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ABSTRACT
Humans are exposed to diverse communities of microbes every day. With more time
spent indoors by humans, investigations into the communities of microbes inhabiting
occupied spaces have become important to deduce the impacts of these microbes
on human health and building health. Studies so far have given considerable insight
into the communities of the indoor microbiota humans interact with, but mainly
focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though,
building envelopes have the potential to contain environments that would support the
growth of microbial communities. But due to design choices and distance from ground
moisture, for example, the temperature and humidity across a building will vary and
cause environmental gradients. These microenvironments could then influence the
composition of the microbial communities within the walls. Here we present a case
study designed to quantify any patterns in the compositions of fungal and bacterial
communities existing in a building envelope and determine some of the key variables,
such as cardinal direction, distance from floor or distance from wall joinings, that
may influence any microbial community composition variation. By drilling small holes
across walls of a house, we extracted microbes onto air filters and conducted amplicon
sequencing. We found sampling height (distance from the floor) and cardinal direction
the wall was facing caused differences in the diversity of the microbial communities,
showing that patterns in the microbial composition will be dependent on sampling
location within the building. By sampling beneath the surfaces, our approach provides
amore complete picture of themicrobial condition of a building environment, with the
significant variation in community composition demonstrating a potential sampling
bias if multiple sampling locations across a building are not considered. By identifying
features of the built environment that promote/retardmicrobial growth, improvements
to building designs can be made to achieve overall healthier occupied spaces.

Subjects Microbiology, Molecular Biology, Environmental Health
Keywords Indoor microbiota, Built environment, Occupant health, Building mould

INTRODUCTION
Investigations into microbial communities of occupied spaces of the built environment
(the indoor microbiota) typically use methods that collect filtered air particles or dust that
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accumulate on indoor surfaces (e.g., Maestre et al., 2018; Pekkanen et al., 2018; Fu et al.,
2020). These methods facilitate large-scale projects (especially citizen science (Barberán et
al., 2015a; Barberán et al., 2015b) and are both straightforward and non-destructive, but
these samples cannot separate the microbial contributions of the structural aspects of the
building (e.g., the building envelope) from those derived from the building occupants
(e.g., hair or skin) (Cao et al., 2021) or the surrounding environment (e.g., soil, pollen
grains) (Barberán et al., 2015a), with limited information on how any structural aspects of
the building could be contributing to the microbiota of the built environment.

Buildings are complex, three-dimensional structures that contain significant spaces
beneath the occupant accessible surfaces. By design, these areas are intended to be dry
environments, but humidity can be found in these spaces due to air flow (Fedorik et
al., 2021). Evidence of microbial communites inhabiting extreme environments such as
hyper-arid areas within the Atacama desert (Schulze-Makuch et al. 2018; Hwang et al.,
2021) or the International Space Station (Checinska Sielaff et al., 2019), raises the potential
for these building areas to host viable microbes. Some fungi genera and actinomycetes,
for example, have been cultured from insulation material samples (Pessi et al., 2002) and
can penetrate building structures (Pessi et al., 2002; Airaksinen et al., 2004). The presence
and potential contamination of indoor air of these microbes is of significant concern due
to their detrimental effects on health (Järvi et al., 2018). Investigating factors influencing
microbiota formation, such as building design, environmental conditions and materials,
that have an impact on these microbial communities would allow for better predictions
and control over building health problems, including material degradation, indoor air
quality and human health concerns due to microbial interactions. Establishing a clearer
picture and better understanding of the microbes occupying the whole built environment
could influence building policies and demonstrate the need to adapt for a healthier home.

Building design and structural condition are therefore likely to be a key determinant
of the microbiota composition within building structures due to microenvironmental
variation. For example, gradients in temperature, and/or moisture in a building will be
an expected consequence of material choice and envelope depth (Fedorik et al., 2021), or
cardinal direction in which a structure is facing (Kabátováa & Ďuricaa, 2019). Examining
the microbes that live beneath the surface within an occupied space is essential for
establishing a fuller picture of the microbiota of the built environment. In-wall sampling
though must take these potential gradients into consideration as sampling in just few
locations may result in sampling bias.

The goal of this study was to investigate possible differences in microbial (bacteria and
fungi) communities, across different locations within a building, that have accumulated
over time; thereby highlighting the potential bias that may arise from insufficient in-wall
sampling. Additionally, we aimed to identify potential factors driving any variation in
microbial communities. To test our approach, we selected a residential dwelling situated
within a forested area in Finland. As a stand-alone building with walls facing all cardinal
directions, it served as an ideal case-study. Samples were taken by drilling small holes (Ø=
12 mm) into different areas of a home to make a contrast between cardinal directions in
which the wall faces, the distance from floor level and the distance from wall joints. Air
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samples were then extracted from spaces between internal and external walls to obtain
a sample of microbes which was then quantified using amplicon sequencing. This novel
approach identified significant spatial variation in the bacterial and fungal communities to
demonstrate the diversity of microbes within building materials.

