for the main effect of group and less stable than AAHC
(SD = 0.002) for N300 component. Interestingly, it was the
most stable method compared to other studied clustering
methods for both the main effect of task (SD = 0.002) and
interaction between group and task (SD = 0.043). Besides, the
statistical power analysis results showed that the main effects
of group and task by the proposed method were significant
(p < 0.002 for both factors). Likewise, the main effect of
group was significant by the modified k-means (p < 0.017)
and AAHC (p < 0.004). The main effect of task, however,
was significant only via AAHC (p < 0.013). Meanwhile, the
interaction between group and task was not significant in
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FIGURE 7 | The difference between the estimated time windows from corresponding ground truth time windows for individual data in P3. (A) The results from the

proposed method. (B) The estimation results by MKMS method. (C) The estimation results by AAHC method.

both modified k-means and AAHC. Similarly, the proposed
method was statistically the most stable for the interaction
between group and task (SD = 0.011) comparing to other
studied clustering methods in prospective positivity (Table 3).
Additionally, the main effect of task was significant (p < 0.0001),
and, more importantly, the interaction between group and task
was also significant (p < 0.007) by the proposed method.
However, the main effect of group was not significant by the
proposed method. The main effect of task was also significant
by modified k-means (p < 0.0001) and AAHC (p < 0.0001),
whereas, the main effect in group, and the interactions between
group and task were not significant by both modified k-means
and AAHC methods.

DISCUSSION

This study proposed a new methodology based on multisubject
consensus clustering on spatiotemporal ERP data for the
suitable time-window determination. To this end, we designed
the stabilized multisubject consensus clustering in two levels
described as follows: (i) subject resolution in which the stabilized
consensus clustering was used to combine the results of various
clusterings on each subject’s data in the group; (ii) group
resolution in which the most suitable clustering for each group
was obtained by consensus clustering of the clustering results
of individual data. From the ERP technique point of view,
the researchers using the ERP technique for the cognitive
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FIGURE 8 | Demonstration of the clustering result (showed in the grand average data), identified time window for ERP of interest, and corresponding topography

map and spatial correlation of the time-points in each group/condition via the proposed method. (A) Identified time window by cluster maps 1 and 2 (i.e., colored

areas) for two tasks (PM and ongoing) for N300 in RS group. (B) Selected time windows identified with map 1 for both conditions in the HC group. (C) The isolated

time windows by cluster maps 6 and 5 for the tasks (PM and ongoing) in RS group. (D) Equally, the time windows identified by cluster maps 4 and 5 for the tasks

(PM and ongoing) in the HC group. The visual comparison between two groups in panels (A,B) for N300 and in panels (C,D) for prospective positivity shows the

difference in the waveforms in the selected time windows. The color bars are equally associated with the plot sections. PM, prospective memory; OA, ongoing task;

Pros.Pos, prospective positivity; RS, remitted schizophrenia; HC, healthy control.

neuroscience research often face up the challenge to determine
a time window for an ERP, since the most popular textbook of
ERP recommends the readers averaging the amplitudes in the

time window as the measurement of the ERP peak amplitude
(Luck, 2014). In terms of previous publications, we found
that the determination of such a time window has mostly
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TABLE 3 | Mean p value and standard deviation (SD) calculations of statistical

power analysis results in over 50 runs of study clustering methods on the

individual data for the real data.

N300 Pros.Pos.

Method Group Task intGrTsk Group Task intGrTsk

Proposed (p value) 0.002 0.002 0.058 0.590 0.000 0.007

SD 0.003 0.002 0.043 0.227 0.000 0.011

MKMS(p value) 0.017 0.101 0.303 0.614 0.000 0.150

SD 0.006 0.075 0.225 0.199 0.000 0.156

AAHC (p value) 0.004 0.013 0.145 0.662 0.000 0.246

SD 0.002 0.009 0.133 0.201 0.000 0.131

IntGrTsk, interaction between group and task; Pros.Pos., prospective positivity.

Bold marked represent significant results.

relied on the visual inspection, which can be subjective and
bring bias to conclusions and difficulty for the readers to
repeat the experiment. Therefore, the main objective of this
work was to provide a reliable clustering-based mechanism
(objective approach) for studying the temporal dynamic and
sensory information about the subjects (i.e., brain responses).
This was accomplished with the multilevel clustering mechanism
and the time-window determination method. The clustering
result from entire subjects entails important information about
group response which is critical for studying the cognitive
processes in ERP.

One issue in processing individual data is, apart from the
need for sufficient trials for obtaining reliable ERP (Boudewyn
et al., 2018) and the variety of brain responses in the trials, the
variability associated with individual subjects’ brain responses,
which is observable when ERPs are used to assess cognitive
functions. The underlying assumption is that the variety in
the trials and subject responses are involved in ERP, although
in the ERP techniques, the assumption is that the ERP is
phase-locked and time-locked. Therefore, each subject grants
value to the statistical test in terms of differences between
conditions or groups, which is through the variance across
subjects assisting in the ability to detect a significant experimental
effect (Kappenman and Luck, 2012a). Yet, in the literature, the
individual responses were mostly addressed by fitting the cluster
maps of individual data to the cluster maps of group average
data (Murray et al., 2008; Koenig et al., 2014; Michel and Koenig,
2018; Berchio et al., 2019; Ruggeri et al., 2019). To cover this
gap, we strived to cluster individual subject data in the first level
and map the entire individual clusterings into a group as the
ultimate clustering.

From the cluster analysis view of point, the various clustering
strategies such as using the single clustering method on the
different types of datasets; repeated clustering with a single
clustering method and combining the results; and the multiple-
clustering methods applied to the individual dataset potentially
affect the clustering quality (Abu-Jamous et al., 2013, 2015b;
Liu et al., 2015; von Wegner et al., 2018). To investigate
this issue and reliably feeding consensus clustering, two data-
driven based mechanisms were appropriated before multilevel
cluster analysis. First, consensus clustering configuration was

performed aim to find the appropriate clustering methods. This
was recognized by calculating the similarity between candidate
clustering methods and modified k-means (benchmark) from
individual data. Second, the stabilized clusterings were carried
out by stabilizing the stochastic clusterings. Taken as a whole,
these two procedures can make an additional sense of obtaining
reliable and stable results instead of using a single clustering
method or the conventional consensus clustering platform.
Noteworthy to mention that clustering selection and stabilization
can result in different configurations for various ERP data.

In accordance with the obtained results, two major differences
were noticed between the proposed method and conventional
clustering methods:

(i) The statistical test in this study revealed that the
proposed method estimates a more precise time windows
for individual subjects in comparison with the other
conventional clustering methods in simulated data for
both ERPs of interest (N2 and P3). The foremost
reason is that our method uses the strength of multiple
clustering methods and data-driven processing individual
subject data to fit the suitable time windows for each
condition/group, despite with using spatial consistency
comparison between ERPs of individual and grand average
data (Habermann et al., 2018; Michel and Koenig, 2018;
Berchio et al., 2019).

(ii) According to the statistical analysis results (Table 3),
the proposed method outperformed other benchmark
methods regarding achievingmore stability in the real data.
Over 50 independent runs of the clustering on the same
datasets, the estimation of the proposed method was with
a much smaller variance. This indicates that the estimation
of the ERP time window was much closer to the ground
truth time window of the ERP, in contrast to the other
methods. Such results from the real data also correspond to
the ones from the simulation data, i.e., the estimation of the
time window of an ERP was more accurate by the proposed
method. Therefore, the results of the current study, based
on analyzing the brain dynamics from the stimuli onset
to the brain response, successfully explored the attention
effect on the neural responses from the subjects in real
ERP data.

The drawback of the proposed method, however, is that if the
real ERP component is still embedded in ERP waveforms the
determination of the time window of an ERP component cannot
be precise. Indeed, this also happens in the visual inspection
method to determine the time window of an ERP. Therefore, in
order to determine the time window of an ERP component more
precisely, the EEG preprocessing is very critical. The better the
preprocessing is, the more precise and objective determination
of the time window of an EPR is carried out in terms of the
proposed method.

