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Abstract

We study continuity properties of Sobolev mappings f €
WIIC;Z(Q, R™), n > 2, that satisfy the following general-
ized finite distortion inequality

IDGOI" < KO p(x) + Z(x)

for almost every x € R". Here K: Q — [1,00) and
Y: Q — [0,00) are measurable functions. Note that
when X = 0, we recover the class of mappings of finite
distortion, which are always continuous. The continu-
ity of arbitrary solutions, however, turns out to be an
intricate question. We fully solve the continuity prob-
lem in the case of bounded distortion K € L*(Q), where
a sharp condition for continuity is that X is in the Zyg-
mund space X logh(e + ) € Llloc(Q) forsomeu >n —1.
We also show that one can slightly relax the bounded-
ness assumption on K to an exponential class exp(1K) €
Llloc(Q) with A > n + 1, and still obtain continuous solu-
tions when Zlogh(e + Z) € Llloc(Q) with x4 > 4. On the
other hand, for all p,q € [1, 0] with p~' + ¢! =1, we
construct a discontinuous solution with K € Lf(’) C(Q) and
2/K € L] (Q), including an example with = € L (Q)
andK € Llloc(Q).
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2 | DOLEZALOVA ET AL.

1 | INTRODUCTION

Let Q be aconnected, open subset of R” with n > 2. Recall that a differential inclusion is a condition

requiring that, for almost every (a.e.) x € Q, a weakly differentiable mapping f € Wllo’i(Q, R™)

satisfies Df(x) € F(x, f(x)) where F is a function from Q X R™ to subsets of m X n-matrices.

Here, we are searching for differential inclusions under which a Sobolevmap f € WIIO’Z(Q, R") has

a continuous representative. More specifically, we are interested in ones that are motivated by the

Geometric Function Theory, with connections to mathematical models of Nonlinear Elasticity.
This leads us to consider the differential inclusions given by the set functions

M, (K, Z): x = {A R |A|" < K(x)det A + Z(x)}, 11)

where K: Q — [1,00) and £: Q — [0, ) are given measurable functions. Here and in what
follows, |A| stands for the operator norm of matrix A € R™"; thatis, |A| = sup{|Ah| : h € S"71}.
We also use the shorthand G € M, (K,X) if G: Q — R™" satisfies G(x) € M, (K, Z)(x) for a.e.
Xx € Q. Now, our continuity problem reads as follows.

Problem 1.1. Find a necessary and sufficient condition on the functions K and £ which guarantees
thatif f € WIIC;Z(Q, RY)withDf € M, (K, X), then f has a continuous representative.

A necessary condition for Problem 1.1 is that £ must at least to lie in the Zygmund space
Llog” L;,.(Q) for some p > n — 1: that is,
Tloghe+X) €Ll (Q) u>n-1. 1.2)

loc

Indeed, the mapping f : B"(0,1) — R" defined by

fx) = (logloglog %,0, 0> (1.3)

hasdetDf = 0and |Df|"log" (e + |Df|") € L}(B"(0,1)), but lil’I(l) | f(x)| = oo.
X—

1.1 | Results for bounded K

When X = 0and K € L*(Q), M,,(K,0) recovers the mappings of bounded distortion, also known
as quasiregular mappings; a mapping f: Q — R" is K-quasiregular for K € [1,00) if f €
WIIO’Z(Q, R"™) with |Df(x)|" < KdetDf(x) for a.e. x € Q. Homeomorphic K-quasiregular map-
pings are called K-quasiconformal. The first breakthrough in the theory of mappings of bounded
distortion was Reshetnyak’s theorem on Holder continuity: a K-quasiregular mapping is locally
1/K-Holder continuous, see [23] and [24, Corollary II.1]. Such Holder continuity properties of
quasiconformal mappings in the plane were earlier established by Morrey [21].

Other differential inclusions of the type M, (K,X) with K € L*(Q) have also arisen naturally
in different contexts. For instance, Simon [26] developed a local regularity theory for minimal

graphs of functions u : R?> — R such that the Gauss map of the graph of u satisfies

IDf(x)° < KdetDf(x) +Z, (1.4)
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 3

where 1 < K < o0 and 0 < Z < oo are given constants. Recall that the Gauss map takes the points
of a surface S C R" to the unit normal vector in $"~!. In particular, the Gauss map automatically
satisfies (1.4) when u is a solution of any equation of mean curvature type [26, (1.9)(ii)]. Similar
results for simply connected surfaces embedded in R3 are due to Schoen and Simon [25]. The
main result in [26] enabling the regularity theory states that a local W-2-solution to (1.4) between
embedded 2D-surfaces is Holder continuous; see also [9, Ch. 12].

This Holder continuity result has been generalized for unbounded X as well. Precisely, if
Kel®and X e Lﬁ)c(Q) for some p > 1, then a mapping f € Wllo’Z(Q, R") with Df € M, (K,X)
has a Holder continuous representative. For the planar case, see the proof of [3, Theorem 8.5.1]
by Astala, Iwaniec, and Martin, and for the more general case n > 2, see the argument in [17, Sec-
tion 3] by Kangasniemi and Onninen. While the planar argument of Astala, Iwaniec, and Martin
relies on complex potential theory, the higher dimensional proof is closer to that of Simon [26],
mimicking the lines of reasoning by Morrey [21] and Reshetnyak [23] in the case of mappings of
bounded distortion.

However, despite yielding sharp results on the LP-scale, the Morrey-type decay argument used
in [17, Section 3] does not give a sharp result if one moves to the Zygmund space setting
Llog” L;,.(Q). In particular, the decay argument shows continuity when u > n, but the optimal
regularity assumption for X is in fact u > n — 1, precisely the minimal necessary condition stated
in (1.2). This optimal regularity theorem is our first main result.

Theorem 1.2. Suppose that f € Wll(;g(Q, R") and Df(x) € M,(K,Z)(x) a.e. in Q, with
KeLX(Q) and Zlog'(e+X)eL, (Q),
forsome u > n — 1. Then f has a continuous representative.

Furthermore, under the assumptions of Theorem 1.2, the local modulus of continuity
@ (%0, 1) = sup{|f(xp) = f(X)|: x €Q, |x—x,| <1} (1.5)

is majorized by C log=“~"+V/"(1 /r) for x, € Q and small r > 0. By considering functions of the
form f(x) = (log™|x|71,0,...,0) with a > 0, it is easy to see that the above exponent (u — n +
1)/n is sharp.

Theorem 1.2 is obtained by proving the following sharp higher integrability result for D f on the
Zygmund scale.

Theorem 1.3. Suppose that f € wi(Q,R") and Df € M, (K,Z)with

loc

KeLX(Q) and Zlog'(e+X)eL, (),

loc

for some u > 0. Then |Df|" logH(e + |Df|) € L, (Q).

It is worth noting that the sharp local 1/K-Hélder continuity result for spatial K-quasiregular
mappings cannot be obtained from known higher integrability results. Indeed, while K-
quasiregular mappings have been shown to belong to the Sobolev space Wll(;f "(Q, R") for some
p > 1 [8, 20], the sharp exponent p = p(n,K) remains unknown when n > 3. A well-known
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4 | DOLEZALOVA ET AL.

conjecture asserts that

K
,K) = ——. 1.6
P(K) = = (1.6)
In a seminal work, Astala [2] established the sharp exponent in the planar case.

This conjecture also has a counterpart for mappings f € Wllt;?(ﬂ, R") with Df € M, (K, Z).
Indeed, if [|K|| () < K,, We expect that f € Wllo’f"(Q, R") whenever X € L7 (Q) for all p <
p(n,K,), where p(n,K,) is as in (1.6). This is the maximal amount of higher integrability of D f
possible when X € LﬁC(Q),which can be seen by taking f = (g¢,0,...,0)and X = |Vg|", where g is

any function in Wllo’f "\ Ugsn Wllo’g"(Q). However, similar to the quasiregular theory, current

tools are only enough to prove a result like this with an unknown value of p(n,K,).

Theorem 1.4. For given n > 2 and K, € [1, ), there exists a value p(n,K,) > 1, such thatif f €

IKll o) <K, and  EelL (Q),

for some p € (1, p(n,K.,)), then |Df|" € LF

loc

Q).

1.2 | Results for general K

In the last 20 years, systematic studies of mappings of finite distortion have emerged in the
field of geometric function theory. Recall that a mapping f € Wf(;Z(Q, R") has finite distortion
if IDf(x)|" < K(x)detDf(x) a.e. on Q for some measurable K : Q — [1,00): that is, if Df €
M, (K,0). Thus, the class of mappings of finite distortion extends the theory of mappings of
bounded distortion to the degenerate elliptic setting, [12, 15]. There one finds applications in mate-
rials science, particularly in nonlinear elasticity. The mathematical models of nonlinear elasticity
have been pioneered by Antman [1], Ball [4], and Ciarlet [6].

In general, some bounds on the distortion are needed to obtain a full theory, analogous to the
theory of quasiregular maps. The continuity property, however, follows without any restriction on
the distortion function K. Precisely, if K : Q — [1, c0) is any measurable function, then a Sobolev
mapping f € Wll(;Z(Q, R") with Df € M,,(K,0) has a continuous representative [10, 14].

Surprisingly, the continuity problem becomes a lot more challenging when X # 0. Our next
result shows that the solutions need not be continuous even in the case of bounded X if the
distortion K is just a measurable function.

Theorem 1.5. There exist a domain Q C R? and a Sobolev map f € W'?(Q, R?) such that0 € Q,
fec@\{0},R?),lim,_|f(x)| = o0, and Df € M,(K,Z) with

Tel®Q) and KelLY(Q).

