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Abstract
We study continuity properties of Sobolevmappings 𝑓 ∈
𝑊1,𝑛
loc
(Ω,ℝ𝑛), 𝑛 ⩾ 2, that satisfy the following general-

ized finite distortion inequality

||𝐷𝑓(𝑥)||𝑛 ⩽ 𝐾(𝑥)𝐽𝑓(𝑥) + Σ(𝑥)
for almost every 𝑥 ∈ ℝ𝑛. Here 𝐾∶ Ω → [1,∞) and
Σ∶ Ω → [0,∞) are measurable functions. Note that
when Σ ≡ 0, we recover the class of mappings of finite
distortion, which are always continuous. The continu-
ity of arbitrary solutions, however, turns out to be an
intricate question. We fully solve the continuity prob-
lem in the case of bounded distortion𝐾 ∈ 𝐿∞(Ω), where
a sharp condition for continuity is that Σ is in the Zyg-
mund space Σ log𝜇(𝑒 + Σ) ∈ 𝐿1

loc
(Ω) for some 𝜇 > 𝑛 − 1.

We also show that one can slightly relax the bounded-
ness assumption on𝐾 to an exponential class exp(𝜆𝐾) ∈
𝐿1
loc
(Ω)with 𝜆 > 𝑛 + 1, and still obtain continuous solu-

tions when Σ log𝜇(𝑒 + Σ) ∈ 𝐿1
loc
(Ω) with 𝜇 > 𝜆. On the

other hand, for all 𝑝, 𝑞 ∈ [1,∞] with 𝑝−1 + 𝑞−1 = 1, we
construct a discontinuous solutionwith𝐾 ∈ 𝐿

𝑝

loc
(Ω) and

Σ∕𝐾 ∈ 𝐿
𝑞

loc
(Ω), including an example with Σ ∈ 𝐿∞

loc
(Ω)

and 𝐾 ∈ 𝐿1
loc
(Ω).
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2 DOLEŽALOVÁ et al.

1 INTRODUCTION

LetΩbe a connected, open subset ofℝ𝑛with𝑛 ⩾ 2. Recall that adifferential inclusion is a condition
requiring that, for almost every (a.e.) 𝑥 ∈ Ω, a weakly differentiable mapping 𝑓 ∈ 𝑊1,1

loc
(Ω,ℝ𝑚)

satisfies 𝐷𝑓(𝑥) ∈ 𝐹(𝑥, 𝑓(𝑥)) where 𝐹 is a function from Ω× ℝ𝑚 to subsets of 𝑚 × 𝑛-matrices.
Here,we are searching for differential inclusions underwhich a Sobolevmap𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛)has

a continuous representative. More specifically, we are interested in ones that are motivated by the
Geometric Function Theory, with connections to mathematical models of Nonlinear Elasticity.
This leads us to consider the differential inclusions given by the set functions

𝑛(𝐾, Σ)∶ 𝑥 ↦ {𝐴 ∈ ℝ𝑛×𝑛 ∶ |𝐴|𝑛 ⩽ 𝐾(𝑥) det𝐴 + Σ(𝑥)} , (1.1)

where 𝐾∶ Ω → [1,∞) and Σ∶ Ω → [0,∞) are given measurable functions. Here and in what
follows, |𝐴| stands for the operator norm ofmatrix𝐴 ∈ ℝ𝑛×𝑛; that is, |𝐴| = sup{|𝐴ℎ| ∶ ℎ ∈ 𝕊𝑛−1}.
We also use the shorthand 𝐺 ∈𝑛(𝐾, Σ) if 𝐺∶ Ω → ℝ𝑛×𝑛 satisfies 𝐺(𝑥) ∈𝑛(𝐾, Σ)(𝑥) for a.e.
𝑥 ∈ Ω. Now, our continuity problem reads as follows.

Problem 1.1. Find a necessary and sufficient condition on the functions𝐾 and Σwhich guarantees
that if 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) with 𝐷𝑓 ∈𝑛(𝐾, Σ), then 𝑓 has a continuous representative.

A necessary condition for Problem 1.1 is that Σ must at least to lie in the Zygmund space
𝐿 log𝜇 𝐿loc(Ω) for some 𝜇 > 𝑛 − 1: that is,

Σ log𝜇(𝑒 + Σ) ∈ 𝐿1
loc
(Ω) 𝜇 > 𝑛 − 1 . (1.2)

Indeed, the mapping 𝑓∶ 𝔹𝑛(0, 1) → ℝ𝑛 defined by

𝑓(𝑥) =

(
log log log

𝑒𝑒|𝑥| , 0, … , 0
)

(1.3)

has det𝐷𝑓 ≡ 0 and |𝐷𝑓|𝑛 log𝑛−1(𝑒 + |𝐷𝑓|𝑛) ∈ 𝐿1(𝔹𝑛(0, 1)), but lim
𝑥→0

|𝑓(𝑥)| = ∞.

1.1 Results for bounded 𝑲

When Σ ≡ 0 and 𝐾 ∈ 𝐿∞(Ω),𝑛(𝐾, 0) recovers themappings of bounded distortion, also known
as quasiregular mappings; a mapping 𝑓∶ Ω → ℝ𝑛 is 𝐾-quasiregular for 𝐾 ∈ [1,∞) if 𝑓 ∈
𝑊1,𝑛
loc
(Ω,ℝ𝑛) with |𝐷𝑓(𝑥)|𝑛 ⩽ 𝐾 det𝐷𝑓(𝑥) for a.e. 𝑥 ∈ Ω. Homeomorphic 𝐾-quasiregular map-

pings are called 𝐾-quasiconformal. The first breakthrough in the theory of mappings of bounded
distortion was Reshetnyak’s theorem on Hölder continuity: a 𝐾-quasiregular mapping is locally
1∕𝐾-Hölder continuous, see [23] and [24, Corollary II.1]. Such Hölder continuity properties of
quasiconformal mappings in the plane were earlier established by Morrey [21].
Other differential inclusions of the type𝑛(𝐾, Σ) with 𝐾 ∈ 𝐿∞(Ω) have also arisen naturally

in different contexts. For instance, Simon [26] developed a local regularity theory for minimal
graphs of functions 𝑢∶ ℝ2 → ℝ such that the Gauss map of the graph of 𝑢 satisfies

||𝐷𝑓(𝑥)||2 ⩽ 𝐾 det𝐷𝑓(𝑥) + Σ, (1.4)
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 3

where 1 ⩽ 𝐾 < ∞ and 0 ⩽ Σ < ∞ are given constants. Recall that the Gauss map takes the points
of a surface 𝑆 ⊂ ℝ𝑛 to the unit normal vector in 𝕊𝑛−1. In particular, the Gauss map automatically
satisfies (1.4) when 𝑢 is a solution of any equation of mean curvature type [26, (1.9)(ii)]. Similar
results for simply connected surfaces embedded in ℝ3 are due to Schoen and Simon [25]. The
main result in [26] enabling the regularity theory states that a local𝑊1,2-solution to (1.4) between
embedded 2D-surfaces is Hölder continuous; see also [9, Ch. 12].
This Hölder continuity result has been generalized for unbounded Σ as well. Precisely, if

𝐾 ∈ 𝐿∞ and Σ ∈ 𝐿𝑝
loc
(Ω) for some 𝑝 > 1, then a mapping 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) with 𝐷𝑓 ∈𝑛(𝐾, Σ)

has a Hölder continuous representative. For the planar case, see the proof of [3, Theorem 8.5.1]
by Astala, Iwaniec, and Martin, and for the more general case 𝑛 ⩾ 2, see the argument in [17, Sec-
tion 3] by Kangasniemi and Onninen. While the planar argument of Astala, Iwaniec, and Martin
relies on complex potential theory, the higher dimensional proof is closer to that of Simon [26],
mimicking the lines of reasoning by Morrey [21] and Reshetnyak [23] in the case of mappings of
bounded distortion.
However, despite yielding sharp results on the 𝐿𝑝-scale, the Morrey-type decay argument used

in [17, Section 3] does not give a sharp result if one moves to the Zygmund space setting Σ ∈
𝐿 log𝜇 𝐿loc(Ω). In particular, the decay argument shows continuity when 𝜇 > 𝑛, but the optimal
regularity assumption for Σ is in fact 𝜇 > 𝑛 − 1, precisely the minimal necessary condition stated
in (1.2). This optimal regularity theorem is our first main result.

Theorem 1.2. Suppose that 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓(𝑥) ∈𝑛(𝐾, Σ)(𝑥) a.e. inΩ, with

𝐾 ∈ 𝐿∞
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝑛 − 1. Then 𝑓 has a continuous representative.

Furthermore, under the assumptions of Theorem 1.2, the local modulus of continuity

𝜔𝑓(𝑥0, 𝑟) = sup{
||𝑓(𝑥0) − 𝑓(𝑥)||∶ 𝑥 ∈ Ω , ||𝑥 − 𝑥0|| ⩽ 𝑟} (1.5)

is majorized by 𝐶 log−(𝜇−𝑛+1)∕𝑛(1∕𝑟) for 𝑥0 ∈ Ω and small 𝑟 > 0. By considering functions of the
form 𝑓(𝑥) = (log−𝛼 |𝑥|−1, 0, … , 0) with 𝛼 > 0, it is easy to see that the above exponent (𝜇 − 𝑛 +
1)∕𝑛 is sharp.
Theorem 1.2 is obtained by proving the following sharp higher integrability result for𝐷𝑓 on the

Zygmund scale.

Theorem 1.3. Suppose that 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

𝐾 ∈ 𝐿∞
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 ⩾ 0. Then |𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω).

It is worth noting that the sharp local 1∕𝐾-Hölder continuity result for spatial 𝐾-quasiregular
mappings cannot be obtained from known higher integrability results. Indeed, while 𝐾-
quasiregular mappings have been shown to belong to the Sobolev space 𝑊1,𝑝𝑛

loc
(Ω,ℝ𝑛) for some

𝑝 > 1 [8, 20], the sharp exponent 𝑝 = 𝑝(𝑛, 𝐾) remains unknown when 𝑛 ⩾ 3. A well-known
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4 DOLEŽALOVÁ et al.

conjecture asserts that

𝑝(𝑛, 𝐾) =
𝐾

𝐾 − 1
. (1.6)

In a seminal work, Astala [2] established the sharp exponent in the planar case.
This conjecture also has a counterpart for mappings 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) with 𝐷𝑓 ∈𝑛(𝐾, Σ).

Indeed, if ‖𝐾‖𝐿∞(Ω) ⩽ 𝐾◦, we expect that 𝑓 ∈ 𝑊
1,𝑝𝑛

loc
(Ω,ℝ𝑛) whenever Σ ∈ 𝐿𝑝

loc
(Ω) for all 𝑝 ⩽

𝑝(𝑛, 𝐾◦), where 𝑝(𝑛, 𝐾◦) is as in (1.6). This is the maximal amount of higher integrability of 𝐷𝑓
possible when Σ ∈ 𝐿𝑝

loc
(Ω), which can be seen by taking 𝑓 = (g , 0, … , 0) and Σ = |∇g|𝑛, where g is

any function in𝑊1,𝑝𝑛

loc
(Ω) ⧵

⋃
𝑞>𝑛 𝑊

1,𝑞𝑛

loc
(Ω). However, similar to the quasiregular theory, current

tools are only enough to prove a result like this with an unknown value of 𝑝(𝑛, 𝐾◦).

Theorem 1.4. For given 𝑛 ⩾ 2 and 𝐾◦ ∈ [1,∞), there exists a value 𝑝(𝑛, 𝐾◦) > 1, such that if 𝑓 ∈
𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

‖𝐾‖𝐿∞(Ω) ⩽ 𝐾◦ and Σ ∈ 𝐿
𝑝

loc
(Ω),

for some 𝑝 ∈ [1, 𝑝(𝑛, 𝐾◦)), then |𝐷𝑓|𝑛 ∈ 𝐿𝑝
loc
(Ω).

1.2 Results for general 𝑲

In the last 20 years, systematic studies of mappings of finite distortion have emerged in the
field of geometric function theory. Recall that a mapping 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) has finite distortion

if |𝐷𝑓(𝑥)|𝑛 ⩽ 𝐾(𝑥) det 𝐷𝑓(𝑥) a.e. on Ω for some measurable 𝐾∶ Ω → [1,∞): that is, if 𝐷𝑓 ∈
𝑛(𝐾, 0). Thus, the class of mappings of finite distortion extends the theory of mappings of
bounded distortion to the degenerate elliptic setting, [12, 15]. There one finds applications inmate-
rials science, particularly in nonlinear elasticity. The mathematical models of nonlinear elasticity
have been pioneered by Antman [1], Ball [4], and Ciarlet [6].
In general, some bounds on the distortion are needed to obtain a full theory, analogous to the

theory of quasiregularmaps. The continuity property, however, follows without any restriction on
the distortion function 𝐾. Precisely, if 𝐾∶ Ω → [1,∞) is any measurable function, then a Sobolev
mapping 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) with 𝐷𝑓 ∈𝑛(𝐾, 0) has a continuous representative [10, 14].

Surprisingly, the continuity problem becomes a lot more challenging when Σ ≢ 0. Our next
result shows that the solutions need not be continuous even in the case of bounded Σ if the
distortion 𝐾 is just a measurable function.

Theorem 1.5. There exist a domainΩ ⊂ ℝ2 and a Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω,
𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈2(𝐾, Σ) with

Σ ∈ 𝐿∞(Ω) and 𝐾 ∈ 𝐿1(Ω) .

On the other hand, it iswell-known thatmappings of exponentially integrable distortion behave
in many ways like quasiregular mappings [12]. For instance, if a nonconstant Sobolev mapping
𝑓∶ Ω → ℝ𝑛 satisfies𝐷𝑓 ∈𝑛(𝐾, 0)with exp(𝜆𝐾) ∈ 𝐿1(Ω) and 𝜆 > 0, then 𝑓 is both discrete and
open [19]. Moreover, the local modulus of continuity𝜔𝑓(𝑥0, 𝑟) of 𝑓 is majorized up to amultiplica-
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 5

tive constant by log−𝜆∕𝑛(1∕𝑟) if 𝑥0 ∈ Ω and 𝑟 > 0 is sufficiently small [14]. This raises a natural
question in the general case 𝐷𝑓 ∈𝑛(𝐾, Σ): is there a version of the continuity result of Theo-
rem 1.2 where the boundedness assumption 𝐾 ∈ 𝐿∞

loc
(Ω) has been relaxed to exp(𝜆𝐾) ∈ 𝐿1

loc
(Ω)

for some 𝜆 > 0. The next result shows that this is not the case for arbitrary 𝜆 > 0.

Theorem 1.6. For every 𝜇 ∈ (0, 2), there exist a domain Ω ⊂ ℝ2 and a Sobolev map 𝑓 ∈

𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈2(𝐾, Σ) with

exp(𝜆𝐾) ∈ 𝐿1(Ω) and Σ log𝜇(𝑒 + Σ) ∈ 𝐿1(Ω)

for every 𝜆 > 0.

Nevertheless, it is possible to obtain amodulus of continuity in the casewith exp(𝜆𝐾) ∈ 𝐿1
loc
(Ω)

and Σ log𝜇(𝑒 + Σ) ∈ 𝐿1
loc
(Ω), if one assumes 𝜆 and 𝜇 to be sufficiently large.

Theorem 1.7. LetΩ ⊂ ℝ𝑛 be a domain, and let 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

exp(𝜆𝐾) ∈ 𝐿1
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝜆 > 𝑛 + 1. Then 𝑓 has a continuous representative.
In particular, for all 𝑥0 ∈ Ω and sufficiently small 𝑟 > 0, we have the following local modulus of

continuity estimate:

𝜔𝑓(𝑥0, 𝑟) ⩽ 𝐶 log
−𝛼(1∕𝑟) where 𝛼 = 𝜆 − 𝑛 − 1

𝑛
.