The results of analyzing the brain dynamic responses revealed
that the brain electrical dynamics in obtained time windows
were comparatively different in time-window properties (start,
end, and duration) for different conditions/groups. Therefore,
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from the clinical point of view, the brain responses from two
groups (RS and HC) to the stimuli onset were investigated
to identify N300 and prospective positivity components. This
can be interpreted as the fact of the variety of brain
response for the subjects in different condition/group. In
N300 component isolation, for example, the difference was
shown in cluster maps 1 (i.e., between RS and HC groups)
in PM tasks. Likewise, the duration differed in cluster maps
1 and 2 in the ongoing task between the groups. Again,
at the source level, a silently larger negative response was
observed in ongoing than PM task in both RS and HC
groups. These results demonstrate that RS patients with
schizophrenia showed a functional recovery of PM cue
detection during the event-based PM task. Consequently, the
electrophysiological data revealed the ability of symptomatically
remitted patients with schizophrenia to distinguish the PM
task from the ongoing task. This was reflected by the
significant main effect of task type among these two groups.
As a result, this finding showed a complementary viewpoint
to the prior studies (Fukumoto et al., 2014; Chen et al.,
2015). Our results can be employed for interpreting the
advantage of the treatment in RS patients in terms of
measuring/identifying the difference in ERPs of interest in
the observations. Therefore, this may indicate a degree of
functional recovery of preparatory attentional processes that
helps the processing of PM task in these subjects (RS patients)
during clinical remission. Thus, providing further evidence for
the recent researches demonstrating symptomatic remission in
schizophrenia is associated with a degree of functional recovery
of attentional processes.

CONCLUSION AND FUTURE WORKS

This work presents a multisubject consensus clustering
technique to explore spatiotemporal ERP by extracting
group-level information from individual responses. Our
proposed methodology has successfully extended the previous
research findings (Murray et al., 2008; Koenig et al., 2014;
Michel and Koenig, 2018) of cluster analysis of EEG/ERP.
Noteworthy to mention that we have proposed the multiset
consensus clustering method in the present study which
can work better for the group-level analysis. Since the
proposed method is not limited to just ERP data, it is very
interesting to apply the proposed method on other brain
imaging modalities for investigating the various types of
brain dynamics. Furthermore, the proposed method can also
be used as an appropriate tool to analyze the single-trial
EEG by considering suitable roles for the trials in higher
resolution (single-trials) in the future. Taken together, this
work emphasizes that, in the time-window determination
from spatiotemporal ERP, the temporal dynamics can be
extremely influenced through the measurement interval. It
is noteworthy that this methodology can be investigated on
different levels (i.e., groups, subjects, trials). The current
study also highlights that the obtained time windows are
sensitive to the responses from the subjects, which can

provide a better sense of understanding in information
processing of the neural responses. In order to show the
effectiveness of the proposed method, we have used the
simulated ERP dataset and the real ERP dataset. Indeed, the
selection of the real ERP dataset does not mean that the
proposed method only works for such an attention-related
ERP experiment. The proposed method has no limitation
on the experiment types of ERPs. Thereby, a toolbox
has been developed under the MATLAB platform, named
ERP_CC.2 Taken as a whole, we can rely on the information
retrieved by the new method, which reflects the attention
mechanism regarding the response to the stimuli in the
real data. We therefore believe that the EEG neuroimaging
method can be studied by the proposed methodology in
various dimensions to accomplish useful results in cognitive
neuroscience studies.
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Abstract 

Objective: Scalp electroencephalogram (EEG) provides a substantial amount of data about information 

processing in the human brain. In the context of conventional event-related potential (ERP) analysis, it is 

typically assumed that individual trials for one subject share similar properties and stem from comparable 

neural sources. However, group-level ERP analysis methods (including cluster analysis) can miss 

important information about the relevant neural process due to a rough estimation of the brain activities 

of individual subjects while selecting a fixed time window for all the subjects. 

Method: We designed a multi-set consensus clustering method to examine cognitive processes at the 

individual subject level. First, consensus clustering from diverse clustering methods was applied to single-

trial EEG epochs of individual subjects. Next, the second level of consensus clustering was applied across 

the trials of each subject. Afterward, a modified time window determination is applied to identify the ERP 

of interest of individual subjects. 

Results: The proposed method was applied to real EEG data from the active visual oddball task experiment 

to qualify the P3 component. Our findings disclosed that the estimated time windows for individual 
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subjects can provide more precise ERP identification than considering a fixed time window for all 

subjects. Moreover, based on standardized measurement error and established bootstrap for single-trial 

EEG, our assessments revealed suitable stability in the calculated scores for the identified P3 component. 

Significance: The new method provides a realistic and information-driven understanding of the single 

trials' contribution towards identifying the ERP of interest in the individual subjects. 

Keywords: Single-Trial EEG, Time window, Multi-Set consensus clustering, Standardization, EEG 

microstates, Cognitive process. 

1. Introduction 

Electroencephalogram (EEG) is a non-invasive neuroimaging technique to record electrophysiological 

brain activity from multiple electrodes placed on the scalp. For decades, investigating a group-level EEG 

has been the golden standard for testing different experimental hypotheses. Moreover, the researchers 

have expected to qualify brain responses from the individual subjects and the trials, especially for the 

clinical experiments. However, due to the complexity and high noise level of raw EEG data, averaging 

EEG trials called the event-related potential (ERP) technique has been used to identify the ERP 

components, which, in turn, are associated with specific perceptual, motor, or cognitive processes. 

Averaging is justified with the assumption that single-trial EEG signals represent similar properties of the 

cognitive process in question, which can be identified from ERP. Although the ERP technique is popular 

because of the high signal-to-noise ratio (SNR), simplicity of statistical analysis, and further interpretation 

of the brain information processing reflected by different ERP components, it does not have full access to 

possibly valuable and meaningful information available at individual trials (Cohen & Cavanagh, 2011; 

Delorme et al., 2002). Additionally, studying the variability of single trials (Knuth et al., 2006) is of great 

importance in, e.g., clinical studies due to inhomogeneity among the individual subjects (i.e., the latencies 

of ERP components can be unidentical for control and patient groups). On the other hand, ERP identifies 

the time-locked response to stimulus-onset, reducing the physiological and recording noise contributions 

that are usually not time-locked. 

Some sophisticated statistical techniques have been used to explore the ERP components from single-trial 

EEG, such as independent component analysis (ICA; Makeig et al., 1997), principal component analysis 

(PCA; Schölkopf et al., 1998), electrode-wise time-frequency analysis (TFA; Herrmann et al., 2014), and 

spectrum power analysis (Cong et al., 2015). Moreover, a vast majority of ERP studies have used 

ICA/PCA to extract shared ERP components from the concatenated ERP data of all subjects (Bugli & 
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Lambert, 2007; Calhoun et al., 2009; Dien et al., 2007). The underlying assumption for qualifying an ERP 

is that the ICs/PCs associated with the ERP of interest are fixed across all subjects (Makeig et al., 1997). 

However, this is often in conflict with the real ERP waveform or topography, as individuals sometimes 

show substantial variance either in temporal or spatial characteristics of activation. Therefore, to overcome 

this problem, some advanced methods from this class of solutions attempt to extract the temporal and 

spatial features of ERPs of interest from single-trial EEG or individual subjects (Cong et al., 2010; Huster 

et al., 2020; Rissling et al., 2014; Zhang et al., 2023). 

Other studies have applied ICA on single-trial EEG (Delorme et al., 2002) aimed at identifying the brain 

response from trials by manually (subjectively) confirming the ERP component of interest. The above-

mentioned ICA method has been used in the popular EEGLAB toolbox (Delorme & Makeig, 2004), 

supported by statistical bootstrap methods. The core challenge for the methods mentioned above was that 

the latency and phase of individual trials varied to some extent. To extract these variables of ERPs among 

subjects, temporal-PCA has been used to extract ERP components of interest from single trials EEG 

epochs of an individual and found that the number of PCs related to a specific ERP component varied 

across subjects (Zhang et al., 2023). These findings, in turn, reveal that the latency and phase actually vary 

across subjects. Nevertheless, alignment of brain response within the trials (i.e., based on adjusting 

stimulus and responses with the averaged response) and using ICA decomposition as a subjective selection 

of the components were used to solve the inconsistency problem in trials (Jung et al., 2001; Onton et al., 

2006). 

In recent decades, cluster analysis has emerged as a promising tool for modeling event-related and resting-

state EEG for exploring brain activations. The idea of EEG cluster analysis was first described by 

Lehmann (Lehmann et al., 1987), introducing the "atom of thoughts" that refers to the quasi-stable 

electrical potential (also called EEG microstates) that remain unchanged (semi-stable) for milliseconds of 

time range like 80-100 ms (D’Croz-Baron et al., 2021). The two steps of this method are calculating 

canonical cluster maps (template maps) that express the high variance explained and reassigning the 

template maps to the time points based on spatial correlation (Khanna et al., 2014). Yet, two popular 

clustering techniques, namely, modified k-means (Pascual-Marqui et al., 1995) and atomize and 

agglomerate hierarchical clustering (AAHC; Murray et al., 2008), were commonly used in this category. 