METHODS
Sampling plan and microbial extraction
On September 20th, 2020, we sampled a traditional Finnish wood-framed house with
a natural gravity-driven ventilation located in municipality of Vaala, Finland, that had
traditional sawdust and wood shive insulation from 1962 on cast concrete foundation by
inserting a sterile tygon tube into 12 mm holes that had been drilled into the walls, with
the hole then sealed using modelling clay to prevent collection of ‘indoor air’ from living
space. Air from within the building element was pumped (20 min at 3 litres/min) using a
SKC universal air pump (model 224-PCMTX4K) over a SureSeal Blank Styrene cassette
containing a 25 mm PTFE membrane filter. Holes were drilled in different sampling areas:
(1) direction (i.e., the cardinal direction in which the wall is facing), (2) height from floor
level (lower, middle and upper) and (3) position (near left wall joining, centre of the wall
and near right wall joining) (Fig. 1). Additionally, air samples were taken throughout the
day around the outside of the building and from various rooms within the building.

DNA extraction and sequencing
Filters were soaked in molecular grade water for 12 h. This was to ensure microbes were
washed ‘out’ of the filters and easily accessible for DNA extraction. DNA was extracted
from the filter and its water using Qiagen DNeasy® PowerSoil® Pro Kit according to the
manufacturer’s protocol, but with the following adjustments: (1) PowerBead Pro Tubes
were vortexed for 20 min at maximum rpm speed. DNA was also extracted from control
samples: only buffer, molecular grade water and buffer, and unused filters and buffer.

Bacterial and fungal taxa was then identified by amplicon sequencing performed
on an Illumina NovoSeq by NovoGene Ltd (https://www.novogene.com/us-en/).
Bacterial 16S V4 region (universal primers GTGCCAGCMGCCGCGGTAA and
GGACTACHVGGGTWTCTAAT) and the fungal ITS2 region (universal primers
CATCGATGAAGAACGCAGC, TCCTCCGCTTATTGATATGC) were targeted.

Processing and analysing fungal and bacterial sequences
Primers were removed using cutadapt v1.10 (Marcel, 2011) on ITS reads, while DADA2
v1.18 (Callahan et al., 2016) was used to remove primers and truncate (forward reads at
base 220, reverse reads at base 200) the 16S reads. DADA2 was used for both ITS and
16S data to merge paired-end reads, remove chimaeras and identify amplicon sequence
variants (ASVs) (Callahan et al., 2016). Taxonomy was assigned to ITS and 16S ASVs using
UNITE v. 10.05.2021 (Nilsson et al., 2015) and the SILVA v.138 database (Quast et al.,
2013) respectively. decontam v.1.14.0 (Davis et al., 2018) was used to eliminate potential
contaminant ASVs identified in the control samples, using the prevalence method and the
probability that a read is a contaminant threshold of 0.5 (Davis et al., 2018).To remove low
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Figure 1 Schematic showing the layout of the sampling site.Holes were drilled into the walls of a tradi-
tional Finnish wood-framed house which contained two bedrooms, a living room and a kitchen. The toilet
was located in an out-house. Samples were taken from walls facing different cardinal direction, at differ-
ent heights (lower, middle and upper), and at different positions (left, centre and right). The grid squares
show the different areas sampled. Although only shown on a couple of walls, this scheme was followed
on all sampled walls. Sampled walls are highlighted in yellow. Wall temperatures and humidity measure-
ments, where taken, are labelled in white font, outside temperature and humidity in blue, inside in dark-
grey, and floor in black. Measurements were taken during the day of sampling.

Full-size DOI: 10.7717/peerj.16355/fig-1

frequency ASVs which were most likely a result of sequencing errors, while also avoiding
the removal of rare ASVs, ASVs that had a total count of 20 across the entire dataset were
removed.

Statistical analysis
Statistical analysis was performed using R v.4.1.3 (R Core Team, 2021). The package FEAST
v.1.0 (Fast Expectation-mAximization microbial Source Tracking) (Shenhav et al., 2019)
was used to estimate the contributions of the microbial communities from indoor air and
outdoor air to the microbial communities of the in-wall samples. To do this, the air samples
were labelled as ‘sources’, and the wall samples were as labelled ‘sinks’. Total Sum Scaling
(TSS) normalization was used to remove any bias related to differences in sequencing depth
in different libraries by dividing each ASV count with the total library size per sample.
Analyses of the microbial communities was then performed on the relative abundance
of each ASV using phyloseq v.1.38.0 (McMurdie & Holmes, 2013) and the package vegan
v.2.5-7 (Oksanen et al., 2019). The package vegan was used to calculate the alpha diversity
measures (the number of different taxa groups and their abundance, and the number of
distinct taxa) and beta diversity measures (the diversity differences between two samples).
Predictors of variation in alpha diversity was assessed using a generalized linear model that
contained alpha diversity as the response variable and direction, height and position as
predictor variables. We detected no over-dispersion in the model. We compared the full
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model with reduced models from which a predictor variable was omitted using a F-test
to obtain p-values. The package vegan was used to conduct PERMANOVA tests (using
the adonis2() command, using the Bray Curtis distance method, and setting permutations
to 999) to assess predictors of variation in beta diversity, and was also used to conduct
a distance-based redundancy analysis (dbRDA) ordination method which we used to
visualise differences between the microbial communities across different groups (Legendre
& Anderson, 1999). To examine the ASVs driving any variation in the beta diversity, the
SIMPER() command from vegan was used to calculate similarity percentages (Clarke,
1993). From the identified genera, a Kruskal–Wallis test was conducted, followed by a
Dunn test to assess pair-wise significant differences (Dinno, 2017). Statistical significance
was based on adjusted p-values using the Bonferroni method (Dunn, 1961). Plots were
produced using ggplot2 v.3.3.6 (Wickham, 2016) and patchwork v.1.1.2 (Pedersen, 2022).