1.3 Single-value theory

Understanding the pointwise behavior of quasiregularmappingsmotivates us to study a variant of
the differential inclusion of𝑛(𝐾, Σ). In particular, given 𝐾, Σ∶ Ω → ℝ𝑛 and 𝑦0 ∈ ℝ𝑛, we define
a map𝑛(𝐾, Σ, 𝑦0) from Ω× ℝ𝑛 to subsets of ℝ𝑛×𝑛 by

𝑛(𝐾, Σ, 𝑦0)∶

(𝑥, 𝑦) ↦ {𝐴 ∈ ℝ𝑛×𝑛 ∶ |𝐴|𝑛 ⩽ 𝐾(𝑥) det𝐴 + ||𝑦 − 𝑦0||𝑛Σ(𝑥)}. (1.7)

Consequently, we obtain a differential inclusion by requiring that𝐷𝑓(𝑥) ∈𝑛(𝐾, Σ, 𝑦0)(𝑥, 𝑓(𝑥))

for a.e. 𝑥 ∈ Ω, which we again denote by the shorthand 𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0).
For 𝐾 ∈ 𝐿∞(Ω), the differential inclusion 𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) leads to the theory of quasireg-

ular values developed by the last two authors in [17] and [18]. This term is motivated by the
fact that for bounded 𝐾 ∈ 𝐿∞(Ω), solutions of 𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) satisfy a single-value version
of the celebrated Reshetnyak’s theorem at 𝑦0. Precisely, if 𝑓 ∈ 𝑊

1,𝑛
loc
(Ω,ℝ𝑛) is nonconstant and

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with 𝐾 ∈ [1,∞) constant and Σ ∈ 𝐿𝑝
loc
(Ω) for some 𝑝 > 1, then 𝑓 is continu-

ous, 𝑓−1{𝑦0} is discrete, the local index 𝑖(𝑥, 𝑓) is positive in 𝑓−1{𝑦0}, and every neighborhood of a
point of 𝑓−1{𝑦0} is mapped to a neighborhood of 𝑦0: see [18, Theorem 1.2].
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6 DOLEŽALOVÁ et al.

Notably, the additional term |𝑓 − 𝑦0|𝑛 in the differential inclusion 𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) causes
no additional difficulty in our continuity problem on the 𝐿𝑝-scale. Indeed, if 𝑓 ∈ 𝑊1,𝑛

loc
(Ω,ℝ𝑛) and

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with Σ ∈ 𝐿
𝑝

loc
(Ω), 𝑝 > 1, one can define Σ0 = |𝑓 − 𝑦0|𝑛Σ and conclude using

the Sobolev embedding theorem that Σ0 ∈ 𝐿
𝑞

loc
(Ω) for every 𝑞 ∈ [1, 𝑝). The question then reduces

to the continuity of solutions of 𝐷𝑓 ∈𝑛(𝐾, Σ0).
The sharpness of such an approach, however, becomes an issue when one moves to the Zyg-

mund space scale of (1.2). Indeed, if 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) satisfies𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0)with Σ log𝜇(𝑒 +

Σ) ∈ 𝐿1
loc
(Ω), then it can be shown using the Moser–Trudinger inequality that Σ0 = |𝑓 − 𝑦0|𝑛Σ

satisfies Σ0 log𝜇−𝑛+1(𝑒 + Σ0) ∈ 𝐿1loc(Ω). Theorem 1.2 hence yields that 𝑓 has a continuous
representative if 𝜇 − 𝑛 + 1 > 𝑛 − 1, that is, 𝜇 > 2𝑛 − 2.
This result for 𝜇 > 2𝑛 − 2, however, turns out to be far from optimal. This is because, by

an iteration argument using Theorem 1.3, this gap from (1.2) can be entirely eliminated. Again
the mapping 𝑓(𝑥) = (log log log(𝑒𝑒∕|𝑥|), 0, … , 0) on 𝔹𝑛(0, 1) shows that the following theorem is
sharp.

Theorem 1.8. LetΩ be a domain inℝ𝑛. Suppose that a Sobolev mapping 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) satisfies

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with 𝐾∶ Ω → [1,∞), Σ∶ Ω → [0,∞) and 𝑦0 ∈ ℝ𝑛. If

𝐾 ∈ 𝐿∞
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝑛 − 1, then 𝑓 has a continuous representative.

However, in the case of𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0)with exponentially integrable𝐾, the use of this trick
is prevented as our results are not based on higher integrability. Hence, the current best bound in
this case is the following result, given by the above Moser–Trudinger argument combined with
Theorem 1.7.

Theorem 1.9. LetΩ be a domain inℝ𝑛. Suppose that a Sobolev mapping 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) satisfies

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with 𝐾∶ Ω → [1,∞), Σ∶ Ω → [0,∞) and 𝑦0 ∈ ℝ𝑛. If

exp(𝜆𝐾) ∈ 𝐿1
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝜆 + 𝑛 − 1 > 2𝑛, then 𝑓 has a continuous representative.
In particular, for all 𝑥0 ∈ Ω and sufficiently small 𝑟 > 0, we have the following local modulus of

continuity estimate:

𝜔𝑓(𝑥0, 𝑟) ⩽ 𝐶 log
−𝛼(1∕𝑟), where 𝛼 = 𝜆 − 𝑛 − 1

𝑛
.

1.4 𝑳𝒑-integrable 𝑲

In the case where 𝐾 ∈ 𝐿
𝑝

loc
(Ω) with 𝑝 ∈ [1,∞], we conjecture that Problem 1.1 has a positive

answer if Σ ∈ 𝐿𝑞
loc
(Ω) for any 𝑞 > 𝑝∗, where 𝑝∗ is the Hölder conjugate of 𝑝. In fact, we con-

jecture that a stronger statement is true, where Σ ∈ 𝐿𝑞
loc
(Ω) can be replaced by the hypothesis

Σ∕𝐾 ∈ 𝐿
𝑞

loc
(Ω).
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 7

Conjecture 1.10. Let 1 ⩽ 𝑝, 𝑞 ⩽ ∞. Suppose that 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛), 𝐷𝑓 ∈𝑛(𝐾, Σ) with 𝐾 ⩾ 1,

Σ ⩾ 0,

𝐾 ∈ 𝐿
𝑝

loc
(Ω), and Σ

𝐾
∈ 𝐿

𝑞

loc
(Ω), where 1

𝑝
+
1

𝑞
< 1.

Then 𝑓 has a continuous representative.

To justify the assumption 𝑝−1 + 𝑞−1 < 1 of Conjecture 1.10, we point out that we have a discon-
tinuous example in the case𝑝 = 1, 𝑞 = ∞ due to Theorem 1.5.Moreover, in the case 𝑞 = 1, 𝑝 = ∞,
the triple logarithmmap (1.3) provides a discontinuous example. The necessity of the assumption
for the remaining cases 1 < 𝑝 < ∞ is then given by the following example.

Theorem 1.11. Let 𝑝, 𝑞 ∈ (1,∞). If 𝑝−1 + 𝑞−1 ⩾ 1, then there exists a domain Ω ⊂ ℝ2 and a
Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈
2(𝐾, Σ) with

𝐾 ∈ 𝐿𝑝(Ω) and Σ

𝐾
∈ 𝐿𝑞(Ω). (1.8)

Furthermore, we give several versions of Theorem 1.11 where (1.8) is replaced by a condition of
the type

𝐾 ∈ 𝐿𝑝(Ω) 𝑎𝑛𝑑 Σ ∈ 𝐿𝑠(Ω),

see Theorems 4.1 and 5.1 for details.

2 RESULTS BASED ONHIGHER INTEGRABILITY

In this section,we prove the continuity results that are based onhigher integrability: Theorems 1.2,
1.3, 1.4, and 1.8.

2.1 Higher integrability on the 𝑳𝒑-scale

The higher integrability result of Theorem 1.4 is essentially the same as [18, Lemma 6.1], with
only minor tweaks to account for the nonconstant 𝐾. We regardless recall the argument for the
convenience of the reader, aswe require the reverseHölder inequality proven during the argument
for our later proof of Theorem 1.3.
If 𝐵 = 𝔹𝑛(𝑥, 𝑟) is a ball and 𝑐 ∈ (0,∞), then we denote 𝑐𝐵 = 𝔹𝑛(𝑥, 𝑐𝑟). Similarly, if 𝑄 = 𝑥 +

(−𝑟, 𝑟)𝑛 ⊂ ℝ𝑛 is a cube and 𝑐 ∈ (0,∞), we denote 𝑐𝑄 = 𝑥 + (−𝑐𝑟, 𝑐𝑟)𝑛.

Lemma 2.1. Suppose that 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

𝐾 ∈ 𝐿∞(Ω) and Σ ∈ 𝐿1
loc
(Ω).

Then for every cube 𝑄 such that 2𝑄 ⊂ Ω, we have the reverse Hölder inequality(
−∫𝑄 |𝐷𝑓|𝑛

) 𝑛
𝑛+1

⩽ 𝐶(𝑛)‖𝐾‖ 𝑛
𝑛+1

𝐿∞(Ω)

(
−∫2𝑄 |𝐷𝑓| 𝑛

2

𝑛+1 +

(
−∫2𝑄 Σ

) 𝑛
𝑛+1

)
.
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8 DOLEŽALOVÁ et al.

Proof. Let 𝑄 be such a cube. Choose a cutoff function 𝜂 ∈ 𝐶∞
0
(2𝑄) such that 0 ⩽ 𝜂 ⩽ 1, 𝜂 ≡ 1 on

𝑄, and |∇𝜂| ⩽ 𝐶1(𝑛)|2𝑄|−1∕𝑛. By using the distortion estimate |𝐷𝑓|𝑛 ⩽ 𝐾𝐽𝑓 + Σ, the assumption
that 𝐾 ⩾ 1, and a Caccioppoli-type inequality given, for instance, in [15, Lemma 8.1.1], we have

−∫𝑄 |𝐷𝑓|𝑛 ⩽ ‖𝐾‖𝐿∞|𝑄| ∫Ω
|𝐷𝑓|𝑛𝜂𝑛

𝐾

⩽
‖𝐾‖𝐿∞(Ω)|𝑄| ∫Ω 𝐽𝑓𝜂

𝑛 +
‖𝐾‖𝐿∞(Ω)|𝑄| ∫Ω

Σ𝜂𝑛

𝐾

⩽
𝐶2(𝑛)‖𝐾‖𝐿∞(Ω)|𝑄| ∫Ω |𝐷𝑓|𝑛−1𝜂𝑛−1|𝑓 − 𝑐||∇𝜂| + ‖𝐾‖𝐿∞(Ω)|𝑄| ∫Ω Σ𝜂

𝑛.

By using |∇𝜂| ⩽ 𝐶1(𝑛)|2𝑄|−1∕𝑛, 𝜂 ⩽ 1, and |2𝑄| = 2𝑛|𝑄|, we hence obtain that
−∫𝑄 |𝐷𝑓|𝑛 ⩽ 𝐶3(𝑛)‖𝐾‖𝐿∞

(
1|𝑄| 1𝑛 −∫2𝑄 |𝐷𝑓|𝑛−1|𝑓 − 𝑐| + −∫2𝑄 Σ

)
.

Hölder and Sobolev–Poincaré inequalities then yield that

1|𝑄| 1𝑛 −∫2𝑄 |𝐷𝑓|𝑛−1|𝑓 − 𝑐|
⩽

(
−∫2𝑄 |𝐷𝑓| 𝑛

2

𝑛+1

) 𝑛2−1

𝑛2 1|𝑄| 1𝑛
(
−∫2𝑄 |𝑓 − 𝑐|𝑛2

) 1

𝑛2

⩽

(
−∫2𝑄 |𝐷𝑓| 𝑛

2

𝑛+1

) 𝑛2−1

𝑛2

𝐶4(𝑛)

(
−∫2𝑄 |𝐷𝑓| 𝑛

2

𝑛+1

) 𝑛+1

𝑛2

= 𝐶4(𝑛)

(
−∫2𝑄 |𝐷𝑓| 𝑛

2

𝑛+1

) 𝑛+1
𝑛

.

Thus, the claimed estimate follows by using the elementary inequality 𝑎 + 𝑏 ⩽ (𝑎1∕𝑝 + 𝑏1∕𝑝)𝑝 for
𝑎, 𝑏 ⩾ 0, 𝑝 ⩾ 1 □

We then recall the statement of Theorem 1.4 and give the short remaining parts of the proof.

Theorem 1.4. For given 𝑛 ⩾ 2 and 𝐾◦ ∈ [1,∞), there exists a value 𝑝(𝑛, 𝐾◦) > 1, such that if 𝑓 ∈
𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

‖𝐾‖𝐿∞(Ω) ⩽ 𝐾◦ and Σ ∈ 𝐿
𝑝

loc
(Ω),

for some 𝑝 ∈ [1, 𝑝(𝑛, 𝐾◦)), then |𝐷𝑓|𝑛 ∈ 𝐿𝑝
loc
(Ω).

Proof. Due to 𝑓 satisfying the reverse Hölder inequality given in Lemma 2.1, the claimed result
follows immediately from the version of Gehring’s lemma given in [13, Proposition 6.1]. The upper
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 9

bound of higher integrability given there depends only on the constants of the reverse Hölder
inequality, which in turn depend only on 𝑛 and ‖𝐾‖𝐿∞(Ω). □

2.2 Higher integrability on the Zygmund space scale

For the Zygmund space version of our main result, we need a corresponding variant of Gehring’s
lemma. We expect this to be known, but are not aware of any references that would directly give
the version we need. Hence, we provide a proof here of the relevant version of Gehring’s lemma,
with the proof modeled on the arguments used in [13, section 3].

Lemma 2.2. Let 𝐺,𝐻 ∈ 𝐿𝑝(ℝ𝑛) be nonnegative functions satisfying the reverse Hölder inequality

(
−∫𝑄 𝐺

𝑝

) 1
𝑝

⩽ 𝐶

(
−∫2𝑄 𝐺

𝑞

) 1
𝑞

+

(
−∫2𝑄 𝐻

𝑝

) 1
𝑝

,

for all cubes 𝑄 ⊂ ℝ𝑛, where 1 ⩽ 𝑞 < 𝑝 < ∞ and 𝐶 ⩾ 1 is a constant. Then for every 𝜇 > 0, we have

∫ℝ𝑛 𝐺
𝑝 log𝜇(𝑒 + 𝐺) ⩽ 𝑎 ∫ℝ𝑛 𝐺

𝑝 + 𝑏 ∫ℝ𝑛 𝐻
𝑝 log𝜇(𝑒 + 𝐻),

with 𝑎 = 𝑎(𝐶, 𝑛, 𝜇, 𝑝, 𝑞) ⩾ 1 and 𝑏 = 𝑏(𝐶, 𝑛, 𝜇, 𝑝, 𝑞) ⩾ 1.

We start the proof with the following estimate that directly follows from [13, section 3].

Lemma 2.3. Let 𝐺,𝐻 ∈ 𝐿𝑝(ℝ𝑛) be nonnegative functions satisfying the reverse Hölder inequality

(
−∫𝑄 𝐺

𝑝

) 1
𝑝

⩽ 𝐶

(
−∫2𝑄 𝐺

𝑞

) 1
𝑞

+

(
−∫2𝑄 𝐻

𝑝

) 1
𝑝

,

for all cubes 𝑄 ⊂ ℝ𝑛, where 1 ⩽ 𝑞 < 𝑝 < ∞ and 𝐶 ⩾ 1 is a constant. Then for every 𝑡 > 0, we have

∫𝐺−1(𝑡,∞) 𝐺
𝑝 ⩽ 𝛼𝑡𝑝−𝑞 ∫𝐺−1(𝑡,∞) 𝐺

𝑞 + 𝛽 ∫𝐻−1(𝑡,∞) 𝐻
𝑝, (2.1)

with 𝛼 = 𝛼(𝑛, 𝐶, 𝑝, 𝑞) > 1 and 𝛽 = 𝛽(𝑛, 𝐶, 𝑝, 𝑞) > 0.

Proof. This estimate is [13, Proof of Lemma 3.1, estimate (3.11)], where in the notation used therein
we’ve chosen Φ(𝑡) = 𝑡𝐹(𝑡) = 𝑡𝑝∕𝑞 with 𝐹(𝑡) = 𝑡𝑝∕𝑞−1, g = 𝐺𝑞, and ℎ = 𝐻𝑞. □

Proof of Lemma 2.2. We assume first that 𝜇 ≠ 1; for 𝜇 = 1, see the remark at the end of the proof.
We define an auxiliary function

𝐴𝜇(𝑡) =
𝑝 − 𝑞

𝜇
log𝜇(𝑡) +

𝜇

𝜇 − 1
log𝜇−1(𝑡).
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10 DOLEŽALOVÁ et al.