This method (microstate analysis), however, ignores the polarity of the time point and considers the global 

field power (GFP) or GFP extreme of data points (i.e., the scalp electrodes' standard deviation) for 

clustering. 
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Other clustering methods such as the Gaussian mixture model for individual subjects (De Lucia et al., 

2007b) and single-trial EEG (De Lucia et al., 2007a), and stimulus-related statistical information from 

single-trial responses (Tzovara, Murray, Plomp, et al., 2012) have been used for EEG data. On the other 

hand, it has also been shown that consensus clustering can result in consistent and reliable clustering 

outcomes for biological data (Abu-Jamous et al., 2015; Liu et al., 2017), especially in ERP identification 

from group-averaged ERP data (Mahini et al., 2020; Mahini et al., 2022). The remaining challenge with 

the clustering analysis of single-trial EEG is the existing high degree of inconsistency in the EEG data 

that may lead to uncertain or faulty clustering results. However, the extraction of ERPs from single-trial 

EEG for individual subjects has not been thoroughly investigated in previous studies. 

This study introduces a multi-set consensus clustering pipeline for identifying the ERP of interest from 

individual subjects using single-trial EEG data (Figure 1). Initially, we assess all single trials by 

comparing their spatial characteristics with the isolated ERP components found in group-averaged ERP 

data. The idea of using consensus clustering for single-trial EEG epochs is to generate aggregated cluster 

maps from each single trial that most likely contain interesting ERP responses. Subsequently, we apply a 

second-level consensus clustering to identify robust cluster maps among the selected trials of each subject. 

The whole process involves consensus clustering at both the individual trial level and across trials, called 

multi-set consensus clustering. Following this, we employ a newly modified time window determination 

method to precisely explore the latency of the ERP of interest at the individual subject level. We aim to 

develop a pipeline that effectively explores evoked responses for each condition or group at the individual 

subject level. We anticipate that this method will reliably identify the consistent ERP of interest within 

the single-trial EEG data of individual subjects. 

2. Materials and Methods 

2.1 EEG Data 

We used real EEG data from a previous study that employed an active visual oddball task to evaluate our 

proposed pipeline. Here, we briefly introduced the paradigm, participants, and preprocessing pipelines for 

which more details are accessible in the original paper (Kappenman et al., 2021). The P3 component was 

initially designed to assess 'stimulus evaluation times', focusing on response time duration rather than the 

component's latency (Luck et al., 2009). The present experiment (Kappenman et al., 2021) adapted the 

stimulus set, which consisted of letter stimuli (A, B, C, D, and E) in which one of these letters was 

designated as the target, while the others served as nontargets. Hence, following the prior study, the P3 
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wave was considered in the maximum positive peak around 300 to 600 ms (i.e., the recommended time 

window for P3), which was used as the experimental information about the ERP component. 

The EEG data were recorded from 40 participants (25 female and 15 male) via 30 scalp electrodes 

adhering to the international 10/20 system from two conditions, namely, 'Rare' and 'Frequent.' The 

recorded signals were digitized at 1024 Hz resolution, then downsampled to 256 Hz for faster processing, 

and referenced offline to the average of P9 and P10. The experimenters extracted roughly 50 to 70 trials 

but less in some cases for each condition from each subject. Epochs were selected from 200 ms before the 

stimulus onset to 800 ms after the stimulus onset. DC noise was removed, and the high-pass and low-pass 

filters were meticulously applied at 0.1 and 20 Hz to minimize any influence on stimulus onset latency. 

Subsequently, ICA was applied to address component-related artifacts, including eyeblinks and eye 

movements, which were removed via assessment by visual inspection and topographic representation of 

the components. Statistical power analysis was performed on the Pz electrode (recommended by the 

experimenters) and from the selected trials (see Section 2.2.1). 

2.2 Proposed Method 

In the following, we describe the role of each stage in the designed pipeline. Equally, Figure 1 

demonstrates the developed pipeline for identifying the interesting ERP of the individual subject. 

Figure 1 

2.2.1 Trial Selection 

We examined each trial in order to eliminate trials carrying no/low correlated responses with the identified 

component (described below) from the group average ERP data. To this aim, each trial was individually 

clustered (using consensus clustering) to examine the interesting ERP component. Each single-trial EEG 

epoch was considered a dataset for clustering in which the time points are observations, and the electrodes' 

potentials were used as features (e.g., dataset size: 256 time points × 28 electrodes). Hence, the interesting 

ERP pattern (topographical configuration of ERP) was masked in single-trial clustering results. This was 

done by measuring the spatial correlation between candidate cluster map(s), i.e., cluster maps with high 

inner similarity in the roughly expected experimental interval, and with the identified ERP from group 

averaged data (Mahini et al., 2022). Two sensitivity parameters were used for adjusting trial examination: 

the inner similarity (e.g., > 0.90) and spatial correlation, e.g., > 0.50 with template map (determined cluster 

maps for representing the ERP), which can be adjusted when no map is found. The clustering design 

details will be described in Section 2.2.2. Notably, the proposed method was considered to keep a 
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sufficient number of trials (e.g., > 50% of trials for each subject and condition at minimum) by applying 

a silent decrement on the spatial correlation threshold (if needed). 

2.2.2 Multi-Set Consensus Clustering 

We designed a consensus clustering from clustering methods implemented in our toolbox (Mahini et al., 

2022) in two levels: clustering of trials' datasets and ensemble clustering from results of trials for each 

subject/condition. For better cluster modeling of individual datasets, the clustering method selection was 

used based on the M-N plot method (Abu-Jamous et al., 2014; Mahini et al., 2022) on each subject's 

temporal concatenated ERP dataset. The M-N plot investigates two criteria that are fixed across the 

subjects: the inner-similarity of samples is high enough (e.g., > 95), and the duration of the elicited ERP 

(from the individual) is large enough (e.g., > 50 ms). Although estimating the optimal number of clusters 

from individual subject ERP data can be more appropriate, this was determined by testing the inner 

similarity of the estimated time window from the group average ERP data following our previous work 

(Mahini et al., 2022) to keep simplicity. Thereby, the selected trials were clustered using multi-set 

consensus clustering. The cluster-based similarity partitioning algorithm (CSPA) consensus function 

(Karypis & Kumar, 1998; Nguyen & Caruana, 2007) was chosen based on hypergraph partitioning using 

the 'supra' test (Ghosh et al., 2002) to explore the best possible ensemble clustering solution for trial and 

subject levels consensus clustering. Using CSPA potentially can provide some sense of tolerance on the 

mentioned varieties of information distribution in the single trials in this design. 

Mathematically, let us consider the consensus clustering problem of  samples,  into 

 groups, where each group is represented by a centroid ,   and ,  

and  denotes the number of features (electrodes in the EEG scalp). A set of clusterings  is 

used for combining into a final clustering . Therefore, the objective function for cluster ensemble from 

clusterings, a consensus function,  can be defined as a function of  , which maps the 

clustering to a final set of clusters. 

,      (1) 

Given a set of clusters , the goal is to explore the firmest clustering that shares the 

most information from all clusterings. Therefore, the optimal labeling from  clusterings can be defined 

as: 

,      (2) 
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where  denotes a similarity measurement, e.g., NMI (Meila, 2007), which measures mutual information 

between a set of  clusterings and  is an optimally combined clustering with maximum average 

similarity to all other clusterings  for the individual trial. Next, we combine the clustering results of 

trials using further trial-level consensus clustering. The clustering at this level provides mutual 

information from all the trials. The consensus function for the trials can be presented as follows: 

      (3) 

where,  denotes the number of selected trials for participant p in condition c.    denotes the result 

of ensemble clustering across the trials. Together, the optimal ensemble clustering across the trials for 

each subject p can be noted by: 

         (4) 

Considering the CSPA consensus function's mechanism based on exploring the most aggregated cluster 

sets across the input clustering results, this property can guarantee to assigning consecutive time points to 

a cluster map that shares similar information in most cluster sets from diverse clusterings. 

2.2.3 Time Window Determination 

Once clustering results were obtained from the individual subjects, a modified version of the time window 

determination of our previous work (Mahini et al., 2020) was applied for each subject. We modified the 

time window determination through two criteria in two steps: First, we detected the candidate cluster 

maps, i.e., the cluster maps with high inner similarity, e.g., > 0.95, in the experimentally interesting 

interval. The experimental parameters (e.g., expected rough time window for response, rough estimation 

of the duration, and the region of interest) were estimated based on previous literature using a similar 

experimental design (Kappenman & Luck, 2012). Next, among those selected candidate cluster maps, we 

select those maps with a better fit and higher spatial correlation with the template map of P3 (e.g., > 0.90 

that can be changed if needed). Note that the time window determination was used in both trial levels to 

calculate statistical scores (see section 2.3.3) and the subject level for identifying P3 from the clustering 

result of the subject. 

2.3 Statistical Analysis and Performance Metrics 

2.3.1 Statistical Analysis 

We used a repeated measures ANOVA with a within-subject factor stimulus (conditions: 'Rare' and 

'Frequent') in the electrode side of Pz (the same interesting electrode site as the original study) to test the 
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null hypothesis of no significant difference between the conditions in the determined time windows from 

individual subjects. The mean amplitude was calculated in the estimated time windows from individual 

subjects to investigate the effect of stimulus on the P3 component. The statistical comparisons were made 

at the alpha of 0.05. 

