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Abstract

Rantamäki, Julia
Application of the stochastic formalism for spectator scalars during inflation
Master’s thesis
Department of Physics, University of Jyväskylä, 2023, 68 pages.

The quantum fluctuations of light and energetically subdominant scalar fields grow
during inflation to scales larger than the Hubble horizon becoming effectively classical
perturbations. These perturbations could influence on structure formation in the
universe, dark matter abundance or for example generate primordial blackholes.
Scalar field fluctuations can be modelled by means of stochastic formalism where
the field is divided into long-wavelength (IR) field outside the horizon and short-
wavelength (UV) field inside the horizon. IR-field can then be treated effectively
classical stochastic quantity. Two-point correlation functions for some function of a
scalar field ϕ can in stochastic formalism be expressed as a spectral expansion. The
terms for this expansion are obtained from a Schrödinger-like eigenvalue equation.
In this thesis, we introduce the relevant parts of stochastic inflation formalism and
apply it to a λϕ4 potential with a running coupling λ(ϕ), resulting in the formation
of metastable minima. We then analyse the influence of these metastable minima
on the two-point correlators of the scalar field with numerical methods. This type
of field is particularly interesting since the Higgs potential may have qualitatively
similar metastable minima and the Higgs field could have acted as a spectator during
inflation. In the presence of metastable minima, we find close to scale invariant
slightly blue tilted spectrum. The change in the spectral index can be up to 80%
compared to the case with constant λ.

Keywords: Stochastic formalism, Inflation, Spectator field
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Tiivistelmä

Rantamäki, Julia
Stokastisen formalismin soveltaminen spektaattoriskalaareihin inflaation aikana
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2023, 68 sivua

Kevyiden ja energiatiheydeltään pienten spektaattorikenttien kvanttifluktuaatiot
kasvavat inflaation aikana Hubblen horisontin ulkopuolisilla skaaloilla ja käyttäyty-
vät efektiivisesti kuten klassiset kentän häiriöt. Nämä inflaation aikana syntyneet
häiriöt voivat potentiaalisesti vaikuttaa maailmankaikkeuden rakenteen muodostu-
miseen, pimeän aineen määrään tai esimerkiksi primordiaalisten mustien aukkojen
syntyyn. Häiriöitä voidaan mallintaa stokastisen formalismin avulla, jossa kenttä
jaetaan horisontin ulkopuoliseen, efektiivisesti klassiseen (IR) kenttään ja horisontin
sisäpuolella olevaan kvanttikenttään (UV). IR-kenttää voidaan johtavana approksi-
maationa kuvata klassisena stokastisena suureena. Stokastisessa formalismissa minkä
tahansa kentän ϕ funktion 2-pistekorrelaattori horisonttia suuremmilla skaaloilla
voidaan esittää spektraalihajotelmana, jonka termit saadaan Schrödinger-tyyppisen
ominaisarvoyhtälön ratkaisuina. Tässä tutkielmassa esitellään stokastisen formalis-
min perusteita ja sovelletaan sitä λϕ4-potentiaalille juoksevalla kytkennällä λ(ϕ).
Numeerisen analyysin avulla työssä tarkastellaan miten kytkennän juoksusta kentän
potentiaaliin muodostuvat metastabiilit minimit vaikuttavat sen 2-pistekorrelattoriin.
Tällainen kenttä on erityisen mielenkiintoinen, koska Higgsin potentiaalissa voi olla
kvalitatiivisesti saman tyyppisiä metstabiileja minimejä ja Higgs on voinut toimia
spektaattorina inflaation aikana. Metastabiilien minimien vaikutuksesta spektri on lä-
hes skaalainvariantti ja taittaa siniseen. Spektri-indeksi pienenee jopa 80 % verrattuna
tapaukseen, missä λ pysyy vakiona.

Avainsanat: Stokastinen formalismi, Inflaatio, Spektaattorikenttä
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1 Introduction

Observations have shown that at scales larger than 100 Mpc universe appears approx-
imately homogeneous and isotropic [1–3]. Thus, we assume spatially homogeneous
and isotropic universe on large scales, meaning that the universe looks the same
everywhere and in every direction. This assumption is known as the cosmological
principle.

In the beginning of the twentieth century, it was thought that the cosmological
principle applies to both, time and space (perfect cosmological principle), meaning
that our universe is static and not evolving in time. This model was called into
question after Vesto Slipher discovered the galactic redshift in 1912 [4]. A heated
debate regarding the static universe model commenced, lasting nearly two decades
until Edwin Hubble’s publication of the distance-velocity relation in 1929 [5]. Hub-
ble presented observational evidence that the universe was not static, but in fact
expanding.

Theoretical basis for the expanding universe model was founded in 1915 when
Einstein published his theory of general relativity [6]. Later in 1922 Alexander Fried-
mann presented solutions to the Einstein field equations in a spatially homogeneous
and isotropic universe [7]. In 1927, Georges Lemaître independently obtained similar
results [8], which would then lead to the hot Big Bang model. Together, the Fried-
mann equations, with the spatially homogeneous and isotropic Robertson-Walker
(RW) metric [9, 10], defines the Friedmann-Lemaître-Robertson-Walker (FLRW)
universe.

The hot Big Bang is a consequence of the expanding universe model, and according
to it the early universe was extremely hot and dense, and dominated by radiation.
The most important achievements of this model are explaining the cosmic microwave
background (CMB) [11] and the abundance of light elements in agreement with
observations [12, 13]. The hot Big Bang alone would however require an extreme
fine-tuning in early universe, e.g. the flatness problem and the horizon problem.

The flatness problem arises from an observation that the universe is spatially flat
[14]. However, this is not a stable solution and would require extremely fine-tuned
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initial values in the early universe, a topic we will discuss in more detail in section
2.2.

The observation that the cosmic microwave background is remarkably homoge-
neous [15], yet containing regions that were causally disconnected from each other at
recombination brings us to the horizon problem. We would expect to see uncorrelated
patches at scales surpassing the causal horizon, but this is not what we observe.
Instead, assuming that the early universe was radiation-dominated, patches that
have never been in causal contact share the same average temperature.

In 1981 Alan Guth proposed that a period of accelerated expansion, called
inflation, would solve the horizon problem and the flatness problem of the hot Big
Bang model [16]. A year later it was discovered that inflation could also explain the
origin of the primordial perturbations that would arise from quantum fluctuations
stretched to macroscopic scales during the inflationary period [17, 18].

The study of inflation has come far from those pioneering days, and it has become
an active research field. A general description of inflation is that the expansion is
driven by the potential of a scalar field (inflaton) while the field is slowly rolling
towards a minimum of the potential. The potential energy behaves essentially like
vacuum energy, causing the nearly exponential expansion of the universe. This model
is known as the slow-roll inflation. The idea of the inflationary phase in the early
universe is widely accepted and supported by observations, as the high degree of
homogenity and isotropy, and nearly scale invariant spectrum of fluctuations in CMB
[19]. However, there is still no absolute certainty about inflation and the microscopic
nature behind it is yet unknown.

One interesting aspect connected to inflation are so-called spectator fields. Spec-
tator fields refer to energetically subdominant matter fields during inflation which
do not directly affect the inflationary dynamics [20]. However, they may play a
significant role in subsequent stages, potentially influencing CMB anisotropies and
structure formation [21], production of dark matter [22] or even generate primordial
black holes [23, 24]. The standard model (SM) Higgs could also have acted as a
spectator during inflation [25, 26]. During inflation, quantum fluctuations of light
scalar fields grow to macroscopic (superhorizon) scales, transitioning effectively into
classical fluctuations. These fluctuations can be studied with the approximative
stochastic formalism of inflation, where the superhorizon part of the scalar field is
modelled as a classical stochastic quantity, while the subhorizon part is treated as
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stochastic white noise [27]. The dynamics of the superhorizon field can then be
described with a stochastic Langevin equation. The stochastic formalism offers a
convenient non-perturbative tool to study the large-scale dynamics of scalar fields
where perturbative computations suffer from IR-divergences [28]. In this formalism,
correlators of any local function of a spectator scalar field can be conveniently ex-
pressed as a spectral expansion with coefficients obtained from a Schrödinger-like
eigenvalue equation.

The aim of this thesis is to study light spectator scalars during inflation using
the stochatic formalism. We introduce the relevant components of the stochastic
formalism, deriving the Langevin equation, the corresponding Fokker-Planck equation
and the spectral expansion of its solution. We then numerically apply this formalism
to a spectator scalar with a Higgs-like potential with metastable minima generated
by a running coupling.

This thesis is structured as follows: In chapter 2 we review the basic results of
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology and inflation. Quan-
tization of a free scalar field in both flat and de Sitter space-time is described in
chapter 3. Next, we will turn to the stochastic inflation formalism in chapter 4,
including a derivation of the Langevin equation for a scalar field. Then we introduce
the Fokker-Planck equation and find a solution for the equilibrium distribution. In
chapter 5, we present the spectral expansion method for the calculation of two-point
functions. Finally, in chapter 6 we apply these methods to numerically calculate the
spectral expansion for a λφ4 potential with a running coupling.

Throughout this thesis, unless stated otherwise, we use the natural units with
c = ~ = 1 and the metric signature (-,+,+,+).
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2 Introduction to cosmology

In this chapter, we give a brief overview of cosmology, covering topics from general
relativity to the Friedmann-Lemaître-Robertson-Walker (FLRW) universe. Followed
by an introduction to the basic ingredients of cosmic inflation.

2.1 FLRW-universe

As mentioned in the previous section, the FLRW-universe is defined by the Einstein
equations in a spatially homogeneous and isotropic universe. Here we will present
the most relevant results, starting from the derivation of the Friedman equations.
More detailed approach can be found in many textbooks for example in [29, 30].

We start by introducing the Einstein equations, which relate the geometry of
spacetime to its matter distribution [29]

Gµν = 8πGTµν , (2.1)

where Gµν is the Einstein tensor describing the curvature of the spacetime and Tµν is
the energy-momentum tensor representing the matter content within. The Einstein
tensor is defined by the Ricci tensor Rµν and the Ricci scalar R as

Gµν = Rµν −
1
2Rgµν . (2.2)

Both Rµν and R are obtained as contractions of the Riemann tensor

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (2.3)

Rσν = Rµ
σµν (2.4)

R = Rµ
µ (2.5)
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where Γρµν is the connection coefficient (or Christoffel symbol)

Γρµν = 1
2g

ρλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (2.6)

gµν appearing in the connection coefficient is the metric tensor and it determines
the geometry of a spacetime and specifies the line element

ds2 = gµνdx
µdxν . (2.7)

In order to solve the Einstein equations (2.1) we need to find the form of our
metric tensor. Following the cosmological principle, we take spatially isotropic and
homogeneous universe, which can be described as a spacetime that is divided into
maximally symmetric spacelike slices as

ds2 = −dt2 + a2(t)dσ2, (2.8)

where the scale factor a(t) tells the size of the spacelike slice at a given time t. The
RW-metric describes this type of spacetime and in spherical coordinates it has the
form [10]

ds2 = −dt2 + a2(t)
(

dr2

1−Kr2 + r2dθ2 + r2 sin2 θdφ2
)
, (2.9)

where the constant K determines the curvature, such that K > 0 corresponds to
positive curvature (closed universe), K = 0 corresponds to no curvature (flat universe)
and K < 0 corresponds to negative curvature (open universe).