The purpose of this specific choice is that

𝑡𝑝−𝑞 log(𝑡)𝐴′𝜇(𝑡) =
d

d𝑡
(𝑡𝑝−𝑞 log𝜇(𝑡)). (2.2)

We may select a constant 𝑀 > 1 large enough that 𝐴𝜇 and 𝐴′𝜇 are positive on [𝑀,∞), and also
large enough that

𝐴𝜇(𝑡) −
𝛼

log(𝑀)
log𝜇(𝑡) ⩾

𝑝 − 𝑞

2𝜇
log𝜇(𝑒 + 𝑡) for all 𝑡 ∈ [𝑀,∞), (2.3)

where 𝛼 is from (2.1). Let 𝐿 > 𝑀. We multiply both sides of (2.1) with 𝐴′𝜇(𝑡), and integrate over
[𝑀, 𝐿] with respect to 𝑡. By a use of the Fubini–Tonelli theorem, the left-hand side yields

∫
𝐿

𝑀

𝐴′𝜇(𝑡)∫𝐺−1(𝑡,∞) 𝐺
𝑝(𝑥) d𝑥 d𝑡

= ∫𝐺−1(𝐿,∞) 𝐺
𝑝(𝑥)∫

𝐿

𝑀

𝐴′𝜇(𝑡) d𝑡 d𝑥 + ∫𝐺−1[𝑀,𝐿] 𝐺
𝑝(𝑥)∫

𝐺(𝑥)

𝑀

𝐴′𝜇(𝑡) d𝑡 d𝑥

= ∫𝐺−1(𝐿,∞) 𝐴𝜇(𝐿)𝐺
𝑝 + ∫𝐺−1[𝑀,𝐿] 𝐺

𝑝𝐴𝜇(𝐺) − ∫𝐺−1(𝑀,∞) 𝐴𝜇(𝑀)𝐺
𝑝.

By the same computation for the𝐻𝑝-term, we get the upper bound

∫
𝐿

𝑀

𝐴′𝜇(𝑡)∫𝐻−1(𝑡,∞) 𝐻
𝑝(𝑥) d𝑥 d𝑡

= ∫𝐻−1(𝐿,∞) 𝐴𝜇(𝐿)𝐻
𝑝 + ∫𝐻−1[𝑀,𝐿] 𝐻

𝑝𝐴𝜇(𝐻) − ∫𝐻−1(𝑀,∞) 𝐴𝜇(𝑀)𝐻
𝑝

⩽ ∫𝐻−1(𝐿,∞) 𝐴𝜇(𝐻)𝐻
𝑝 + ∫𝐻−1[𝑀,𝐿] 𝐻

𝑝𝐴𝜇(𝐻) ⩽ 2∫𝐻−1[𝑀,∞) 𝐻
𝑝𝐴𝜇(𝐻).

For the 𝐺𝑞-term, we use (2.2) and similar computations to obtain that

∫
𝐿

𝑀

𝐴′𝜇(𝑡)𝑡
𝑝−𝑞 ∫𝐺−1(𝑡,∞) 𝐺

𝑞(𝑥) d𝑥 d𝑡

⩽
1

log(𝑀) ∫
𝐿

𝑀

𝐴′𝜇(𝑡)𝑡
𝑝−𝑞 log(𝑡)∫𝐺−1(𝑡,∞) 𝐺

𝑞(𝑥) d𝑥 d𝑡

=
1

log(𝑀) ∫
𝐿

𝑀

d

d𝑡
(𝑡𝑝−𝑞 log𝜇(𝑡))∫𝐺−1(𝑡,∞) 𝐺

𝑞(𝑥) d𝑥 d𝑡

⩽ ∫𝐺−1(𝐿,∞)
𝐿𝑝−𝑞 log𝜇(𝐿)𝐺𝑞

log(𝑀)
+ ∫𝐺−1[𝑀,𝐿]

𝐺𝑝 log𝜇(𝐺)

log(𝑀)
.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 11

In total, we have

∫𝐺−1(𝐿,∞) 𝐴𝜇(𝐿)𝐺
𝑝 + ∫𝐺−1[𝑀,𝐿] 𝐺

𝑝𝐴𝜇(𝐺)

⩽ 𝐴𝜇(𝑀)∫𝐺−1(𝑀,∞) 𝐺
𝑝 +

𝛼

log(𝑀) ∫𝐺−1(𝐿,∞) 𝐿
𝑝−𝑞 log𝜇(𝐿)𝐺𝑞

+
𝛼

log(𝑀) ∫𝐺−1[𝑀,𝐿] 𝐺
𝑝 log𝜇(𝐺) + 2𝛽 ∫𝐻−1[𝑀,∞) 𝐻

𝑝𝐴𝜇(𝐻).

Note that on 𝐺−1(𝐿,∞), we have 𝐿𝑝−𝑞 ⩽ 𝐺𝑝−𝑞. By applying this and subtracting the 𝛼∕ log(𝑀)-
terms from both sides of the above estimate, we obtain

∫𝐺−1(𝐿,∞)
(
𝐴𝜇(𝐿) −

𝛼 log𝜇(𝐿)

log(𝑀)

)
𝐺𝑝 + ∫𝐺−1[𝑀,𝐿]

(
𝐴𝜇(𝐺) −

𝛼 log𝜇(𝐺)

log(𝑀)

)
𝐺𝑝

⩽ 𝐴𝜇(𝑀)∫𝐺−1(𝑀,∞) 𝐺
𝑝 + 2𝛽 ∫𝐻−1[𝑀,∞) 𝐻

𝑝𝐴𝜇(𝐻).

We then apply (2.3), and conclude that

∫𝐺−1[𝑀,𝐿] 𝐺
𝑝 log𝜇(𝑒 + 𝐺)

⩽ ∫𝐺−1(𝐿,∞) 𝐺
𝑝 log𝜇(𝑒 + 𝐿) + ∫𝐺−1[𝑀,𝐿] 𝐺

𝑝 log𝜇(𝑒 + 𝐺)

⩽
2𝜇𝐴𝜇(𝑀)

𝑝 − 𝑞 ∫𝐺−1(𝑀,∞) 𝐺
𝑝 +

4𝜇𝛽

𝑝 − 𝑞 ∫𝐻−1[𝑀,∞) 𝐻
𝑝𝐴𝜇(𝐻).

Notably, this upper bound is independent on 𝐿. As we have 0 ⩽ 𝐴𝜇(𝐻) ⩽ 𝐴𝜇(𝑒 + 𝐻) ⩽ ((𝑝 −
𝑞)∕𝜇 + 𝜇∕|𝜇 − 1|) log𝜇(𝑒 + 𝐻) in𝐻−1[𝑀,∞), letting 𝐿 → ∞ gives us

∫𝐺−1[𝑀,∞) 𝐺
𝑝 log𝜇(𝑒 + 𝐺) ⩽ 𝑎0 ∫ℝ𝑛 𝐺

𝑝 + 𝑏 ∫ℝ𝑛 𝐻
𝑝 log𝜇(𝑒 + 𝐻),

with 𝑎0, 𝑏 dependent only on 𝛼, 𝛽, 𝑝, 𝑞, 𝜇. The final desired claim then follows by combining the
previous estimate with

∫𝐺−1[0,𝑀) 𝐺
𝑝 log𝜇(𝑒 + 𝐺) ⩽ log𝜇(𝑒 + 𝑀)∫ℝ𝑛 𝐺

𝑝.

We finally comment on the case 𝜇 = 1. In this case, we must instead define 𝐴1(𝑡) = (𝑝 −
𝑞) log(𝑡) + log log(𝑡), which yields (2.2) for 𝜇 = 1. The rest of the proof goes through essentially
similarly in this case. □

With Lemma 2.2 proven, we may proceed to prove Theorem 1.3. We again recall the statement.
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12 DOLEŽALOVÁ et al.

Theorem 1.3. Suppose that 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

𝐾 ∈ 𝐿∞
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 ⩾ 0. Then |𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω).

Proof. We select a ball 𝐵 = 𝔹𝑛(𝑥0, 𝑟) with 𝑟 ⩽ 1 such that 𝐵 ⊂ Ω. By using Lemma 2.1, we obtain
that |𝐷𝑓| and Σ satisfy a reverse Hölder inequality for all cubes 𝑄 with 2𝑄 ⊂ 𝐵. It was shown in
the proof of [13, Proposition 6.1] that in this case, the functions 𝐺,𝐻∶ ℝ𝑛 → [0,∞) defined by

𝐺(𝑥) = dist(𝑥, ℝ𝑛 ⧵ 𝐵)||𝐷𝑓(𝑥)|| 𝑛2𝑛+1
𝐻(𝑥) = dist(𝑥, ℝ𝑛 ⧵ 𝐵)Σ

𝑛
𝑛+1 + 𝜒𝐵(𝑥)

(
∫𝐵 Σ

) 𝑛
𝑛+1

satisfy a reverse Hölder inequality in all of ℝ𝑛. In particular, it follows from Lemma 2.2 that

∫ℝ𝑛 𝐺
𝑛+1
𝑛 log𝜇(𝑒 + 𝐺) ⩽ 𝑎 ∫ℝ𝑛 𝐺

𝑛+1
𝑛 + 𝑏 ∫ℝ𝑛 𝐻

𝑛+1
𝑛 log𝜇(𝑒 + 𝐻). (2.4)

We then assume 0 < 𝜀 < 𝑟, and denote 𝐵𝜀 = {𝑥 ∈ 𝐵 ∶ dist(𝑥, 𝑅𝑛 ⧵ 𝐵) > 𝜀}. We note that for 𝑡 ⩾
1, and 𝑝 ⩾ 1, we may estimate using Bernoulli’s inequality that

𝑒 + 𝜀𝑡𝑝 = 𝑒(1 + 𝜀𝑒−1𝑡𝑝) ⩾ 𝑒𝜀(1 + 𝑒−1𝑡𝑝)𝜀 = (𝑒 + 𝑡𝑝)𝜀 ⩾ (𝑒 + 𝑡)𝜀.

Hence, for every point 𝑥 ∈ 𝐵𝜀, we have either |𝐷𝑓(𝑥)| ⩽ 1 and thus also |𝐷𝑓(𝑥)|𝑛 log𝜇(𝑒 +|𝐷𝑓(𝑥)|) ⩽ log𝜇(𝑒 + 1), or
𝐺

𝑛+1
𝑛 log𝜇(𝑒 + 𝐺) ⩾ 𝜀

𝑛+1
𝑛 |𝐷𝑓|𝑛 log𝜇(𝑒 + 𝜀|𝐷𝑓| 𝑛2𝑛+1 )

⩾ 𝜀
𝑛+1
𝑛
+𝜇|𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|).

Consequently,

∫𝐵𝜀 |𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) ⩽ ||𝐵𝜀|| log𝜇(𝑒 + 1) + 𝜀−𝑛+1
𝑛
−𝜇 ∫ℝ𝑛 𝐺

𝑛+1
𝑛 log𝜇(𝑒 + 𝐺).

On the other hand, 𝐺(𝑛−1)∕𝑛 ⩽ |𝐷𝑓|𝑛𝜒𝐵 ∈ 𝐿1(ℝ𝑛). For the𝐻-term of (2.4), we have𝐻 ≡ 0 out-
side𝐵 and𝐻 ⩽ Σ𝑛∕(𝑛+1) + 𝐶 in𝐵with𝐶 = ‖Σ‖𝑛∕(𝑛+1)

𝐿1(𝐵)
< ∞.We recall that we have the elementary

inequality log(𝑒 + 𝑎 + 𝑏) ⩽ log(𝑒 + 𝑎) + log(𝑒 + 𝑏) for 𝑎, 𝑏 ⩾ 0, and that Σ𝑛∕(𝑛+1) ⩽ 1 + Σ. Hence,
we may estimate

∫ℝ𝑛 𝐻
𝑛+1
𝑛 log𝜇(𝑒 + 𝐻) ⩽ ∫𝐵(Σ

𝑛
𝑛+1 + 𝐶)

𝑛+1
𝑛 log𝜇

(
𝑒 + Σ

𝑛
𝑛+1 + 𝐶

)
⩽ ∫𝐵 2

𝑛+1
𝑛
+𝜇(Σ + 𝐶 𝑛+1

𝑛
)(
log𝜇(𝑒 + Σ) + log𝜇(𝑒 + 𝐶 + 1)

)
< ∞.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 13

It follows that |𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) has finite integral over 𝐵𝜀, which completes the proof of the
claim. □

2.3 Embedding theorems

As stated in the introduction, Theorem 1.2 is a direct corollary of combining Theorem 1.3 with
a suitable version of Morrey’s inequality for Zygmund spaces. Recall that the classical Morrey’s
inequality implies that if 𝑝 > 𝑛, then elements of𝑊1,𝑝

loc
(Ω) have a locally Hölder continuous repre-

sentative, with Hölder exponent 1 − 𝑛∕𝑝. For a Zygmund space version, we refer to, for example,
[16, Theorem 3.1], which gives us the following.

Theorem 2.4. LetΩ ⊂ ℝ𝑛 be a domain, and let 𝑓 ∈ 𝑊1,𝑛
loc
(Ω) satisfy

|𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω),

where 𝜇 > 𝑛 − 1. Then 𝑓 has a continuous representative. In particular, whenever 0 < 𝑟 < 𝑅 and
𝔹𝑛(𝑥, 𝑅) ⊂ Ω, the modulus of continuity 𝜔𝑓(𝑥0, 𝑟) defined in (1.5) satisfies

𝜔𝑓(𝑥, 𝑟) ⩽ 𝐶(𝐷𝑓, 𝜇, 𝑥, 𝑅) log
𝜇−𝑛+1

𝑛

(
1 +

2𝑅

𝑟

)
,

where

𝐶(𝐷𝑓, 𝜇, 𝑥, 𝑅) = −∫𝔹𝑛(𝑥,𝑅) |𝐷𝑓|𝑛 log𝜇
(
𝑒 +

||𝔹𝑛(𝑥, 𝑟)|||𝐷𝑓|‖𝐷𝑓‖𝑛
𝐿𝑛(𝔹𝑛(𝑥,𝑅))

)
.

Hence, by combining Theorems 1.3 and 2.4, the proof of Theorem 1.2 is complete.
Due to us requiring it in the following subsection, we also recall the corresponding result for

𝜇 ∈ [0, 𝑛 − 1). In this case,𝑓 is not necessarily continuous, but does satisfy an exponential Sobolev
embedding theorem. We refer to, for example, [5, Theorem 2, Example 1] for the following result;
note also that the case 𝜇 = 0 corresponds to the classical Moser–Trudinger inequality.

Theorem 2.5. LetΩ ⊂ ℝ𝑛 be a domain, and let 𝑓 ∈ 𝑊1,𝑛
loc
(Ω) satisfy

|𝐷𝑓|𝑛 log𝜇(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω),

where 0 ⩽ 𝜇 < 𝑛 − 1. Then there exists 𝜆 > 0 such that

exp(𝜆|𝑓| 𝑛
𝑛−1−𝜇 ) ∈ 𝐿1

loc
(Ω).

2.4 Continuity for (1.7) with bounded 𝑲

The final result we prove in this section is Theorem 1.8. For the proof, we require the following
lemma on the integrability of products of functions.
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14 DOLEŽALOVÁ et al.

Lemma 2.6. LetΩ ⊂ ℝ𝑛 bemeasurable, let𝜇, 𝜈, 𝜆 > 0 be such that 𝜈 ⩽ 𝜇, and let𝑓, g ∶ Ω → [0,∞]

be measurable functions such that

𝑓 log𝜇(𝑒 + 𝑓) ∈ 𝐿1
loc
(Ω), exp

(
𝜆g

1
𝜈
)
∈ 𝐿1

loc
(Ω).

Then 𝑓g log𝜇−𝜈(𝑒 + 𝑓g) ∈ 𝐿1
loc
(Ω).

We begin the proof of Lemma 2.6 by recalling the proof of the following elementary inequality.
See, for example, [12, Lemmas 2.7, 6.2] for similar results and proofs.

Lemma 2.7. Let 𝑎, 𝑏 ⩾ 0, and 𝜅, 𝜆 > 0. Then

𝑎𝑏 < exp
(
𝜆𝑎

1
𝜅

)
+ 𝐶(𝜅, 𝜆)𝑏 log𝜅(𝑒 + 𝑏),

where 𝐶(𝜅, 𝜆) ⩾ 0.

Proof. Note that there exists a constant 𝐴 = 𝐴(𝜅) such that

exp(𝑡) ⩾ 𝐴𝑡2𝜅. (2.5)

If 𝑎𝑏 ⩽ exp(𝑎1∕𝜅𝜆), then the claim is clear. Hence, we assume that 𝑎𝑏 > exp(𝑎1∕𝜅𝜆), with a goal
of showing that 𝑎𝑏 < 𝐶(𝜅, 𝜆)𝑏 log𝜅(𝑒 + 𝑏).
By combining this assumption with (2.5), we have

𝑎 = 𝑎−1𝑎2 ⩽ 𝑎−1
(
exp(𝑎1∕𝜅𝜆)

𝐴𝜆2𝜅

)
< 𝑎−1

(
𝑎𝑏

𝐴𝜆2𝜅

)
=

𝑏

𝐴𝜆2𝜅
.