2.3.2 Inter-Trial and Inter-Subject Reproducibility Tests 

Inter-trial/subject reproducibility measures the consistency and predictability of stimulus-locked response 

properties at the individual trial/subject level. Unlike repeatability, which measures the consistency of 

generated repetitive results, reproducibility is considered a measure of obtaining consistent results from 

different generators (e.g., trials, subjects) that are not necessarily identical. In this study, reproducibility 

refers to the consistency of calculated scores from the proposed pipeline. Therefore, we established two 

standardization analysis methods, analytical and bootstrapping measurements, to assess identifying the P3 

component. For analytical scores measurement, we calculated the standard measurement error (SME) of 

estimated scores at two levels, single-trial EEG and individual subject ERP. A similar concept of the SME 

index was introduced by Luck et al. (Luck et al., 2021) for ERP to assess the score and data measurement 

quality. Following their study, scoring refers to the results of identifying the ERP of interest (e.g., time 

window properties, peak latency, inner similarity) from individual subjects/trials. In general, the  

(estimated SME) from the  results given score can be calculated as: 

              (5) 

where the  is the standard deviation (SD) of the scores, and  is the number of contributed scores. Note 

that the true value of SME is unknown; thus, its estimation is denoted as  in the following sections. 

More clearly, given  trials of one condition from one subject and calculated scores (e.g., peak amplitude) 

from each trial, the standard error from  trials can be calculated from Eq. 5. 

Let us introduce the score items used in our measurement. At the single-trial EEG level, the spatial 

correlation is evaluated between the estimated ERP and the identified template map from cluster analysis 

of the group average ERP. Therefore, the yielded  across the scores (spatial correlation) indicates the 

spatial error of the results at the individual trial level. Furthermore, we evaluate the temporal 

reproducibility by assessing the consistency of the estimated time windows across trials. Noticeably, the 

temporal reproducibility of the estimated temporal properties of the scores carries considerable noise and 

variability, which is associated with the nature of single-trial EEG data. Likewise, the reproducibility of 
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the spatial and temporal properties of the estimated time windows was investigated for qualifying ERP at 

the individual subject level. In the following, we described the conducted bootstrap procedure. 

2.3.3 Bootstrapping and Reliability Tests 

We established a bootstrapping process on the calculated scores for testing the reproducibility of 

generating/processing the results and reliability. Bootstrapping provides an estimation of the standard 

error if the experiment can be repeated many times. The idea of performing the bootstrap procedure is 

that, given an experiment, we can simulate trials/results by generating an adequate number of trials many 

times (e.g., 1000 times trial generation) with replacement for each condition and each subject, rather than 

repeating the experiment many times. In our design, the bootstrap mechanism was applied to generate the 

single trials clustering results used in the designed multi-set consensus clustering. Therefore, given  

repeats and scores,  for subject  is calculated as averaged squared errors as: 

,       (6) 

where the standard error ( ) for each of the repeats  is calculated as: 

        (7)  

and  denotes the number of trials for subject  in condition  in each generation of bootstrapping. 

Therefore, the scores from each generation can be calculated followed by obtaining the measurement error 

for all the individual subjects as aggregated error: 

      (8) 

Furthermore, an additional parameter called total error  is calculated from the individual subjects 

 called true variance, and the measurement error (calculated from Eq. 8). This calculation can be 

illustrated as: 

.      (9) 

Although this metric was not originally designed for single-trial EEG analysis, we adapted it to generate 

simulated clusterings obtained from individual trials during the bootstrap process. Indeed, we assume 

sufficient trials are available for the ensemble clustering. Moreover, this can enhance the complexity of 

applying consensus clustering since no cluster generation step is required for each trial in each iteration. 
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Consequently, we seamlessly integrated the scoring results of the trials with individual subject scores, 

ensuring robust evaluations. Therefore, the reliability of the measurement can be calculated as follows: 

       (10) 

Furthermore, we used Cronbach's alpha and standard error of measurement (SEM) to calculate the 

reliability, estimating the error in individual scores within the subjects. The Cronbach's alpha is calculated 

as: 

,     (11) 

where,  is the number of items (the number of scoring tests) and   denotes the variance associated with 

each measure and  is the variance associated with all the scores. The  is then calculated as: 

.     (12) 

3. Results 

We first present the consensus clustering results and the spatial and temporal properties of the identified 

ERP for individual subjects. Then, further performance analysis and standardization results are illustrated 

from the established bootstrap. 

Figure 2 

3.1 Multi-Set Consensus Clustering Results and Temporal Properties 

Two levels of consensus clustering were employed. The first level was applied to group average ERP data 

to identify the ERP of interest, which served as the target template map information. The second level 

involved multi-set consensus clustering at the single-trial EEG level. For clustering at the group level, 

four clustering methods, namely, k-means, self-organizing map (SOM), modified k-means (with polarity 

adjustment), k-medoids clustering (KMD), and Gaussian mixture model (GMM), were selected from the 

implemented clustering methods in our toolbox (Mahini et al., 2022). Figure 2 shows the clustering 

results, determined time windows, and topographical maps for group average ERP data. Observing the 

results from the group averaged ERP reveals identifying P3 by cluster maps 4 for both conditions with a 

high inner similarity, indicating the stability in the time window of 307.81 to 596.88 ms and 335.16 to 

471.88 ms in 'Rare' and 'Frequent' conditions, respectively. Notably, the identified P3 has been used as the 

reference to examine spatial properties of the single trials and spatial correlation scores. 
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Before cluster analysis of the trials, the proposed method selects a clustering method set for single trials 

of each subject (see Section 2.2.2). Table 1 presents the selected clustering methods for the single-trial 

EEG epochs of each subject for the subjects' temporal concatenated ERP dataset. Noteworthy that 

determining the suitable set of clustering methods for individuals is associated with a more precise cluster 

analysis, at least at the individual level. However, we did not find suitable clustering methods set for a 

few subjects (e.g., subjects 13, 38, 40) due to the criteria for selection in which the cluster method set for 

group-averaged ERP was replaced as a general set of clustering methods. We showed the clustering results 

of individual subjects in Figure 3, which involves the ERP waveforms at the Pz site, estimated time 

windows (red-colored rectangles), and clustering results for each subject. The results reveal variations in 

estimated responses from individual subjects. For some subjects, like subject 39, we did not find a distinct 

P3, which can pose challenges to experimental hypotheses (i.e., expecting similar P3 from all the subjects). 

We will discuss this issue in more detail in Section 4. 

Table 1 

Figure 3 

3.2 Spatial Properties of P3 in Individual Subjects 

We measured the mean of topographical maps (see Figure 4) in the estimated time window of individual 

subjects to demonstrate the topographical representation of the P3 component. The results in Figure 4 and 

the spatial correlation results in Table 2 highlight that the topographical maps of most subjects declare a 

fair spatial correlation with the template maps (topographical maps from the group average ERP results). 

However, we did not find a reasonable correlation between the topography of P3 and the template map in 

some subjects, like subject 39, which can be due to existing overlapped components or the lack of the 

expected strong brain response in the recorded signals. Table 2 reports the scoring results, including 

estimated time windows, the inner similarity of time windows, the mean amplitude (at the Pz electrode), 

and the spatial correlation between the mean map and the template map regarding qualifying the P3 

component for the individual subjects. 

The scoring results for the individual subjects disclose the following findings: i) A reasonable spatial 

correlation was obtained between most of the individual subjects and the template maps in both conditions, 

with an average of 0.74 and  of 0.13 in the 'Rare'and 0.64 and  of 0.28 in the 'Frequent' condition. 

Nevertheless, we noticed a low correlation with the template map in some subjects, such as subjects 9 and 

36, that may indicate different or dimed brain responses. ii) A larger amplitude was observed in the 'Rare' 



12 
 

(i.e., average 13.44 μv and  of 6.34 μv) compared to the amplitude in the 'Frequent' condition (i.e., 

average 7.16 μv and  of 4.03 μv) in the majority of subjects. iii) Additionally, high inner similarity in 

both conditions was observed in most subjects, i.e., 0.91 and  of 0.05 in the 'Rare' and 0.92 and  of 

0.03 in the 'Frequent' condition, disclosing the quality of representative cluster maps. iv) Eventually, the 

average latency properties of 'Rare' (start and end) from the subjects were 351.08 ms to 495.91 ms and  

of 76.12 and 90.64 ms, respectively. Those parameters for the 'Frequent' condition were obtained in 366.01 

to 498.62 ms with  of 94.32 and 100.99 ms for start and end, respectively. These results, in turn, reveal 

a suitable consistency across the subjects regarding the obtained scores and are complementary to the 

results from the group-averaged ERP data in the original study.  