In cosmology, matter is generally described as a perfect fluid, for which the
energy-momentum tensor has the form [29]

Tµν = (ρ+ p)uµuν + pgµν (2.10)

where ρ is the energy density, p is pressure and uµ is the four-velocity. The fluid is
at rest in comoving coordinates and thus its four-velocity is given by

uµ = (1,0,0,0). (2.11)
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The non-vanishing components of Tµν then are

T00 = ρ

T11 = a2

1−Kr2p

T22 = a2r2p

T33 = a2r2sin2θp (2.12)

and together with the non-vanishing components of the Einstein tensor

G00 = 3
(
ȧ2

a2 + K

a2

)

G11 = −2aä+ ȧ2 +K

a−Kr2

G22 = −r2
(
2aä+ a2 +K

)
G33 = −r2 sinθ

(
2aä+ a2 +K

)
we find the Friedmann equations

H2 = 8πGρ
3 − K

a2 (2.13)
ä

a
= −4πG

3 (ρ+ 3p) , (2.14)

with Hubble parameter H = ȧ/a [29].

It can be seen that the scale factor depends on the energy density, ρ, and pressure,
p. These two are connected, as perfect fluid obeys the equation of state

p = wρ (2.15)

with a parameter w often taken as a constant. The energy-momentum tensor obeys
the continuity equation [29]

∇µT
µ
ν = 0. (2.16)
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From the zero component we obtain

∇µT
µ

0 = ∂µT
µ

0 + ΓµµλT λ0 − Γλµ0T
µ
λ (2.17)

= −ρ̇− 3 ȧ
a

(ρ+ p) = 0 (2.18)

and together with eq. (2.15) we get

ρ̇ = −3 ȧ
a

(1 + w)ρ. (2.19)

When the fluid consists of more than one non-interacting species, the total energy
density can be written as a sum of these components

ρ =
∑
i

ρi (2.20)

each of them satisfying the continuity equation.
For constant w, eq. (2.19) then gives

ρi = ρi0

(
a

a0

)−3(1+wi)
. (2.21)

The parameter wi takes different values depending on the type of matter under
consideration. For non-relativistic matter, often referred as dust, w = 0. In the case
of relativistic matter (i.e. radiation) w = 1/3, and for vacuum energy w = −1 [29].

2.2 Inflation

In the beginning of this chapter we discussed the problems of the hot Big Bang
model and how inflation, a period of exponential expansion of space, was proposed
as a possible solution. In this section, we first present the flatness problem and then
focus on single scalar field driven slow-roll inflation.
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2.2.1 The flatness problem

Let us start by introducing the density parameter, Ω, which describes the geometry
of our universe and tells us the sign of the curvature parameter, K, defined as [29]

Ω = 8πG
3H2 ρ (2.22)

and can be further expressed together with eq. (2.13) as

Ω− 1 = K/a2H2. (2.23)

We can find the sign of K by determining the value of the density parameter.
If K = 0, then Ω = 1 and stays constant giving that our universe is perfectly flat,
otherwise the density parameter evolves in time. The behaviour of Ω can be found
by using eqs. (2.21) and (2.13), giving

ρ ∝ a−3(1+w) and H ∝ a−3(1+w)/2, (2.24)

then plugging these into eq. (2.23) yields

Ω− 1 ∝ a1+3w. (2.25)

According to the hot Big Bang model, in the early universe there was a radiation
dominated era followed by matter dominance [29]. During these eras |Ω− 1| grows,
since w = 1/3 for radiation, giving Ω−1 ∝ a2 and w = 0 for matter, giving Ω−1 ∝ a.
The current value of Ω is observed to be very close to unity [14], which would require
extremely fine-tuned initial values in the early universe.

Considering a case that in very early times before radiation dominance took place,
the universe was instead dominated by the vacuum energy, for which w = −1 and
thus ρ ∝ a0. In this case, the curvature term K/a2 in eq. (2.13) decreases much
faster than the energy density term 8πGρ/3, leading to

H2 = 8πGρ
3 . (2.26)

This makes the Hubble parameter H = ȧ/a a constant, since ρ is a constant during
this period. For a vacuum energy dominated universe, we then have the de Sitter
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solution with a scale factor

a ∝ eHt. (2.27)

The second Friedmann equation (2.14) now reads

ä

a
= 8πGρ

3 (2.28)

and we find that with a vacuum dominated universe we get an accelerated expansion
as ä > 0. This also solves the flatness problem as Ω− 1 ∝ a−2 drives Ω exponentially
small during vacuum dominance and thus removes the need for fine tuning. Thus, we
expect that inflation is driven by something that behaves like a vacuum energy and
that is converted into matter and radiation after the inflationary period [31]. Again,
from the second Friedmann equation (2.14) we see that for ä > 0 it is sufficient that
p < −ρ/3, implying negative pressure as we require that ρ > 0.

2.2.2 Inflaton field and the slow-roll approximation

Inflation can be described by a hypothetical scalar field called inflaton, the expansion
is then driven by its potential [32]. It will be described in section 3.2 that in
RW-metric a scalar field obeys the equation of motion

φ̈+ 3Hφ̇− ∇
2

a2 φ+ V ′(φ) = 0, (2.29)

where the prime denotes a derivative with respect to φ and where we have assumed
that K = 0 in eq. (2.13). Even if we would have K 6= 0, the curvature term in the
Friedmann equation (2.13) will be redshifted away during the inflationary phase as
we saw in section 2.2.1. In the case of a homogeneous field, the spatial derivatives
are zero and thus eq. (2.29) is reduced to

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.30)
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Energy density and pressure for a homogeneous scalar field are [32]

ρ =1
2 φ̇

2 + V (φ)

p =1
2 φ̇

2 − V (φ). (2.31)

Plugging this expression for ρ into eq. (2.26) then gives

H2 = 1
3M2

p

(1
2 φ̇

2 + V (φ)
)
. (2.32)

Here we have introduced the reduced Planck mass Mp = 1/
√

8πG. Differentiating
the above expression and using eq. (2.30) gives

Ḣ = − 1
2M2

p

φ̇2. (2.33)

Recalling that we need the condition ρ+3p < 0 in order to achieve the inflationary
period (ä > 0), which can be attained if the potential energy dominates the kinetic
energy, as seen with eq. (2.31).

Nearly exponential expansion is achieved if the kinetic term is negligible compared
to the potential term φ̇2 � V giving p ' −ρ, as seen from eq. (2.31). Furthermore,
we assume the field varies slowly enough for the condition φ̇2 � V to be maintained
long enough, yielding the slow-roll conditions [33]

φ̇2 � V (2.34)

|φ̈| � |3Hφ̇|,|V ′|. (2.35)

Subsequently the Friedmann equation (2.32) and the equation of motion (2.30) can
be approximated as

H2 ' V

3M2
p

3Hφ̇ '− V ′. (2.36)

The first condition in eq. (2.34) together with eqs. (2.36) and (2.33) then implies

− Ḣ

H2 � 1, (2.37)
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meaning approximately constant H and therefore a quasi-de Sitter solution. The
slow-roll conditions can be expressed with the so called slow-roll parameters [33]

ε =− Ḣ

H2 = 1
2M

2
p

(
V ′

V

)2

η =M2
p

V ′′

V
. (2.38)

The conditions (2.34) then translates to ε, |η| � 1.
In this section we focused on a single field slow-roll inflation, but it’s important

to note that this represents just one of many inflationary models (for a review of
inflation models, see for example [33, 34]). While slow-roll is commonly assumed
in various models of inflation, the use of slow-roll conditions is not mandatory and
there are models that do not rely on the slow-roll approximation, see for example ref.
[35]. Likewise, in addition to the single-field inflation there are plenty of different
models involving more than one field, for early works see refs. [36] and [37].

One particular case that is discussed in this thesis are energetically subdominant
scalar fields, often referred to as spectator fields. Spectator fields do not influence
the dynamics during inflation but may become important at a later stage [20]. The
quantum fluctuations of spectator fields, when stretched to superhorizon scales during
inflation, may give rise to primordial perturbations for example through a curvaton
mechanism [21, 38–41] or modulated reheating [42, 43]. For instance, the SM Higgs
may have acted as a spectator field during inflation [25, 26, 44].
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3 Quantization of a scalar field

As noted in the previous chapter the primordial perturbations can be explained by
quantum fluctuations generated during inflation. Therefore, we need to study how
scalar fields are quantized. In this chapter we first discuss the quantization process
of free fields in flat Minkowski spacetime and then generalize the process into de
Sitter space that corresponds to inflation.

3.1 A free scalar field in Minkowski spacetime

In the Minkowski case we mainly follow the approach of [45]. Consider a free
Klein-Gordon scalar field in Minkowski spacetime where the metric is of the form

ds2 = −dt2 + (dx)2. (3.1)

The Lagrangian density of a free scalar φ is given by

L =
√
−g(−1

2g
µν∂µφ∂νφ−

1
2m

2φ2), (3.2)

where g is the metric determinant. From this we obtain the equation of motion

�φ−m2φ = 0, (3.3)

which is also known as the Klein-Gordon equation and where � ≡ gµν∂µ∂ν . Writing
the field as a Fourier transformation gives

φ(x) =
∫
d4kNeik·xϕ̃(k) (3.4)

where k · x is a dot product between k = (k0,k), x = (t,x) and N is a constant.
Substituting (3.4) into the Klein-Gordon equation (3.3), we obtain

∫
d4kN

(
(k0)2 − |k|2 −m2

)
eik·xϕ̃(k) = 0. (3.5)
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For nonvanishing ϕ̃(k) we find that (k0)2 = m2 + |k|2 ≡ Ek, which yields k0 = ±Ek.
We can then define ϕ̃(k) = δ ((k0)2 − E2

k) b(k), which upon substitution into eq. (3.5)
and dividing into positive (k0 = Ek) and negative energy (k0 = −Ek) solutions gives

φ(x) =
∫
d4k

N

2Ek

(
δ
(
k0 − Ek

)
+ δ

(
k0 + Ek

) )
eik·xb(k)

=
∫
d3k

N

2Ek

(
eik·xb(k) + e−ik·xb(−k)

)
(3.6)

where we have used the property δ ((k0)2 − E2
k) = 1

2Ek
(δ (k0 − Ek) + δ (k0 + Ek)),

and where k = (Ek,k). Since φ(x) is real φ(x) = φ†(x) we have that

∫
d3k

N

2Ek

(
eik·xb(k) + e−ik·xb(−k)

)
=
∫
d3k

N

2Ek

(
e−ik·xb†(k) + eik·xb†(−k)