Consequently, we have

exp(𝑎1∕𝜅𝜆) < 𝑎𝑏 <
𝑏2

𝐴𝜆2𝜅
<
(𝑒 + 𝑏)2

𝐴𝜆2𝜅
.

Taking logarithms yields

𝑎1∕𝜅𝜆 < log
(𝑒 + 𝑏)2

𝐴𝜆2𝜅
= log

1

𝐴𝜆2𝜅
+ 2 log(𝑒 + 𝑏).

In particular,

𝑎 <
||||1𝜆 log 1

𝐴𝜆2𝜅
+
2

𝜆
log(𝑒 + 𝑏)

||||𝜅 ⩽ 2𝜅

𝜆𝜅

||||log 1

𝐴𝜆2𝜅

||||𝜅 + 4𝜅

𝜆𝜅
log𝜅(𝑒 + 𝑏).

And hence, we obtain the desired estimate

𝑎𝑏 <

(
2𝜅

𝜆𝜅

||||log 1

𝐴𝜆2𝜅

||||𝜅
)
𝑏 +

(
4𝜅

𝜆𝜅

)
𝑏 log𝜅(𝑒 + 𝑏)

⩽

(
2𝜅

𝜆𝜅

||||log 1

𝐴𝜆2𝜅

||||𝜅 + 4𝜅

𝜆𝜅

)
𝑏 log𝜅(𝑒 + 𝑏).

□
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 15

Proof of Lemma 2.6. We first observe that 𝑓g ∈ 𝐿1
loc
(Ω). Indeed, Lemma 2.7 yields that 𝑓g ⩽

exp(𝜆g1∕𝜈) + 𝐶𝑓 log𝜈(𝑒 + 𝑓), where both terms on the right-hand side are integrable by 𝜈 ⩽ 𝜇.
We then further estimate using Lemma 2.7

𝑓g log𝜇−𝜈(𝑒 + 𝑓g) ⩽ exp
(
2−1𝜆g

1
𝜈

)
log𝜇−𝜈(𝑒 + 𝑓g) + 𝐶1𝑓 log

𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + 𝑓g). (2.6)

We have exp(2−1𝜆g
1
𝜈 ) ∈ 𝐿2

loc
(Ω), and also log𝜇(𝑒 + 𝑓) ∈ 𝐿2

loc
(Ω). It follows that the first term on

the right-hand side of (2.6) is locally integrable. For the second term, we estimate 𝑒 + 𝑓g ⩽ (𝑒 +
𝑓)(𝑒 + g), and hence

𝑓 log𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + 𝑓g) ⩽ 𝐶2
(
𝑓 log𝜇(𝑒 + 𝑓) + 𝑓 log𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + g)

)
. (2.7)

The first term on the right-hand side of (2.7) is locally integrable by assumption. For the second
term, we again use Lemma 2.7, this time with 𝜅 = 𝜇 − 𝜈 and 𝜆 = 1. We get

𝑓 log𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + g)

⩽ 𝑒 + g + 𝐶3𝑓 log
𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + 𝑓 log𝜇−𝜈(𝑒 + 𝑓))

⩽ 𝑒 + g + 𝐶4𝑓 log
𝜇(𝑒 + 𝑓)

+ 𝐶4𝑓 log
𝜈(𝑒 + 𝑓) log𝜇−𝜈(𝑒 + log𝜇−𝜈(𝑒 + 𝑓)),

where the right-hand side is locally integrable by the local integrability of g and 𝑓 log𝜇(𝑒 + 𝑓).
Hence, the claim follows. □

We are now ready to prove Theorem 1.8. We again recall the statement for convenience.

Theorem 1.8. LetΩ be a domain inℝ𝑛. Suppose that a Sobolev mapping 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) satisfies

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with 𝐾∶ Ω → [1,∞), Σ∶ Ω → [0,∞) and 𝑦0 ∈ ℝ𝑛. If

𝐾 ∈ 𝐿∞
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝑛 − 1, then 𝑓 has a continuous representative.

Proof. Let 𝑞 = 𝜇 − (𝑛 − 1) > 0. By slightly shrinking 𝜇, wemay assume that 𝑛 − 1 is not an integer
multiple of 𝑞. By our assumption, we have |𝐷𝑓|𝑛 ⩽ 𝐾𝐽𝑓 + Σ′, where Σ′ = Σ|𝑓 − 𝑦0|𝑛.
By the Moser–Trudinger inequality (case 𝑞 = 0 of Theorem 2.5), there exists 𝜆0 > 0 such that

exp
(
𝜆0
||𝑓 − 𝑦0|| 𝑛

𝑛−1

)
∈ 𝐿1

loc
(Ω).

Combining this with our assumption that Σ log𝜇(𝑒 + Σ) ∈ 𝐿1
loc
(Ω) and recalling that 𝑞 = 𝜇 − (𝑛 −

1), we can thus use Lemma 2.6 to conclude that

Σ′ log𝑞(𝑒 + Σ′) ∈ 𝐿1
loc
(Ω).
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16 DOLEŽALOVÁ et al.

Using Theorem 1.3, we hence conclude that

|𝐷𝑓|𝑛 log𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω).

If 𝑞 > 𝑛 − 1, we are now done, as Theorem 2.4 implies that 𝑓 has a continuous representa-
tive. Otherwise, we proceed to iterate this argument. Indeed, as |𝐷𝑓|𝑛 log𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1

loc
(Ω),

Theorem 2.5 yields us a slightly better estimate

exp
(
𝜆1
||𝑓 − 𝑦0|| 𝑛

(𝑛−1)−𝑞

)
∈ 𝐿1

loc
(Ω)

for some 𝜆1 > 0. Lemma 2.6 then yields that

Σ′ log2𝑞(𝑒 + Σ′) = Σ′ log𝜇−((𝑛−1)−𝑞)(𝑒 + Σ′) ∈ 𝐿1
loc
(Ω),

from which we get that

|𝐷𝑓|𝑛 log2𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω).

Then next iteration of this argument then yields |𝐷𝑓|𝑛 log3𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω), the next

iteration after that yields |𝐷𝑓|𝑛 log4𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω), et cetera.

We may continue this iteration until |𝐷𝑓|𝑛 log𝑘𝑞(𝑒 + |𝐷𝑓|) ∈ 𝐿1
loc
(Ω), where 𝑘 is the smallest

positive integer such that 𝑘𝑞 > 𝑛 − 1. Indeed, we assumed 𝑛 − 1 not to be an integer multiple
of 𝑞, so (𝑘 − 1)𝑞 is a valid exponent for Theorem 2.5. Moreover, we also must have 𝑘𝑞 < 𝜇, as
𝑘𝑞 = (𝑘 − 1)𝑞 + 𝑞 < (𝑛 − 1) + 𝑞 = 𝜇. Hence, it follows that 𝑓 has a continuous representative by
Theorem 2.4. □

3 DIRECT CONTINUITY RESULTS

In this section, we prove Theorems 1.7 and 1.9. The method is a generalization of the approach
used in [17, Section 3]. In particular, we prove a decay estimate for the integral of |𝐷𝑓|𝑛 over balls,
which then implies continuity by using a chain of balls argument as in [11].
We begin by recalling an estimate that is used in the proofs of similar continuity results for

mappings of finite distortion; see, for example, [22, Section 3] or [12, Theorem 5.18]. We give the
proof for the convenience of the reader.

Lemma 3.1. Let Ω ⊂ ℝ𝑛 be a domain, and let exp(𝐾) ∈ 𝐿𝜆(Ω) with 𝜆 > 0. Then there exist con-
stants 𝐶 = 𝐶(Ω,𝐾, 𝜆) > 0 and 𝑅0 = 𝑅0(Ω,𝐾, 𝜆) as follows: if 𝑥 ∈ Ω, 𝑅 < min(𝑅0, 𝑑(𝑥, 𝜕Ω)) and
𝑟 ∈ (0, 𝑅∕𝑒3), then

∫
𝑅

𝑟

𝑠−1
(
−∫𝜕𝔹𝑛(𝑥,𝑠) 𝐾

𝑛−1

)− 1
𝑛−1

d𝑠 ⩾
𝜆

𝑛

(
log log

𝐶

𝑟𝑛
− log log

𝐶𝑒2

𝑅𝑛

)
.

Proof. We denote 𝐵𝑠 = 𝔹𝑛(𝑥, 𝑠). We let 𝑘 be the largest integer such that 𝑟𝑒𝑘 ⩽ 𝑅. As 𝑟 <
𝑅∕𝑒3, we must have 𝑘 ⩾ 3. We define the function �̃� = max(𝐾, (𝑛 − 2)𝜆−1), where we still have

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12835 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 17

exp(�̃�) ∈ 𝐿𝜆
loc
(Ω). We estimate 𝐾 ⩽ �̃�, perform a change of variables, and split the integral into a

sum as follows:

∫
𝑅

𝑟

𝑠−1

(
−∫𝜕𝐵𝑠 𝐾

𝑛−1

)− 1
𝑛−1

d𝑠 ≥
𝑘−1∑
𝑖=1

∫
𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

�̃�𝑛−1

)− 1
𝑛−1

d𝑡.

We then use Jensen’s inequality a total of three times, with the convex functions 𝜏 ↦ 𝜏−1, 𝜏 ↦
exp(𝜆𝜏

1
𝑛−1 ) and 𝜏 ↦ exp(𝜏). Note that 𝜏 ↦ exp(𝜆𝜏

1
𝑛−1 ) is only convex for 𝜏 ⩾ ((𝑛 − 2)𝜆−1)𝑛−1, but

the range of �̃�𝑛−1 is in this region. The resulting estimate is

∫
𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

�̃�𝑛−1

)− 1
𝑛−1

d𝑡 ≥
⎛⎜⎜⎝∫

𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

�̃�𝑛−1

) 1
𝑛−1

d𝑡

⎞⎟⎟⎠
−1

≥ 𝜆

(
∫

𝑖+1+log 𝑟

𝑖+log 𝑟

log

(
−∫𝜕𝐵𝑒𝑡

exp(𝜆�̃�)

)
d𝑡

)−1

≥ 𝜆log−1 ∫
𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

exp(𝜆�̃�)

)
d𝑡.

Now we may estimate

log−1 ∫
𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

exp(𝜆�̃�)

)
d𝑡 = log−1 ∫

𝑟𝑒𝑖+1

𝑟𝑒𝑖

(
−∫𝜕𝐵𝑠 exp(𝜆�̃�)

)
d𝑠

𝑠

= log−1 ∫
𝑟𝑒𝑖+1

𝑟𝑒𝑖

1

𝜔𝑛−1𝑠
𝑛

(
∫𝜕𝐵𝑠 exp(𝜆�̃�)

)
d𝑠 ≥ log−1 ‖ exp(𝜆�̃�)‖𝐿1(Ω)

𝜔𝑛−1(𝑟𝑒
𝑖)𝑛

.

We then select 𝐶 = ‖ exp(𝜆�̃�)‖𝐿1(Ω)∕𝜔𝑛−1. The sum of the above terms over 𝑖 can now be
estimated by

𝑘−1∑
𝑖=1

∫
𝑖+1+log 𝑟

𝑖+log 𝑟

(
−∫𝜕𝐵𝑒𝑡

�̃�𝑛−1

)− 1
𝑛−1

d𝑡 ≥ 𝜆
𝑘−1∑
𝑖=1

log−1
𝐶

(𝑟𝑒𝑖)𝑛

≥ 𝜆 ∫
𝑘−1

0

log−1
𝐶

(𝑟𝑒𝑡)𝑛
d𝑡 ≥ 𝜆 ∫

𝑅−𝑒2

𝑟

𝑠−1log−1
𝐶

𝑠𝑛
d𝑠

=
𝜆

𝑛

(
log log

𝐶

𝑟𝑛
− log log

𝐶𝑒2

𝑅𝑛

)
.

The claim hence holds, assuming that log log(𝐶𝑒2∕𝑅𝑛) is well-defined; this is the case if we select
𝑅𝑛
0
= 𝐶𝑒. □
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18 DOLEŽALOVÁ et al.

We then consider the following abstract differential inequality of real functions, and show that
it yields a decay condition. This is a more general version of [17, Lemma 3.2], which is essentially
given by the case Ψ(𝑟) = 𝑟 and Γ(𝑟) = 𝐶𝑟𝛼.

Lemma 3.2. Let𝐴 > 0, and letΦ∶ [0, 𝑅] → [0, 𝑆],Ψ∶ [0, 𝑅] → [0,∞), and Γ∶ [0, 𝑅] → [0,∞) be
absolutely continuous increasing functions such that Φ(0) = 0. Suppose that

Φ(𝑟) ⩽ 𝐴
Ψ(𝑟)

Ψ′(𝑟)
Φ′(𝑟) + Γ(𝑟)

for a.e. 𝑟 ∈ (0, 𝑅), where 𝐴 > 0. Then there exists a constant 𝐶 = 𝐶(𝐴, 𝑅, 𝑆, Ψ, Γ) ⩾ 0 such that we
have

Φ(𝑟) ⩽ Γ(𝑟) + 𝐶Ψ𝐴
−1
(𝑟)

(
1 + ∫

𝑅

𝑟

Γ′(𝑠)

Ψ𝐴−1(𝑠)
d𝑠

)
for all 𝑟 ∈ [0, 𝑅].

Proof. We find an integrating factor for the terms involving Φ:

−
𝑑

𝑑𝑠
(Ψ−𝐴

−1
(𝑠)Φ(𝑠)) =

(
Φ(𝑠) − 𝐴

Ψ(𝑠)

Ψ′(𝑠)
Φ′(𝑠)

)(
𝐴−1Ψ−𝐴

−1−1(𝑠)Ψ′(𝑠)
)

⩽ −Γ(𝑠)
𝑑

𝑑𝑠
Ψ−𝐴

−1
(𝑠).

We then integrate on both sides over [𝑟, 𝑅], and use integration by parts:

Ψ−𝐴
−1
(𝑟)Φ(𝑟) − Ψ−𝐴

−1
(𝑅)Φ(𝑅) ⩽ −∫

𝑅

𝑟

Γ(𝑠)

(
𝑑

𝑑𝑠
Ψ−𝐴

−1
(𝑠)

)
d𝑠

= Γ(𝑟)Ψ−𝐴
−1
(𝑟) − Γ(𝑅)Ψ−𝐴

−1
(𝑅) + ∫

𝑅

𝑟

Γ′(𝑠)

Ψ𝐴−1(𝑠)
d𝑠.

Multiplying by Ψ𝐴−1(𝑟) and moving the negative term to the right-hand side yields the desired

Φ(𝑟) ⩽ Γ(𝑟) +
𝑆 − Γ(𝑅)

Ψ𝐴−1(𝑅)
Ψ𝐴

−1
(𝑟) + Ψ𝐴

−1
(𝑟)∫

𝑅

𝑟

Γ′(𝑠)

Ψ𝐴−1(𝑠)
d𝑠.

□

Combining Lemmas 3.1 and 3.2 allows us to show the following decay estimate.

Lemma 3.3. Let Ω ⊂ ℝ𝑛 be a connected domain. Let 𝑓 ∈ 𝑊1,𝑛(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ)

with exp(𝜆𝐾) ∈ 𝐿1(Ω) and Σ log𝜇(𝑒 + Σ) ∈ 𝐿1(Ω), where 𝜇 > 𝜆 > 0. Then there exists 𝑅0 =
𝑅0(Ω, 𝜆, 𝐾) > 0 as follows: for any choice of 𝑥 ∈ Ω and 𝑅 ∈ (0, 𝑅0) such that𝔹𝑛(𝑥, 𝑅) ⊂ Ω, we have

∫𝔹𝑛(𝑥,𝑟)
|𝐷𝑓|𝑛
𝐾

⩽ 𝐶 log−𝜆 𝑟−1.

for all 𝑟 ∈ (0, 𝑅∕𝑒3), where 𝐶 = 𝐶(Ω, 𝜆, 𝜇, 𝐾, Σ, 𝑅, ‖𝐷𝑓‖𝐿𝑛(Ω)). Notably, 𝐶 is independent of 𝑥.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12835 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 19

Proof. We choose 𝑅0 < 𝑒−1 such that Lemma 3.1 holds for 𝑅 < 𝑅0: note that this choice depends
only on Ω, 𝜆, and 𝐾. We fix a point 𝑥 ∈ Ω and a radius 𝑅 < 𝑅0 such that 𝔹𝑛(𝑥, 𝑅) ⊂ Ω, and we
denote 𝐵𝑟 = 𝔹𝑛(𝑥, 𝑟) for all 𝑟 ∈ [0, 𝑅]. We then define a function Φ∶ [0, 𝑅] → [0,∞) by

Φ(𝑟) = ∫𝐵𝑟
|𝐷𝑓|𝑛
𝐾

.