On the other hand, it is well-known that mappings of exponentially integrable distortion behave
in many ways like quasiregular mappings [12]. For instance, if a nonconstant Sobolev mapping
f: Q- R"satisfies Df € M,,(K,0)withexp(AK) € L'(Q)and A > 0, then f is both discrete and
open [19]. Moreover, the local modulus of continuity w (x, r) of f is majorized up to a multiplica-
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 5

tive constant by log*’V "(1/r) if x, € Q and r > 0 is sufficiently small [14]. This raises a natural
question in the general case Df € M, (K, X): is there a version of the continuity result of Theo-
rem 1.2 where the boundedness assumption K € Lﬁ;’c(Q) has been relaxed to exp(AK) € L}OC(Q)
for some A > 0. The next result shows that this is not the case for arbitrary 1 > 0.

Theorem 1.6. For every u € (0,2), there exist a domain Q C R?> and a Sobolev map f €
W2(Q,R?) such that0 € Q, f € C(Q \ {0}, R?), lim,_,, | f(x)| = o0, and Df € M,(K,X) with

exp(AK) e LY(Q) and  Zlogh(e + %) € LY(Q)
forevery 1 > 0.

Nevertheless, it is possible to obtain a modulus of continuity in the case with exp(1K) € Llloc(Q)
and Zlogh(e + X) € Llloc(Q), if one assumes A and u to be sufficiently large.

Theorem 1.7. Let Q C R" be a domain, and let f € Wllo’Z(Q, R")andDf € M,(K,Z) with

exp(AK) € L) (@)  and  Zlogt(e+Z) €Ll (),
forsome u > A1 > n+ 1. Then f has a continuous representative.
In particular, for all x, € Q and sufficiently small r > 0, we have the following local modulus of
continuity estimate:

A—-n-1

ws(Xg, 1) < Clog™®(1/r) wherea = "

1.3 | Single-value theory

Understanding the pointwise behavior of quasiregular mappings motivates us to study a variant of
the differential inclusion of M,,(K, Z). In particular, given K, > : Q — R" and y, € R", we define
amap M,(K,Z,y,) from Q x R" to subsets of R"*" by

Mn(K9 z’yO) :

(x,y) ~ {A € R™": |A|" <K(x)detA + |y — yo|"Z(x)} .7

Consequently, we obtain a differential inclusion by requiring that D f(x) € M, (K, Z, y,)(x, f(x))
for a.e. x € Q, which we again denote by the shorthand Df € M, (K, Z,y,).

For K € L*°(Q), the differential inclusion Df € M, (K, Z,y,) leads to the theory of quasireg-
ular values developed by the last two authors in [17] and [18]. This term is motivated by the
fact that for bounded K € L*(Q), solutions of Df € M, (K, Z,y,) satisfy a single-value version
of the celebrated Reshetnyak’s theorem at y,. Precisely, if f € Wllo’Z(Q, R") is nonconstant and
Df e M, (K,Z,y,) with K € [1, ) constant and X € LIIZ)C(Q) for some p > 1, then f is continu-
ous, f~1{y,} is discrete, the local index i(x, f) is positive in f~1{y,}, and every neighborhood of a
point of f~{y,} is mapped to a neighborhood of y,: see [18, Theorem 1.2].
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6 | DOLEZALOVA ET AL.

Notably, the additional term |f — y,|" in the differential inclusion Df € M, (K, X, y,) causes
no additional difficulty in our continuity problem on the LP-scale. Indeed, if f € Wllo’Z(Q, R™) and
Df e M, (K,2,y,) withZ € LII;C(Q), p > 1, one can define X, = |f — y,|"Z and conclude using
the Sobolev embedding theorem that X, € LfOC(Q) forevery q € [1, p). The question then reduces
to the continuity of solutions of Df € M, (K, Z).

The sharpness of such an approach, however, becomes an issue when one moves to the Zyg-
mund space scale of (1.2). Indeed, if f € WIIO’Z(Q, R™) satisfies Df € M, (K, Z,y,) with ZlogH(e +
¥) e Llloc(Q), then it can be shown using the Moser-Trudinger inequality that X, = |f — y,|"Z
satisfies X log“*”“(e +2) € Llloc(Q). Theorem 1.2 hence yields that f has a continuous
representative if u —n + 1 > n — 1, that is, u > 2n — 2.

This result for u > 2n — 2, however, turns out to be far from optimal. This is because, by
an iteration argument using Theorem 1.3, this gap from (1.2) can be entirely eliminated. Again
the mapping f(x) = (logloglog(e®/|x|), 0, ..., 0) on B"(0, 1) shows that the following theorem is
sharp.

Theorem 1.8. Let Q be a domain in R". Suppose that a Sobolev mapping f € Wllo’Z(Q, R") satisfies
Df e M, (K,Z,y,)withK: Q - [1,00),Z: Q = [0,0) and y, € R". If
KeLX(Q) and Zlog'(e+X)eL, (Q),

loc

forsome u > n — 1, then f has a continuous representative.

However, in the caseof Df € M, (K, Z, y,) with exponentially integrable K, the use of this trick
is prevented as our results are not based on higher integrability. Hence, the current best bound in
this case is the following result, given by the above Moser-Trudinger argument combined with
Theorem 1.7.

Theorem 1.9. Let Q be a domain in R". Suppose that a Sobolev mapping f € Wllo’Z(Q, R™) satisfies
Df e M, (K,Z,y,)withK: Q - [1,00),Z: Q — [0,0) and y, € R". If

expK) €Ll (Q) and Zlog'(e+Z)eLl (Q),

loc loc

forsome u > A +n—1> 2n, then f has a continuous representative.
In particular, for all x, € Q and sufficiently small r > 0, we have the following local modulus of
continuity estimate:

A—n-1

ws(xp,r) < Clog™*(1/r), wherea = ”

1.4 | LP-integrable K

In the case where K € Lf; c(Q) with p € [1, o0], we conjecture that Problem 1.1 has a positive
answer if X € LfOC(Q) for any q > p*, where p* is the Holder conjugate of p. In fact, we con-
jecture that a stronger statement is true, where £ € Lﬁ) .(Q) can be replaced by the hypothesis
/K € L1 (Q).

loc

UONIPUOD PUE SLLB L BU) 89S *[£202/TT/T2] Uo ARIqITauluO Ao|IM *AriqIT BIASRAAL JO AIBRAIUN AQ SEBZT SW (/ZTTT OT/10p/U00" A3 M AR 1 [BU1 U0 D0SUTRWIPUO|//SUNY WO papeojumod ‘0 ‘05.L697T

0 a1 A.

@5UB01 7 SUOWILLOD) dAaID) ajceat|dde au) Aq pausenoh afe sspp e YO ‘asn JO sanJ 1o} AriqiT auluO A3|IM uo



MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 7

Conjecture 1.10. Let 1 < p,q < oo. Suppose that f € WIIO’Z’(Q, R"), Df € M, (K,Z) withK > 1,
=20,

1

KelLP (Q), where 1 + =<1
P 4q

loc loc

>
Q), and = € L2
(@), and <
Then f has a continuous representative.

To justify the assumption p~! + g~! < 1 of Conjecture 1.10, we point out that we have a discon-
tinuous example in the case p = 1, g = oo due to Theorem 1.5. Moreover, in thecaseq = 1, p = oo,
the triple logarithm map (1.3) provides a discontinuous example. The necessity of the assumption
for the remaining cases 1 < p < oo is then given by the following example.

Theorem 1.11. Let p,q € (1,00). If p~' + q~! > 1, then there exists a domain Q C R? and a
Sobolev map f € WH2(Q,R?) such that0 € Q, f € C(Q \ {0}, R?), lim,_, | f(x)] = o0, and Df €
My(K, T) with

Kel’(Q) and I§< € LYQ). (18)

Furthermore, we give several versions of Theorem 1.11 where (1.8) is replaced by a condition of
the type

K e LP(Q) and T e L(Q),

see Theorems 4.1 and 5.1 for details.

2 | RESULTS BASED ON HIGHER INTEGRABILITY

In this section, we prove the continuity results that are based on higher integrability: Theorems 1.2,
1.3,1.4, and 1.8.

2.1 | Higher integrability on the LP-scale

The higher integrability result of Theorem 1.4 is essentially the same as [18, Lemma 6.1], with
only minor tweaks to account for the nonconstant K. We regardless recall the argument for the
convenience of the reader, as we require the reverse Hlder inequality proven during the argument
for our later proof of Theorem 1.3.

If B =B"(x,r) is a ball and ¢ € (0, ), then we denote ¢cB = B"(x, cr). Similarly, if Q = x +
(=r,r)" C R"is a cube and ¢ € (0, ), we denote cQ = x + (—cr, cr)".

Lemma 2.1. Suppose that f € Wll(;Z(Q, R") and Df € M, (K,Z) with
KelL®(Q) and el (.

Then for every cube Q such that 2Q C Q, we have the reverse Holder inequality

Df|" m\c K"L+1 D ”n_jl z - .
<]£| f|> <cml |m)<]£Q| /l +<]£Q ) )
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8 | DOLEZALOVA ET AL.

Proof. Let Q be such a cube. Choose a cutoff function n € C°°(2Q) suchthat0<n<1,p=1on
Q, and | V| < C;(n)|2Q|~'/". By using the distortion estimate |Df|" < KJ ¢+ Z, the assumption
that K > 1, and a Caccioppoli-type inequality given, for instance, in [15, Lemma 8.1.1], we have

Ly IDfI"y"

0 Rl Jo K
- 1K oo () /] . ||K||Loo(9)/2_77"
SRl Jo! QI Jo K

Cz(n)||K||L°°(Q)/ 1K ()
<———— [ IDfFI" "N =iVl + —=—— /277”-
Q] ! /- QI Q

By using | V7| < C;(n)|2Q|~'/", 5 < 1, and |2Q| = 2"|Q|, we hence obtain that

][|Df|”<c3(n>||K||Lw<% |Df|”—1|f—c|+][ 2>.
Q 10|/ 20

Holder and Sobolev-Poincaré inequalities then yield that

1 _
——F IDFI"If =l
QI+

(fo#) T S -’
<][ |Df|n+1>n" c4<n)<][ IDfIn+1>_21

- c4(n)<]£Q |Df|n"—+1> :

Thus, the claimed estimate follows by using the elementary inequality a + b < (a'/P + b'/P)P for
a’ b / a > 1 D

We then recall the statement of Theorem 1.4 and give the short remaining parts of the proof.