)
, (3.7)

which gives b†(k) = b(−k). From the dispersion relation Ek =
√
m2 + |k|2, it follows

that Ek = Ek(|k|) and thus b(k) can be written as a function of k. We rewrite b(k)
and b(k)† as

b(k) ≡
√

2Eka(k) and b†(k) ≡
√

2Eka†(k). (3.8)

In order to quantize the field

φ(x) =
∫
d3k

N√
2Ek

(
eik·xa(k) + e−ik·xa†(k)

)
(3.9)

and its conjugate momentum

π = ∂L
∂φ̇

= φ̇

= i
∫
d3kN

√
Ek
2
(
e−ik·xa†(k)− eik·xa(k)

)
(3.10)

both fields are promoted into field operators satisfying the commutation relations on
equal-time hypersurfaces

[φ̂(t,x),φ̂(t,y)] = 0

[π̂(t,x),π̂(t,y)] = 0

[φ̂(t,x),π̂(t,y)] = iδ3 (x− y) . (3.11)
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Commutation relations for creation and annihilation operators â†, â, and the value
of the constant N, follow directly from above commutation relations

[â(k),â(p)] = [â†(k),â†(p)] = 0

[â(k),â†(p)] = δ3(k − p)

N = 1
(2π)3/2 . (3.12)

Thus the quantized field operator and its conjugate momentum can be written as

φ̂(x) =
∫ d3k

(2π)3/2

(
eik·xϕk(t)âk + e−ik·xϕ∗k(t)â

†
k

)
π̂(x) =

∫ d3k

(2π)3/2

(
eik·xϕ̇k(t)âk + e−ik·xϕ̇∗k(t)â

†
k

)
, (3.13)

where ϕk(t) = 1√
2Ek

e−iEkt and from here on k = |k|.

3.2 A free scalar field in de Sitter space

Quantization of a scalar field in de Sitter space follows similar steps as the quantization
in Minkowski spacetime. The de Sitter metric is given by

ds2 = −dt2 + a(t)2dx, (3.14)

where a(t) = eHt and the Hubble parameter H is constant.

The Lagrangian density for a scalar field in a general curved spacetime reads [29]

L =
√
−g

(
−1

2g
µν∇µφ∇νφ− V (φ)

)
(3.15)

(3.16)

where the partial derivatives ∂µ of the previous section are now replaced with
the covariant derivatives ∇µ, which can be seen as a generalization of the partial
derivatives to curved spacetimes. For example, the covariant derivative of a dual
vector Vµ is defined by ∇µVν = ∂µVν − ΓσµνVσ, where Γσµν is the Christoffel symbol
eq. (2.6). This reduces to ∂µVν in Minkowski spacetime, where Γσµν = 0 in cartesian
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coordinates. The scalar field φ satisfies the following equation of motion

∇µ∇µφ− V ′(φ) = 0. (3.17)

In order to compute∇µ∇µφ we need the Christoffel symbols in de Sitter spacetime.
Straightforward calculation yields the only non-zero Christoffel symbols as

Γ0
ij = aȧδij

Γij0 = ȧ

a
δij. (3.18)

Thus we get

∇µ∇µφ = gµν∇ν∇µφ

= gµν(∂ν∂µφ− Γσµν∂σφ)

= g00∂0∂0φ+ gij(∂j∂iφ− Γ0
ij∂0φ) + gj0(∂j∂0φ− Γij0∂iφ)

= −∂2
0φ+ a−2∂2

i φ−
ȧ

a
δii∂0φ

= (− ∂2

∂t2
− 3H ∂

∂t
+ ∇

2

a2 )φ (3.19)

and the equation of motion (3.17) takes the form

( ∂
2

∂t2
+ 3H ∂

∂t
− ∇

2

a2 )φ+ V ′(φ) = 0. (3.20)

For a free scalar field with V (φ) = 1
2m

2φ2, this reads

( ∂
2

∂t2
+ 3H ∂

∂t
− ∇

2

a2 +m2)φ = 0. (3.21)

As in the Minkowski case, the field and its conjugate momentum are promoted into
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operators, which can be expanded in Fourier modes

φ(x) =
∫ d3k

(2π)3/2

(
eik·xϕk(t)âk + e−ik·xϕ∗k(t)â

†
k

)
≡
∫ d3k

(2π)3/2 e
ik·xϕ̃k(t)

π(x) = ∂L
∂(φ̇)

≡ a3
∫ d3k

(2π)3/2 e
ik·x ˙̃ϕk(t), (3.22)

where ϕ̃k(t) = ϕk(t)âk + ϕ∗k(t)â
†
−k. By inserting this into the equation of motion

(3.21) we find that the Fourier modes satisfy the following equation

ϕ̈k(t) + 3Hϕ̇k(t) +
(
|k|2

a2 +m2
)
ϕk(t) = 0. (3.23)

For now on, it is more convenient to use conformal time τ defined by adτ ≡ dt,
as it simplifies the following calculations. We also introduce a rescaled field variable
χ ≡ aφ. In the conformal time the metric (3.14) takes the form ds2 = a2(−dτ 2 +dx2).
The conformal time τ in de Sitter can be solved from the definition above as

∫ τ

τ0
dτ =

∫ t

t0
e−Htdt

τ = − 1
Ha

+ 1
Ha0

+ τ0, (3.24)

and by choosing a0 = −1/(Hτ0) we have τ = −1/(Ha).

By imposing commutation relations for creation and annihilation operators (3.12)
we find the canonical commutation relations for the rescaled field and its conjugate
momentum

[χ(τ,x),χ(τ,y)] = [χ′(τ,x),χ′(τ,y)] = 0

[χ(τ,x),χ′(τ,x)] = iδ3(x− y) (3.25)

and the normalization condition χkχ′∗k − χ∗kχ′k = i.

Then writing the first and the second time derivatives of the mode function ϕk
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in terms of the rescaled field variable χk yields

ϕ̇k = χ′k
a2 −

χk
a
H

ϕ̈k = 1
a2

(χ′′k
a
− 3Hχ′k +H2aχk

)
(3.26)

and inserting these into (3.23) gives the equation of motion for χk

χ′′k +
(
k2 + 1

τ 2

(m2

H2 − 2
))
χk = 0. (3.27)

This equation can be rewritten in the form of a Bessel differential equation by
defining ν =

√
9
4 −

m2

H2

χ′′k +
(
k2 − 1

τ 2

(
ν2 − 1

4
))
χk = 0. (3.28)

Here ν is assumed to be real, that is m
H
< 3

2 . Solution to this differential equation can
be written as a linear combination of Hankel functions of the first and the second
kind H(1,2)

v [46] as

χk =
√
−τ
(
C1(k)H(1)

ν (−kτ) + C2(k)H(2)
ν (−kτ)

)
(3.29)

where C1,2(k) are some k dependent constants. The Hankel functions have asymptotic
expansions for large and small arguments [46] For subhorizon modes i.e. k � aH, or
−kτ � 1, we have the following expansions

H(1)
ν (−kτ) '

√
−2
πkτ

e−ikτe−θν

H(2)
ν (−kτ) '

√
−2
πkτ

eikτeθν (3.30)

where θν = iπ
2 (ν + 1

2). Similarly for superhorizon modes i.e. k � aH or −kτ � 1 we
have

H(1)
ν (−kτ) ' −i2

νΓ(ν)
π

(−kτ)−ν

H(2)
ν (−kτ) ' i2νΓ(ν)

π
(−kτ)−ν . (3.31)
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In order to solve the constants C1,2(k), we need to define the vacuum state that
is annihilated by âk, for all k

âk|0 >= 0. (3.32)

We choose the vacuum such that in the subhorizon limit (k � aH) we recover the
Minkowski result χk → e−ikτ this is obtained by choosing C2 = 0. This is known as
the Bunch-Davies vacuum [47].

The constant C1(k) is then determined by the normalization condition χkχ′∗k −
χ∗kχ

′
k = i, which yields C1(k) =

√
π

2 . Therefore, we obtain the solutions for the mode
functions χk and ϕk as

χk =
√
−τπ
2 H(1)

ν (−kτ)

ϕk = (−τ)3/2H
√
π

2 H(1)
ν (−kτ). (3.33)
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4 Stochastic formalism

During inflation the quantum fluctuations of a scalar field are stretched to superhori-
zon scales affecting the large-scale dynamics of this same field [27, 48]. In stochastic
approach, presented by Starobinsky [27], the field is split in two parts, coarse-grained
field containing super horizon modes and quantum part consisting of subhorizon
modes. It turns out that we can focus on the superhorizon part only, treating it as
classical stochastic field characterized by a Langevin equation. Langevin equation
is a stochastic differential equation where a random noise term is added to the
macroscopic equation of motion [49, 50].

In this chapter, we introduce the stochastic inflation formalism starting with the
derivation of the Langevin equation for a scalar field. Subsequently, in section 4.2 we
obtain the corresponding Fokker-Planck equation describing the time evolution of
the probability distribution function. Finally, in section 4.3 we find the equilibrium
distribution and consider two concrete examples.

4.1 Langevin equation for a scalar field

In section 3.2 we saw that a scalar field has a very different behaviour on superhorizon
scales (k � aH) eq. (3.30) and subhorizon scales (k � aH) eq. (3.31), giving us
the base for stochastic inflation. Here we will consider a scalar field φ(x,t) in de
Sitter background (i.e. a = eHt and H = const.) and derive a stochastic Langevin
equation by roughly following the derivation in [48]. We begin by splitting the field
φ and its conjugate momentum φ̇ into two parts, a coarse-grained long-wavelength
part ϕ̄,π̄ and a short-wavelength part ϕs, πs as [48]

φ(x, t) = ϕ̄(x,t) + ϕs(x,t)

φ̇(x, t) = π̄(x,t) + πs(x,t). (4.1)
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Where the short-wavelength part is defined as

ϕs(x,t) =
∫ d3k

(2π)3/2 θ(k − σa(t)H)eik·xϕ̃k(t)

πs(x,t) =
∫ d3k

(2π)3/2 θ(k − σa(t)H)eik·x ˙̃ϕk(t)

ϕ̃k(t) = ϕk(t)ak + ϕ∗k(t)a
†
−k, (4.2)

with θ(z) being the Heaviside step function and σ < 1 a constant parameter defining
the splitting scale. Therefore, the coarse-grained part contains all the wavelengths
larger than the Horizon size i.e. k < σaH < aH. Furthermore, the mode functions
ϕk(t) satisfies the equation of motion (3.23) with V ′′(ϕ̄) = m2 [51].