By using the definition of𝑛(𝐾, Σ), we may estimate Φ(𝑟) by

∫𝐵𝑟
|𝐷𝑓|𝑛
𝐾

⩽ ∫𝐵𝑟 𝐽𝑓 + ∫𝐵𝑟
Σ

𝐾
.

For the first term on the right-hand side, we apply the isoperimetric inequality of Sobolevmaps,
see, for example, [24, Lemma II.1.2 and (II.1.7)], followed by a use ofHölder’s inequality. The result
is

∫𝐵𝑟 𝐽𝑓 ⩽
1

𝑛 𝑛−1
√
𝜔𝑛−1

(
∫𝜕𝐵𝑟 |𝐷𝑓|𝑛−1

) 𝑛
𝑛−1

⩽
1

𝑛 𝑛−1
√
𝜔𝑛−1

(
∫𝜕𝐵𝑟 𝐾

𝑛−1

) 1
𝑛−1

∫𝜕𝐵𝑟
|𝐷𝑓|𝑛
𝐾

=
𝑟

𝑛

(
−∫𝜕𝐵𝑟 𝐾

𝑛−1

) 1
𝑛−1

∫𝜕𝐵𝑟
|𝐷𝑓|𝑛
𝐾

for a.e. 𝑟 ∈ [0, 𝑅]. For the other term, using 𝐾 ⩾ 1, Σ log𝜇+(Σ) ∈ 𝐿
1(Ω), and 𝑟 ⩽ 𝑅 < 𝑅0 < 𝑒−1, we

estimate that

∫𝐵𝑟
Σ

𝐾
⩽ ∫𝐵𝑟 Σ ⩽ ∫{𝑧∈𝐵𝑟∶Σ(𝑧)⩽𝑟−1} Σ + ∫{𝑧∈𝐵𝑟∶Σ(𝑧)>𝑟−1} Σ

⩽ ∫{𝑧∈𝐵𝑟∶Σ(𝑧)⩽𝑟−1} 𝑟
−1 + ∫{𝑧∈𝐵𝑟∶Σ(𝑧)>𝑟−1}

Σ log𝜇 Σ

log𝜇 𝑟−1

⩽
vol𝑛(𝐵𝑟)

𝑟
+ log−𝜇 𝑟−1 ∫𝐵𝑟 Σ log

𝜇(𝑒 + Σ) ⩽ 𝐶1 log
−𝜇 𝑟−1

for some 𝐶1 = 𝐶1(𝑛, 𝜇, Σ, 𝑅) ⩾ 0. In conclusion, we have

Φ(𝑟) ⩽
𝑟

𝑛

(
−∫𝜕𝐵𝑟 𝐾

𝑛−1

) 1
𝑛−1

Φ′(𝑟) + 𝐶1 log
−𝜇 𝑟−1 (3.1)

for all 𝑟 ∈ (0, 𝑅).
We then define

Ψ(𝑟) = exp

⎛⎜⎜⎝−∫
𝑅

𝑟

𝑠−1

(
−∫𝜕𝐵𝑠 𝐾

𝑛−1

)− 1
𝑛−1

d𝑠

⎞⎟⎟⎠ .
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20 DOLEŽALOVÁ et al.

A simple computation by chain rule hence reveals that

Ψ′(𝑟) = Ψ(𝑟)𝑟−1
(
−∫𝜕𝐵𝑟 𝐾

𝑛−1

)− 1
𝑛−1

for all 𝑟 ∈ (0, 𝑅). In particular, (3.1) now reads as

Φ(𝑟) ⩽
1

𝑛

Ψ(𝑟)

Ψ′(𝑟)
Φ′(𝑟) + 𝐶1 log

−𝜇 𝑟−1.

We also note that as 𝐾 ⩾ 1, we have Φ(𝑟) ⩽ 𝑆 for all 𝑟 ∈ [0, 𝑅]with 𝑆 = ‖𝐷𝑓‖𝐿𝑛(Ω). Hence, we are
in position to apply Lemma 3.2, which yields that

Φ(𝑟) ⩽ 𝐶1log
−𝜇𝑟−1 + 𝐶2

(
Ψ𝑛(𝑟) + ∫

𝑅

𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠log𝜇+1(𝑠−1)

)
(3.2)

when 𝑟 ∈ [0, 𝑅∕𝑒3], for some 𝐶2 = 𝐶2(Ω, 𝜆, 𝜇, 𝐾, Σ, 𝑅, ‖𝐷𝑓‖𝐿𝑛(Ω)).
Lemma 3.1 yields that for 𝑟 ∈ (0, 𝑅∕𝑒3), we have

Ψ𝑛(𝑟) ⩽ exp

(
−
𝑛𝜆

𝑛

(
log log

𝐶3
𝑟𝑛
− log log

𝐶3𝑒
2

𝑅𝑛

))
=

(
log(𝐶3𝑒

2𝑅−𝑛)

log(𝐶3𝑟
−𝑛)

)𝜆
⩽ 𝐶4 log

−𝜆 𝑟−1,

where 𝐶3 = 𝐶3(Ω, 𝜆, 𝐾) and 𝐶4 = 𝐶4(Ω, 𝜆, 𝐾, 𝑅). As 𝜇 > 𝜆, we also have

log−𝜇 𝑟−1 ⩽ 𝐶5 log
−𝜆 𝑟−1

for all 𝑟 ∈ (0, 𝑅∕𝑒3], where 𝐶5 = 𝐶5(𝜇, 𝜆, 𝑅). Hence, in order to obtain the claimed decay estimate
for Φ from (3.2), it remains to estimate the term with the integral.
For this, we let 𝑟 ∈ (0, 𝑅∕𝑒3), and split the integral into two parts:

∫
𝑅

𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠log𝜇+1(𝑠−1)
= ∫

𝑒3𝑟

𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠log𝜇+1(𝑠−1)
+ ∫

𝑅

𝑒3𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠log𝜇+1(𝑠−1)
.

In the range of the latter integral, we have 𝑟 < 𝑠∕𝑒3, which allows us to use Lemma 3.1 again to
estimate

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)
= exp

⎛⎜⎜⎝−𝑛 ∫
𝑠

𝑟

𝑡−1

(
−∫𝜕𝐵𝑡 𝐾

𝑛−1

)− 1
𝑛−1

d𝑡
⎞⎟⎟⎠

⩽

(
log(𝐶3𝑒

2𝑠−𝑛)

log(𝐶3𝑟
−𝑛)

)𝜆
.

Hence, by using the fact that 𝜇 − 𝜆 > 0, and the fact that 𝑠−1 log−1−𝑡(𝑠−1) is integrable for 𝑡 > 0,
the second integral can now be estimated by
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 21

∫
𝑅

𝑒3𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠log𝜇+1(𝑠−1)
⩽ ∫

𝑅

𝑒3𝑟

(
log(𝐶3𝑒

2𝑠−𝑛)

log(𝐶3𝑟
−𝑛)

)𝜆
d𝑠

𝑠log𝜇+1(𝑠−1)

⩽

(
∫

𝑅

0

d𝑠

𝑠log−𝜆(𝐶3𝑒
2𝑠−𝑛)log𝜇+1(𝑠−1)

)
log−𝜆

𝐶3
𝑟𝑛

⩽ 𝐶6log
−𝜆𝑟−1

where 𝐶6 = 𝐶6(Ω, 𝜆, 𝜇, 𝐾, 𝑅). On the other hand, for the first integral, we may merely use the fact
thatΨ is increasing to estimate thatΨ𝑛(𝑠) ⩾ Ψ𝑛(𝑟), which again combined with 𝜇 > 𝜆 yields that

∫
𝑒3𝑟

𝑟

Ψ𝑛(𝑟)

Ψ𝑛(𝑠)

d𝑠

𝑠 log𝜇+1(𝑠−1)
⩽ ∫

𝑒3𝑟

𝑟

d𝑠

𝑠 log𝜇+1(𝑠−1)
=
1

𝜇

(
log−𝜇

1

𝑒3𝑟
− log−𝜇

1

𝑟

)
⩽ 𝐶7 log

−𝜆 𝑟−1

where 𝐶7 = 𝐶7(𝜇, 𝜆, 𝑅). The proof of the claimed estimate is hence complete. □

We then proceed to prove Theorem 1.7. We again begin by recalling the statement.

Theorem 1.7. LetΩ ⊂ ℝ𝑛 be a domain, and let 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) and 𝐷𝑓 ∈𝑛(𝐾, Σ) with

exp(𝜆𝐾) ∈ 𝐿1
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝜆 > 𝑛 + 1. Then 𝑓 has a continuous representative.
In particular, for all 𝑥0 ∈ Ω and sufficiently small 𝑟 > 0, we have the following local modulus of

continuity estimate:

𝜔𝑓(𝑥0, 𝑟) ⩽ 𝐶log
−𝛼(1∕𝑟) where 𝛼 = 𝜆 − 𝑛 − 1

𝑛
.

Proof. Fix a ball𝐵 = 𝔹𝑛(𝑥, 𝑅) such that𝐵 is compactly contained inΩ and𝑅 < 𝑅0, with𝑅0 given by
Lemma 3.3. Let𝐴 ⊂ 𝐵 be the set of all Lebesgue points of 𝑓 in 𝐵. We show first that the restriction
of 𝑓 to 𝐴 ∩ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)) is continuous. For this, let 𝑦, 𝑧 ∈ 𝐴 ∩ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)).
We may select a two-sided sequence balls 𝐵𝑖 ⊂ 𝐵, 𝑖 ∈ ℤ in the following way: 𝐵0 = 𝔹𝑛((𝑦 +

𝑧)∕2, 𝑟0) with 𝑟0 = |𝑦 − 𝑧| ∈ (0, 𝑅∕(2𝑒3)), 𝐵𝑖 = 𝔹𝑛(𝑦, 𝑒−|𝑖|𝑟0) for 𝑖 ∈ ℤ>0, 𝐵𝑖 = 𝔹𝑛(𝑧, 𝑒−|𝑖|𝑟0) for
𝑖 ∈ ℤ<0. We denote the integral average of 𝑓 over 𝐵𝑖 by 𝑓𝐵𝑖 ∈ ℝ𝑛; as 𝑦 and 𝑧 are Lebesgue points,
we have

lim
𝑖→∞

𝑓𝐵𝑖 = 𝑓(𝑦), lim
𝑖→−∞

𝑓𝐵𝑖 = 𝑓(𝑧). (3.3)

Moreover, as 𝔹𝑛(𝑦, 𝑅∕2) and 𝔹𝑛(𝑧, 𝑅∕2) and 𝔹𝑛((𝑦 + 𝑧)∕2, 𝑅∕2) are all contained in 𝐵 and 𝑟𝑖 <
(𝑅∕2)∕𝑒3, Lemma 3.3 yields for every 𝑖 ∈ ℤ that

∫𝐵𝑖
|𝐷𝑓|𝑛
𝐾

⩽ 𝐶1 log
−𝜆 1

𝑟𝑖
= 𝐶1

(
log

1|𝑦 − 𝑧| + |𝑖|)−𝜆, (3.4)

with 𝐶1 = 𝐶1(𝐵, 𝜆, 𝜇, 𝐾, Σ, 𝑅∕2, ‖𝐷𝑓‖𝐿𝑛(𝐵)) independent of 𝑦, 𝑧, and 𝑖.
We then estimate |𝑓𝐵𝑖+1 − 𝑓𝐵𝑖 |. We present the case 𝑖 ⩾ 0, as the case 𝑖 < 0 is similar but with 𝑖

and 𝑖 − 1 switched. As 𝐵𝑖+1 ⊂ 𝐵𝑖 and the radius of 𝐵𝑖+1 is 𝑒−1 times the radius of 𝐵𝑖 , we have by
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22 DOLEŽALOVÁ et al.

the Sobolev–Poincaré inequality that

|||𝑓𝐵𝑖+1 − 𝑓𝐵𝑖 ||| ⩽ −∫𝐵𝑖+1 |||𝑓 − 𝑓𝐵𝑖 ||| ⩽ 𝑒−𝑛−∫𝐵𝑖 |||𝑓 − 𝑓𝐵𝑖 ||| ⩽ 𝐶2(𝑛)𝑟𝑖
(
−∫𝐵𝑖 |𝐷𝑓|𝑛−1

) 1
𝑛−1

.

We then use Hölder’s inequality to estimate that

𝑟𝑖

(
−∫𝐵𝑟𝑖

|𝐷𝑓|𝑛−1) 1
𝑛−1

⩽ 𝑟𝑖

(
−∫𝐵𝑟𝑖

|𝐷𝑓|𝑛
𝐾

) 1
𝑛
(
−∫𝐵𝑟𝑖

𝐾𝑛−1

) 1

𝑛2−𝑛

=
1

𝑛
√
𝜔𝑛

(
∫𝐵𝑟𝑖

|𝐷𝑓|𝑛
𝐾

) 1
𝑛
(
−∫𝐵𝑟𝑖

𝐾𝑛−1

) 1

𝑛2−𝑛

.

Applying the decay estimate (3.4), we hence have that

|||𝑓𝐵𝑖+1 − 𝑓𝐵𝑖 ||| ⩽ 𝐶3
(
−∫𝐵𝑟𝑖

𝐾𝑛−1

) 1

𝑛2−𝑛
(
log

1|𝑦 − 𝑧| + |𝑖|)− 𝜆
𝑛

,

where 𝐶3 = 𝐶3(𝐵, 𝜆, 𝜇, 𝐾, Σ, ‖𝐷𝑓‖𝐿𝑛(𝐵)). We then estimate the average integral term. For this,
we again define �̃� = max(𝐾, (𝑛 − 2)𝜆−1) as in Lemma 3.1, and use Jensen’s inequality with the
function 𝜏 ↦ exp(𝜆𝜏

1
𝑛−1 ). This yields the estimate

(
−∫𝐵𝑟𝑖

𝐾𝑛−1

) 1

𝑛2−𝑛

⩽ 𝜆−
1
𝑛 log

1
𝑛

(
−∫𝐵𝑟𝑖

exp(𝜆�̃�)

)

⩽ 𝜆−
1
𝑛 log

1
𝑛

(‖ exp(𝜆�̃�)‖𝐿1(𝐵)
𝜔𝑛𝑟

𝑛
𝑖

)

⩽ 𝐶4 log
1
𝑛
1

𝑟𝑖
= 𝐶4

(
log

1|𝑦 − 𝑧| + |𝑖|) 1
𝑛

, (3.5)

where 𝐶4 = 𝐶4(𝐵, 𝜆, 𝐾).
Now, by (3.3) and a telescopic sum argument, we obtain that

||𝑓(𝑦) − 𝑓(𝑧)|| ⩽ ∞∑
𝑖=−∞

|||𝑓𝐵𝑖+1 − 𝑓𝐵𝑖 ||| ⩽ 2 ∞∑
𝑖=0

𝐶5

(
log

1|𝑦 − 𝑧| + 𝑖
) 1−𝜆

𝑛

, (3.6)

with 𝐶5 = 𝐶5(𝐵, 𝜆, 𝜇, 𝐾, Σ, ‖𝐷𝑓‖𝐿𝑛(𝐵)). We then denote 𝑎 = log(1∕|𝑦 − 𝑧|), noting that 𝑎 > 1
because |𝑦 − 𝑧| < 𝑅 < 𝑅0 < 𝑒−1. Aswe also assume that 𝜆 > 𝑛 + 1, we have that 𝑖 ↦ (𝑎 + 𝑖)(1−𝜆)∕𝑛

is decreasing, and we may estimate

∞∑
𝑖=0

(𝑎 + 𝑖)
1−𝜆
𝑛 ⩽ 𝑎

1−𝜆
𝑛 + ∫

∞

0

(𝑎 + 𝑡)
1−𝜆
𝑛 d𝑡 = 𝑎−

𝜆−1
𝑛 +

𝑛

𝜆 − 𝑛 − 1
𝑎−

𝜆−𝑛−1
𝑛 ⩽

𝜆 − 1

𝜆 − 𝑛 − 1
𝑎−

𝜆−𝑛−1
𝑛 .
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 23

In conclusion,

||𝑓(𝑦) − 𝑓(𝑧)|| ⩽ 2𝐶5 ∞∑
𝑖=0

(𝑎 + 𝑖)
1−𝜆
𝑛 ⩽ 2𝐶5

𝜆 − 1

𝜆 − 𝑛 − 1
𝑎−

𝜆−𝑛−1
𝑛 = 𝐶6 log

−𝜆−𝑛−1
𝑛

1|𝑦 − 𝑧| , (3.7)

with 𝐶6 = 𝐶6(𝐵, 𝜆, 𝜇, 𝐾, Σ, ‖𝐷𝑓‖𝐿𝑛(𝐵)).
We hence have obtained the desired modulus of continuity for all Lebesgue points 𝑦, 𝑧 ∈ 𝐴 ∩

𝔹𝑛(𝑥, 𝑅∕(4𝑒3)). Now, if 𝑦 ∈ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)) ⧵ 𝐴, we can then use the fact that 𝐴 has full measure
in 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)) to select 𝑦𝑗 ∈ 𝐴 ∩ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)) such that 𝑦𝑗 → 𝑦 as 𝑗 → ∞. By (3.7), (𝑓(𝑦𝑗)) is
a Cauchy sequence, and therefore convergent. We select 𝑓(𝑦) = lim𝑗→∞ 𝑓(𝑦𝑗); doing this for all
𝑦 ∈ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)) ⧵ 𝐴 only changes the values of 𝑓 in a set of measure zero, and doesn’t change
𝑓(𝑦) in points 𝑦 where 𝑓 is continuous. Now, by passing to the limit, we see that (3.7) applies to
all 𝑦, 𝑧 ∈ 𝔹𝑛(𝑥, 𝑅∕(4𝑒3)). Hence, 𝑓 has a continuous representative with the desired modulus of
continuity. □

Theorem 1.9 then follows as an immediate corollary of already proven results.