Theorem 1.4. For given n > 2 and K, € [1, o), there exists a value p(n,K,) > 1, such thatif f €
W(Q,R") and Df € M, (K, ) with

”K“L‘X’(Q) < Ko and RS Lp (Q)’

loc

forsome p € [1, p(n,K,)), then [Df|"* € LP (Q).

loc

Proof. Due to f satisfying the reverse Holder inequality given in Lemma 2.1, the claimed result
follows immediately from the version of Gehring’s lemma given in [13, Proposition 6.1]. The upper

UONIPUOD PUE SLLB L BU) 89S *[£202/TT/T2] Uo ARIqITauluO Ao|IM *AriqIT BIASRAAL JO AIBRAIUN AQ SEBZT SW (/ZTTT OT/10p/U00" A3 M AR 1 [BU1 U0 D0SUTRWIPUO|//SUNY WO papeojumod ‘0 ‘05.L697T

0 a1 A.

35US017 SUOWILLOD) aA[Ea1D 3|cedt|dde ayy Aq pausenob afe sajoilie O ‘8sn Jo sajn. 10y Akelqi auljuQ A8|Im uo



MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 9

bound of higher integrability given there depends only on the constants of the reverse Holder
inequality, which in turn depend only on n and ||K|| o (q)- O
2.2 | Higher integrability on the Zygmund space scale

For the Zygmund space version of our main result, we need a corresponding variant of Gehring’s
lemma. We expect this to be known, but are not aware of any references that would directly give
the version we need. Hence, we provide a proof here of the relevant version of Gehring’s lemma,

with the proof modeled on the arguments used in [13, section 3].

Lemma 2.2. Let G,H € LP(R") be nonnegative functions satisfying the reverse Holder inequality

1 1 1
() <<l ()’
Q 2Q 2Q
forall cubes Q C R", where1 < g < p < oo and C > 1is a constant. Then for every u > 0, we have

/ Gplog“(e+G)<a/ GP+b HP logH(e + H),
R" R" R"

witha = a(C,n,u,p,q) > 1land b = b(C,n,u,p,q) > 1.
We start the proof with the following estimate that directly follows from [13, section 3].

Lemma 2.3. Let G, H € LP(R") be nonnegative functions satisfying the reverse Holder inequality

(fe) <e(f,) + ()

forall cubes Q C R", where1 < g < p < oo and C > 1is a constant. Then for every t > 0, we have

/ GP g atP™ / G1+p HP, 1
G1(t,00) G1(t,00) H~1(t,00)

with a = a(n,C, p,q) > 1land = f(n,C, p,q) > 0.

Proof. This estimate is [13, Proof of Lemma 3.1, estimate (3.11)], where in the notation used therein
we've chosen ®(t) = tF(t) = tP/9 with F(t) = tP/97!, g = G9,and h = HY. O

Proof of Lemma 2.2. We assume first that u # 1; for u = 1, see the remark at the end of the proof.
We define an auxiliary function

7

logh~H(1).
7108 ()

Am="L - 9 1ogh(t) +
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10 | DOLEZALOVA ET AL.

The purpose of this specific choice is that
(P~ log() A/ (1) = %(tp—q log“(£)). 2.2)

We may select a constant M > 1 large enough that A, and AL are positive on [M, o0), and also
large enough that

a
log(M)

p

"9 ogk(e+1)  forallt € [M, o), (23)

A0 = o

logh(t) >

where « is from (2.1). Let L > M. We multiply both sides of (2.1) with A:l(t), and integrate over
[M, L] with respect to t. By a use of the Fubini-Tonelli theorem, the left-hand side yields

L
/ A’ (t)/ GP(x)dxdt
M H T e
L G(x)
_ / GP(x) / A (O drdx + / GP(x) / A () dt dx
G(L,o0) M * G-1[M,L] M
= / A (L)GP + / GPA,(G) - / A, (M)GP.
G(L,o0) G1M,L] G1(M,0)
By the same computation for the HP-term, we get the upper bound
L
/ A;‘(t)/ HP(x)dx dt
M H-1(t,0)
= / A, (L)HP +/ HPA,(H) —/ A, (M)HP
H-Y(L,o0) H-1[M,L] H-1(M,0)

< / A (H)HP + / HPA,(H) <2 / HPA,(H).
H-1(L,00) H-1[M,L] H-1[M,00)

For the G9-term, we use (2.2) and similar computations to obtain that

L
/ Al (DOt~ / G9(x)dx dt
M ¥ G-1(t,0)

<!
log(M)

L
1 d,
= — —(tP 110 “(t))/ G9(x)dxdt
log(M) /M de 8 G-1(t,00)

</ LP~91ogH(L)GY +/ GP log"(G)
= Jo-1(Loo) log(M) 1w log(M)

L
/ A (DtP~11og(t) G9(x)dxdt
M G-1(t,c0)
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 11

In total, we have

/ AM(L)GP + / GPAM(G)
G1(L,0) G~1M,L]

a

<A,M) GP + LP=910g*(L)GY
# G-1(M,00) log(M) J-1(1,00)

a

+
log(M) /G—l[M,L]

GPlog"(G) + 2,8/ HPA,(H).
H1[M,c0)

Note that on G(L, o), we have LP~9 < GP~4. By applying this and subtracting the a/log(M)-
terms from both sides of the above estimate, we obtain

_“IL“(L)> P < _OHL“(G)> P
/Gl(L,oo) <AM(L) log(M) ¢ +/G1[M,L] AM(G) log(M) ¢

<A,M) / GP + 28 HPA,(H).
G—1(M,) H-1[M,c0)

We then apply (2.3), and conclude that

/ GPlogh(e + G)
G-1[M,L]

< / GPloght(e+ L) + / GP logh(e + G)
G~Y(L,0) G7lM.L]

2uA, (M) 4
< ;/ GP + Lﬁ/ HP A (H).
b—q G—1(M,) P —q JH-1[M,0)

Notably, this upper bound is independent on L. As we have 0 < A,(H) <Ay le+H)<((p—
qQ)/u+ u/|lpu—1|)logh(e + H) in H}[M, o), letting L — oo gives us

/ GPlogt(e + G) < ao/ GP+b [ HPlogt(e+H),
G~1[M,) R" RN

with a,, b dependent only on «, 8, p, q, u. The final desired claim then follows by combining the
previous estimate with

/ GPlogh(e + G) < logh(e + M) GP.
G~1[0,M) RM

We finally comment on the case u = 1. In this case, we must instead define A,(t) = (p —
q) log(t) + loglog(t), which yields (2.2) for u = 1. The rest of the proof goes through essentially
similarly in this case. O

With Lemma 2.2 proven, we may proceed to prove Theorem 1.3. We again recall the statement.
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12 | DOLEZALOVA ET AL.

Theorem 1.3. Suppose that [ € Wllo’g(ﬂ, R™) and Df € M, (K,X) with
KeLX(Q) and Zlog'(e+Z) el (Q),
forsome u > 0. Then |Df|"log"(e + |[Df]) € Llloc(Q).
Proof. We select a ball B = B"(x,, ) with r < 1 such that B C Q. By using Lemma 2.1, we obtain

that |Df| and X satisfy a reverse Holder inequality for all cubes Q with 2Q C B. It was shown in
the proof of [13, Proposition 6.1] that in this case, the functions G, H : R" — [0, co) defined by

G(x) = dist(x, R" \B)|Df(x)|nn_+21

H(x) = dist(x, R" \ B)S#T + )(B(x)< / z) -
B

satisfy a reverse Holder inequality in all of R". In particular, it follows from Lemma 2.2 that

n+1 n+1 n+1
/ G log"(e + G) < a/ G +b H log(e + H). 2.4)
R" R" Rn

We then assume 0 < ¢ < r, and denote B, = {x € B : dist(x,R" \ B) > ¢}. We note that for ¢ >
1, and p > 1, we may estimate using Bernoulli’s inequality that

e+etP =e(14+ee tP) 2 (1 +e ) = (e + tP) > (e + t)°.

Hence, for every point x € B,, we have either |Df(x)| <1 and thus also |Df(x)|" log"(e +
IDf(x)]) < log"(e + 1), or

n+1 n+1 n2
G logh(e + G) > ¢ v |Df|" log"(e + D f|7+1)
o+l
>en HIDf|" logt(e + IDf).

Consequently,
n+l n+l
IDf|" logH(e + [Df|) < |B;|logH(e + 1) + el e logt(e + G).
€
B, Rn

On the other hand, G"=D/n IDf|" x5 € LY(R™). For the H-term of (2.4), we have H = 0 out-

side Band H < =/"+D 4 Cin Bwith C = ||2||z{((g)+ 2

inequality log(e + a + b) < log(e + a) + log(e + b) for a, b > 0, and that £"/("+1) < 1 4+ %, Hence,
we may estimate

< o0. We recall that we have the elementary

n+l n n+l1 n
H% logh(e + H) < /(Zn_-i—l +C)% log”(e+2n_+1 +C)
NG B

< /znTH+”(Z+ CnTH)(log“(e +32)+loghe +C +1)) < .
B
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 13

It follows that |Df|" log“(e + |Df) has finite integral over B,, which completes the proof of the
claim. O

2.3 | Embedding theorems

As stated in the introduction, Theorem 1.2 is a direct corollary of combining Theorem 1.3 with
a suitable version of Morrey’s inequality for Zygmund spaces. Recall that the classical Morrey’s
inequality implies that if p > n, then elements of Wllo’f (Q) have alocally Holder continuous repre-
sentative, with Holder exponent 1 — n/p. For a Zygmund space version, we refer to, for example,
[16, Theorem 3.1], which gives us the following.