Plugging eq. (4.1) into the equation of motion (3.20) and expanding to first order
in ϕs gives

(
∂2

∂t2
+ 3H ∂

∂t
− ∇

2

a2

)
φ(x,t) + V ′(ϕ̄) + V ′′(ϕ̄)ϕs(x,t) = 0. (4.3)

Together with eqs. (4.1) and (4.2) we can write ˙̄ϕ as

˙̄ϕ(x,t) =π̄(x,t) +
∫ d3k

(2π)3/2 θ(k − σa(t)H)eik·x ˙̃ϕk(t)

−
∫ d3k

(2π)3/2 θ(k − σa(t)H)eik·x ˙̃ϕk(t)

+ σa(t)H2
∫ d3k

(2π)3/2 δ(k − σa(t)H)eik·xϕ̃k(t)

=π̄(x,t) + σa(t)H2
∫ d3k

(2π)3/2 δ(k − σa(t)H)eik·xϕ̃k(t). (4.4)

Expression for ˙̄π is obtained by plugging the definition (4.2) into eq. (4.3),
yielding

˙̄π(x,t) =− 3Hπ̄(x,t) + ∇
2

a2 ϕ̄(x,t)− V ′(ϕ̄)

+ σa(t)H2
∫ d3k

(2π)3/2 δ(k − σa(t)H)eik·x ˙̃ϕk(t)

−
∫ d3k

(2π)3/2 θ(k − σa(t)H)eik·x
( ∂2

∂t2
+ 3H ∂

∂t
+ k2

a2 + V ′′(ϕ̄)
)
ϕ̃k(t), (4.5)
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where the last line vanishes according to eq. (3.23).

Hence we get following coupled equations for the long-wavelength modes

˙̄ϕ =π̄ + g

˙̄π =− 3Hπ̄ + ∇
2

a2 ϕ̄− V
′(ϕ̄) + h. (4.6)

where g and h are defined by

g(x,t) ≡ σa(t)H2
∫ d3k

(2π)3/2 δ(k − σa(t)H)eik·xϕ̃k(t)

h(x,t) ≡ σa(t)H2
∫ d3k

(2π)3/2 δ(k − σa(t)H)eik·x ˙̃ϕk(t). (4.7)

Given that g and h are quantum operators, it follows that both ϕ and π also have a
quantum nature. However, as we will see later in this section, if the splitting scale is
set much larger than the Hubble horizon, the quantum nature becomes negligible
and we obtain essentially classical Langevin equation for the long-wavelength field.

Since the mode functions ϕk can be considered as Gaussian to a good approxima-
tion [32], the noise terms g and h are also Gaussian and their properties are fully
specified by their averages 〈g〉 = 〈h〉 = 0 and their two-point correlation functions.

As shown in appendix A, the two-point functions for the noise terms are given by

〈0| g(x,t)g(x′,t′) |0〉 'σ2m2/3H2 H3

4π2 δ(t− t
′)j0(σaH|x− x′|)

〈0|h(x,t)h(x′,t′) |0〉 'σ2m2/3H2 H5

4π2

(
m2

3H2 + σ2
)2

δ(t− t′)j0(σaH|x− x′|)

〈0| g(x,t)h(x′,t′) |0〉 ' − σ2m2/3H2 H4

4π2

(
m2

3H2 + σ2
)
δ(t− t′)j0(σaH|x− x′|). (4.8)

Commutation relations for g(x) and h(x) can be found by imposing commutation
relations for creation and annihilation operators eq. (3.12)

[g(x),g(x′)] = [h(x),h(x′)] = 0. (4.9)

With [g(x),h(x′)] we notice that it is proportional to the commutator between ϕ̃k(t)
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and ˙̃ϕk′(t′) for which we have

[ϕ̃k(t), ˙̃ϕk′(t′)] =[(ϕk(t)ak + ϕ∗k(t)a
†
−k),(ϕ̇k′(t′)ak′ + ϕ̇∗k′(t′)a†−k′)]

=ϕk(t)ϕ̇∗k′ [ak,a†−k′ ] + ϕ∗k(t)ϕ̇k′ [a†−k,ak′ ]

= (ϕk(t)ϕ̇∗k′ − ϕ∗k(t)ϕ̇k′) δ3(k + k′). (4.10)

Then recalling that χ = aϕ and using the normalization condition χkχ′∗k − χ∗χ′k = i

we get

[g(x),h(x′)] =iσ3 H
4

2π2 δ(t− t
′)j0(σaH|x− x′|). (4.11)

If we choose σ, which again determines the splitting scale for the coarse-grained
field, so that it falls within a range

exp(−3H2

|m2|
)� σ2 � |m

2|
3H2 , (4.12)

the explicit σ-dependencies in the two-point functions (4.8) vanishes. In addition, we
find that [g(x),h(x′)] ∼ 0 and thus the quantum nature of g and h becomes negligible,
and

h = −m
2

3Hg. (4.13)

Then, by plugging this into eq. (4.6), we arrive at the classical coupled Langevin
equations

˙̄ϕ =π̄ + g

˙̄π =− 3Hπ̄ − V ′(ϕ̄)− m2

3Hg (4.14)

where the gradient term has been neglected since it is σ-suppressed for the long-
wavelength modes

k2

a2 < σ2H2, when k < σaH. (4.15)
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The stochastic noise term g is fully characterized by its two-point function

〈0| g(x)g(x′) |0〉 = H3

4π2 δ(t− t
′)j0(σaH|x− x′|). (4.16)

From the δ(t− t′) term in the two-point function we can see that this stochastic
process has no memory. That means the future of this process depends only on its
current state and has no dependence on its past. The process is thus Markovian.

Then in the slow-roll approximation introduced in section 2.2 where |φ̈| � |3Hφ̇|,
we have

3Hπ̄ = −V ′(ϕ̄) (4.17)

and the Langevin equations (4.14) takes the final form

˙̄ϕ = − 1
3HV ′(ϕ̄) + g. (4.18)

Although we are treating ˙̄ϕ as a classical stochastic quantity it should be noted
that the stochastic noise g arises from initially small-scale quantum fluctuations,
which as a result of inflation, are stretched over the horizon eventually becoming a
part of the coarse-grained superhorizon field.

For now on we will omit the bar from long-wavelength field so that ϕ = ϕ̄.

4.2 Fokker-Planck equation for a scalar field

In appendix B it is shown, that for Langevin equation of the form

ẏ = A(y) + f(t),

〈f(t)f(t′)〉 = Γδ(t− t′) (4.19)

the corresponding Fokker-Planck equation is found as

∂P (y,t)
∂t

= − ∂

∂y
(A(y)P (y,t)) + Γ

2
∂2

∂y2P (y,t). (4.20)

By noticing that eq. (4.18) has the same form as eq. (4.19) and that for the
coarse-grained field ϕ, the Γ-term in eq. (4.20) is given by the correlator eq. (4.16)



34

at x = x′. We find the Fokker-Planck equation for the PDF P (ϕ,t), as

∂P (ϕ,t)
∂t

= 1
3H

∂

∂ϕ
(V ′(ϕ)P (ϕ,t)) + H3

8π2
∂2

∂ϕ2P (ϕ,t). (4.21)

4.3 Equilibrium distribution

One particularly interesting case is the equilibrium (or steady-state) distribution.
As we will see later in section 5.2 in the long time limit P (ϕ,t) approaches the
equilibrium distribution where Peq(ϕ) is independent of time and hence

∂

∂ϕ

[
1

3H (V ′(ϕ)Peq(ϕ)) + H3

8π2
∂

∂ϕ
Peq(ϕ)

]
= 0. (4.22)

As Peq(ϕ) satisfies the normalization condition
∫
dϕPeq(ϕ) = 1, Peq(ϕ) must

decay at infinity strictly faster than ϕ−1. Therefore, both Peq and ∂
∂ϕ
Peq are 0 at

infinity and thus the term in brackets in eq. (4.22) is 0 everywhere, and we get

1
3HV ′(ϕ)Peq(ϕ) = −H

3

8π2
∂

∂ϕ
Peq(ϕ). (4.23)

It is then straightforward to find the solution for the equilibrium distribution

Peq(ϕ) = N exp
[
− 8π2

3H4V (ϕ)
]

(4.24)

where N is a constant, which is solved from the normalization condition.
Next we discuss two examples: a massive free field and a massles interacting field.

These results are well known and discussed for example in refs. [52–55].

4.3.1 Massive free field

Let us consider a massive free scalar field with a potential of the form

V (ϕ) = 1
2m

2ϕ2. (4.25)

The equilibrium distribution then takes the form

Peq(ϕ) = N exp
[
−4π2m2

3H4 ϕ2
]

(4.26)
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and the normalization factor N can be found by applying the condition

∫ ∞
−∞

dϕPeq(ϕ) =
∫ ∞
−∞

dϕN exp
[
−4π2m2

3H4 ϕ2
]

= 1. (4.27)

This is a Gaussian integral of the form
∫∞

0 dx exp [−ax2] and has the solution

∫ ∞
0

dx e−ax
2 = 1

2

(
π

a

)1/2
. (4.28)

Therefore we obtain

N =
√
π

3
2m
H2 (4.29)

and find the equilibrium distribution

Peq(ϕ) =
√
π

3
2m
H2 exp

[
−4π2m2

3H4 ϕ2
]
. (4.30)

It is straightforward to calculate the moments of the field ϕ

〈ϕn〉 =
∫ ∞
−∞

dϕϕnPeq(ϕ) (4.31)

as they also become simple Gaussian integrals.
We notice that all odd moments including the average of the field vanishes

〈ϕ2n+1〉 = 0.
The second moment of the field is obtained as

〈ϕ2〉 = 3H4

8π2m2 , (4.32)

this result is the same as the leading term given by the quantum field theory [52].
The average potential is given by

〈V (ϕ)〉 = m2

2 〈ϕ
2〉

= 3H4

16π2 . (4.33)
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4.3.2 Massless interacting field

As a second example we have a massles interacting case with a quartic potential

V (ϕ) = 1
4λϕ

4. (4.34)

The equilibrium distribution has the form

Peq(ϕ) = N exp
[
−2π2λ

3H4 ϕ
4
]

(4.35)

and the normalization factor N is obtained by requiring

N
∫ ∞
−∞

dϕ exp
[
−2π2λ

3H4 ϕ
4
]

= 1. (4.36)

We can rewrite the integral by substituting x = 2π2λ
3H4 ϕ

4

∫ ∞
−∞

dϕ exp
[
−2π2λ

3H4 ϕ
4
]

= 1
4

(
3H4

2π2λ

)1/4 ∫ ∞
−∞

dx x−3/4 e−x

= 1
2

(
3H4

2π2λ

)1/4 ∫ ∞
0

dx x−3/4 e−x

=
( 3

32π2λ

)1/4
Γ(1

4)H (4.37)

where on the last line we have identified the integral as the Gamma function
Γ(z) =

∫∞
0 dt tz−1e−t. The equilibrium PDF then reads

Peq(ϕ) =
(

32π2λ

3

)1/4 1
Γ(1

4)H exp
[
−2π2λ

3H4 ϕ
4
]
. (4.38)

Similarly as in the previous case with the potential V (ϕ) = 1
2m

2ϕ2 all odd
moments of the field vanishes. The second moment can be solved by making the
same substitution as before x = 2π2λ

3H4 ϕ
4

〈ϕ2〉 =
√

3
2λ

H2

π

1
Γ(1

4)

∫ ∞
0

dx x−1/4 e−x

=
√

3
2λ

H2

π

Γ(3
4)

Γ(1
4) ≈ 0.132H

2
√
λ
. (4.39)
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In a similar manner we find the fourth moment

〈ϕ4〉 = 3H4

2π2λ

Γ(5
4)

Γ(1
4)

= 3H4

8π2λ
(4.40)

where we have used the relation Γ(5
4) = Γ(1

4)/4. The equilibrium distribution is
clearly non-Gaussian and Wick’s theorem for Gaussian distribution 〈ϕ4〉 = 3〈ϕ2〉2

does not hold. The result for 〈ϕ2〉 can be compared to the QFT result in the
Hartee-Fock approximation yielding 〈ϕ2〉 ∼ H2/π

√
8λ ≈ 0.113H2/

√
λ [53, 54]. The

Hartee-Fock result differs ∼ 14.6% from our stochastic solution.
Again, the average potential is found as

〈V (ϕ)〉 = λ

4 〈ϕ
4〉

= 3H4

32π2 . (4.41)
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5 Spectral expansion method

In stochastic formalism, the two-point correlation functions of any function f(ϕ)
of a light scalar field can be expressed as a spectral expansion. The coefficients
in this expansion are specified by eigenvalues and eigenfunctions obtained from
a Schrödinger-like equation. Here we will discuss the method for obtaining the
mentioned eigenvalue equation as well as the spectral expansion.