Theorem 1.9. LetΩ be a domain inℝ𝑛. Suppose that a Sobolev mapping 𝑓 ∈ 𝑊1,𝑛
loc
(Ω,ℝ𝑛) satisfies

𝐷𝑓 ∈𝑛(𝐾, Σ, 𝑦0) with 𝐾∶ Ω → [1,∞), Σ∶ Ω → [0,∞) and 𝑦0 ∈ ℝ𝑛. If

exp(𝜆𝐾) ∈ 𝐿1
loc
(Ω) and Σ log𝜇 (𝑒 + Σ) ∈ 𝐿1loc(Ω),

for some 𝜇 > 𝜆 + 𝑛 − 1 > 2𝑛, then 𝑓 has a continuous representative.
In particular, for all 𝑥0 ∈ Ω and sufficiently small 𝑟 > 0, we have the following local modulus of

continuity estimate:

𝜔𝑓(𝑥0, 𝑟) ⩽ 𝐶log
−𝛼(1∕𝑟) where 𝛼 = 𝜆 − 𝑛 − 1

𝑛
.

Proof. As Σ log𝜇(𝑒 + Σ) ∈ 𝐿1
loc
(Ω), and as exp(𝐴|𝑓|𝑛∕(𝑛−1)) ∈ 𝐿1

loc
(Ω) for some 𝐴 > 0 by The-

orem 2.5, we have Σ|𝑓|𝑛 log𝜇−𝑛+1(𝑒 + Σ|𝑓|𝑛) ∈ 𝐿1
loc
(Ω) by Lemma 2.6, where 𝜇 − 𝑛 + 1 > 𝜆 >

𝑛 + 1. Hence, the claim follows by applying Theorem 1.7. □

4 COUNTEREXAMPLES BASED ON CUSPS

In this section, we consider our first type of counterexample, which yields Theorems 1.6 and
1.11. Our construction will be in a planar disk 𝔻(𝑟0) with center at the origin and radius 𝑟0.
Our constructed mapping 𝑓∶ 𝔻(𝑟0) → ℝ2 has a first coordinate function of− log log |𝑧|−1, which
is well-defined in 𝔻(𝑟0) ⧵ {0} as long as 𝑟0 is small enough. We split the disk 𝔻(𝑟0) into two
regions 𝔻(𝑟0) = 𝐴 ∪ 𝐵 with different definitions of the second coordinate function, where in
𝐴 we aim to have 𝐽𝑓(𝑥) ⩾ 0 with |𝐷𝑓(𝑥)|2 ⩽ 𝐾𝐽𝑓(𝑥), and in 𝐵 we try to obtain 𝐽𝑓(𝑥) ⩽ 0 and|𝐷𝑓(𝑥)|2 + 𝐾|𝐽𝑓(𝑥)| ⩽ Σ. The region 𝐵 will form a cusp at the origin.

4.1 The two regions

LetΩ = 𝔻(𝑟0), where we assume that 𝑟0 ⩽ 𝑒−𝑒. We begin by assuming that 𝛾 is an absolutely con-
tinuous increasing function 𝛾∶ [0, 𝑟0) → [0, 1) such that 𝛾(0) = 0. We specify 𝛾 later in the text,
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24 DOLEŽALOVÁ et al.

F IGURE 1 The regions 𝐴1, 𝐴2, 𝐵1 and 𝐵2.

as we use different choices of 𝛾 to prove different theorems. We will use polar coordinates (𝑟, 𝜃)
on the domain side in Ω, where 𝜃 ∈ (−𝜋, 𝜋].
The regions 𝐴, 𝐵 ⊂ Ω will consist of two sub-regions 𝐴 = 𝐴1 ∪ 𝐴2 and 𝐵 = 𝐵1 ∪ 𝐵2 each. We

let 𝐵1 be the cusp-like region ofΩ bounded by the curves 𝜃 = 𝛾(𝑟) and 𝜃 = −𝛾(𝑟). Similarly, we let
𝐴1 be the region bounded by the curves 𝜃 = 𝛾(𝑟) and 𝜃 = 𝜋 − 𝛾(𝑟). The region 𝐵2 is the reflection
−𝐵1 of 𝐵1 across the origin, and similarly 𝐴2 = −𝐴1. See Figure 1 for an illustration.

4.2 The function 𝒇 in the region 𝑨

We first define𝑓 in the region𝐴1. There, using polar coordinates on the domain side andCartesian
coordinates on the target side, we have

𝑓(𝑟, 𝜃) = (− log log 𝑟−1, ℎ(𝑟)𝜃) (4.1)

for some absolutely continuous increasing function ℎ∶ [0,∞) → [0,∞). We again specify ℎ later.
Hence, we obtain a matrix of derivatives[

𝜕𝑟𝑓1 𝑟−1𝜕𝜃𝑓1
𝜕𝑟𝑓2 𝑟−1𝜕𝜃𝑓2

]
=

[
𝑟−1 log−1 𝑟−1 0

ℎ′(𝑟)𝜃 𝑟−1ℎ(𝑟)

]
.

In particular,

||𝐷𝑓(𝑟, 𝜃)||2 ⩽ 1

𝑟2 log2 𝑟−1
+ [ℎ′(𝑟)𝜃]2 +

ℎ2(𝑟)

𝑟2
(4.2)

and

𝐽𝑓(𝑟, 𝜃) =
ℎ(𝑟)

𝑟2 log 𝑟−1
⩾ 0. (4.3)

We then simply pick 𝐾 = |𝐷𝑓|2∕𝐽𝑓 and Σ ≡ 0.
On 𝐴2, we define 𝑓(𝑧) = 𝑓(−𝑧). As 𝑧 ↦ −𝑧 is an orientation-preserving isometry in the plane,

it follows that (4.2) and (4.3) remain true in 𝐴2.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 25

4.3 The function 𝒇 in the region 𝑩

We wish that our function 𝑓 is continuous outside the origin. Hence, our boundary values in 𝐵1
mustmatch the ones given by𝐴1 and𝐴2. For this, we define the second coordinate of 𝑓 as a linear
interpolation of these boundary values. That is, we define in 𝐵1 that

𝑓(𝑟, 𝜃) =

(
− log log 𝑟−1, ℎ(𝑟)

(
𝜋 + 2𝜃 − 𝜋𝜃∕𝛾(𝑟)

2

))
. (4.4)

Indeed, in the cases 𝜃 = 𝛾(𝑟) and 𝜃 = −𝛾(𝑟), the second coordinate has the correct boundary
values of ℎ(𝑟)𝛾(𝑟) and ℎ(𝑟)(𝜋 − 𝛾(𝑟)), respectively.
The derivatives of the first coordinate of 𝑓 remain unchanged from domain 𝐴. For the other

terms in the matrix of derivatives, we first get

𝜕𝑟𝑓2 =
(
𝜋

2
+ 𝜃

)
ℎ′(𝑟) −

𝜋𝜃

2

𝑑

𝑑𝑟

(
ℎ(𝑟)

𝛾(𝑟)

)
. (4.5)

Then, by 𝛾(𝑟) < 1, we get

𝑟−1𝜕𝜃𝑓2 =
ℎ(𝑟)

𝑟

(
1 −

𝜋

2𝛾(𝑟)

)
< −

(
𝜋

2
− 1

) ℎ(𝑟)
𝑟𝛾(𝑟)

. (4.6)

In particular, we have that 𝑟−1𝜕𝜃𝑓2 < 0, and consequently 𝐽𝑓 < 0 in 𝐵1. Hence, in 𝐵1, we select
𝐾 = −|𝐷𝑓|2∕𝐽𝑓 ⩾ 1, and Σ = 2|𝐷𝑓|2.
Similarly as for𝐴2, we may define 𝑓 in 𝐵2 by 𝑓(𝑧) = 𝑓(−𝑧), and all our considerations will also

apply to 𝐵2.

4.4 Fixing the parameters

We have now outlined the construction, but have left the functions ℎ and 𝛾 undetermined. The
theorems we wish to prove follow with different choices of ℎ and 𝛾.
Throughout the rest of this paper, given two functions 𝑓, g ∶ 𝑋 → ℝ, we use the notation 𝑓 ≲ g

if there exists a constant 𝐶 > 0 such that 𝑓 ⩽ 𝐶g . We also denote 𝑓 ≈ g if 𝑓 ≲ g ≲ 𝑓. Several of
the uses of these symbols are based on the elementary fact that if 𝑓, g ∶ [𝑎,∞) → (0,∞), 𝑎 ∈ ℝ,
are continuous and lim sup𝑡→∞ 𝑓(𝑡)∕g(𝑡) < ∞, then 𝑓 ≲ g .
We now recall the statement of Theorem 1.11, and then give its proof.

Theorem 1.11. Let 𝑝, 𝑞 ∈ (1,∞). If 𝑝−1 + 𝑞−1 ⩾ 1, then there exists a domain Ω ⊂ ℝ2 and a
Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈
2(𝐾, Σ) with

𝐾 ∈ 𝐿𝑝(Ω) and Σ

𝐾
∈ 𝐿𝑞(Ω).

Proof. Let 𝑝, 𝑞 ∈ (1,∞), and let 𝜀 > 0. We select 𝑟0 = 𝑒−𝑒 and

ℎ(𝑟) = 𝑟2𝑝
−1
, 𝛾(𝑟) = log−𝜀 𝑟−1.

Indeed, when 𝑟 < 𝑒−𝑒, we have 0 ⩽ 𝛾(𝑟) < 𝑒−𝜀 < 1.
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26 DOLEŽALOVÁ et al.

In 𝐴1, we have by (4.2) that

||𝐷𝑓(𝑟, 𝜃)||2 ⩽ 1

𝑟2 log2 𝑟−1
+

(
4𝜋2

𝑝2
+ 1

)
𝑟−2+2𝑝

−1
≲

1

𝑟2 log2 𝑟−1
.

Hence, |𝐷𝑓| ∈ 𝐿2(𝐴). By also referring to (4.3), we have in 𝐴1 the estimate
𝐾(𝑟, 𝜃) =

||𝐷𝑓(𝑟, 𝜃)||2
𝐽𝑓(𝑟, 𝜃)

≲
1

𝑟2𝑝−1 log 𝑟−1
.

We hence estimate that

∫𝐴 𝐾
𝑝 = 2∫

𝑒−𝑒

0 ∫
𝜋−𝛾(𝑟)

𝛾(𝑟)

𝐾𝑝(𝑟, 𝜃)𝑟 d𝜃 d𝑟

≲ ∫
𝑒−𝑒

0

𝑟−1 log−𝑝 𝑟−1 d𝑟 < ∞,

showing that 𝐾 ∈ 𝐿𝑝(𝐴).
We then consider points (𝑟, 𝜃) in 𝐵1. By (4.5) and |𝜃| ⩽ 𝛾(𝑟) < 1 ⩽ 𝜋, we have

||𝜕𝑟𝑓2(𝑟, 𝜃)||2 = |||||2𝜃 + 𝜋𝑝
𝑟2𝑝

−1−1 +
𝜋𝜃 log𝜀 𝑟−1

2
𝑟2𝑝

−1−1

(
2

𝑝
−

𝜀

log 𝑟−1

)|||||
2

≲ 𝑟4𝑝
−1−2

(
1 + log−2+2𝜀 𝑟−1

)
.

Furthermore, by (4.6),

|||𝑟−1𝜕𝜃𝑓2(𝑟, 𝜃)|||2 ≲ 𝑟4𝑝−1−2 log2𝜀 𝑟−1.
The exponent 4𝑝−1 − 2 in the above bounds is greater than −2. Hence, we have the overall
estimate

||𝐷𝑓(𝑟, 𝜃)||2 ≈ 1

𝑟2 log2 𝑟−1
(4.7)

whenever (𝑟, 𝜃) ∈ 𝐵1. In particular, we have |𝐷𝑓| ∈ 𝐿2(𝐵1), and consequently |𝐷𝑓| ∈ 𝐿2(Ω).
Moreover, we have

−𝐽𝑓(𝑟, 𝜃) =
(
𝜋

2
log𝜀 𝑟−1 − 1

)
𝑟2𝑝

−1−2 log−1 𝑟−1,

so by log𝜀 𝑟−1 > 1 we get the two-sided estimate

−𝐽𝑓(𝑟, 𝜃) ≈ 𝑟
2𝑝−1−2 log𝜀−1 𝑟−1. (4.8)
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 27

Combined with (4.7), this yields

||𝐷𝑓(𝑟, 𝜃)||2
−𝐽𝑓(𝑟, 𝜃)

= 𝐾(𝑟, 𝜃) ≈
1

𝑟2𝑝−1 log1+𝜀 𝑟−1
.

As 𝑝(2𝑝−1) = 2 and 𝑝(1 + 𝜀) > 1, we see that 𝐾 ∈ 𝐿𝑝(𝐵), and hence 𝐾 ∈ 𝐿𝑝(Ω).
It hence remains to consider the integral (Σ∕𝐾)𝑞 over 𝐵. As we chose Σ = |𝐷𝑓|2 and 𝐾 =|𝐷𝑓|2∕(−𝐽𝑓(𝑥)), we have Σ∕𝐾 = −𝐽𝑓(𝑥). Hence, by (4.8), we have Σ∕𝐾 ≲ 𝑟2𝑝

−1−2 log𝜀−1 𝑟−1. We
note that as 𝐵 is a cusp, this majorant in fact has a better degree of integrability over 𝐵 than it has
over Ω. In particular, we may estimate that

∫𝐵
Σ𝑞

𝐾𝑞
≲ ∫

𝑒−𝑒

0 ∫
𝛾(𝑟)

−𝛾(𝑟)

𝑟 d𝜃 d𝑟

𝑟2𝑞−2𝑝−1𝑞 log𝑞−𝑞𝜀 𝑟−1

⩽ 2∫
𝑒−𝑒

0

d𝑟

𝑟2𝑞−2𝑝−1𝑞−1 log𝑞−(𝑞−1)𝜀 𝑟−1
.

For integrability, we require 2𝑞 − 2𝑝−1𝑞 − 1 ⩽ 1, which is equivalent to 𝑞−1 ⩾ 1 − 𝑝−1. Moreover,
in the extremal case 𝑞−1 + 𝑝−1 = 1, we also require 𝑞 − (𝑞 − 1)𝜀 > 1, which is equivalent to 𝜀 < 1.
Hence, any choice of 𝜀 ∈ (0, 1) will give us the desired example. □

Our next result is the version of this example with the highest degree of integrability for Σ. This
is by a different choice of ℎ and 𝛾, and hence this gain in the regularity of Σ comes at a cost in the
regularity of Σ∕𝐾.