Theorem 2.4. Let Q C R" be a domain, and let f € Wllc;g(Q) satisfy

IDf|"log"(e + IDf]) € L} (),

loc
where u > n — 1. Then f has a continuous representative. In particular, whenever 0 < r < R and

B"(x, R) C Q, the modulus of continuity w¢(x, r) defined in (1.5) satisfies

u—n+1 2R
cof(x, r)<CDf,u,x,R)log = (1 + T),

where

B"(x,R)

, [BCening] >

C(Df,u,x,R) = |IDf]" log <e
||Df||zn(Bn(x,R))

Hence, by combining Theorems 1.3 and 2.4, the proof of Theorem 1.2 is complete.

Due to us requiring it in the following subsection, we also recall the corresponding result for
u € [0,n — 1).In this case, f is not necessarily continuous, but does satisfy an exponential Sobolev
embedding theorem. We refer to, for example, [5, Theorem 2, Example 1] for the following result;
note also that the case u = 0 corresponds to the classical Moser-Trudinger inequality.

Theorem 2.5. Let Q C R" be a domain, and let f € Wllo’Z(Q) satisfy
IDf|" log"(e + IDf1) € Ly, (),

loc

where 0 < u < n — 1. Then there exists A > 0 such that

exp(A]f|71 ) € LL ().

2.4 | Continuity for (1.7) with bounded K

The final result we prove in this section is Theorem 1.8. For the proof, we require the following
lemma on the integrability of products of functions.
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14 | DOLEZALOVA ET AL.

Lemma2.6. Let Q C R" be measurable, let u,v,A > 0besuchthatv < u,andlet f,g: Q — [0, c0]
be measurable functions such that

floghe+ f)e Ll (@),  exp(Ag¥) € L (Q).

Then fglogh™"(e + fg) € L (Q).

We begin the proof of Lemma 2.6 by recalling the proof of the following elementary inequality.
See, for example, [12, Lemmas 2.7, 6.2] for similar results and proofs.

Lemma 2.7. Leta,b > 0,and x,A > 0. Then
ab < exp (la%> + C(x,A)blog*(e + b),
where C(x,A) > 0.
Proof. Note that there exists a constant A = A(x) such that
exp(t) > At**. (2.5)
If ab < exp(al/ ¥A), then the claim is clear. Hence, we assume that ab > exp(al/ k1), with a goal

of showing that ab < C(x, 1)b log*(e + b).
By combining this assumption with (2.5), we have

a= a—laZ < a_l<w> < a_1< ab > — b .
AN2x AN2x A)2x

Consequently, we have

b? e+b)?
exp(a'/*A) < ab < YV (A/lz’f) .
Taking logarithms yields
e + b)? 1
a'/*1 < log (A/IZK) = log Ve + 21log(e + b).

In particular,

2K

x
< 1
AK

AN2x

KX 4
T

log*(e + b).

log

1 1 2
2log —— + 21
a <’ og ——— + - log(e + b)

And hence, we obtain the desired estimate

oK
ab < </‘l_7<

2K
< (F lo

1
A2«

x 41( «
>b + </1—K>blog (e+Db)

x 4%
T

log

1
A2

)b log*(e + b).

3
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 15

Proof of Lemma 2.6. We first observe that fg € Llloc(Q). Indeed, Lemma 2.7 yields that fg <
exp(1g'/”) + Cflog”(e + f), where both terms on the right-hand side are integrable by v < .
We then further estimate using Lemma 2.7

fglog'™" (e + fg) <exp (2‘%9% )10g“ (e + £9) + C1f log(e + f)log" (e + fg). (26)

We have exp(Z_I/Ig%) € leoc(Q)’ and also log“(e + f) € leoc(Q)‘ It follows that the first term on
the right-hand side of (2.6) is locally integrable. For the second term, we estimate e + fg < (e +
f)(e + g), and hence

flog’(e + f)log" (e + fg) < C(flog“(e + f) + flog”(e + f)log" (e + 9)). 2.7)

The first term on the right-hand side of (2.7) is locally integrable by assumption. For the second
term, we again use Lemma 2.7, this time with x = u — v and 1 = 1. We get

flog’(e+ f)log" (e + g)
<e+g+Cyflog’(e+ f)log" (e + flogt™(e + f))
<e+g+C,floghle + f)

+ C,flog”(e + f)log" (e + log" (e + [)),

where the right-hand side is locally integrable by the local integrability of ¢ and f logh(e + f).
Hence, the claim follows. O

We are now ready to prove Theorem 1.8. We again recall the statement for convenience.

Theorem 1.8. Let Q be a domain in R". Suppose that a Sobolev mapping f € Wllc;:(Q, R") satisfies
Df e M, (K,Z,y,)withK: Q - [1,00),Z: Q > [0,0) and y, € R". If

KelL®

loc

(Q) and Zloglt(e+X)eLl (Q),

loc

forsome u > n — 1, then f has a continuous representative.
Proof. Letq = u — (n — 1) > 0. By slightly shrinking x, we may assume that n — 1 is not an integer

multiple of g. By our assumption, we have [Df|" < KJ; + X/, where &’ = Z|f — y,|".
By the Moser-Trudinger inequality (case g = 0 of Theorem 2.5), there exists 4, > 0 such that

exXp <}'O|f _y0|ﬁ> € LIIOC(Q)'

Combining this with our assumption that X logh(e + Z) € L}OC(Q) and recalling thatq = u — (n —
1), we can thus use Lemma 2.6 to conclude that

Y logle + ) e LL (Q).

loc
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16 | DOLEZALOVA ET AL.

Using Theorem 1.3, we hence conclude that

IDf1"log(e + IDf1) € Ly, (.
If ¢ > n— 1, we are now done, as Theorem 2.4 implies that f has a continuous representa-
tive. Otherwise, we proceed to iterate this argument. Indeed, as |Df|" logi(e + |[Df]) € Llloc(Q),
Theorem 2.5 yields us a slightly better estimate

exXp (/11|f - yOl (n-1)-q > € Llloc(Q)
for some A; > 0. Lemma 2.6 then yields that

3 log¥(e +2') = ¥ log" (" D-De 1 ) e L] (Q),

loc

from which we get that

IDf|"log*i(e + IDfI) € L} (Q).
Then next iteration of this argument then yields |[Df|"log*l(e + |[Df]) € Llloc(Q), the next
iteration after that yields |[Df|" log*(e + |Df|) € Llloc(Q), et cetera.

We may continue this iteration until |D f|" logkq(e + |Df]) € Llloc(Q), where k is the smallest
positive integer such that kq > n — 1. Indeed, we assumed n — 1 not to be an integer multiple
of g, so (k — 1)q is a valid exponent for Theorem 2.5. Moreover, we also must have kq < u, as
kq=(k—1)q+q < (n—1) + q = u. Hence, it follows that f has a continuous representative by
Theorem 2.4. O

3 | DIRECT CONTINUITY RESULTS

In this section, we prove Theorems 1.7 and 1.9. The method is a generalization of the approach
used in [17, Section 3]. In particular, we prove a decay estimate for the integral of |D f|" over balls,
which then implies continuity by using a chain of balls argument as in [11].

We begin by recalling an estimate that is used in the proofs of similar continuity results for
mappings of finite distortion; see, for example, [22, Section 3] or [12, Theorem 5.18]. We give the
proof for the convenience of the reader.

Lemma 3.1. Let Q C R" be a domain, and let exp(K) € L}(Q) with A > 0. Then there exist con-

stants C = C(Q,K,1) > 0 and Ry = Ry(Q, K, 1) as follows: if x € Q, R < min(R,, d(x,0Q)) and
r € (0,R/e3), then

1
R -5 2
/ s (][ K”_1> ds > A <10g log c_ loglog C_e>
r 3B"(x,5) n r R"

Proof. We denote B, = B"(x,s). We let k be the largest integer such that reX <R. As r <
R/e3, we must have k > 3. We define the function K = max(K, (n — 2)A~!), where we still have
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 17

exp(K) € Lﬁ) (Q). We estimate K < K, perform a change of variables, and split the integral into a
sum as follows:

1 1
R et k=1 .it1+logr Th1
/ st ][ K1 ds > Z/ ][ g1 dt.
r 0By i=1 Ji+logr 0B,

We then use Jensen’s inequality a total of three times, with the convex functions 7 — 77!

, T

1 1
exp(Arn—1) and T — exp(t). Note that 7 — exp(Ar=-1)is only convex for 7 > ((n — 2)A71)"~1, but
the range of K"~! is in this region. The resulting estimate is

i+1+logr _ﬁ i+1+logr ﬁ
/ ][ g1 dt > / ][ K1) de
i+logr 0B, i+logr 0B,
i+1+logr -1
> / log ][ exp(AK) | dt
i+logr 0B,
i+1+logr
> Aog™! / ][ exp(AK) ) dt.
i+logr OBt

-1

Now we may estimate

i+1+logr rei+! ds
log™! / ][ exp(AK) ) dt = log™! / ][ exp(AK) | =
i+logr 0Bt rel 3B, N

reltl

B exp(1K)
=log™! / ! / exp(AK) | ds > log_lm.
ret Wy 8" 0B, wn—l(rel)n

We then select C = || exp(AK)||11(q)/@w,—1- The sum of the above terms over i can now be

estimated by
k=1 cit1+logr _an1 k-1 c
Z/ ][ gt de > /1210g_1 :
i1 Ji+logr ) = (retyn

k-1 R—e?
> 2 / log”'—C_dr > 2 / s og ' E ds
0 (ret)n r s

A C Ce?
= <loglogr—n —loglog —n) .

R

The claim hence holds, assuming that log log(Ce? /R") is well-defined; this is the case if we select
R = Ce. U
0
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18 | DOLEZALOVA ET AL.

We then consider the following abstract differential inequality of real functions, and show that
it yields a decay condition. This is a more general version of [17, Lemma 3.2], which is essentially
given by the case ¥(r) = r and I'(r) = Cr®.