As we will later see, in the equilibrium state the general two-point function
Gf (x1,x2; t1,t2) in de Sitter space can be written in terms of the temporal correlator
Gf (t) [54]. The temporal correlation function gives the correlations at equal spatial
points i.e. x1 = x2. Therefore, it is enough to find an expression for the temporal
correlation function given by

Gf (t1,t2) = 〈f(ϕ1(t1))f(ϕ2(t2))〉

=
∫
dϕ1dϕ2f(ϕ1(t1))f(ϕ2(t2))P (ϕ1,t1;ϕ2,t2), (5.1)

where P (ϕ1,t1;ϕ2,t2) is the two-point (or joint) PDF.

We start this chapter by presenting the one-point probability distribution, which
allows us to calculate the expectation value for any function of the scalar field ϕ.
Subsequently, in section 5.2 we introduce the conditional probability distribution at
equal spatial points, denoted as P (ϕ2, t2|ϕ1, t1). This conditional PDF expresses the
probability for the field to take the value ϕ2 at t2 provided that at time t1 it has a
value ϕ1.

Following the definition for conditional PDF, the one-point distribution, to-
gether with the conditional distribution, allows us to obtain the two-point PDF
P (ϕ1,t1;ϕ2, t2) as

P (ϕ1,t1;ϕ2,t2) =P (ϕ2, t2|ϕ1, t1)P (ϕ1,t1)θ(t2 − t1)

+ P (ϕ1, t1|ϕ2, t2)P (ϕ2,t2)θ(t1 − t2). (5.2)



40

Additionally, we can expresse the one-point PDF P (ϕ2, t2), for t2 > t1 as

P (ϕ2, t2) =
∫
dϕ1P (ϕ2, t2|ϕ1, t1)P (ϕ1,t1). (5.3)

Finally, in section 5.3.2 we introduce the spectral expansion for the two-point
correlation functions.

5.1 One-point probability distribution

In section 4.3 we found one special case for the one-point PDF, where the distribution
was independent of time. However, in order to calculate the two-point correlators, it
is necessary to find the general time-dependent solution. This general solution also
allows us to calculate the expectation value for any function f(ϕ) of the field as

〈f(ϕ)〉 =
∫
dϕf(ϕ)P (ϕ,t). (5.4)

Here we follow the approach by Starobinsky and Yokoyama [54], similar calcula-
tions can be found in [55].

We begin by finding a self-adjoint form of the Fokker-planck equation. In order
to achieve that we define

P̃ (ϕ,t) = e
4π2V (ϕ)

3H4 P (ϕ,t). (5.5)

Computing the partial derivatives ∂
∂ϕ

and ∂2

∂ϕ2 for P (ϕ,t) gives

∂P (ϕ,t)
∂ϕ

=e−
4π2V (ϕ)

3H4

(
∂

∂ϕ
− 4π2

3H4V
′(ϕ)

)
P̃ (ϕ,t)

∂2P (ϕ,t)
∂ϕ2 =e−

4π2V (ϕ)
3H4

 ∂2

∂ϕ2 −
8π2

3H4V
′(ϕ) ∂

∂ϕ

− 4π2

3H4V
′′(ϕ) +

(
4π2

3H4V
′(ϕ)

)2
P̃ (ϕ,t) (5.6)

and by plugging them into the Fokker-Planck equation for P (ϕ, t) eq. (4.21) we
obtain

∂P̃ (ϕ,t)
∂t

=
[

1
2

1
3H

(
V ′′(ϕ)− 4π2

3H4V
′(ϕ)2

)
+ H3

8π2
∂2

∂ϕ2

]
P̃ (ϕ,t)
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Equation (5.7) is a linear partial differential equation, and it can be solved by
the separation of variables method. We write an ansatz for independent solutions
P̃n(ϕ,t) as a product of functions of one variable, that is

P̃n(ϕ,t) = Tn(t)ψn(ϕ). (5.7)

Then solving eq. (5.7) for Tn(t)ψn(ϕ) gives

T ′n(t)
Tn(t) = H3

8π2
ψ′′n(ϕ)
ψn(ϕ) + 1

2
1

3H

(
V ′′(ϕ)− 4π2

3H4V
′(ϕ)2

)
(5.8)

Since the left side depends only on t and the right sides depends only on ϕ both
sides must be equal to some constant, which we denote −Λn. The partial differential
equation can thus be split in two ordinary differential equations. Time-dependent
part is then solved as

T ′n(t) = −ΛnTn(t)

Tn(t) = Ce−Λnt (5.9)

with some constant C. And ψn(ϕ) are found as solutions for the following Schrödinger-
type eigenvalue equation

Dϕψn(ϕ) = −4π2Λn

H3 ψn(ϕ). (5.10)

Here we have defined the differential operator Dϕ as

Dϕ ≡
1
2
∂2

∂ϕ2 −
1
2
(
v′(ϕ)2 − v′′(ϕ)

)
v(ϕ) = 4π2

3H4V (ϕ). (5.11)

This operator can be recasted as

−Dϕψn(ϕ) = 1
2

(
− ∂

∂ϕ
+ v′(ϕ)

)(
− ∂

∂ϕ
+ v′(ϕ)

)†
ψn(ϕ), (5.12)

from which we can see that it is clearly self-adjoint, meaning Dϕ = D†ϕ, thus all
eigenvalues Λn must be non-negative. And the eigenfunctions ψn form an orthonormal
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and complete set, that is
∫
dϕψn(ϕ)ψm(ϕ) = δn,m (5.13)∑

n

ψn(ϕ)ψn(ϕ′) = δ(ϕ− ϕ′). (5.14)

The lowest eigenfunction ψ0(ϕ) is obtained from the eigenvalue equation (5.10) by
setting Λ0 = 0 and using the definition for Dϕ eq. (5.11). It follows that

∂2ψ0(ϕ)
∂ϕ2 = (v′(ϕ)2 − v′′(ϕ))ψ0(ϕ) (5.15)

ψ0(ϕ) = A exp
[
− 4π2

3H4V (ϕ)
]
. (5.16)

Comparing this to the equilibrium solution eq. (4.24) together with the normal-
ization conditions for both Peq and ψn, we find that

Peq(ϕ) = ψ2
0(ϕ). (5.17)

Furthermore, the solution for P (ϕ,t) = e−
4π2V (ϕ)

3H4 P̃ (ϕ,t) can be written as a sum
of independent solutions as

P (ϕ,t) = ψ0(ϕ)
∞∑
n=0

ane
−Λntψn(ϕ), (5.18)

where an are constant coefficients and will be solved in the next section together
with the two-point PDF.

5.2 Conditional and two-point probability distributions

Now we turn to the conditional PDF at equal spatial points, which, together with
the one-point PDF, allows us to write the two-point distribution in eq. (5.2).

By definition, the conditional PDF satisfies the Fokker-Planck equation

∂P (ϕ2, t2|ϕ1, t1)
∂t2

= 1
3H

∂

∂ϕ2
(V ′(ϕ2)P (ϕ2, t2|ϕ1, t1)) + H3

8π2
∂2

∂ϕ2
2
P (ϕ2, t2|ϕ1, t1).

(5.19)
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By defining

P (ϕ2, t2|ϕ1, t1) ≡e−
4π2
3H4 V (ϕ2)P̃ (ϕ2, t2|ϕ1, t1)e

4π2
3H4 V (ϕ1)

=ψ0(ϕ2)P̃ (ϕ2, t2|ϕ1, t1)ψ−1
0 (ϕ1), (5.20)

we can solve for P̃ (ϕ2, t2|ϕ1, t1) by following similar steps as with the one-point PDF
in the previous section, and find

P̃ (ϕ2, t2|ϕ1, t1) =
∞∑
n=0

Cne
−Λnt2Tn(t1)ψn(ϕ2)ψn(ϕ1), (5.21)

where Cn are constants.

We can find Tn(t1) by using the initial condition

P (ϕ2, t|ϕ1, t) = P̃ (ϕ2, t|ϕ1, t) = δ(ϕ2 − ϕ1) (5.22)

together with the completeness relation for ψn eq. (5.14). Thus we get

P̃ (ϕ2, t2|ϕ1, t1) =
∞∑
n=0

e−Λn∆tψn(ϕ2)ψn(ϕ1), (5.23)

with ∆t = t2 − t1.

Recalling eq. (5.3), we can now find an expression for the one-point PDF
P (ϕ,t). Substituting eqs. (5.20) and (5.23) into eq. (5.3) with ϕ2,t2 → ϕ, t and
ϕ1,t1 → ϕ0, t0 = 0, gives

P (ϕ, t) =
∫
dϕ0P (ϕ, t|ϕ0, 0)P (ϕ0,0)

=
∫
dϕ0 e

− 4π2
3H4 V (ϕ)∑

n

e−Λntψn(ϕ)ψn(ϕ0)e
4π2
3H4 V (ϕ0)Peq(ϕ0)

=ψ2
0(ϕ) + ψ0(ϕ)

∞∑
n=1

ane
−Λntψn(ϕ) (5.24)

where between the second and the third line we have used eqs. (5.17), (5.16) and
(5.13). And the coefficients an are defined as

an ≡
∫
dϕ0ψn(ϕ0)ψ0(ϕ0). (5.25)
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Moreover, since ψ2
0(ϕ) = Peq(ϕ), we find that P (ϕ,t) asymptotically approaches the

equilibrium solution.