Figure 4 

Table 2 

3.3 Evaluation Metrics and Performance Results 

Figure 5 illustrates the reproducibility scores, including analytical scores from trials and subjects, as well 

as bootstrap scores obtained through 1000 iterations of trial clustering with replacement. The same scoring 

items were investigated, including mean amplitude, inner similarity, time window properties, and 

correlation between the mean topography of P3 in individual subjects and the corresponding obtained 

template map from group average ERP data. Realizing that the  results were derived from single 

trials of individual subjects and  were obtained from the bootstrapping procedure. The SME of the 

scores reveals how the scores can change if the experiment (here, processing) is repeated. Observing 

Figure 5 and Table 2 disclose the measured consistency in the scoring results at individual and group 

levels, indicating the experiment conduction quality and signal processing performances. 

Figure 5 

In order to illustrate the difference between the obtained corresponding  and  scores, we 

conducted two-sample t-tests. The results showed a significant difference between the  and  

scores in the 'Rare' condition for both the start (p-value < 0.0001) and the end (p-value < 0.0001) points 

of the estimated time windows. These values were greater (i.e., mean of 22.44 ms) in  than in  

(12.12 ms) in the star points and were similarly higher in  (25.77ms) than in  (14.37 ms) 

scores for the endpoints in 'Rare.' However, we did not find a significant difference between the scores in 

the 'Frequent' condition for the start points (p-value = 0.125) and the end (p-value = 0.1346) points. We 
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provided further detailed results of  and  from the estimated time windows in Table S1. For 

the obtained mean amplitudes (see Table S2), we also found a significant difference (p-value < 0.0001) 

between the  and  scores in 'Rare' that was greater for  (mean of scores 2.26 μv) than 

for v  (1.27 μv). The difference was not significant (p-value = 0.330) in the 'Frequent' condition. 

Furthermore, the spatial correlation scores (see Table S3) revealed a significant difference (p-value < 

0.0001) between the  and  of the scores, with a relatively larger mean of 0.042 for  than 

that of 0.025 for   scores in the 'Rare' condition. Nevertheless, there was no significant difference 

(p-value = 0.389) between  and  scores in the 'Frequent' condition. 

Finally, the statistical analysis of obtained SMEs from the inner similarity (see Table S4) of estimated 

time windows revealed a significant difference (p-value < 0.0001) between the  in 'Rare' that was a 

larger mean of 0.014 for  than that of 0.007 for  scores. Likewise, we also found a significant 

difference (p-value = 0.020) between  and  in 'Frequent,' where a higher inner similarity error 

of 0.008 was obtained in  than  with an error of 0.006. Further reliability tests on the obtained 

scores in Table 2 revealed Cronbach's alpha of 0.70 from the scores in two conditions, implying a suitable 

consistency of the scoring results between the subjects. 

Table S1-S4 Supplementary Results 

3.4 Statistical Analysis Results 

The statistical analysis of the variances on the selected time windows from individual subjects revealed 

that the main effect of the stimulus was significant, where the average results from the bootstrapping 

revealed F(1,39)=74.69 and SD of 14.49, p-value <0.0001, = 0.651 and SD of 0.044, indicating a large 

effect of the P3 component. Notably, a large positive potential in the central lobe region was observed in 

the 'Rare' compared to the 'Frequent' condition, confirming the previous findings in the original study. The 

statistical analysis results implied the potential of the proposed pipeline to obtain more informative evoked 

activity measurement from individual subjects instead of using a fixed time window for all subjects or 

conventional conducting point-by-point statistical analysis (multiple t-tests of whole time points to search 

for significant differences). 

4. Discussion 

Given the rising interest in the role of single trials in determining time window, we proposed a multi-set 

consensus clustering pipeline for cluster analyzing of single-trial EEG in order to identify the brain 
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response at individual subject level. To tackle this problem, we designed the consensus clustering at the 

single trials level and combined the obtained clusterings across the trials for each individual subject. The 

idea of combining the clusterings of trials is that by employing the consensus mechanism, our method 

extracts similar cognitive responses by identifying time points with consistent contributions across trials, 

leading to mutually aggregated clustering results and reducing the influence of noisy clusters. 

Furthermore, the performance analysis revealed a suitable reproducibility of the clustering results with 

respect to the obtained scores for identifying the ERP of interest. Additionally, the use of bootstrap and 

analytical techniques exposed the stability of the proposed pipeline, providing robust clustering and 

scoring results for evoked single-trial EEG epochs of individuals. As a result, the estimated time windows 

offer a realistic representation of individual subjects' cognitive responses, making them suitable for both 

group-level and individual analyses. 

The proposed method differs from the conventional methods in two main aspects. Firstly, it investigates 

the spatial and temporal properties of the cognitive response from single-trial EEG to the individual 

subject. This was accomplished by exploring the mutual temporal information from the single trials and 

the inner similarity investigation (stable spatial configuration) while determining the time window. In 

contrast, conventional microstate analysis-based methods evaluate spatial properties to classify 

microstates into commonly four privileged dominant classes of maps for event-related and resting state 

EEG (Antonova et al., 2022; Michel & Koenig, 2018; Zappasodi et al., 2019). For ERP data, the microstate 

analysis method assigns the GFP points from individual subjects' ERP data into the template maps 

obtained from group average ERP data clustering (Murray et al., 2008; Ruggeri et al., 2019). Therefore, 

the temporal structure of the ERP of interest is statistically identified wherein specific topography is 

dominated (i.e., obtained using clustering of single trial data). Meanwhile, identifying the temporal 

occurrence of template maps has relied on statistical analysis (De Lucia et al., 2007a; Tzovara, Murray, 

Michel, et al., 2012; Tzovara, Murray, Plomp, et al., 2012). 

Secondly, the proposed pipeline investigates a dynamic clustering configuration in the consensus 

clustering generation phase for each subject using the M-N plot-based clustering selection. However, a 

fixed set of clustering methods was considered for all subjects in conventional microstate studies and the 

consensus clustering method on EEG/ERP data (Koenig et al., 2014; Mahini et al., 2022; Ruggeri et al., 

2019). Noteworthy that the proposed method may yield suboptimal clustering performance in low SNR 

data, as it could result in a large number of noisy clusters - a common challenge in clustering-based 

approaches (Mahini et al., 2023). To address this issue, we introduced a post-hoc processing step that can 
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be applied at different clustering levels, such as the initial clustering of single trials with different methods. 

This step involves identifying thin cluster maps with a small number of samples (e.g., <10 ms) and 

assigning them to neighboring cluster maps if they exhibit sufficiently high spatial correlation (e.g., > 0.90 

between mean topography maps). Another consideration is the potential difficulty in identifying highly 

overlapped components due to the nature of the clustering methods. This issue arises because the real 

brain response may be mixed with other components, particularly during the group average ERP data 

processing, which entails averaging trials from all subjects. To mitigate this, our approach analyzes 

individual subjects' responses from real trials, providing a more realistic representation of their brain 

responses compared to the averaging process. 

Regarding the stability of the proposed pipeline results, both the analytical and bootstrapping scores 

demonstrated a reasonable consistency among individual subjects' results across different test items, 

especially spatial correlation scores, aligning with the expectations of the experiment. However, a few 

subjects exhibited deviant results where the corresponding bSME was not necessarily lower than the 

aSME. Subjects 9 and 39, for instance, displayed relatively deviant results. These deviations could be 

attributed to two potential factors. Firstly, the obtained topographical maps may have had a low SNR and 

might not have been statistically reliable within the determined time windows. Secondly, the selected trials 

during the preprocessing phase may not have contained sufficiently strong ERP responses, potentially 

leading to the inclusion of trials with lower spatial correlation in an effort to retain a minimum number of 

individual trials. 

In the context of this study, lower bSMEs were interpreted as indicating greater reproducibility in the 

clustering results of the selected trials and the obtained scores. The bootstrapping test indicated higher 

stability in all the examined score items compared to the corresponding analytical scores. To ensure the 

robustness of the designed bootstrapping process, we further repeated the bootstrapping process with 

varying numbers of iterations (e.g., 100, 1000, and 3000) for the same single-trial clusterings. Pairwise t-

tests applied to the resulting bSMEs from these repetitions showed no significant differences (p-value ~ 

1.00) between the corresponding scores, confirming the reliability of the bootstrapping test (Davison & 

Hinkley, 1997; Efron, 1992). However, increasing the number of repetitions did enhance stability, 

particularly in the scoring results for the 'Frequent' condition compared to the 'Rare' condition. It is 

noteworthy that we assume to include an adequate number of trials (e.g., a minimum of 50 trials for 

bootstrap generation) after the trial selection step. However, in cases where subjects had fewer selected 
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trials, like less than 10 trials, we adjusted the criteria (e.g., to a minimum of 20 trials) to ensure a reasonable 

number of trial selections. 