Lemma 3.2. Let A > 0,andlet®: [0,R] - [0,S], W: [0,R] = [0,00), and T : [0,R] — [0, c0) be
absolutely continuous increasing functions such that ®(0) = 0. Suppose that

¥(r)

d(r) < ALp' D)

' (r)+T(r)

for a.e. r € (0,R), where A > 0. Then there exists a constant C = C(A,R,S,¥,T) > 0 such that we

have
R /
() < F(r)+C‘PA_1(r)<1 + / TE_(IS())ds>
r S

forallr € [0,R].

Proof. We find an integrating factor for the terms involving ®:

Y(s)
W(s)

_ 4 g4 (g)a(s)) = (d)(s) —A CI)'(s)) (A—hp—A*l—l(s)w’(s»
ds
—I() W—A ().

We then integrate on both sides over [r, R], and use integration by parts:

47 ()B(r) — T4 R)IB(R) < — / F(s)< d g ()>

R !
=T =T @+ [

Multiplying by w4 (1) and moving the negative term to the right-hand side yields the desired

S—T(R). 4 e I'(s) d
o(r) <T(r) + PR )lp ‘N +w ()/ ) s. .

Combining Lemmas 3.1 and 3.2 allows us to show the following decay estimate.

Lemma 3.3. Let Q C R" be a connected domain. Let f € WH(Q,R") and Df € M, (K,X)
with exp(AK) € LY(Q) and Zlogt(e + %) € LY(Q), where u> 1> 0. Then there exists R, =
Ry(Q, 4,K) > 0as follows: for any choice of x € Qand R € (0, R,) such that B"(x,R) C Q, we have

D n
/ —l /1 <C log_/WL rL.
B"(x,r) K

forallr € (0,R/e3), whereC = C(Q,4,u,K,Z,R, IDf Il () Notably, C is independent of x.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 19

Proof. We choose R, < e~! such that Lemma 3.1 holds for R < R: note that this choice depends
only on Q, 4, and K. We fix a point x € Q and a radius R < R, such that B"(x,R) C Q, and we
denote B, = B"(x,r) for all r € [0, R]. We then define a function ® : [0,R] — [0, o) by

<I)(r)=/B |DI£| .

By using the definition of M,,(K, ), we may estimate ®(r) by

Dn
/|f| </1f+/§.
B, K B, B, K

For the first term on the right-hand side, we apply the isoperimetric inequality of Sobolev maps,
see, for example, [24, Lemma I1.1.2 and (I1.1.7)], followed by a use of Holder’s inequality. The result
is

n

/Jf<—1 (/ IDfI’H)"_
B n"3/w,_1 \Jes,

r

1

- DFIn
< 1 < / K”‘1> / IDf|
n /o, 1 \Jea, o, K

1
_r <][ Kn_1> / IDfI"
n\Jsg, o3, K
for a.e. r € [0, R]. For the other term, using K > 1, Zlogﬁ(Z) eLi(Q),andr <R < Ry < el we
estimate that
L35 P o
B, K " Jp {zEB, :3(z)<r1} {z€B, :3(z)>r1}

-1 Zloghtz
S ror i1
{zeB, :Z(z)<r™1} {zeB, :3(z)>r-1} log r™

1,(B
< m+m +log#r! / Zlog“(e + X) < C; log#r ™!
B,

r

for some C, = C;(n, 4, Z,R) > 0. In conclusion, we have

1
() < % < ]ig K"—1> " @' (r)+ C, log™#r7! 3.1)

for allr € (0,R).
‘We then define

-1

R n—1
P(r) = exp —/ s_l(][ K”_1> ds|.
r 0Bg
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20 | DOLEZALOVA ET AL.

A simple computation by chain rule hence reveals that

() =w(r)rt <]£B K"_1> s

for all r € (0, R). In particular, (3.1) now reads as

o(r) < L 20

/ —u -1
nqﬂ(r)cb(r)+C110g L

We also note that as K > 1, we have ®(r) < S forall r € [0, R] with S = [|Df]|n(q). Hence, we are
in position to apply Lemma 3.2, which yields that

(3.2)

R \yn
() < Cylog #rl +C, <Wr) ¥ / igg slog"if(sﬂ)

when r € [0,R/e?], for some C, = C,(Q, 4, 4, K, Z, R, D f || 1n(q)-
Lemma 3.1 yields that for r € (0,R/e?), we have

A
ni C C,e? log(C;e?R™") o
v < onp (=4 (togtog 3 —tostor - ) ) = () < cutoe

where C; = C3(Q,1,K) and C, = C4(Q, 1, K, R). As u > A, we also have
log™#r~! < Cslog™*r!
forallr € (0,R/e3], where Cs = C5(u, 4, R). Hence, in order to obtain the claimed decay estimate

for @ from (3.2), it remains to estimate the term with the integral.
For this, we let r € (0, R/e), and split the integral into two parts:

/qu"m s _ /‘”’Wr) s, /R vy ds
r P1(s) sloghti(s—1) ro P(S) sloghti(sm1)  Jesr PR(S) sloght(sT1)

In the range of the latter integral, we have r < s/e, which allows us to use Lemma 3.1 again to

estimate
1
qﬂl N n—1
(r) = exp —n/ t1 ][ K1 dt
lI'm(s) r 0B,

- log(Cye?s™) A
S\ log(Cyrm) )

Hence, by using the fact that u — A4 > 0, and the fact that s~' log~'~/(s™!) is integrable for t > 0,
the second integral can now be estimated by
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 21
A
/R v (r) ds < /R <log(C3e2s ")) ds
<X
o3 U(8) sloghti(s—1)  Jesr \ log(Csr™™) / sloghtl(s—1)

R ds C
< / log™* = < Cglog™*r™!
0 slog™(Cse2s—)logh*(s~1) re

where C; = C4(Q, 4, 4, K, R). On the other hand, for the first integral, we may merely use the fact
that ¥ is increasing to estimate that ¥"(s) > ¥"(r), which again combined with u > A yields that

3, 3
/e 7 ‘P"(}’) ds < /6 r L _ l(log—ﬂ L — log_# 1) < C7 log_/1 r_l
;P slogti(s ) Sy slogtti(sh) M er "

where C; = C,;(u, 4, R). The proof of the claimed estimate is hence complete. O
We then proceed to prove Theorem 1.7. We again begin by recalling the statement.

Theorem 1.7. Let Q C R" be a domain, and let f € Wllc;:(Q, RYand Df € M, (K,Z) with

exp(AK) € LIIOC(Q) and Tloght(e+2) e LIIOC(Q),
forsome u > A > n+ 1. Then f has a continuous representative.
In particular, for all x, € Q and sufficiently small r > 0, we have the following local modulus of
continuity estimate:

A—-n-1

ws(xg,r) < Clog™*(1/r) wherea = p

Proof. Fixaball B = B"(x, R) such that B is compactly contained in Q and R < R, with R,, given by
Lemma 3.3. Let A C B be the set of all Lebesgue points of f in B. We show first that the restriction
of f to A N B"(x,R/(4e?)) is continuous. For this, let y,z € A N B"(x, R/(4e3)).

We may select a two-sided sequence balls B; C B,i € Z in the following way: B, = B"((y +
z)/2,1) with ry, = |y — z| € (0,R/(2¢%)), B; = B"(y,e”l!lr,) for i € 7., B; = B*(z,e7lilr,) for
i € Z,. We denote the integral average of f over B; by f € R"; asy and z are Lebesgue points,
we have

lim fp = fO),  lim fp = (2. (3.3)

Moreover, as B"(y,R/2) and B"(z,R/2) and B"((y + z)/2,R/2) are all contained in B and r; <
(R/2)/e3, Lemma 3.3 yields for every i € Z that

IDSI" a1
/B I <Cllog’lr—i=C1 log

—A
+ |i|> , (3.4)
ly —z|

i

with C; = C;(B,4, 4, K, %, R/2, IDf | Ln(g)) independent of y, z, and i.
We then estimate | f By ~ fB,|. We present the case i > 0, as the case i < 0 is similar but with i
and i — 1 switched. As B;,; C B; and the radius of B, is e~! times the radius of B;, we have by
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22 | DOLEZALOVA ET AL.

the Sobolev-Poincaré inequality that

s =1, S]i =] < e][B |F = 15| < Cz(n)rl(]g |DfI"_1>m.

We then use Holder’s inequality to estimate that
1
n2-n
][ Kn—l
B,

1
n—1 DFfI"
i ][ IDfI"! < ][ /|
B, B, K
1 L

n n2-n

([ Y (f o)

{fw,\ /B, K B,
Applying the decay estimate (3.4), we hence have that

. i

2 -z

_ n“—n 1 n

- <C K1 1 i ,
‘fBiH fB,-‘ 3<]£ri ) <Og|y_zl+|l|>

where C; = C3(B, A, u, K, Z, |[Df]| Ln(B)). We then estimate the average integral term. For this,
we again define K = max(K, (n — 2)A71) as in Lemma 3.1, and use Jensen’s inequality with the

S

1
function 7 — exp(At»-1). This yields the estimate

1
n2—n 1 1
][K"_1 <A77 logn ][
B, B,

exp(AK
<1t logh (n xp( )||L1<B>>

exp(AK ))

W,
1
<C logll—C <10g +|i|>n (3.5)
S ri ¢ ly —z| ’ ’
where C, = C4(B, 4,K).
Now, by (3.3) and a telescopic sum argument, we obtain that
[s] o0 ﬂ
1 L\ "
1) - 1@l < ¥ |fa,, = Fa| <23 05 (1log 2 +1) T (36)
i=—o0 i=0

with C5 = C5(B, 4, u, K, Z, [[Df || n(p))- We then denote a = log(1/|y — z|), noting that a > 1
because |y — z| < R < R, < e”!. Aswe also assume that 1 > n + 1, we have thati — (a + i)a-d/n
is decreasing, and we may estimate

o]

LA 1 0 12 A n _dzn-l el
2(a+l)n <an + (a+t)y ndt=a " +———a n £—a n .
~ 0 A—-n-1 A—-n-1
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 23

In conclusion,

1_1 _A-n-1 _A-n-1 1
a 7 =0C.lo n o — 3.7
] 6108 (3.7)

S0)-f@] <26, B @+ T <2657 Tt

with Cg = C¢(B, 4, u, K, Z, [|D f |l n(g))-

We hence have obtained the desired modulus of continuity for all Lebesgue points y,z € An
B"(x,R/(4e%)). Now, if y € B"(x,R/(4e%)) \ A, we can then use the fact that A has full measure
in B"(x, R/(4€)) to select y; € AN B"(x,R/(4e*)) such thaty; — y as j = c0. By (3.7), (f(y)) is
a Cauchy sequence, and therefore convergent. We select f(y) = lim;_, , f(y;); doing this for all
y € B"(x,R/(4€%)) \ A only changes the values of f in a set of measure zero, and doesn’t change
f() in points y where f is continuous. Now, by passing to the limit, we see that (3.7) applies to
all y,z € B"(x,R/(4¢%)). Hence, f has a continuous representative with the desired modulus of
continuity. O

Theorem 1.9 then follows as an immediate corollary of already proven results.