By plugging eqs. (5.20) and (5.23) in eq. (5.2) we finally obtain the equilibrium
solution for the two-point PDF

P (ϕ,t;ϕ0,0) = ψ0(ϕ)
∞∑
n=0

e−Λntψn(ϕ)ψn(ϕ0)ψ0(ϕ0). (5.26)

5.3 Two-point correlation functions

As mentioned in the beginning of this chapter, in the equilibrium state the general
two-point correlation function Gf (x1,x2; t1,t2) can be written in terms of the temporal
correlator Gf (t), as shown in ref. [54], by using the de Sitter invariant function

y = coshH(t1 − t2)− H2

2 eH(t1+t2)|x1 − x2|2. (5.27)

This function is connected to the geodesic interval s with y = 1 + s2H2/2 [54]. For
large space-like and time-like separations, that is |y| � 1, the general two-point
function can be written as [54]

Gf (x1,x2; t1,t2) = Gf (H−1 ln |2y − 1|). (5.28)

It should be noted that this relation holds only in de Sitter space.

We therefore start by introducing the temporal correlation function. Then we
write the two-point correlator for spatially separated points by using the relation
between general correlation function and temporal correlation function.

5.3.1 Temporal correlation function

In the beginning of this chapter, we introduced the temporal two-point correlation
function for an arbitrary function f(ϕ) given by eq. (5.1). In equilibrium this
correlator is obtained by plugging in the equilibrium two-point PDF eq. (5.26). We
get
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Gf (t) =
∫
dϕdϕ0f(ϕ)f(ϕ0)P (ϕ,t;ϕ0,0)

=
∞∑
n=0

∫
dϕdϕ0ψ0(ϕ)f(ϕ)ψn(ϕ)e−Λntψn(ϕ0)f(ϕ0)ψ0(ϕ0). (5.29)

By defining

fn ≡
∫
dϕψ0(ϕ)f(ϕ)ψn(ϕ) (5.30)

we can rewrite eq. (5.29) as a spectral expansion

Gf (t) =
∑
n

f 2
ne
−Λnt. (5.31)

In the case of an even potential, that is V (−ϕ) = V (ϕ), all eigenfunctions ψn(ϕ) are
either even or odd. Since ψ0(ϕ) is even, ψn is even/odd for even/odd n respectively.
From the definition of the spectral coefficient fn one can see that for even f only
the even eigenvalues Λn contributes to the two-point correlator. Similarly for odd f
only the odd eigenvalues contributes.

5.3.2 Spatial correlation function

The spatial correlator is then obtained as

Gf (x; 0) =Gf

( 2
H

ln (|x|aH)
)

=
∑
n

f 2
ne
−Λn 2

H
ln |x|aH

=
∑
n

f 2
n (|x|aH)−2Λn/H . (5.32)

Spatial correlations are typically described by the power spectrum Pf(k). It is
defined as a Fourier transform of the spatial correlation function

Pf (k) = k3

2π2

∫
d3xe−ik·xGf (x; 0). (5.33)
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Inserting (5.32) into (5.33) gives

Pf (k) =
∑
n

k3

2π2

∫
d3xe−ik·xf 2

n (|x|aH)−2Λn/H

=
∑
n

2
π
f 2
n Γ

(
2− 2Λn

H

)
sin

(
πΛn

H

)(
k

aH

)2Λn/H

. (5.34)

If the spatial correlator is dominated by a single n=d term the asymptotic
behaviour is given by a simple power-law form

Gf (x; 0) ∼f 2
d (|x|aH)−2Λd/H , (5.35)

and the power spectrum is given by

Pf (k) ∼f 2
d

(
k

aH

)2Λd/H

. (5.36)

Scale dependence of the power spectrum is characterized by spectral index nf − 1

nf − 1 ≡ d lnPf (k)
d ln k . (5.37)

nf − 1 = 0 implying perfect scale invariant spectrum, while nf − 1 > 0 is called
blue-tilted spectrum and nf − 1 < 0 red-tilted spectrum. If the spectrtal index is
dominated by a single n=d term, nf − 1 takes a constant value

nf − 1 = 2Λn/H. (5.38)

On the other hand, if the spectral-index changes with k we say it is running and
define the running of the spectral index as

αf (k) = dnf (k)
d ln k . (5.39)
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5.4 Case of a massive non-interacting scalar field

As an example, we consider a quadratic potential

V = 1
2m

2ϕ2 (5.40)

for which the eigenvalue equation (5.10) takes the form

 ∂2

∂ϕ2 −
(

4π2

3H4

)2

m4ϕ2 + 4π2

3H4m
2

ψn(ϕ) = −8π2Λn

H3 ψn(ϕ). (5.41)

In this particular case, the eigenvalues and eigenfunctions can be solved analyti-
cally. By defining dimensionless parameters

x ≡ 2πm√
3H2

ϕ , Λ̃n ≡
6H
m2 Λn + 1, (5.42)

we can rewrite the eigenvalue equation (5.41) as

∂2

∂x2ψn(x) =
(
x2 − Λ̃n

)
ψn(x). (5.43)

This differential equation can be solved with a power series method, which is
well known and discussed for example in ref. [56]. We make an ansatz in a form of a
power series

ψn(x) = h(x)e−x2/2

h(x) =
∞∑
j=0

ajx
j (5.44)

Substituting this ansatz into eq. (5.43) then gives

∞∑
j=0

(
(j + 2)(j + 1)aj+2 − (2j + 1− Λ̃n)aj

)
xj = 0. (5.45)

From which we can obtain the following recursion formula for the coefficients aj

aj+2 = 2j + 1− Λ̃n

(j + 1)(j + 2)aj. (5.46)
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Since all even coefficients are generated by a0 and all odd coefficients are generated
by a1, the series h can be separated into even and odd solutions.

We require the solutions ψn(x) = e−x
2/2h(x) to be normalizable, that is ψn(x)→ 0

as x→∞. To check this requirement we look at the behaviour of h(x) for large j.
In this limit, the recursion formula can be approximated as

aj+2 ≈
2
j
aj (5.47)

and by comparing two succesive terms we find a ratio

aj+2x
j+2

ajxj
∼ 2
j
x2. (5.48)

On the other hand, the series expansion for ex2 reads

ex
2 =

∞∑
j=even

xj

(j/2)! . (5.49)

Again, with j � 1 the ratio between two succesive terms can be approximated as

xj+2(j/2)!
xj((j + 2)/2)! ∼

2
j
x2. (5.50)

Therefore, in a large j limit the behaviour of h(x) is asymptotic to ex2 yielding
diverging and thus not normalizable result ψ ∼ ex

2/2.
In order to find normalizable solutions, the power series must terminate for some

j = n. This can be achieved by choosing

Λ̃n = 2n+ 1. (5.51)

After transforming back from Λ̃n to Λn in eq. (5.42), we obtain the eigenvalues

Λn = m2n

3H . (5.52)

Moreover, the power series h(x) can be written in terms of Hermite polynomials,
given by

Hn(x) = (−1)nex2 dn

dxn
e−x

2
. (5.53)
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Plugging this to eq. (5.44) and using the normalization eq. (5.13) yields the
normalized eigenfunctions

ψn(ϕ) =
√
m

H

(4π
3

)1/4 1√
2nn!

Hn

(
2πm√
3H2

ϕ

)
exp

[
−2π2m2ϕ2

3H4

]
. (5.54)
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6 Numerical analysis of a massless self-interacting
field

In the previous chapter we discussed probability distribution functions of a light
scalar field and derived the spectral expansion for two-point correlators. This method
allows one to straightforwardly calculate the two-point correlators for any function of
the scalar field. Moreover, the computation of the two-point correlators is essentially
reduced into finding eigenvalues and eigenfunctions from a Scröhdinger-like equation.

In this chapter, we will apply the spectral expansion method and calculate spatial
two-point correlators eq. (5.32) of a self-interacting spectator scalar field. We
recall that the spectator field is light V ′′(ϕ)� H2 and energetically subdominant
V < 3H2M2

p to inflaton field.
We consider a scalar field with a qualitatively similar potential to the SM Higgs

potential in the large field limit, that is [53]

V (ϕ) = 1
4λ(ϕ)ϕ4. (6.1)

In Higgs potential, the coupling λ(ϕ) is a renormalization group improved running
coupling [53]. We parametrize the running phenomenologically with an expansion

λ(ϕ) = λ0

(
1 + β1 ln

(
ϕ2

ϕ2
0

)
+ β2 ln2

(
ϕ2

ϕ2
0

))
. (6.2)

Here ϕ0, λ0, β1 < 0 and β2 > 0 are arbitrary constants. The running of λ(ϕ)
influences the form of the potential leading to the formation of two metastable
minima. Since β1 < 0, the first logarithmic term causes the potential to decrease at
a scale defined by ϕ0 forming the metastable minima. While the second term with
β2 makes sure that the potential starts to increase again as ϕ increases.

We will numerically solve the eigenvalue equation (5.10) and calculate the power
spectrum eq. (5.34) and the spectral index eq. (5.37) for a spatial two-point correlator
Gϕ(x; 0) of the scalar field ϕ.
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6.1 Numerical methods

To numerically solve the eigenvalue equation (5.10) we first convert it into dimen-
sionless form

∂2

∂x2ψn(x) = [U(x)− Λn]ψn(x). (6.3)

This equation is then divided into two first-order differential equations

ψ′n(x) = φn(x)

φ′n(x) = [U(x)− Λn]ψn(x). (6.4)

We apply the boundary conditions ψn(∞) = ψn(−∞) = 0, so that the solutions are
normalizable.

As discussed earlier in section 5.3.1, for a symmetric potential the eigenfunctions
are either even or odd. By utilising this property, we can convert this boundary value
problem into an initial value problem at x0 = 0. Here, the derivative of even function
vanishes and odd function changes its sign. Since the solutions will be normalized,
the remaining conditions ψn(0) for even n and ψ′n(0) for odd n, are irrelevant and
we can set them equal to unity. Thus, we have

ψn(0) = 1, ψ′n(0) = 0 for even n

ψn(0) = 0, ψ′n(0) = 1 for odd n. (6.5)

We are left with only one unknown variable, the eigenvalue Λn which is then
solved with the so-called shooting method. This method is well known and covered
in many textbooks, for example in [56, 57].

As discussed in section 5.4 with the case of a massive free field, the eigenfunction
diverges at the integration boundaries unless we use the correct eigenvalue. If we
use an eigenvalue that is slightly larger than the correct one and another one that is
slightly smaller, both solutions will blow up at large x, but in different directions. By
bisecting this interval, we can search the eigenvalue for which the solution is closest
to zero.

Keeping in mind that numerical methods come with limited accuracy, we choose
the integration range x ∈ [0,L] so that L is where the eigenfunction is closest to zero
before diverging. The complete solutions ψn(x) for x ∈ [−L,L] are then obtained
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based on parity as ψn(−L) = ψn(L) for even n and ψn(−L) = −ψn(L) for odd n.

Since the eigenfunction for the lowest eigenvalue Λ0 = 0 can be solved analytically
with eq. (5.16). We compute the spectral coefficients fn in eq. (5.30) by using a
numerical result for ψn and analytical result ψ0.