The developed pipeline revealed spatially correlated brain activity with similar temporal properties 

(though not necessarily identical), supporting the principle of consistent brain responses across single 

trials and individual subjects. The designed reproducibility evaluation also illustrated the consistency of 

the obtained results, implying the reliability of the proposed cluster analysis if the random trials were 

generated iteratively. The statistical analysis highlighted a significant effect at the Pz electrode site, along 

with the identified time windows, exhibiting a larger positive potential in the 'Rare' condition compared 

to 'Frequent' in most subjects, confirming the experiment hypotheses. The MATLAB demo code for the 

proposed pipeline is available at https://github.com/remahini/Single_trial_EEG_MSCC, which can be 

easily modified by the researchers to test their hypothesis. Noteworthy that our method is not limited to 

identifying the standard P3 component, as demonstrated in this study; it holds the potential for identifying 

other ERP components from event-related single-trial EEG data. Moreover, the proposed method meets 

suitable confidence in exploring ERP of interest for individual subjects, which is essential for different 

individual subject investigations. However, more detailed studies and reliability tests are required to 

overcome potential risks and ethical concerns to be used in critical applications. 

5. Conclusions 

In conclusion, using the proposed data-driven approach for investigating single-trial EEG suggests that 

the evoked response in an individual subject can be reliably identified from single trials when examining 

single-trial EEG clustering. The proposed method addressed the complexity of identifying ERP of interest 

with single-trial EEG by hierarchically combining clustering information from single trials with minimum 

knowledge about the component of interest. Our early findings support existing spatially correlated cluster 

maps in a single trial of individual subject data associated with reliable estimations of the brain response. 

The proposed pipeline offers an unbiased means of identifying interesting potentials, enhancing the 

likelihood of uncovering real components. The future outlook of this project can be a promising tool for 

reliable investigations of individual subject brain activity, particularly in clinical applications that are still 

open research questions for individual subject single-trial EEG data analysis. Future developments may 

leverage multi-dimensional single-trial EEG processing, which offers a powerful tool to explore brain 

responses across/combined from various domains and perspectives through clustering analyses. 
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 Figure captions 

Figure 1. Demonstration of the proposed pipeline for identifying the time window of interesting ERP of 

individual subjects using multi-trial consensus clustering. i) The clustering method selection procedure 

selects the appropriate clustering configuration to feed consensus clustering (CC) for individual subjects. 

ii) Initial clustering provides information on the existing target response by testing the spatial correlation 

between the grand average topography (selection criteria) and candidate cluster maps resulting from the 

initial clustering. iii) Clustering of the selected trials in two levels: individual trial clustering and then 

clustering of the results across the trials. iv) Exploring for the most appropriate time window, examining 

the candidate maps' inner similarity and spatial correlation. C= condition. 

Figure 2. Consensus clustering results on group-averaged ERP data and the identified P3 component from 

grand mean data. The spatial property of the elicited P3 is used as the template map for selecting trials 

and comparing individual subjects' results. 

Figure 3. Illustration of the clustering results for individual subjects and estimated time window for each 

condition (indicated by the red rectangle) for identifying the P3 component. The waveform has been 

shown from the 'Pz' electrode in single trial data. 

Figure 4. Illustration of the mean topographical maps (in the determined time windows) for P3 calculated 

from the ERP dataset of subjects. The two bigger topographical maps (in the results top panel) illustrate 

the ground truth maps calculated from the grand mean ERP data. 

Figure 5. Estimated analytical standard measurement error ( ) and bootstrapping SME ( ) of 

the calculated scores for each condition. A)  of calculated scores of the temporal properties of time 

windows in single trials of subjects and the bootstrapping procedure with 1000 iterations. B) The  

and  of the calculated amplitude scores in the determined time windows. C)  of spatial 

correlation scores, i.e., between the obtained maps (in the estimated time window) and the template map. 

D) The  of inner similarity scores determined from individual subjects in the determined time 

windows. 
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Figure 1. Demonstration of the proposed pipeline for identifying the time window of interesting ERP of individual 

subjects using multi-trial consensus clustering. i) The clustering method selection procedure selects the appropriate 

clustering configuration to feed consensus clustering (CC) for individual subjects. ii) Initial clustering provides 

information on the existing target response by testing the spatial correlation between the grand average topography 

(selection criteria) and candidate cluster maps resulting from the initial clustering. iii) Clustering of the selected 

trials in two levels: individual trial clustering and then clustering of the results across the trials. iv) Exploring for 

the most appropriate time window, examining the candidate maps' inner similarity and spatial correlation. C= 

condition. 
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Figure 2. Consensus clustering results on group-averaged ERP data and the identified P3 component from grand 

mean data. The spatial property of the elicited P3 is used as the template map for selecting trials and comparing 

individual subjects' results. 
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Figure 3. Illustration of the clustering results for individual subjects and estimated time window for each condition 

(indicated by the red rectangle) for identifying the P3 component. The waveform has been shown from the ‘Pz’ 

electrode in single trial data. 
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Figure 4. Illustration of the mean topographical maps (in the determined time windows) for P3 calculated from the 

ERP dataset of subjects. The two bigger topographical maps (in the results top panel) illustrate the ground truth 

maps calculated from the grand mean ERP data. 
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Figure 5. Estimated analytical standard measurement error ( ) and bootstrapping SME ( ) of the 

calculated scores for each condition. A)  of calculated scores of the temporal properties of time windows in 

single trials of subjects and the bootstrapping procedure with 1000 iterations. B) The  and  of the 

calculated amplitude scores in the determined time windows. C)  of spatial correlation scores, i.e., between 

the obtained maps (in the estimated time window) and the template map. D) The  of inner similarity scores 

determined from individual subjects in the determined time windows. 

  



27 
 

Table captions 

Table 1. Illustration of the selected clustering methods for the individual subjects, evaluating the results 

of the M-N plot test on individuals’ temporal concatenated ERP data. Note that the replacement list is 

used when no suitable method is selected or an individual clustering method is chosen. KM= k-means, 

HC = hierarchical clustering, SOM= self-organizing map, DSPC = diffusion map spectral clustering, 

MKMS = modified k-means, SPC = spectral clustering, KMD = k-Medoids clustering, and GMM = 

Gaussian mixture model. 

Table 2. Illustration of the calculated scores obtained from the determined time windows of individual 

subjects using the proposed pipeline. The scores involve the temporal properties of the estimated time 

windows (start and end), inner similarity, amplitude in the Pz electrode, and correlation of mean 

topography with ground truth topography. TW = time window, Innsim = inner similarity, Amp = mean 

amplitude, Corr = spatial correlation. 

Table S1. The calculated and  scores for the determined time windows for the individual 

subjects. The is obtained from processing all the trials, and the  is calculated from the 

bootstrapping by selecting (with replacement) at least 50 trials for each repeat. 

Table S2. The obtained  and  scores from the calculated mean amplitudes in the estimated 

time windows for the individual subjects. 

Table S3. Illustration of the  and  scores of the individual subjects, calculated from the spatial 

correlation between the mean topography in the estimated time windows and the ground truth topography.  

Table S4. Calculated  and  scores from the inner similarity of time points in the estimated 

time windows for the individual subjects. 
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Table 1. Illustration of the selected clustering methods for the individual subjects, evaluating the results of the M-
N plot test on individuals’ temporal concatenated ERP data. Note that the replacement list is used when no suitable 
method is selected or an individual clustering method is chosen. KM= k-means, HC = hierarchical clustering, SOM= 
self-organizing map, DSPC = diffusion map spectral clustering, MKMS = modified k-means, SPC = spectral 
clustering, KMD = k-Medoids clustering, and GMM = Gaussian mixture model. 