Theorem 1.9. Let Q be a domain in R". Suppose that a Sobolev mapping f € Wllo’Z(Q, R") satisfies
Df € M, (K,Z,y,)withK: Q - [1,00),Z: Q — [0,00) and y, € R". If
exp(AK) € Lt (Q) and Tloght(e+2) e Ll (Q),

loc loc

forsome u > A +n—1> 2n, then f has a continuous representative.
In particular, for all x, € Q and sufficiently small r > 0, we have the following local modulus of
continuity estimate:

A—-n-1

ws(xp,r) < Clog™(1/r) wherea = p

Proof. As Tlogt(e+Z) € L] (Q), and as exp(Al|f |n/(n=1)y e L} (Q) for some A > 0 by The-
orem 2.5, we have Z|f|" log" "*(e + Z|f|") € L} (Q) by Lemma 2.6, where u —n+1> 1>
n + 1. Hence, the claim follows by applying Theorem 1.7. O

4 | COUNTEREXAMPLES BASED ON CUSPS

In this section, we consider our first type of counterexample, which yields Theorems 1.6 and
1.11. Our construction will be in a planar disk D(r,) with center at the origin and radius r,.
Our constructed mapping f : D(r,) — R? has a first coordinate function of — log log |z| !, which
is well-defined in D(r,) \ {0} as long as r, is small enough. We split the disk D(r,) into two
regions D(r,) = AU B with different definitions of the second coordinate function, where in
A we aim to have Jf(x) > 0 with [Df(x)|?> < KJf(x), and in B we try to obtain Jf(x) <0 and
IDf(x)|? + KlJf(x)l < Z. The region B will form a cusp at the origin.

4.1 | The two regions

Let Q = D(r,), where we assume that r, < e~¢. We begin by assuming that y is an absolutely con-
tinuous increasing function y : [0,r,) — [0, 1) such that y(0) = 0. We specify y later in the text,
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24 DOLEZALOVA ET AL.

0 =m—~(r) 6 =~(r)
0 =—m+(r) W % 0 =—(r)

FIGURE 1 Theregions A,, A,, B, and B,.

as we use different choices of y to prove different theorems. We will use polar coordinates (r, 0)
on the domain side in Q, where 6 € (-, 7].

The regions A, B C Q will consist of two sub-regions A = A; UA, and B = B, U B, each. We
let B, be the cusp-like region of Q bounded by the curves 6 = y(r) and 8 = —y(r). Similarly, we let
A, be the region bounded by the curves 8 = y(r) and 6 = 7= — y(r). The region B, is the reflection
—B, of B, across the origin, and similarly A, = —A;. See Figure 1 for an illustration.

4.2 | The function f in the region A

We first define f in the region A,. There, using polar coordinates on the domain side and Cartesian
coordinates on the target side, we have

f(@,8) = (—loglogr™!, h(r)8) 4.

for some absolutely continuous increasing function 4 : [0, c0) — [0, c0). We again specify h later.
Hence, we obtain a matrix of derivatives

6.f1 r10gf1] _ [rlog™trt 0
0. fr 170 f2] h'(r)e r~th(r)]"

In particular,

1 , h?
|Df(r’ 9)|2 < W +[h (F)e]z + % 4.2)
and
___h(n
10 = et > (43)

We then simply pick K = [Df|*/J and Z = 0.
On A,, we define f(z) = f(—z). As z = —z is an orientation-preserving isometry in the plane,
it follows that (4.2) and (4.3) remain true in A,.
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 25

4.3 | The function f in the region B

We wish that our function f is continuous outside the origin. Hence, our boundary values in B,
must match the ones given by A; and A,. For this, we define the second coordinate of f as a linear
interpolation of these boundary values. That is, we define in B; that

T+ 20— ﬂ@/y(r)))

5 (4.4)

f@r,0) = <— loglogr™!, h(r) <

Indeed, in the cases 6 = y(r) and 6 = —y(r), the second coordinate has the correct boundary
values of h(r)y(r) and h(r)(w — y(r)), respectively.

The derivatives of the first coordinate of f remain unchanged from domain A. For the other
terms in the matrix of derivatives, we first get

(7 , 78 d [ h(r)
5f2= (5*@“”‘75(@) “3)
Then, by y(r) < 1, we get
1 _ h(r) _m (T h(r)
r8ef, = =1 <1 2y(r)> < (2 1)ry(r). (4.6)

In particular, we have that r~1d,f, < 0, and consequently J r <01in B;. Hence, in B;, we select
K =—|DfI*/J;>1,and = 2|Df|.

Similarly as for A,, we may define f in B, by f(z) = f(—z), and all our considerations will also
apply to B,.

4.4 | Fixing the parameters

We have now outlined the construction, but have left the functions h and y undetermined. The
theorems we wish to prove follow with different choices of & and y.

Throughout the rest of this paper, given two functions f, g : X — R, we use the notation f < ¢
if there exists a constant C > 0 such that f < Cg. We also denote f =~ g if f < g S f. Several of
the uses of these symbols are based on the elementary fact that if f, g : [a, ) = (0, ), a € R,
are continuous and lim sup;_, ., f(¢)/g(t) < oo, then f < g.

‘We now recall the statement of Theorem 1.11, and then give its proof.

Theorem 1.11. Let p,q € (1,00). If p™' + g~ > 1, then there exists a domain Q C R? and a
Sobolev map f € WH2(Q,R?) such that 0 € Q, f € C(Q \ {0}, R?), lim,_, | f(x)] = o0, and Df €
My(K, Z) with

KeIP(Q) and 1§< € LI(Q).

Proof. Let p,q € (1, ), and let ¢ > 0. We select ry, = e~¢ and
h(r) = r?", y(r) =log—¢r7t.

Indeed, whenr < e™¢, we have 0 < y(r) < e® < 1.
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In A,, we have by (4.2) that

PO ¢ s (4 ) gL
r2log® r-! p? r2log® r-1
Hence, |Df| € L*(A). By also referring to (4.3), we have in A, the estimate

preof 1

K(r,0) = pS .
9 Jp(r,6) = r2r' logr-!

We hence estimate that

7—y(r)
/ = 2/ / KP(r,0)rdodr
0 7(r)

/ rMog P rldr < oo,
0

A

showing that K € LP(A).
We then consider points (7, 0) in B;. By (4.5) and |8]| < y(r) < 1 < &, we have

2

p logr!

0,1, = [y T iy (2
rJ 2 p 2

< r4p_ (1 + log—2+2£ —1)

Furthermore, by (4.6),
2 _
|r 196 2(r, )| S 14 2 log r !

The exponent 4p~! — 2 in the above bounds is greater than —2. Hence, we have the overall
estimate

1

_ (4.7)
r2 log2 r—1

|Df(r,0)|

whenever (r,0) € B;. In particular, we have |Df| € L?(B;), and consequently |Df| € L*(Q).
Moreover, we have

—J(r,0) = (% log"r—! — 1);’21’_1_2 log™!
so by log® r=! > 1 we get the two-sided estimate

—J(r,0) ~ r?P logt L, (4.8)
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 27

Combined with (4.7), this yields

Df(r,0)
POl _ gropm —L
—J¢(r,6) r2p~! log'te -1

As p(2p~') = 2 and p(1 + ¢) > 1, we see that K € LP(B), and hence K € LP(Q).

It hence remains to consider the integral (£/K)? over B. As we chose £ = |Df|?> and K =
IDf|?/(=J ;(x)), we have /K = —J ;(x). Hence, by (4.8), we have /K r2P =210g" "1 r1. We
note that as B is a cusp, this majorant in fact has a better degree of integrability over B than it has
over Q. In particular, we may estimate that

g</ﬂ/M rdodr
s K17~ Jy () r29—2p~lq logd™% -1

¢ dr
<2 / .
o  r2q-2p~lg-1 10gq—(q—1)€ 1

For integrability, we require 2q — 2p~'q — 1 < 1, which is equivalent to g~' > 1 — p~!. Moreover,
in the extremal case ¢! + p~! = 1, we also require ¢ — (¢ — 1)e > 1, which is equivalent to ¢ < 1.
Hence, any choice of € € (0, 1) will give us the desired example. 1

Our next result is the version of this example with the highest degree of integrability for . This
is by a different choice of h and y, and hence this gain in the regularity of £ comes at a cost in the
regularity of /K.

Theorem 4.1. Let p,s € (1,00). If (p + 1)~' + 57! > 1, then there exists a domain Q C R? and a
Sobolev map f € WH2(Q,R?) such that0 € Q, f € C(Q\ {0}, R?), lim,_, | f(x)] = o0, and Df €
M, (K, Z) with

K eLP(Q) and T e L(Q).
Proof. Let p,q € (1,0), and let ¢ > 0. This time we choose
h(r) =2, y(r) = r?" logrL.
We may select an r, < e~¢ such that y is increasing on [0, ] and y(r,) < 1.
The verification that K € LP(A) is unchanged from the previous lemma. The difference arises

when applying (4.5) and (4.6). Indeed, as |0] < r2e logr~! < 1, we obtain.