6.2 ϕ4 potential

Before turning to the case of a running coupling eq. (6.2) let us first consider a
simpler case with the potential

V (ϕ) = 1
4λϕ

4, (6.6)

where λ = 0.013 is constant. We convert the eigenvalue equation (5.10) into a
dimensionless form by defining

x ≡ ϕ
H
, Λ̃n ≡

8π2

H
Λn. (6.7)

This gives

∂2

∂x2ψn(x) =
[
U(x)− Λ̃n

]
ψn(x), (6.8)

with

U(x) =
(

4π2

3

)2

λ2x6 − 4π2λx2. (6.9)

Our goal here is to compute the spatial two-point correlator Gϕ(x; 0) in eq. (5.32)
for the scalar field ϕ. First, we solve the eigenvalue equation (6.8) numerically and
then compute the spectral coefficients ϕn in eq. (5.30) for the spatial two-point
correlator. In addition, we compute the spectral coefficients ϕ2

n which can be used
to calculate the two-point functions for ϕ2.

The first four non-zero eigenvalues and the spectral coefficients ϕ1
n, ϕ

2
n are given

in table 1 and the numerically solved eigenfunctions are presented in figure 1. These
results are in agreement with the ones obtained in ref. [55].

As mentioned in the previous section, the eigenfunction for the lowest eigenvalue
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Λ0 = 0 can be solved analytically with eq. (5.16) and has the form

ψ0(x) =
(

32π2λ

3

)1/8 1√
Γ
(

1
4

)
H

exp
[
−π

2λ

3 x4
]
. (6.10)

n Λn/H |ϕ1
n|/H |ϕ2

n|/H2

1 0.01014 1.06662 0
2 0.03299 0 1.2216
3 0.06119 0.13253 0
4 0.09452 0 0.30125

Table 1. The n ∈ [1,4] eigenvalues Λn and spectral coefficients |ϕjn| for correlators
of f(ϕ) = ϕ and f(ϕ) = ϕ2.

The spatial correlations of the scalar field ϕ are described by the power spectrum
eq. (5.34). Here, Pϕ(k) takes the form

Pϕ(k) = 0.02287H2( k

aH
)0.02028 + 0.00204H2( k

aH
)0.12238 + ... (6.11)

and is dominated by the n = 1 term at long distances (k � aH). This behaviour
can be seen in fig. 2 where we have plotted the power spectrum and the spectral
index truncated to n = 1,3 and 5. Similarly, the spectral index defined by eq. (5.37)
approaches a constant value at long distances

nϕ − 1 ≈2Λ1

H
≈ 0.02028. (6.12)

6.3 ϕ4 potential with running coupling

For ϕ4 potential with a running coupling λ(ϕ) eq. (6.2), the eigenvalue equation can
be written in dimensionless form eq. (6.8) with x and Λ̃n defined in eq. (6.7), and
where the effective potential takes the form

U(x) =
(

4π2

3

)2

λ2
0x

6
[
1 + β1

(
1
2 + ln x

2

x2
0

)
+ β2

(
ln x

2

x2
0

+ ln2 x
2

x2
0

)]2

− 4π2

3 λ0x
2
[
3 + β1

(
3 ln x

2

x2
0

+ 7
2

)
+ β2

(
3 ln2 x

2

x2
0

+ 7 ln x
2

x2
0

+ 2
)]

. (6.13)
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Figure 1. The first five numerically solved eigenfunctions ψn(x) for the quartic
potential (6.6).
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Figure 2. Power spectrum and spectral index for quartic potential (6.6) trun-
cated to n = 1,3,5.
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Figure 3. Potentials V (x) and U(x) eqs. (6.1) and (6.13) in units H = 1.

We fix λ0 = 0.013, β1 = −0.2 and x0 = ϕ0/H = 0.1 and vary β2. These values are
chosen so that the metastable minima are present in the potential V (x) and therefore
it resembles the Higgs potential during inflation, while the eigenvalue problem stays
numerically stable. The potentials V (x) and U(x) are presented in fig. 3 and the
behaviour of λ(x) can be seen in fig. 4.

The n ≤ 4 eigenfunctions are presented in fig. 5. When β2 = 0.01 the potential
V (x) has three degenerate minima, and the lowest eigenfunction ψ0 has three peaks
localised in all three minima. The two peaks, located at ϕ 6= 0, are clearly narrower
than the one at ϕ = 0. The behaviour of ψ2 is quite similar to ψ0, while ψ1 is entirely
localised at the two ϕ 6= 0 minima. On the other hand, the eigenfunctions ψ3 and ψ4

starts to resemble the n = 1 and n = 2 eigenfunctions for the λϕ4 potential.
As β2 grows, there is one stable minimum located at ϕ = 0 while the other

two become metastable eventually disappearing completely at β2 ∼ 0.01025. Here,
the two peaks of the n = 0 eigenfunction, which are located at ϕ 6= 0, get shorter
with growing β2 and disapears as β2 > 0.01003. Meanwhile, the n = 1 and n = 2
eigenfunctions are mainly concentrated around the two metastable minima. However,
n ≥ 1 states are very short-lived, which can be seen in the temporal correlator eq.
(5.31). In the upper limit of β2, the potential V (ϕ) has only one minimum located
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Figure 4. Running coupling λ(x) defined in eq. (6.2) with β2 = 0.008, 0.01, 0.012

at ϕ = 0. Here, the eigenfunctions starts to resemble the corresponding quartic
eigenfunctions. For additional figures, refer to appendix C.

The first four non-zero numerically solved eigenvalues together with the spectral
coefficients |ϕ1| and |ϕ3| for the correlator Gϕ(x; 0) eq. (5.32) are plotted in fig.
6. The spectral coefficients eq. (5.30) are solved by using numerically solved
eigenfunctions ψn and the analytic solution for ψ0 eq. (5.16).

There is a steep drop in eigenvalues Λ1 and Λ2 when the metastable minima
starts to form. Both eigenvalues becoming almost degenerate with Λ0 at the three
degenerate minima. In a vicinity of the two metastable minima Λ3 stays almost
constant slightly decreasing with decreasing β2.

While the n < 4 eigenvalues are decreasing as the two minima at ϕ 6= 0 becomes
degenerate, the n ≥ 4 eigenvalues instead tend to grow. Therefore, the n ≥ 4 solutions
near the degenerate minima might be spurious due to yet unknown numerical issues.
Fortunately, the spectral coefficients |ϕ5| and |ϕ7| have maximum values ∼ 0.3 and
are clearly subleading to |ϕ1| and |ϕ3|, thus the main contribution to the power
spectrum Pϕ comes from leading and next to leading order terms.

Since ψ1 has minimal overlap with ψ0 in the presence of metastable minima the
coefficient |ϕ3| dominates over |ϕ1| in this range. Therefore, the power spectrum Pϕ
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Figure 6. The first four non-zero eigenvalues (left) and the first two non-zero
spectral coefficients of the spectral expansion of the two-point correlator Gϕ(x; 0)
(right) for the potential (6.1) as a function of β2.

defined by eq. (5.34) is also dominated here by the n = 3 term fig. (7). The spectral
index nϕ − 1 defined by eq. (5.37) has similar behaviour. The n = 1 term starts
clearly dominate the power spectrum and the spectral index for β2 & 0.010034, that
is when the potential V starts to resemble the quartic case.

The metastable minima have little effect on the power spectrum which stays
roughly constant while β2 is varied with slight decrease for increasing β2 (disappearing
minima). But there is a sharp drop in Pϕ(k) at degenerate minima.

For k/aH = 1 and β2 & 0.010006 the power spectrum values are approximately
same as in the quartic case, but the quartic Pϕ is decreasing faster with decreasing
k fig. 2. For example, when k/aH = 10−30 the quartic power spectrum has a
value Pϕ/H2 ≈ 0.06 · 10−2 while in the case of the running coupling we have
Pϕ/H2 ≈ 1.7 · 10−2. Also, the spectral index nϕ − 1 indicates that the spectrum is
closer to scale invariance than the quartic spectrum.

Since the n = 2 eigenfunction also has a minimal overlap with the n = 0
eigenfunction in the vicinity of metastable minima, we can expect that the coefficients
for f = ϕ2 has similar behaviour to the two-point correlators where the next-to-
leading order term dominates.
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7 Summary

In this thesis we have studied energetically subdominant light spectator scalars during
inflation using the stochastic formalism. The spectator fields gain superhorizon
perturbations during inflation which, depending on the setup, could have influenced
e.g. primordial perturbations [21] or dark matter [22]. During inflation there is a
constant flow of UV modes crossing the horizon and thus impacting the dynamics of
the superhorizon field as the quantum fluctuations "freeze in", becoming effectively
classical perturbations. Perturbative computation of spectator scalar correlators
encounters IR-divergences [28] and therefore, non-perturbative methods are required.
The stochastic formalism [27] offers a powerful non-perturbative tool to study the
superhorizon dynamics of light scalar fields during inflation.

In the stochastic formalism, a scalar field is split in the IR and the UV parts, at
a splitting scale slightly larger than the Hubble horizon size. The coarse-grained
IR field can then be treated as an essentially classical stochastic quantity and its
dynamics can be approximatively described by a Langevin equation with a random
noise term arising from the UV fluctuations crossing the horizon.

In this work, we presented the derivation of the Langevin equation in the slow-roll
approximation, and the corresponding Fokker-Planck equation, which controls the
time evolution of the probability distribution function of a scalar field. The one-point
PDF of a scalar field can be expressed as a spectral expansion that in de Sitter
approaches the equilibrium distribution if inflation has lasted long enough.

The field correlations between two spatially separated points are characterized
by the two-point correlation functions. We presented the spectral expansion form for
these two-point correlators on scales larger than the horizon size. The terms in this
expansion are given by eigenvalues and eigenfunctions of a Schrödinger-like equation.
With this method, a two-point function for any function of a scalar field f(ϕ) can be
easily obtained.

In the final part of this thesis, we applied the stochastic inflation to numerically
investigate the two-point function of a spectator scalar with λ(ϕ)ϕ4 potential where
the coupling is running. The running of the coupling can lead to the formation of two
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metastable minima in the potential qualitatively resembling the large field behaviour
of the SM Higgs potential. Analysing this type of potential is particularly interesting
since the SM Higgs may have acted as a spectator during inflation. However, it
should be noted that we are not considering the SM Higgs here, but just a potential
akin to it with a phenomenological parametrization of the running coupling. We
first considered a quartic potential with constant coupling λ, followed by a running
coupling generating metastable minima.

The parameters in the coupling were chosen so that, λ(ϕ) ≥ 0 and has one
minimum. We then varied one of the parameters in such a way that the location
of this minimum changes while keeping λ(ϕ) positive. As a result, the shape of the
potential varies from three degenerate minima to two of them becoming metastable
eventually disappearing completely, as shown in fig. 3.

We calculated the power spectrum Pϕ(k) of this aforementioned spectator field,
which is defined as a Fourier transform of the two-point correlator. The terms in
the spectral expansion were obtained by solving numerically the Schrödinger-like
eigenvalue equation.