Theorem 4.1. Let 𝑝, 𝑠 ∈ (1,∞). If (𝑝 + 1)−1 + 𝑠−1 ⩾ 1, then there exists a domain Ω ⊂ ℝ2 and a
Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈
2(𝐾, Σ) with

𝐾 ∈ 𝐿𝑝(Ω) and Σ ∈ 𝐿𝑠(Ω).

Proof. Let 𝑝, 𝑞 ∈ (1,∞), and let 𝜀 > 0. This time we choose

ℎ(𝑟) = 𝑟2𝑝
−1
, 𝛾(𝑟) = 𝑟2𝑝

−1
log 𝑟−1.

We may select an 𝑟0 ⩽ 𝑒−𝑒 such that 𝛾 is increasing on [0, 𝑟0] and 𝛾(𝑟0) < 1.
The verification that 𝐾 ∈ 𝐿𝑝(𝐴) is unchanged from the previous lemma. The difference arises

when applying (4.5) and (4.6). Indeed, as |𝜃| ⩽ 𝑟2𝑝−1 log 𝑟−1 ⩽ 1, we obtain.
||𝜕𝑟𝑓2(𝑟, 𝜃)||2 = ||||2𝜃 + 𝜋𝑝

𝑟2𝑝
−1−1 +

𝜋𝜃

2
𝑟−1 log−2 𝑟−1

||||2
≲ 𝑟4𝑝

−1−2 + 𝑟−2 log−4 𝑟−1,

and

|||𝑟−1𝜕𝜃𝑓2(𝑟, 𝜃)|||2 ≲ 𝑟−2 log−2 𝑟−1.
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28 DOLEŽALOVÁ et al.

In all of the previously computed terms, either the exponent of 𝑟 is greater than−2, or the exponent
of 𝑟 is −2 and the exponent of the logarithm is at most −2. Hence, we still have (4.7) unchanged.
For 𝐽𝑓 , we compute similarly as in the last lemma, and instead get

−𝐽𝑓(𝑟, 𝜃) ≈ 𝑟
−2 log−2 𝑟−1 (4.9)

when (𝑟, 𝜃) ∈ 𝐵. In particular, 𝐾 = |𝐷𝑓|2∕(−𝐽𝑓) ∈ 𝐿∞(𝐵).
It remains to estimate the integral of Σ𝑠 = (2|𝐷𝑓|)𝑠 over 𝐵. Computing similarly as in the

previous lemma, we get

∫𝐵 Σ
𝑠 ≲ ∫

𝑟0

0 ∫
𝛾(𝑟)

−𝛾(𝑟)

𝑟 d𝜃 d𝑟

𝑟2𝑠 log2𝑠 𝑟−1

⩽ 2∫
𝑟0

0

d𝑟

𝑟2𝑠−2𝑝−1−1 log2𝑠−1 𝑟−1
.

For this to converge, as the exponent of the logarithm satisfies 2𝑠 − 1 > 1 due to 𝑠 > 1, we
only require 2𝑠 − 2𝑝−1 − 1 ⩽ 1. Rearranging yields 𝑠 ⩽ 1 + 𝑝−1 = (𝑝 + 1)∗, where (𝑝 + 1)∗ is the
Hölder conjugate of 𝑝 + 1. In particular, this is equivalent with (𝑝 + 1)−1 + 𝑠−1 ⩾ 1. □

The remaining result that relies on this example type is Theorem 1.6. This is achieved by
selecting both ℎ and 𝛾 to be powers of logarithms, with a suitable choice of corresponding
exponents.

Theorem 1.6. For every 𝜇 ∈ (0, 2), there exist a domain Ω ⊂ ℝ2 and a Sobolev map 𝑓 ∈

𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈2(𝐾, Σ) with

exp(𝜆𝐾) ∈ 𝐿1(Ω) and Σ log𝜇(𝑒 + Σ) ∈ 𝐿1(Ω)

for every 𝜆 > 0.

Proof. Let 𝜆 ∈ (0,∞). Wemay assume 𝜇 > 1, as an example for a given 𝜇 also works for all smaller
𝜇. We choose

ℎ(𝑟) = log−𝜈 𝑟−1, 𝛾(𝑟) = log1−𝜈 𝑟−1,

where 𝜈 ∈ (𝜇, 2). As 𝜈 > 𝜇 > 1 by assumption, 𝛾 is increasing, and wemay hence choose 𝑟0 = 𝑒−𝑒
as 𝛾(𝑒−𝑒) = 𝑒1−𝜈 < 1.
In 𝐴1, (4.2) yields due to 𝜈 > 1 that

||𝐷𝑓(𝑟, 𝜃)||2 ⩽ 1

𝑟2 log2 𝑟−1
+

𝜈

𝑟2 log2𝜈+2 𝑟−1
+

1

𝑟2 log2𝜈 𝑟−1
≲

1

𝑟2 log2 𝑟−1
.

Hence, clearly |𝐷𝑓| ∈ 𝐿2(𝐴). Moreover, 𝐽𝑓 = 𝑟−2 log−1−𝜈 𝑟−1, so
𝐾(𝑟, 𝜃) ⩽ 𝐶 log𝜈−1 𝑟−1
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 29

for some 𝐶 > 0. The exponential integrals of 𝐾 are all finite by the estimate

∫𝐴 exp(𝜆𝐾) ⩽ 2𝜋 ∫
𝑒−𝑒

0

exp(𝐶𝜆 log𝜈−1 𝑟−1)𝑟 d𝑟

= 2𝜋 ∫
𝑒−𝑒

0

𝑟1−𝐶𝜆 log
𝜈−2 𝑟−1 d𝑟 < ∞,

as lim𝑟→0+ 𝐶𝜆 log
𝜈−2 𝑟−1 = 0 due to 𝜈 < 2.

In 𝐵1, (4.5) and (4.6) combined with |𝜃| ⩽ log1−𝜈 𝑟−1 ⩽ 1 ⩽ 𝜋 result in
||𝜕𝑟𝑓2(𝑟, 𝜃)||2 = ||||2𝜈𝜃 + 𝜋𝜈2

𝑟−1 log−𝜈−1 𝑟−1 +
𝜋𝜃

2
𝑟−1 log−2 𝑟−1

||||2
≲ 𝑟−2

(
log−2−2𝜈 𝑟−1 + log−4 𝑟−1

)
and |||𝑟−1𝜕𝜃𝑓2(𝑟, 𝜃)|||2 ≲ 𝑟−2 log−2 𝑟−1.
As log𝑡 𝑟−1 is increasing with respect to 𝑡 when 𝑟 < 𝑒−𝑒, we again have

||𝐷𝑓(𝑟, 𝜃)||2 ⩽ 𝐶′

𝑟2 log2 𝑟−1

in 𝐵1 for some 𝐶′ > 0. For the Jacobian, we instead get

−𝐽𝑓(𝑟, 𝜃) ≈ 𝑟
−2 log−2 𝑟−1. (4.10)

In particular, our choice 𝐾 = |𝐷𝑓|2∕(−𝐽𝑓) is in 𝐿∞(𝐵), concluding exponential integrability of 𝐾
in all of Ω for all choices of 𝜆.
The last step is to estimate the integral of Σ log𝜇(𝑒 + Σ) over 𝐵1, where Σ = 2|𝐷𝑓|2. We estimate

using (𝑒 + 𝑎𝑏) ⩽ (𝑒 + 𝑎)(𝑒 + 𝑏) for 𝑎, 𝑏 ⩾ 0 that

log(𝑒 + Σ) ⩽ log

(
𝑒 +

2𝐶′

𝑟2 log2 𝑟−1

)
⩽ log

(
𝑒 +

2𝐶′

log2 𝑟−2

)
+ 2 log(𝑒 + 𝑟−1),

and hence, as 𝛾(𝑟) = log1−𝜈 𝑟−1, we get

∫𝐵 Σ log
𝜇(𝑒 + Σ) = 2∫

𝑒−𝑒

0 ∫
𝛾(𝑟)

−𝛾(𝑟)

Σ(𝑟, 𝜃) log𝜇(𝑒 + Σ(𝑟, 𝜃))𝑟 d𝜃 d𝑟

≲ ∫
𝑒−𝑒

0

log𝜇(𝑒 + 2𝐶′ log−2 𝑟−1) + log𝜇(𝑒 + 𝑟−1)

𝑟 log2−(1−𝜈) 𝑟−1
d𝑟.

When 𝑟 → 0, we have log−2 𝑟−1 → 0. Hence, for small 𝑟, the largest term in the numerator is
log𝜇(𝑒 + 𝑟−1). As 𝑟−1 > 𝑒𝑒, we have 𝑟−2 − 𝑟−1 − 𝑒 ⩾ 0. Hence, we may estimate

log𝜇(𝑒 + 𝑟−1)

𝑟 log2−(1−𝜈) 𝑟−1
⩽

2𝜇

𝑟 log1+(𝜈−𝜇) 𝑟−1
,
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30 DOLEŽALOVÁ et al.

which is integrable over [0, 𝑒−𝑒] due to our assumption 𝜈 > 𝜇. Thus, Σ log𝜇(𝑒 + Σ) ∈ 𝐿1(𝐵), and
consequently Σ log𝜇(𝑒 + Σ) ∈ 𝐿1(Ω). □

5 COUNTEREXAMPLES BASED ON SPIRALS

In this section, we construct a counterexample built around the case Σ ∈ 𝐿∞(Ω), which will give
us Theorem 1.5. Furthermore, if𝐾 ∈ 𝐿

𝑝

loc
(Ω)with 𝑝 ∈ [1, 2], then this counterexample also yields

an alternate proof of Theorem 1.11. In exchange for failingwhen𝑝 > 2, this alternate counterexam-
ple has a better optimal integrability for Σwhen 𝑝 <

√
2; that is, it improves Theorem 4.1 for such

values of 𝑝. Moreover, this improved integrability of Σ is achieved simultaneously with the opti-
mal integrability of Σ∕𝐾, whereas the construction of Theorem 1.11 involves a trade-off between
the integrabilities of Σ and Σ∕𝐾.

Theorem 5.1. Suppose that 𝑝 ∈ [1, 2], 𝑞 ∈ [1,∞], and 𝑝−1 + 𝑞−1 ⩾ 1. Then there exist a domain
Ω ⊂ ℝ2 and a Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| =
∞, and 𝐷𝑓 ∈2(𝐾, Σ) with

𝐾 ∈ 𝐿𝑝(Ω),
Σ

𝐾
∈ 𝐿𝑞(Ω), and Σ ∈ 𝐿

𝑞

2 (Ω).

We again construct our example in a planar region Ω ⊂ ℝ2 with a point of discontinuity at the
origin, and we retain our strategy from the previous section of splitting Ω into two regions 𝐴 and
𝐵, where |𝐷𝑓|2 ⩽ 𝐾𝐽𝑓 in 𝐴 and |𝐷𝑓|2 + 𝐾|𝐽𝑓| ⩽ Σ in 𝐵. Notably, when Σ is bounded from above
by a constant, 𝑓 ends up being Lipschitz under the path lengthmetric in 𝐵. Hence, if we wish that
𝑓 escapes to infinity along𝐵, the region𝐵must somehow be infinitely long. This pushes us toward
a construction where 𝐴 and 𝐵 are two interlocking infinitely long spirals centered at the origin.

5.1 Preliminaries: Lambert’s𝑾-function

We begin by recalling a special function that is of great use to us in our construction. Namely,
Lambert’s𝑊-function is the inverse function𝑊 = 𝜓−1 of the function 𝜓(𝑡) = 𝑡𝑒𝑡. The𝑊-function
has two branches on the real line. In this paper, we assume𝑊 to be the positive branch:

𝑊∶ [−𝑒−1,∞) → [−1,∞), 𝑊(𝑡)𝑒𝑊(𝑡) = 𝑡.

We collect into the following lemma the elementary properties of the𝑊-function that we use. For
a general reference on the𝑊-function, see, for example, [7].

Lemma 5.2. The𝑊-function satisfies the following.

(1) 𝑊 is strictly increasing on [−𝑒−1,∞).
(2) 𝑊(0) = 0, and hence𝑊(𝑡) > 0 if 𝑡 > 0.
(3) We have𝑊(𝑡 log 𝑡) = log 𝑡 if 𝑡 ⩾ 𝑒−1.
(4) The derivative of𝑊 is given on (−𝑒−1,∞) by

𝑊′(𝑡) =
𝑊(𝑡)

𝑡(1 +𝑊(𝑡))
=

1

𝑡 + 𝑒𝑊(𝑡)
.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 31

F IGURE 2 The two spirals 𝑟 = g(𝜃) and 𝑟 = ℎ(𝜃), with the domain Ω highlighted in gray.

5.2 Construction

We define two spirals in polar coordinates. The first one is the spiral 𝑟 = g(𝜃), where

g(𝜃) =
1

𝜃 log 𝜃
, 𝜃 ∈ [𝜃0,∞),

where 𝜃0 ⩾ 2𝜋 is some starting angle. The second one is given by 𝑟 = ℎ(𝜃), where

ℎ(𝜃) =
g(𝜃) + g(𝜃 + 2𝜋)

2
, 𝜃 ∈ [𝜃0,∞);

that is, the spiral 𝑟 = ℎ(𝜃) lies exactly halfway between the successive points where the spiral 𝑟 =
g(𝜃)meets a specific ray from the origin. Using the standard symbol 𝑖 for the complex imaginary
unit, we define our domain Ω ⊂ ℂ by

Ω = {𝑟𝑒𝑖𝜃 ∶ 0 ⩽ 𝑟 < g(𝜃), 𝜃 ∈ (𝜃0, 𝜃0 + 2𝜋]}.

See Figure 2 for an illustration of Ω and the spirals.
We parameterize Ω in the following way: let

𝑈 = {(𝑟, 𝜃) ∈ ℝ2 ∶ 𝜃 ⩾ 𝜃0, g(𝜃 + 2𝜋) ⩽ 𝑟 < g(𝜃)},

in which case themap (𝑟, 𝜃) ↦ 𝑟𝑒𝑖𝜃 maps𝑈 bijectively toΩ ⧵ {0}. Let 𝛼 ∈ (0, 1]. We define 𝑓∶ Ω ⧵
{0} → ℂ on the two regions between the spirals 𝑟 = g(𝜃) and 𝑟 = ℎ(𝜃) in terms of polar coordinates
(𝑟, 𝜃) ∈ 𝑈 : when ℎ(𝜃) ⩽ 𝑟 < g(𝜃), we define the complex-valued output of 𝑓 by

𝑓(𝑟, 𝜃) = 𝜑(𝑟) − 𝑖 log log 𝜃,

where 𝜑(𝑟)∶ [0, 𝑟0] → ℝ is an increasing absolutely continuous function to be fixed later, with
𝑟0 > 𝜃

−1
0
log−1 𝜃0. In the other region where g(𝜃 + 2𝜋) ⩽ 𝑟 < ℎ(𝜃), we instead define

𝑓(𝑟, 𝜃) = 𝜑(𝑟) − 𝑖 log𝑊

(
1

2𝑟 − g(𝜃 + 2𝜋)

)
.

This defines 𝑓 on all of Ω ⧵ {0}.
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32 DOLEŽALOVÁ et al.

We briefly verify that 𝑓 is indeed continuous on Ω ⧵ {0}. If 𝑟 = ℎ(𝜃), then

log𝑊

(
1

2𝑟 − g(𝜃 + 2𝜋)

)
= log𝑊

(
1

2ℎ(𝜃) − g(𝜃 + 2𝜋)

)
= log𝑊

(
1

g(𝜃)

)
= log𝑊(𝜃 log 𝜃) = log log 𝜃,

which verifies that 𝑓 is continuous on the spiral 𝑟 = ℎ(𝜃). On the other hand, if 𝑟 = g(𝜃 + 2𝜋),
then

log𝑊

(
1

2𝑟 − g(𝜃 + 2𝜋)

)
= log𝑊

(
1

g(𝜃 + 2𝜋)

)
= log𝑊((𝜃 + 2𝜋) log(𝜃 + 2𝜋)) = log log(𝜃 + 2𝜋),

which verifies continuity of 𝑓 on the spiral 𝑟 = g(𝜃). Hence, 𝑓 is continuous on Ω ⧵ {0}.