20 + ﬂrzpfl_l 7'[_9

“17ng—2 —1
r—log “r
> g

|¢ﬁmmfz‘ +
< ppTI=2 4 2 log~*r1,
and

2
r_laefz(r, 0)| <r? 1og_2 rL.
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28 | DOLEZALOVA ET AL.

In all of the previously computed terms, either the exponent of r is greater than —2, or the exponent
of r is —2 and the exponent of the logarithm is at most —2. Hence, we still have (4.7) unchanged.
ForJ £, We compute similarly as in the last lemma, and instead get

—Jp(r,0) &2 log~2r~! (4.9

when (r,6) € B. In particular, K = |Df|*/(=J ;) € L¥(B).
It remains to estimate the integral of X° = (2|Df|)* over B. Computing similarly as in the

previous lemma, we get
/zs </ / "0 rdedr
y(r) 1’25 IOg 1

< dr
= 25-2p~1-1 19251 -1
0 r#ep log= " r

For this to converge, as the exponent of the logarithm satisfies 2s —1 > 1 due to s > 1, we
only require 2s — 2p~! — 1 < 1. Rearranging yields s < 1+ p~! = (p + 1)*, where (p + 1)* is the
Holder conjugate of p + 1. In particular, this is equivalent with (p + 1)~ +s7! > 1. 1

The remaining result that relies on this example type is Theorem 1.6. This is achieved by
selecting both h and y to be powers of logarithms, with a suitable choice of corresponding
exponents.

Theorem 1.6. For every u € (0,2), there exist a domain Q C R?> and a Sobolev map f €
W2(Q,R?) such that0 € Q, f € C(Q \ {0}, R?), lim,_,, | f(x)| = o0, and Df € M,(K,X) with

exp(AK) e LY(Q) and  Zlogh(e + %) € L'(Q)
forevery 1 > 0.

Proof. Let A € (0, 00). We may assume u > 1, as an example for a given y also works for all smaller
u. We choose

h(r) =log™”r 71, y(r) =log" ™" r 1,

where v € (u,2). Asv > u > 1 by assumption, y is increasing, and we may hence choose r, = e~
asy(e™®) =el™V < 1.
In A, (4.2) yields due to v > 1 that

1 v 1 < 1
2v+2 -1

|Df(r,0)|

P 2 ~ 21"
r2log”r=!  r2log r2log” r=1 = r2logr—1
Hence, clearly |Df| € L?>(A). Moreover, Jp= r~2log '™ r 1, so

K(r,0) < Clog”_1 r1
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 29

for some C > 0. The exponential integrals of K are all finite by the estimate

e
/ exp(AK) < 27 / exp(CAlog” tr~Yyrdr
A 0

—e

e
v2
=27T/ pl=CAlog”*rt qp < 00,
0

aslim,_ CAlog" *r ' = 0duetov < 2.
In By, (4.5) and (4.6) combined with |8] < log' ™ r~! <1 < 7 resultin

200+ v _ o1 — 70 4
2=—+r110g”11 2,-1

0, f,(r,0)| > rYt 4+ — > r~!log

—2-2v —1

~*(log +log™*r ™)

and
2
|r‘169f2(r, 6)' <Sr2log™?

l—l

Aslog’ r~ is increasing with respect to t when r < e, we again have

Cl
Df(r,0)*
| | r2 log2 r-1
in B, for some C’ > 0. For the Jacobian, we instead get
—Jf(r, 0) ~r? log_2 rL. (4.10)
In particular, our choice K = [Df|?/(—=J ) is in L*(B), concluding exponential integrability of K
in all of Q for all choices of 1.

The last step is to estimate the integral of =1log”(e + Z) over B;, where T = 2|Df|?. We estimate
using (e + ab) < (e + a)(e + b) for a, b > 0 that

!/ !’
log(e + Z) < log| e+ B S log| e+ 2€ +2logle +r7Y),
r2log’r-1 log® r—2

and hence, as y(r) = log" ™ r~!, we get

()
/Zlog”(e +2)= 2/ / 2(r,0)log"(e + Z(r,0))r d6 dr

y(r)

< /ee log"(e + 2C' log ™2 r~1) + logh(e + 1) d
~Jo

r logz_(l_”) r—1

When r — 0, we have log_2 r
logh(e + r~1). Asr=! > e°, we have r™

— 0. Hence, for small r, the largest term in the numerator is

2 —r~! —e > 0. Hence, we may estimate

logh(e + r~1) < 24
rlog?~(=") p-1 S log+=H) p-1’

UONIPUOD PUE SLLB L BU) 89S *[£202/TT/T2] Uo ARIqITauluO Ao|IM *AriqIT BIASRAAL JO AIBRAIUN AQ SEBZT SW (/ZTTT OT/10p/U00" A3 M AR 1 [BU1 U0 D0SUTRWIPUO|//SUNY WO papeojumod ‘0 ‘05.L697T

0 a1 A.

35US017 SUOWILLOD) aA[Ea1D 3|cedt|dde ayy Aq pausenob afe sajoilie O ‘8sn Jo sajn. 10y Akelqi auljuQ A8|Im uo



30 | DOLEZALOVA ET AL.

which is integrable over [0,e~¢] due to our assumption v > u. Thus, Zlog"(e + ) € L}(B), and
consequently = log“(e + £) € LY(Q). O

5 | COUNTEREXAMPLES BASED ON SPIRALS

In this section, we construct a counterexample built around the case X € L*(Q), which will give
us Theorem 1.5. Furthermore, if K € Lf:) C(Q) with p € [1, 2], then this counterexample also yields
an alternate proof of Theorem 1.11. In exchange for failing when p > 2, this alternate counterexam-
ple has a better optimal integrability for X when p < \/5; that is, it improves Theorem 4.1 for such
values of p. Moreover, this improved integrability of X is achieved simultaneously with the opti-
mal integrability of £/K, whereas the construction of Theorem 1.1 involves a trade-off between
the integrabilities of ¥ and £ /K.

Theorem 5.1. Suppose that p € [1,2], q € [1, ], and p~' + ¢! > 1. Then there exist a domain
Q C R? and a Sobolev map f € WH3(Q,R?) such that 0 € Q, f € C(Q \ {0}, R?), lim,_, | f(x)| =
oo, and Df € M,(K, %) with

z q
K e LP(Q), z € L1(Q), and T eL2(Q).

We again construct our example in a planar region Q C R? with a point of discontinuity at the
origin, and we retain our strategy from the previous section of splitting Q into two regions A and
B, where |Df]? < KJ;in Aand IDfI? + K|J¢| < Zin B. Notably, when X is bounded from above
by a constant, f ends up being Lipschitz under the path length metric in B. Hence, if we wish that
f escapes to infinity along B, the region B must somehow be infinitely long. This pushes us toward
a construction where A and B are two interlocking infinitely long spirals centered at the origin.

5.1 | Preliminaries: Lambert’s W-function

We begin by recalling a special function that is of great use to us in our construction. Namely,
Lambert’s W-function is the inverse function W = 9! of the function 1(t) = te'. The W-function
has two branches on the real line. In this paper, we assume W to be the positive branch:

W:[—e!, ) > [-1,00), W(E)eV® =1

We collect into the following lemma the elementary properties of the W-function that we use. For
a general reference on the W-function, see, for example, [7].

Lemma 5.2. The W-function satisfies the following.

(1) W is strictly increasing on [—e™!, o0).
(2) W(0) =0, and hence W(t) > 0ift > 0.
(3) We have W(tlogt) = logt ift > e ™.
(4) The derivative of W is given on (—e™!, c0) by

U40) 1
W’ t) = = .
® (L+W(@) t+ev®
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY 31

FIGURE 2 The two spiralsr = ¢g(8) and r = h(6), with the domain Q highlighted in gray.

5.2 | Construction

We define two spirals in polar coordinates. The first one is the spiral r = g(8), where

1

9(6) = 3T0g0’

9 € [60’ OO),

where 6,, > 27 is some starting angle. The second one is given by r = h(8), where

9(6) + g(6 + 27)

h() = >

, B €8y, )

that is, the spiral r = h(0) lies exactly halfway between the successive points where the spiral r =
g(6) meets a specific ray from the origin. Using the standard symbol i for the complex imaginary
unit, we define our domain Q C C by

Q={re?® : 0<r<g(6),0 € (6,8, + 2]}

See Figure 2 for an illustration of Q and the spirals.
We parameterize Q in the following way: let

U={r06)erR’: 626,40 +2m)<r<g®)}
in which case the map (r, ) ~— re’® maps U bijectively to Q \ {0}. Let « € (0,1]. We define f : Q\

{0} — C on the two regions between the spirals r = ¢(6) and r = h(6) in terms of polar coordinates
(r,0) € U : when h(0) < r < g(0), we define the complex-valued output of f by

f(@r,0) = o(r) —iloglog®,

where ¢(r) : [0,7,] — R is an increasing absolutely continuous function to be fixed later, with
ro > 6, 1og™! @,. In the other region where g(6 + 27) < r < h(6), we instead define

- _j 1
f(r,0)=o() llOgW<2r—g(6+27r)>'

This defines f on all of Q \ {0}.
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32 | DOLEZALOVA ET AL.

We briefly verify that f is indeed continuous on Q \ {0}. If r = h(9), then

1 _ 1
10gW<2r -906+ 2n)> B 1ng<2h(e) —g(6 + 271))
1

) = logW(6logb) = loglog o,
9(6)

=logW<

which verifies that f is continuous on the spiral r = h(8). On the other hand, if r = g(6 + 27),
then

1 1
looW| —— ) = logW| ———
% <2r—g<e+zn>> % <g<e+2n>>
= log W((6 + 27)log(6 + 27)) = loglog(6 + 27),

which verifies continuity of f on the spiral r = g(8). Hence, f is continuous on Q \ {0}.