When the potential has two metastable minima, Pϕ(k) as well as the spectral
index nϕ(k) − 1 are dominated by the next-to-leading order n = 3 term in the
spectral expansion. But after metastable minima disappears and the potential
starts to resemble the quartic potential the leading n = 1 term becomes dominant.
The dominance of the next-to-leading order term is due to minimal overlap of
the eigenfunctions ψ1 with ψ0 making the corresponding leading order spectral
coefficient |ϕ1| subdominant to the next-to-leading order spectral coefficient |ϕ3|.
Metastable minima have little effect on the power spectrum at constant k and it stays
approximately constant, except a sharp drop occuring when all three minima becomes
degenerate. For example, for k/aH = 10−15, at degenerate minima Pϕ(k) ≈ 0.013,
while elsewhere Pϕ(k) ≈ 0.02.

When compared to the quartic case, at k/aH = 1, the power spectrum for running
coupling is very close (differing by approximately 1%) to the quartic spectrum.
However when k/aH < 1 the difference becomes more significant. For example,
for k/aH = 10−15, the difference is already around 80%. This can also be seen by
comparing the spectral index nϕ(k)− 1 in these two cases. For the running coupling
nϕ(k)− 1 ∼ O(10−3) when in the quartic case nϕ − 1 ∼ O(10−2), the overall change
between constant and running coupling being around 70− 80%.
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A Noise correlators for Langevin equation

In this appendix, we calculate the two-point functions for the Langevin noise terms
g and h. We begin by presenting the two-point functions for ϕ̃k and ˙̃ϕk, which are
obtained by using the commutation relations for ak and a†k (3.12) as

〈0| ϕ̃k(t)ϕ̃k′(t′) |0〉 = ϕk(t)ϕ∗k′(t′)δ3(k + k′)

〈0| ϕ̃k(t) ˙̃ϕk′(t′) |0〉 = ϕk(t)ϕ̇∗k′(t′)δ3(k + k′)

〈0| ˙̃ϕk(t) ˙̃ϕk′(t′) |0〉 = ϕ̇k(t)ϕ̇∗k′(t′)δ3(k + k′). (A.1)

By using these solutions, the two-point function for g defined in eq. (4.7) can be
written as

〈0| g(x,t)g(x′,t′) |0〉 =σ2aa′H4
∫ d3k

(2π)3 δ(k − σaH)δ(k − σa′H)ϕk(t)ϕ∗k(t′)eik·(x−x
′)

= σ3

2π2a
3H4δ(t− t′)j0(σaH|x− x′|)

(
ϕk(t)ϕ∗k(t′)

)
k=σaH

, (A.2)

where the integral is evaluated in spherical coordinates with d3k = k2dφd(cos θ)dk
and θ being the angle between k and x − x′ so that k·(x − x′) = k|x − x′| cos θ.
The cos θ integral gives

∫ 1

−1
d(cos θ)eik|x−x′| cos θ = 2 sin(k|x− x′|)/k|x− x′| (A.3)

which is then written in terms of the zeroth order spherical Bessel function j0(x) =
sin x/x. Similarly, we obtain

〈0|h(x,t)h(x′,t′) |0〉 = σ3

2π2a
3H4δ(t− t′)j0(σaH|x− x′|)

(
ϕ̇k(t)ϕ̇∗k(t′)

)
k=σaH

(A.4)

〈0| g(x,t)h(x′,t′) |0〉 = σ3

2π2a
3H4δ(t− t′)j0(σaH|x− x′|)

(
ϕk(t)ϕ̇∗k(t′)

)
k=σaH

. (A.5)

Next we need to find an expression for the mode functions in eqs. (A.2), (A.4)
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and (A.5). In section 3.2 it was shown that the mode functions ϕk can be written as

ϕk = (−τ)3/2H
√
π

2 H(1)
ν (−kτ). (A.6)

The solution for the time derivative ϕ̇ is found by using the relation zf ′ν(z) =
λqzqfν−1(z) + (p− νq)fν(z) for the Hankel functions of the form fν(z) = zpH(1)

ν (λzq)
[46] and by noticing that d

dt
= −τH d

dτ
. And ϕk takes the following form

ϕ̇k =
√
π

2 H2(−τ) d
dτ

(
(−τ)3/2H(1)

ν (−kτ)
)

=−
√
π

2 H2
(

(−kτ)H(1)
ν−1(−kτ) +

(3
2 − ν

)
H(1)
ν (−kτ)

)
(−τ)3/2. (A.7)

Together with eqs. (A.6) and (A.7), and recalling that −τ = 1/aH we find

(
ϕk(t)ϕ∗k(t)

)
k=σaH

=π4
1

a3H
|H(1)

ν (σ)|2(
ϕ̇k(t)ϕ̇∗k(t)

)
k=σaH

=π4
H

a3

[ (3
2 − ν

)2
|H(1)

ν (σ)|2 + σ2|H(1)
ν−1(σ)|2

+ σ
(3

2 − ν
) (

H(1)
ν (σ)H∗(1)

ν−1(σ) + h.c.
)]

(
ϕk(t)ϕ̇∗k(t)

)
k=σaH

=− π

4
1
a3

[ (3
2 − ν

)
|H(1)

ν (σ)|2 + σH(1)
ν (σ)H∗(1)

ν−1(σ)
]
. (A.8)

Since σ < 1 we can use the asymptotic form for the Hankel functions eq. (3.31)
and obtain

(
ϕk(t)ϕ∗k(t)

)
k=σaH

=22ν

4π
1

a3H
Γ2(ν)σ−2ν

(
ϕ̇k(t)ϕ̇∗k(t)

)
k=σaH

=22ν

4π
H

a3σ
−2ν

[ (3
2 − ν

)2
Γ2(ν) + σ4

4 Γ2(ν − 1)

+ σ2
(3

2 − ν
)

Γ(ν)Γ(ν − 1)
]

(
ϕk(t)ϕ̇∗k(t)

)
k=σaH

=− 22ν

4π
1
a3σ

−2ν
[ (3

2 − ν
)

Γ2(ν) + σ2

2 Γ(ν)Γ(ν − 1)
]
. (A.9)

Recall that ν =
√

9/4−m2/H2. By assuming that |m2| � H2 we can approxi-



71

mate that ν ' 3/2−m2/3H2 and then expanding around ν = 3/2 gives

22νΓ2(ν) '2π − 22π
(
ψ0

(3
2

)
+ log 2

)
m2

3H2

22νΓ2(ν − 1) '23π − 24π
(
ψ0

(1
2

)
+ log 2

)
m2

3H2(3
2 − ν

)n
22νΓ2(ν) '2π

(
m2

3H2

)n
(3

2 − ν
)n

22νΓ(ν)Γ(ν − 1) '
(
m2

3H2

)n (
4π + 4π

(
log 4 + ψ0

(1
2

)
+ ψ0

(3
2

))
m2

3H2

)
(A.10)

where ψ0 is the digamma function.
By inserting these results into eqs. (A.2),A.4,(A.5) we finally obtain the two-point

functions

〈0| g(x,t)g(x′,t′) |0〉 'σ2m2/3H2 H3

4π2 δ(t− t
′)j0(σaH|x− x′|)

〈0|h(x,t)h(x′,t′) |0〉 'σ2m2/3H2 H5

4π2

(
m2

3H2 + σ2
)2

δ(t− t′)j0(σaH|x− x′|)

〈0| g(x,t)h(x′,t′) |0〉 ' − σ2m2/3H2 H4

4π2

(
m2

3H2 + σ2
)
δ(t− t′)j0(σaH|x− x′|).

(A.11)

In addition, we find

〈0| g(x,t)h(x′,t′) + h(x′,t′)g(x,t) |0〉 = 2 〈0| g(x,t)h(x′,t′) |0〉 . (A.12)
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B Langevin and Fokker-Planck equation

Langevin equation is a stochastic differential equation where a random force term
f(t) is added to the macroscopic equation of motion

ẏ = A(y) + f(t). (B.1)

This equation was originally proposed by Paul Langevin in 1908 to describe Brownian
motion [49]. The random force f(t) is Gaussian white noise and its stochastic
properties are given by its average and two-point function

〈f(t)〉 = 0

〈f(t)f(t′)〉 = Γδ(t− t′) (B.2)

where Γ is a constant.

This process is Markovian i.e. has no memory of earlier times and thus the
conditional probability distribution (PDF) for y(t) can be expressed as

P (yn,tn|y1,t1,...,yn−1,tn− 1) = P (yn,tn|yn−1,tn− 1), (B.3)

and it obeys the master equation [50]

∂

∂t
P (y,t) =

∫
dy′ [Wt(y|y′)P (y′,t)−Wt(y′|y)P (y,t)] . (B.4)

Here Wt(y|y′) is the transition probability per unit time from y to y′. It should be
noted, that the master equation is, in fact, an equation for the conditional PDF
P (y,t|y0,t0). However, with the concept of extracting the subensemble, it can be
written for P (y,t) [50].

Considering a stationary Markov process described by P (y) and P (y,t|y0,t0). By
preparing the system in a certain non-equilibrium state P (y0), we can extract a
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non-stationary subensemble for t ≥ t0 as

P ∗(y,t) =
∫
dy0P (y,t|y0,t0)P (y0). (B.5)

In addition, after a long time the system is expected to return to equilibrium

P ∗(y,t)→ P (y) , as t→∞. (B.6)

Through Kramers-Moyal expansion of the master equation, we can obtain the
Fokker-Planck equation as a special case, written as [50]

∂P (y,t)
∂t

= − ∂

∂y

(
b(1)(y,t)P (y,t)

)
+ 1

2
∂2

∂y2

(
b(2)(y,t)P (y,t)

)
. (B.7)

where the jump moments b(m)(y,t) are defined by [58]

b(m)(y,t) = lim
∆t→0

1
∆t 〈(y(t+ ∆t)− y(t))m〉 . (B.8)

In order to find the jump moments, we first cast eq.(B.1) into an integral equation

y(t+ ∆t)− y(t) =
∫ t+∆t

t
dt′A(y(t′)) +

∫ t+∆t

t
dt′f(t′) (B.9)

and expand A(y(t′)) around t to get

y(t+ ∆t)− y(t) = A(y(t))∆t+
∫ t+∆t

t
dt′f(t′) +O((∆t)2). (B.10)

Averaging with fixed y = y(t) and utilizing eq. (B.2), we find

〈y(t+ ∆t)− y〉 = A(y)∆t+O((∆t)2)

〈(y(t+ ∆t)− y)2〉 =
∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈f(t′)f(t′′)〉+O((∆t)2)

= Γ∆t. (B.11)

Dividing by ∆t and taking a limit ∆t→ 0 we find the jump moments b(1)(y,t) and
b(2)(y,t) and thus the corresponding Fokker-Planck equation has the form

∂P (y,t)
∂t

= − ∂

∂y
(A(y)P (y,t)) + Γ

2
∂2

∂y2P (y,t). (B.12)



75

C Eigenfunction figures

Eigenfunctions ψn for potential 6.1 with β2 = 0.01001,0.01002.
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