5.3 The first region

We then compute |𝐷𝑓| and 𝐽𝑓 in the region 𝐵 ⊂ Ω where ℎ(𝜃) < 𝑟 < g(𝜃) in terms of our polar
coordinate parameterization. In polar coordinates, the derivative matrix of 𝑓 becomes[

𝜕𝑟 Re(𝑓) 𝑟−1𝜕𝜃 Re(𝑓)

𝜕𝑟 Im(𝑓) 𝑟−1𝜕𝜃 Im(𝑓)

]
=

[
𝜑′(𝑟) 0

0 −𝑟−1𝜃−1 log−1 𝜃

]
=

[
𝜑′(𝑟) 0

0 −𝑟−1g(𝜃)

]
.

As we, moreover, have 𝑟 ⩾ ℎ(𝜃) = (g(𝜃) + g(𝜃 + 2𝜋))∕2 ⩾ g(𝜃)∕2, we obtain the upper bound

𝑟−1g(𝜃) ⩽ 2.

Hence, we have the estimate

||𝐷𝑓(𝑟, 𝜃)||2 ⩽ 4 + (𝜑′(𝑟))2.
Note especially that |𝐷𝑓| is bounded in 𝐵 when 𝜑 is Lipschitz. Moreover, we have |𝐷𝑓| ∈ 𝐿2(𝐵)
as long as 𝑟(𝜑′(𝑟))2 ∈ 𝐿1([0, 𝑟0]).
On the other hand, 𝐽𝑓(𝑟, 𝜃) = −𝑟−1𝜑′(𝑟)g(𝜃), which is negative because 𝜑(𝑟) is increasing. Fur-

thermore, −𝐽𝑓(𝑟, 𝜃) is bounded from above by 2𝜑′(𝑟). Hence, in order to achieve the desired
condition |𝐷𝑓|2 + 𝐾|𝐽𝑓| ⩽ Σ, we arrive at the following valid choices for Σ and 𝐾:

Σ(𝑟, 𝜃) = 6 + 3(𝜑′(𝑟))2, 𝐾(𝑟, 𝜃) = max(𝜑′(𝑟), 1). (5.1)

5.4 The second region

Next, we consider the region 𝐴 ⊂ Ω where we have g(𝜃 + 2𝜋) ⩽ 𝑟 < ℎ(𝜃) in terms of our polar
coordinate parameterization. We still have 𝜕𝑟 Re(𝑓) = 𝜑′(𝑟) and 𝜕𝜃 Re(𝑓) = 0, which are square
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 33

integrable whenever 𝑟(𝜑′(𝑟))2 ∈ 𝐿1([0, 𝑟0]). The next step is then to compute 𝜕𝑟 Im(𝑓) and
𝜕𝜃 Im(𝑓). We use the shorthands

𝜏 = 𝜃 + 2𝜋, 𝑢 = (2𝑟 − g(𝜏))−1.

For 𝜕𝑟 Im(𝑓), we have 𝜕𝑟𝑢 = −2𝑢2, and we may hence use Lemma 5.2 to obtain

𝜕𝑟(− log𝑊(𝑢)) = −
1

𝑊(𝑢)

𝑊(𝑢)

𝑢(1 +𝑊(𝑢))

(
−2𝑢2

)
=

2𝑢

1 +𝑊(𝑢)
.

For 𝜕𝜃 Im(𝑓), we have 𝜕𝜃𝑢 = −𝑢2 ⋅ (−g ′(𝜏)) = −𝑢2(1 + log(𝜏))∕(𝜏2 log2 𝜏), and hence Lemma 5.2
similarly yields

𝜕𝜃(− log𝑊(𝑢)) =
(1 + log 𝜏)𝑢

(1 +𝑊(𝑢))𝜏2 log2 𝜏
.

We thus arrive at the derivative matrix[
𝜕𝑟 Re(𝑓) 𝑟−1𝜕𝜃 Re(𝑓)

𝜕𝑟 Im(𝑓) 𝑟−1𝜕𝜃 Im(𝑓)

]
=
⎡⎢⎢⎣

𝜑′(𝑟) 0

2𝑢

1 +𝑊(𝑢)

(1 + log 𝜏)𝑢

𝑟(1 +𝑊(𝑢))𝜏2 log2 𝜏

⎤⎥⎥⎦ .
To estimate these derivatives, we note that g(𝜏) ⩽ 2𝑟 − g(𝜏) ⩽ g(𝜃) in our region. Inverting all

terms, it follows that 𝜃 log 𝜃 ⩽ 𝑢 ⩽ 𝜏 log 𝜏. As 𝑊 is increasing and 𝑊(𝑡 log 𝑡) = log 𝑡, we hence
have log 𝜃 ⩽ 𝑊(𝑢) ⩽ log 𝜏. Moreover, recalling the notation from the beginning of Section 4.4, it
is reasonably easy to see that log(𝜃) ≈ log(𝜏) and g(𝜃) ≈ g(𝜏) for 𝜃 ∈ [𝜃0,∞). In particular, we
have

𝑢 ≈ 𝜃 log 𝜃 𝑎𝑛𝑑 𝑊(𝑢) ≈ log 𝜃.

We can then estimate |𝜕𝑟 Im𝑓(𝑟, 𝜃)| from both sides by

2𝜃 log 𝜃

1 + log 𝜏
⩽ ||𝜕𝑟 Im𝑓(𝑟, 𝜃)|| ⩽ 2𝜏 log 𝜏

1 + log 𝜃
,

implying that

||𝜕𝑟 Im𝑓(𝑟, 𝜃)|| ≈ 𝜃. (5.2)

To bound 𝑟−1𝜕𝜃 Im(𝑓), we first use the above estimates to obtain

1

𝜃 log 𝜃
≲

𝜃 log 𝜃

𝜏2 log2 𝜏
⩽ 𝜕𝜃 Im𝑓(𝑟, 𝜃) ⩽

1 + log 𝜏

𝜏 log 𝜏(1 + log 𝜃)
≲

1

𝜃 log 𝜃
.

That is, 𝜕𝜃 Im𝑓(𝑟, 𝜃) ≈ g(𝜃). Then, as g(𝜏) ⩽ 𝑟 < ℎ(𝜃) ⩽ g(𝜃) in our domain, and as g(𝜏) ≈ g(𝜃),
we in fact have 𝑟 ≈ g(𝜃). Hence,

𝜕𝜃 Im𝑓(𝑟, 𝜃)

𝑟
≈ 1. (5.3)

In particular, the function 𝑟−1𝜕𝜃 Im(𝑓) is bounded and hence clearly square integrable over 𝐴.
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34 DOLEŽALOVÁ et al.

Next, we check the square integrability of 𝜕𝑟 Im(𝑓). We begin by investigating the integral of an
arbitrary function of 𝜃 over 𝐴 under our chosen parameterization. Letting 𝐹∶ [𝜃0,∞) → [0,∞),
we use polar integration to get

∫𝐴 𝐹(𝜃) = ∫
∞

𝜃0
∫

ℎ(𝜃)

g(𝜏)

𝐹(𝜃)𝑟 d𝑟 d𝜃 ⩽ ∫
∞

𝜃0

(ℎ(𝜃) − g(𝜏))
𝐹(𝜃)

𝜃 log 𝜃
d𝜃.

Moreover, we have

ℎ(𝜃) − g(𝜏) =
g(𝜃) + g(𝜃 + 2𝜋)

2
− g(𝜃 + 2𝜋) =

g(𝜃) − g(𝜃 + 2𝜋)

2

=
1

2

(
1

𝜃 log 𝜃
−

1

(𝜃 + 2𝜋) log(𝜃 + 2𝜋)

)
=
(𝜃 + 2𝜋) log(𝜃 + 2𝜋) − 𝜃 log 𝜃

2𝜃(𝜃 + 2𝜋) log 𝜃 log(𝜃 + 2𝜋)

=
2𝜋 log(𝜃 + 2𝜋) + 𝜃 log(1 + 2𝜋∕𝜃)

2𝜃(𝜃 + 2𝜋) log 𝜃 log(𝜃 + 2𝜋)
≲

1

𝜃2 log 𝜃
.

Note in particular that in the last step of the above computation, we have 𝜃 log(1 + 2𝜋∕𝜃) =
log((1 + 2𝜋∕𝜃)𝜃) → log exp(2𝜋) = 2𝜋 as 𝜃 → ∞, so hence the dominant term in the numerator is
2𝜋 log(𝜃 + 2𝜋). We thus finish our estimate as follows:

∫𝐴 𝐹(𝜃) ⩽ ∫
∞

𝜃0

(ℎ(𝜃) − g(𝜏))
𝐹(𝜃)

𝜃 log 𝜃
d𝜃 ≲ ∫

∞

𝜃0

𝐹(𝜃)

𝜃3 log2 𝜃
. (5.4)

Now, as |𝜕𝑟 Im(𝑓)|2 ≲ 𝜃2 by (5.2), we conclude that |𝜕𝑟 Im(𝑓)| ∈ 𝐿2(𝐴) by taking 𝐹(𝜃) = 𝜃2 in
(5.4), and observing that the resulting integrand 𝜃−1 log−2 𝜃 has a finite integral. We thus con-
clude that if 𝑟(𝜑′(𝑟))2 ∈ 𝐿1([0, 𝑟0]), then 𝑓 ∈ 𝑊1,2(Ω ⧵ {0}, ℂ), and consequently 𝑓 ∈ 𝑊1,2(Ω, ℂ)

by removability of isolated points for planar𝑊1,2-spaces.
It remains to find suitable choices of𝐾 and Σ. We choose Σ ≡ 0 in this region, in which case we

require 𝐾 ⩾ |𝐷𝑓|2∕𝐽𝑓 . By (5.2) and (5.3), we have
||𝐷𝑓(𝑟, 𝜃)||2 ≲ (𝜑′(𝑟))2 + 𝜃2.

On the other hand, we have

𝐽𝑓(𝑟, 𝜃) ≳ 𝜑
′(𝑟).

Consequently, we may choose Σ and 𝐾 so that

Σ(𝑟, 𝜃) = 0, 𝐾(𝑟, 𝜃) ≈ 𝜑′(𝑟) +
𝜃2

𝜑′(𝑟)
+ 1. (5.5)

5.5 The results

It remains now to state our choices of 𝜑 and the resulting counterexamples. We begin with
Theorem 1.5, recalling first its statement.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 35

Theorem 1.5. There exist a domainΩ ⊂ ℝ2 and a Sobolev map 𝑓 ∈ 𝑊1,2(Ω,ℝ2) such that 0 ∈ Ω,
𝑓 ∈ 𝐶(Ω ⧵ {0}, ℝ2), lim𝑥→0 |𝑓(𝑥)| = ∞, and 𝐷𝑓 ∈2(𝐾, Σ) with

Σ ∈ 𝐿∞(Ω) and 𝐾 ∈ 𝐿1(Ω) .

Proof. We use the above construction with 𝜃0 = 2𝜋, 𝑟0 = 1, and

𝜑(𝑟) = 𝑟.

Notably, 𝜑 is Lipschitz, and consequently the resultingmap 𝑓 is Lipschitz in 𝐵. This choice indeed
satisfies 𝑟(𝜑′(𝑟))2 = 𝑟 ∈ 𝐿1([0, 1]), so |𝐷𝑓| ∈ 𝐿2(Ω ⧵ {0}). Moreover, by (5.1), both Σ and𝐾 are con-
stant in the region 𝐵. As Σ ≡ 0 in the other region 𝐴, we have Σ ∈ 𝐿∞(Ω). For 𝐾 ∈ 𝐿1(Ω), as 𝜑′ is
constant, it suffices by (5.5) to show that

∫𝐴 𝜃
2 < ∞.

But this is true by (5.4) with yet again 𝐹(𝜃) = 𝜃2. Finally, as 𝑥 → 0, the imaginary part of 𝑓(𝑥)
clearly tends to infinity. □

The remaining result to prove is Theorem 5.1.

Proof of Theorem 5.1. The case 𝑞 = ∞ is exactly the result of Theorem 1.5. Hence, we may assume
that 𝑞 ∈ [1,∞).
We use the above construction, this time with the choice

𝜑(𝑟) = ∫
𝑟

0

𝑡2𝑝
−1−2 log−7∕4+𝑝

−1
𝑡−1 d𝑡.

Note that by 𝑝 ∈ [1, 2], we have 2𝑝−1 − 2 ⩾ −1. Moreover, the case 2𝑝−1 − 2 = −1 corresponds to
𝑝 = 2, in which case −7∕4 + 𝑝−1 = −5∕4 < −1. Hence, the integral used to define 𝜑(𝑟) is finite
for all 𝑟 > 0 small enough, and we may hence choose 𝑟0 and 𝜃0 so that 𝜑(𝑟) is a finite-valued
increasing function on [0, 𝑟0]. By our choice of 𝜑, we have

𝜑′(𝑟) = 𝑟2𝑝
−1−2 log−7∕4+𝑝

−1
𝑟−1. (5.6)

We first determine the degree of integrability of 𝜑′(|𝑥|) overΩ, as this is used for many parts in
the verification that our example is as desired. Indeed, if 𝑠 ∈ [1,∞), we have by (5.6) that

∫Ω
(
𝜑′(|𝑥|))𝑠 ≲ ∫

𝑟0

0

d𝑟

𝑟2𝑠−2𝑠𝑝−1−1 log7𝑠∕4−𝑠𝑝
−1
𝑟−1

. (5.7)

This integral is finite if 2𝑠 − 2𝑠𝑝−1 − 1 ⩽ 1, which is equivalent to 𝑝−1 + 𝑠−1 ⩾ 1. Note that in
the extremal case 𝑝−1 + 𝑠−1 = 1, the finiteness of the integral also requires that 7𝑠∕4 − 𝑠𝑝−1 > 1;
however, this condition rearranges to 𝑝−1 + 𝑠−1 < 7∕4, which holds in the extremal case because
𝑝−1 + 𝑠−1 = 1.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12835 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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We have Σ(𝑥) ⩽ 6 + 3(𝜑′(|𝑥|))2 and Σ(𝑥)∕𝐾(𝑥) ⩽ 6 + 3𝜑′(|𝑥|) in 𝐵 by (5.1), and we also have
Σ = Σ∕𝐾 ≡ 0 in 𝐴. Hence, (5.7) with 𝑠 = 𝑞 yields that Σ∕𝐾 ∈ 𝐿𝑞(Ω) and Σ ∈ 𝐿𝑞∕2(Ω) if 𝑝−1 +
𝑞−1 ⩾ 1. Moreover, |𝐷𝑓| ∈ 𝐿2(Ω) was shown to be equivalent with 𝑟(𝜑′(𝑟))2 ∈ 𝐿1([0, 𝑟0]): refer-
ring to (5.7) with 𝑠 = 2, this is true if 𝑝−1 + 2−1 ⩾ 1, which holds due to our assumption that 𝑝 ⩽ 2.
As our last application of (5.7), we have by (5.1) that 𝐾 ∈ 𝐿𝑝(𝐵) if 𝜑′(𝑟) ∈ 𝐿𝑝(𝐵): this is true if
2𝑝 ⩽ 4, which again holds by our assumption that 𝑝 ⩽ 2.
It remains to show that 𝐾 ∈ 𝐿𝑝(𝐴). For this, it suffices by (5.5) to show the 𝐿𝑝-integrability of

𝜑′(𝑟) and 𝜃2∕𝜑′(𝑟) over𝐴. As𝐾(𝑟, 𝜃) ⩾ 𝜑′(𝑟) in 𝐵, the 𝜑′(𝑟)-term is covered by the same argument
as used previously for 𝐾 ∈ 𝐿𝑝(𝐵). For the other term, we again use (5.4). Indeed, we have(

𝜃2

𝜑′(𝑟)

)𝑝
=

𝜃2𝑝𝑟2𝑝−2

log−7𝑝∕4+1 𝑟−1
⩽

𝜃2𝑝(𝜃 log 𝜃)2−2𝑝

log−7𝑝∕4+1((𝜃 + 2𝜋) log(𝜃 + 2𝜋))
≲

𝜃2

log𝑝∕4−1(𝜃)

for all 𝜃 ∈ [𝜃0,∞). Selecting 𝐹(𝜃) = 𝜃2 log1−𝑝∕4(𝜃), the resulting integrand 𝜃−1 log−1−𝑝∕4(𝜃) in
(5.4) is integrable whenever −1 − 𝑝∕4 < −1, which is clearly true. We conclude that 𝐾 ∈ 𝐿𝑝(Ω),
completing the proof. □
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