5.3 | The first region

We then compute [Df| and J; in the region B C Q where h(6) <r < ¢(6) in terms of our polar
coordinate parameterization. In polar coordinates, the derivative matrix of f becomes

9, Re(f) r'dsRe(N] _ [¢'(r) 0 4G 0
3, Im(f) r18,Im(f) 0 —rlotlog™'e] | 0 —rlg®)]"

As we, moreover, have r > h(0) = (¢(6) + ¢g(6 + 27))/2 > g(6)/2, we obtain the upper bound
r1g(6) < 2.
Hence, we have the estimate
IDF(r, 0 <4+ @' ().
Note especially that |D f| is bounded in B when ¢ is Lipschitz. Moreover, we have |Df| € L*(B)
as long as r(¢'(r))? € L([0,r,]).
On the other hand, J f(r, 0) = —r~1¢'(r)g(6), which is negative because ¢(r) is increasing. Fur-

thermore, —J;(r,6) is bounded from above by 2¢'(r). Hence, in order to achieve the desired
condition |Df|? + K|J 7l < Z, we arrive at the following valid choices for £ and K:

2(r,0) = 6 + 3(¢'(r))?, K(r,0) = max(¢'(r), 1). (5.1)

5.4 | The second region

Next, we consider the region A C Q where we have g(6 + 27) < r < h(9) in terms of our polar
coordinate parameterization. We still have 8, Re(f) = ¢/(r) and 8, Re(f) = 0, which are square
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 33

integrable whenever r(¢'(r))? € L'([0,7,]). The next step is then to compute d, Im(f) and
0 Im(f). We use the shorthands

T=0+2m, u=Qr-g)"

For 8, Im(f), we have ,u = —2u?, and we may hence use Lemma 5.2 to obtain

1 W(u) (_ 2) _ 2u

O (=log W) = = T W) REO)

For 3, Im(f), we have dpu = —u? - (—¢' (1)) = —u?(1 + log(r))/(z log® 7), and hence Lemma 5.2
similarly yields

(1 +logt)u
1 + W(u))r2log? 2

9g(—logW(w)) =

We thus arrive at the derivative matrix

o, Re(f) riggre(n] _| # @+ logou

0, Im(f) r7'sIm(f)| 1+ W) r(Q+W(u)r2log’t

To estimate these derivatives, we note that ¢g(7) < 2r — g(t) < ¢(6) in our region. Inverting all
terms, it follows that 8logf < u < tlogz. As W is increasing and W (tlogt) = logt, we hence
have log6 < W(u) < logt. Moreover, recalling the notation from the beginning of Section 4.4, it
is reasonably easy to see that log(6) ~ log(z) and ¢(8) = ¢(z) for 6 € [6,, ). In particular, we
have

u =~ 6logb and W(u) ~ log6.
We can then estimate |0, Im f(r, 0)| from both sides by

261ogb
1+logt

2tlogt
< 19,1 O € ———,
19, m. £(r.0)] 1+ log6
implying that
|0, Im f(r,0)| ~ 6. (5.2)

To bound r~13, Im(f), we first use the above estimates to obtain

1 < flogb
6logé ™~ 7210’ ¢

1+logt <1
tlogz(1 +log6) ~ Ologf’

< 0gIm f(r,0) <

That is, 0g Im f(r,0) ~ ¢g(6). Then, as g(7) < r < h(B) < ¢g(8) in our domain, and as g(t) ~ ¢g(b),
we in fact have r ~ ¢(8). Hence,

0 Im f(r,0) _
. ~

1. (5.3)

In particular, the function r~!3, Im(f) is bounded and hence clearly square integrable over A.
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Next, we check the square integrability of 3, Im(f). We begin by investigating the integral of an
arbitrary function of 6 over A under our chosen parameterization. Letting F : [, o) — [0, c0),
we use polar integration to get

/A F(6) = /9 Ooo /] Z()Q)F(e)rdrde / (h(®) — g5 (9)

Moreover, we have

g(0) + g(6 + 2m) 9(0) — g(0 + 2m)

h(®) — g(z) = 5 — g0 +2m) = >
1 1 1 _ (6 +2m)log(6 + 27) — 6log0
" 2\0Blogh (6+2m)log6+27)) 266 + 27)logOlog(6 + 27)

_ 2mlog(6 + 27) + Olog(1 + 27 /6) <1
© 266 +2m)logBlog6 +27) ~ 62logh’

Note in particular that in the last step of the above computation, we have 6 log(1 + 27 /9) =
log((1 + 27/6)°) — logexp(27) = 2 as & — o0, so hence the dominant term in the numerator is
27 log(6 + 27r). We thus finish our estimate as follows:

* F(©) *_F@©)
[Fos [ 0@ g pes [ S0 (5.4

Now, as |3, Im(f)|?> < 62 by (5.2), we conclude that |3, Im(f)| € L?(A) by taking F(0) = 62 in
(5.4), and observing that the resulting integrand 6! log™2 8 has a finite integral. We thus con-
clude that if r(¢/(r))? € L'([0,r,]), then f € W2(Q \ {0}, C), and consequently f € W'3(Q, C)
by removability of isolated points for planar W1-2-spaces.

It remains to find suitable choices of K and . We choose = 0 in this region, in which case we
require K > [Df|*/J ;. By (5.2) and (5.3), we have

IDF(r.0)° < (¢ (r)* + 62
On the other hand, we have
148 2 ¢/(r).

Consequently, we may choose X and K so that

2

0
@'(r)

%(r,0) =0, K(r,0)~¢'(r) + + 1. (5.5)

5.5 | The results

It remains now to state our choices of ¢ and the resulting counterexamples. We begin with
Theorem 1.5, recalling first its statement.

Lo RIPUOD pUe SWiB 1 83 88S *[£202/TT/TZ] uo ARigiTauliuo A|iIM ‘ARiqITeIASALL JO AISBAIUN Aq SESZT'SWI(/ZTTT 0T/I0P/WO0"A3|1M" A1 1BUI|UO"D0SUTRLUPUO|//Sd1Y Wo14 pepeo|umoq ‘0 ‘05697 T

AL

0 a1 A.

35US017 SUOWILLOD) aA[Ea1D 3|cedt|dde ayy Aq pausenob afe sajoilie O ‘8sn Jo sajn. 10y Akelqi auljuQ A8|Im uo



MAPPINGS OF GENERALIZED FINITE DISTORTION AND CONTINUITY | 35

Theorem 1.5. There exist a domain Q C R? and a Sobolev map f € W'2(Q, R?) such that 0 € Q,
f ec@\{0},R?),lim,_|f(x)| = 00, and Df € M,(K,Z) with

Tel®Q) and KelLY(Q).
Proof. We use the above construction with 6, = 27, r, = 1, and

p(r)=r.

Notably, ¢ is Lipschitz, and consequently the resulting map f is Lipschitz in B. This choice indeed
satisfies r(¢’(r))?> = r € L'([0,1]),s0 |[Df| € L>(Q \ {0}). Moreover, by (5.1), both X and K are con-
stant in the region B. As T = 0 in the other region A, we have = € L®(Q). For K € L'(Q), as ¢’ is
constant, it suffices by (5.5) to show that
/ 6% < .
A

But this is true by (5.4) with yet again F(6) = 62. Finally, as x — 0, the imaginary part of f(x)
clearly tends to infinity. O

The remaining result to prove is Theorem 5.1.

Proof of Theorem 5.1. The case g = oo is exactly the result of Theorem 1.5. Hence, we may assume
that g € [1, o).
We use the above construction, this time with the choice

r
o(r) = / (2P -2 log_7/4+p_1 t~1dt.
0

Note that by p € [1,2], we have 2p~! — 2 > —1. Moreover, the case 2p~! — 2 = —1 corresponds to
p = 2, in which case —7/4 + p~! = —5/4 < —1. Hence, the integral used to define ¢(r) is finite
for all » > 0 small enough, and we may hence choose r, and 6, so that ¢(r) is a finite-valued
increasing function on [0, r,]. By our choice of ¢, we have

¢'(r) = p2p' =2 10g‘7/4+p_1 r 1L (5.6)

We first determine the degree of integrability of ¢’(|x|) over Q, as this is used for many parts in
the verification that our example is as desired. Indeed, if s € [1, o0), we have by (5.6) that

’ N "o dl”
< . 5.7
[y s [M s o (57

This integral is finite if 2s — 2sp~' — 1 < 1, which is equivalent to p~' +s~! > 1. Note that in

the extremal case p~! + s~! = 1, the finiteness of the integral also requires that 7s/4 — sp~! > 1;

however, this condition rearranges to p~! + s~! < 7/4, which holds in the extremal case because
14 1

p o +s =1
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We have Z(x) < 6 + 3(¢’(|x]))? and Z(x)/K(x) < 6 + 3¢'(|x|) in B by (5.1), and we also have
¥ =3/K =0 in A. Hence, (5.7) with s = q yields that X/K € LI(Q) and X € LY/2(Q) if p~! +
q~! > 1. Moreover, |Df| € L*(Q) was shown to be equivalent with r(¢’(r))? € L'([0,r,]): refer-
ring to (5.7) with s = 2, thisis true if p~! + 27! > 1, which holds due to our assumption that p < 2.
As our last application of (5.7), we have by (5.1) that K € LP(B) if ¢'(r) € LP(B): this is true if
2p < 4, which again holds by our assumption that p < 2.

It remains to show that K € LP(A). For this, it suffices by (5.5) to show the LP-integrability of
@'(r)and 6% /¢'(r) over A. AsK(r,0) > ¢'(r) in B, the ¢’(r)-term is covered by the same argument
as used previously for K € LP(B). For the other term, we again use (5.4). Indeed, we have

< 6 >" __ e 6°P (6 log 6)*~*F . @
@' (r) log™ 7P+ =1 = 1og="P/4*1((0 + 277) log(6 + 27)) " logP/+1(6)

for all 6 € [6,, ). Selecting F(6) = 62 log' "P/*(6), the resulting integrand 6= log~'~P/4(6) in
(5.4) is integrable whenever —1 — p/4 < —1, which is clearly true. We conclude that K € LP(Q),
completing the proof. O
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