Subj_ID Selected methods (Method-code) Replaced List (Method-code) 
S1 KM-1, SOM-4, DSPC-5, SPC-8, KMD-9, GMM-10 - 
S2 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S3 KM-1, HC-2, SOM-4, DSPC-5, SPC-8, GMM-10 - 
S4 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, GMM-10 - 
S5 SOM-4, DSPC-5, MKM-6, SPC-8 - 
S6 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S7 KM-1, HC-2, DSPC-5, MKM-6, SPC-8, GMM-10 - 
S8 KM-1, SOM-4, DSPC-5, MKM-6, SPC-8, KMD-9 - 
S9 KM-1, SOM-4, MKM-6, KMD-9, GMM-10 - 
S10 KM-1, HC-2, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S11 KM-1, HC-2, SOM-4, MKM-6, SPC-8, KMD-9, GMM-10 - 
S12 DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S13 No Method determined KM-1, SOM-4, MKM-6, KMD-9 
S14 DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S15 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S16 HC-2, SOM-4, DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S17 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S18 KM-1, SOM-4, MKM-6, SPC-8, KMD-9 - 
S19 DSPC-5, GMM-10 - 
S20 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S21 KM-1, MKM-6, SPC-8, KMD-9, GMM-10 - 
S22 KM-1, SOM-4, DSPC-5, MKM-6, SPC-8, KMD-9, GMM-10 - 
S23 SOM-4, MKM-6, KMD-9 - 
S24 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S25 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S26 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S27 KM-1, HC-2, SOM-4, DSPC-5, GMM-10 - 
S28 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, GMM-10 - 
S29 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9,GMM-10 - 
S30 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S31 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S32 KM-1, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S33 HC-2, SOM-4, DSPC-5, KMD-9, GMM-10 - 
S34 KM-1, HC-2, DSPC-5, SPC-8 GMM-10 - 
S35 KM-1, HC-2, SOM-4, DSPC-5, MKM-6, KMD-9, GMM-10 - 
S36 KM-1, HC-2, SOM-4, MKM-6, KMD-9, GMM-10 - 
S37 KM-1, HC-2, MKM-6, SPC-8, KMD-9 - 
S38 One method (GMM-10) KM-1, SOM-4, MKM-6, KMD-9 
S39 KM-1, HC-2, SOM-4, MKM-6, KMD-9, GMM-10 - 
S40 One method (DSPC-5) KM-1, SOM-4, MKM-6, KMD-9 
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Table 2. Illustration of the calculated scores obtained from the determined time windows of individual subjects 
using the proposed pipeline. The scores involve the temporal properties of the estimated time windows (start and 
end), inner similarity, amplitude in the Pz electrode, and correlation of mean topography with ground truth 
topography. TW = time window, Innsim = inner similarity, Amp = mean amplitude, Corr = spatial correlation. 

 Rare Frequent 
Subj-

ID 
TW 

start(ms) 
TW 

end(ms) Innsim Amp(μv) Corr TW 
start(ms) 

TW 
end(ms) Innsim Amp(μv) Corr 

S1 382.03 507.03 0.92 11.12 0.71 456.25 550.00 0.93 2.04 0.53 
S2 342.97 577.34 0.98 33.37 0.97 350.78 432.81 0.98 16.50 0.95 
S3 288.28 612.50 0.87 15.78 0.91 303.91 444.53 0.87 8.86 0.71 
S4 280.47 397.66 0.96 17.79 0.89 280.47 452.34 0.91 13.48 0.82 
S5 342.97 467.97 0.86 6.42 0.63 573.44 647.66 0.95 5.82 0.38 
S6 303.91 487.50 0.89 23.23 0.84 319.53 444.53 0.92 9.98 0.88 
S7 296.09 503.13 0.97 20.29 0.52 249.22 479.69 0.92 12.47 0.65 
S8 198.44 346.88 0.83 7.52 0.69 202.34 350.78 0.88 4.12 0.34 
S9 342.97 444.53 0.84 18.48 0.47 405.47 604.69 0.90 -1.73 -0.12 

S10 303.91 366.41 0.86 17.06 0.73 346.88 428.91 0.92 6.20 0.75 
S11 421.09 577.34 0.89 6.68 0.74 471.88 573.44 0.89 3.56 0.50 
S12 300.00 389.84 0.97 21.60 0.76 296.09 413.28 0.96 11.66 0.89 
S13 241.41 417.19 0.93 13.27 0.78 292.19 464.06 0.94 10.89 0.85 
S14 311.72 452.34 0.85 9.39 0.64 319.53 409.38 0.93 6.94 0.85 
S15 467.97 596.88 0.87 5.56 0.82 499.22 577.34 0.95 4.71 0.89 
S16 327.34 471.88 0.95 20.70 0.74 237.50 319.53 0.91 8.96 0.72 
S17 323.44 428.91 0.96 7.35 0.78 374.22 491.41 0.90 1.42 0.56 
S18 467.97 526.56 0.90 12.58 0.63 428.91 503.13 0.89 6.24 0.51 
S19 436.72 635.94 0.96 20.22 0.91 300.00 546.09 0.93 13.88 0.96 
S20 495.31 581.25 0.85 5.36 0.73 409.38 522.66 0.88 7.52 0.88 
S21 303.91 452.34 0.89 8.37 0.80 346.88 510.94 0.89 4.61 0.72 
S22 350.78 499.22 0.92 14.78 0.92 428.91 573.44 0.96 11.32 0.89 
S23 436.72 573.44 0.91 12.24 0.68 553.91 647.66 0.96 9.18 0.28 
S24 257.03 522.66 0.86 11.63 0.89 315.63 471.88 0.93 7.39 0.78 
S25 292.19 385.94 0.92 11.60 0.66 467.97 565.63 0.88 6.63 0.76 
S26 346.88 495.31 0.91 15.60 0.81 319.53 491.41 0.94 9.43 0.64 
S27 467.97 514.84 0.84 7.19 0.62 346.88 428.91 0.90 8.98 0.95 
S28 452.34 772.66 0.90 8.83 0.49 452.34 643.75 0.93 4.60 0.44 
S29 362.50 413.28 0.99 14.10 0.77 339.06 499.22 0.87 2.47 0.56 
S30 257.03 479.69 0.92 25.06 0.81 350.78 452.34 0.94 10.91 0.80 
S31 260.94 335.16 0.94 7.93 0.77 264.84 428.91 0.95 3.35 0.61 
S32 440.63 542.19 0.98 15.44 0.77 378.13 534.38 0.98 6.36 0.66 
S33 323.44 425.00 0.93 12.39 0.75 276.56 350.78 0.89 2.59 0.58 
S34 389.84 620.31 0.96 13.84 0.77 479.69 639.84 0.87 6.72 0.77 
S35 245.31 385.94 0.85 14.49 0.77 288.28 358.59 0.90 11.52 0.79 
S36 350.78 460.16 0.89 0.14 0.32 491.41 635.94 0.97 0.05 -0.38 
S37 405.47 589.06 0.95 11.75 0.80 210.16 331.25 0.91 1.65 0.27 
S38 362.50 510.94 0.92 16.37 0.77 296.09 428.91 0.83 10.40 0.84 
S39 510.94 573.44 0.88 8.70 0.82 550.00 796.09 0.86 7.72 0.61 
S40 346.88 421.09 0.98 19.80 0.85 335.16 483.59 0.93 9.48 0.91 

Mean 351.08 495.91 0.91 13.44 0.74 366.01 498.62 0.92 7.16 0.64 
 76.12 90.64 0.05 6.34 0.13 94.32 100.99 0.03 4.03 0.28 
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Table S1. The calculated and  scores for the determined time windows for the individual subjects. The
 is obtained from processing all the trials, and the  is calculated from the bootstrapping (with 

replacement). 

 

  

 Rare Frequent 

Subject ID  
start(ms) 

 
end(ms) 

 
start(ms) 

 
end(ms) 

 
start(ms) 

 
end(ms) 

 
start(ms) 

 
end(ms) 

S1 23.00 28.27 14.29 17.87 15.85 18.01 14.12 16.06 
S2 10.86 13.36 8.55 10.77 9.55 10.52 10.50 11.24 
S3 26.32 22.93 13.12 14.35 12.49 11.42 12.65 11.64 
S4 13.34 20.73 9.63 14.16 11.33 10.24 11.26 10.24 
S5 19.58 17.57 15.91 14.30 15.60 15.90 15.48 15.75 
S6 83.61 77.94 16.78 15.64 11.69 11.68 11.54 11.66 
S7 25.41 23.38 15.22 13.97 10.38 11.09 10.94 10.96 
S8 33.85 41.69 17.27 21.28 20.51 21.47 13.90 14.57 
S9 16.26 25.94 3.25 5.19 34.71 37.83 16.25 17.70 

S10 48.83 29.30 6.90 4.14 15.29 14.04 12.62 11.59 
S11 17.04 19.30 12.83 14.47 15.98 18.95 15.80 18.81 
S12 19.18 25.48 8.20 14.75 11.37 11.77 11.32 11.86 
S13 16.42 17.35 11.21 9.00 8.49 9.16 8.53 9.21 
S14 36.64 38.55 13.94 13.81 13.16 17.13 12.12 14.43 
S15 20.72 22.79 11.73 12.85 11.99 12.83 12.05 12.88 
S16 18.01 28.75 11.70 18.62 8.07 9.87 8.04 9.83 
S17 20.99 23.88 14.22 16.19 11.85 13.42 14.98 15.76 
S18 18.95 18.96 14.90 15.27 17.17 21.75 11.34 14.50 
S19 20.15 27.39 13.32 17.60 10.75 11.24 10.25 11.38 
S20 24.60 22.16 15.16 13.66 9.61 10.79 9.57 10.73 
S21 18.61 24.85 13.94 18.56 12.39 14.46 12.33 14.43 
S22 18.41 34.55 10.83 20.97 8.40 9.34 8.38 9.33 
S23 20.46 26.12 12.62 16.09 13.23 16.01 13.14 15.89 
S24 18.70 16.43 13.25 11.60 11.33 10.20 11.49 10.12 
S25 23.98 29.99 14.33 17.67 14.57 17.18 13.21 15.81 
S26 14.41 18.22 9.59 10.17 12.52 12.35 12.78 12.76 
S27 14.02 13.63 8.37 8.16 10.77 9.96 10.73 9.91 
S28 23.14 37.21 9.83 15.79 15.18 16.29 12.73 13.63 
S29 12.94 18.96 8.14 12.02 18.25 17.09 15.27 14.25 
S30 21.34 19.96 11.26 11.75 15.11 16.76 13.43 15.13 
S31 20.72 21.91 13.44 14.24 12.17 12.09 12.08 11.96 
S32 17.59 23.10 13.10 16.80 8.61 10.18 8.55 10.13 
S33 11.32 11.63 9.18 9.41 9.51 12.52 9.47 12.48 
S34 14.41 23.87 9.55 20.28 13.08 14.03 13.88 15.07 
S35 33.34 53.09 14.18 22.62 12.44 19.33 10.60 16.47 
S36 20.47 20.03 15.06 15.32 15.25 14.20 12.75 11.88 
S37 17.84 18.85 9.56 11.90 11.83 13.02 11.86 13.57 
S38 18.45 19.19 12.93 12.99 10.80 10.22 10.76 10.18 
S39 19.93 15.01 16.81 13.47 11.07 12.71 12.50 15.45 
S40 23.81 38.32 10.64 17.17 16.80 20.71 12.94 15.91 

Mean 22.44 25.77 12.12 14.37 13.23 14.44 12.05 13.13 
 12.24 11.96 3.01 3.98 4.51 5.18 2.02 2.48 

RMS( ) 25.49 28.35 12.49 14.91 13.96 15.32 12.22 13.36 
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Table S2. The obtained  and  scores from the calculated mean amplitudes in the estimated time 
windows for the individual subjects. 

 Rare Frequent 
Subj ID (μv) (μv) (μv) (μv) 

S1 2.44 1.51 1.30 1.16 
S2 1.22 0.97 0.96 1.06 
S3 2.21 1.06 1.39 1.51 
S4 1.05 0.73 0.73 0.73 
S5 1.62 1.33 1.49 1.47 
S6 4.52 0.91 1.09 1.05 
S7 1.83 1.09 0.97 0.98 
S8 3.76 1.90 1.74 1.18 
S9 8.37 1.67 5.56 2.61 

S10 0.79 0.11 1.54 1.27 
S11 1.31 0.98 0.92 0.91 
S12 1.36 0.78 0.80 0.80 
S13 1.17 0.74 0.56 0.56 
S14 1.62 0.80 1.42 1.14 
S15 2.31 1.31 0.80 0.81 
S16 2.61 1.69 1.09 1.08 
S17 2.10 1.42 1.07 1.14 
S18 1.80 1.49 1.80 1.13 
S19 1.79 1.45 0.92 0.91 
S20 1.45 0.89 0.88 0.87 
S21 1.26 0.94 0.91 0.90 
S22 1.62 0.90 1.01 1.01 
S23 3.90 2.42 2.35 2.33 
S24 1.95 1.37 0.94 0.92 
S25 2.39 1.59 1.58 1.68 
S26 1.93 1.09 0.89 0.97 
S27 1.79 1.07 0.99 0.98 
S28 1.71 0.73 0.93 0.78 
S29 2.40 1.47 2.54 2.12 
S30 2.26 1.02 1.96 1.80 
S31 1.83 1.18 0.90 0.89 
S32 1.52 1.20 0.92 0.92 
S33 1.50 1.22 0.98 0.98 
S34 1.83 1.32 1.07 1.15 
S35 4.98 2.11 2.29 1.94 
S36 1.30 1.10 1.19 0.99 
S37 2.50 1.72 1.40 1.40 
S38 1.58 0.99 1.34 1.33 
S39 2.98 2.73 1.72 2.20 
S40 3.95 1.76 1.95 1.53 

Mean 2.26 1.27 1.37 1.23 
 1.37 0.49 0.83 0.47 

RMS( ) 2.64 1.36 1.60 1.32 
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Table S3. Illustration of the  and  scores of the individual subjects, calculated from the spatial 
correlation between the mean topography in the estimated time windows and the ground truth topography. 

 Rare Frequent 
Subj ID     

S1 0.059 0.038 0.031 0.027 
S2 0.013 0.010 0.018 0.020 
S3 0.026 0.014 0.018 0.027 
S4 0.013 0.009 0.025 0.025 
S5 0.061 0.049 0.046 0.044 
S6 0.062 0.012 0.028 0.028 
S7 0.030 0.018 0.015 0.017 
S8 0.049 0.025 0.017 0.011 
S9 0.066 0.013 0.029 0.014 

S10 0.014 0.002 0.016 0.013 
S11 0.039 0.029 0.032 0.032 
S12 0.033 0.019 0.015 0.015 
S13 0.025 0.014 0.018 0.018 
S14 0.043 0.027 0.017 0.016 
S15 0.072 0.040 0.017 0.017 
S16 0.055 0.035 0.015 0.015 
S17 0.059 0.040 0.033 0.021 
S18 0.047 0.037 0.042 0.016 
S19 0.026 0.017 0.012 0.012 
S20 0.032 0.020 0.024 0.024 
S21 0.063 0.047 0.037 0.036 
S22 0.026 0.013 0.031 0.031 
S23 0.042 0.026 0.025 0.025 
S24 0.035 0.024 0.017 0.018 
S25 0.024 0.018 0.013 0.021 
S26 0.024 0.015 0.014 0.020 
S27 0.066 0.039 0.032 0.031 
S28 0.040 0.017 0.022 0.019 
S29 0.029 0.018 0.038 0.032 
S30 0.023 0.007 0.036 0.032 
S31 0.028 0.018 0.023 0.023 
S32 0.037 0.029 0.023 0.022 
S33 0.041 0.033 0.031 0.031 
S34 0.046 0.028 0.028 0.030 
S35 0.111 0.047 0.038 0.032 
S36 0.062 0.052 0.046 0.039 
S37 0.026 0.012 0.030 0.030 
S38 0.034 0.026 0.034 0.033 
S39 0.065 0.054 0.036 0.041 
S40 0.027 0.012 0.016 0.013 

Mean 0.042 0.025 0.026 0.024 
 0.020 0.014 0.010 0.009 

RMS( ) 0.046 0.028 0.028 0.026 
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Table S4. Calculated  and  scores from the inner similarity of time points in the estimated time 
windows for the individual subjects. 

 Rare Frequent 
Subj ID     

S1 0.015 0.006 0.010 0.007 
S2 0.010 0.006 0.005 0.005 
S3 0.012 0.010 0.009 0.008 
S4 0.013 0.007 0.005 0.005 
S5 0.008 0.007 0.010 0.012 
S6 0.039 0.008 0.006 0.006 
S7 0.010 0.005 0.006 0.005 
S8 0.014 0.007 0.010 0.005 
S9 0.030 0.006 0.016 0.010 

S10 0.037 0.004 0.009 0.008 
S11 0.009 0.006 0.007 0.006 
S12 0.012 0.005 0.006 0.006 
S13 0.011 0.007 0.005 0.005 
S14 0.019 0.012 0.010 0.008 
S15 0.014 0.010 0.006 0.006 
S16 0.010 0.006 0.005 0.005 
S17 0.010 0.006 0.007 0.008 
S18 0.010 0.006 0.012 0.008 
S19 0.012 0.008 0.006 0.006 
S20 0.013 0.009 0.005 0.005 
S21 0.011 0.008 0.006 0.006 
S22 0.012 0.005 0.005 0.005 
S23 0.012 0.007 0.007 0.005 
S24 0.010 0.006 0.006 0.005 
S25 0.012 0.008 0.007 0.006 
S26 0.012 0.005 0.007 0.005 
S27 0.012 0.006 0.006 0.006 
S28 0.018 0.004 0.010 0.007 
S29 0.013 0.004 0.009 0.006 
S30 0.015 0.006 0.008 0.007 
S31 0.012 0.007 0.005 0.005 
S32 0.009 0.005 0.005 0.005 
S33 0.009 0.007 0.005 0.005 
S34 0.009 0.007 0.007 0.008 
S35 0.019 0.006 0.010 0.007 
S36 0.011 0.006 0.011 0.008 
S37 0.013 0.008 0.005 0.005 
S38 0.010 0.004 0.007 0.007 
S39 0.009 0.007 0.008 0.009 
S40 0.021 0.008 0.010 0.006 

Mean 0.014 0.007 0.008 0.006 
 0.007 0.002 0.002 0.002 

RMS( ) 0.015 0.007 0.008 0.007 
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