RESULTS AND DISCUSSION
To quantify patterns of microbial colonization, we first measured alpha diversity using
Shannondiversity (the number of different taxa groups and their abundance), and amplicon
sequence variant (ASV) richness (the number of distinct taxa). For fungal communities,
the height at which the samples were taken had a significant effect on Shannon diversity
(Table 1), with the lowest diversity found in the middle of the wall (although a Tukey
posthoc test did not show pairwise significant differences: Lower vsMiddle Padjusted= 0.24;
Middle vs Upper Padjusted= 0.12; Lower vs Upper Padjusted= 0.96) (Fig. 2B). There were no
significant differences between the cardinal direction of the wall and positions (Figs. 2A,
2C; Table 1). Although not significant (Table 1), height from ground showed a qualitative
pattern where the alpha diversity measurements of the bacterial communities decreased
from the lower to the upper part of the wall (Fig. 3B). We were therefore interested in
examining whether the Shannon diversity and richness correlated with a quantitative
measurement of the height of the wall. When taking the distance from the floor whereby
the holes were drilled into consideration as linear variables (20 cm, 120 cm, 220 cm),
we found the Shannon diversity of bacterial communities significantly decreased as the
distance from the floor increases (F1,21= 4.12, P < 0.04). As with the alpha diversity of
fungal communities, there were no significant differences between the directions and
positions (Figs. 3A, 3C; Table 1).

Fungi and bacteria can inhabit diverse environments (Storze & Hengge, 2011; Haruta &
Kanno, 2015), with the community composition dependent on the outcome of selection
and competition among taxa. In natural environments, environmental variation in,
for example, humidity (Wang et al., 2021), moisture (Borowik & Wyszkowska, 2016),
temperature (Nottingham et al., 2022), and pH (Scholier et al., 2022) are important drivers
of fungal and bacterial composition and activity. Just as there are environmental gradients
in nature (Wang et al., 2021), typically, increasing higher up you go in a wall is associated
with a dryer and warmer environment (Fedorik et al., 2021). It is these variations that would
elicit changes in microbiota composition.

For fungal and bacterial richness, the variable that had the greatest variance was the
cardinal direction in which the sampled wall was facing (Table 1). Samples taken from west
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Table 1 Statistical results from the F-tests for the alpha diversity of fungal and bacteria communities. Results were obtained by comparing a
generalized linear model containing either Shannon diversity or number of individual ASVs as the response variable and direction, height and posi-
tion as the predictor variables with a reduced model where a predictor variable was omitted.

Shannon diversity index Number of individual ASVs

Kingdom Variable Estimate± s.e. R-squared Fd.f P-value Estimate± s.e. R-squared Fd.f P-value

Direction 2.06± 0.39 0.13 1.841,21 0.16 21.5± 10.34 0.28 2.091,21 0.12
Fungi Height 2.15± 0.27 0.13 4.111,21 0.03* 29.64± 8.59 0.01 0.381,21 0.69

Position 2.04± 0.25 0.04 0.371,21 0.68 35.71± 7.23 0.11 1.671,21 0.21
Direction 3.05± 0.26 0.13 1.761,21 0.18 202.67± 38.55 0.18 2.501,21 0.08

Bacteria Height 3.31± 0.18 0.15 2.881,21 0.08 236.73± 28.54 0.11 2.841,21 0.08
Position 2.93± 0.18 0.02 0.991,21 0.38 182.93± 26.28 0.03 1.571,21 0.23

Notes.
*Significant P-value.

facing walls had the highest number of individual ASVs (Figs. 2B, 3A). Previous studies
on indoor microbiota have also shown cardinal direction to have an important impact
on bacterial communities (Fahimipour et al., 2018; Horve et al., 2020). Though focusing
on viable bacteria on surfaces, rather than in-wall sampling, Horve et al. (2020) found
west facing rooms with windows to have a higher abundance of viable bacteria compared
to rooms facing other cardinal directions due to direct sunlight (Horve et al., 2020). The
intensity of direct sunlight will vary across different seasons and as such, studies have
shown exposure to indoor microbes can vary across seasons (Garrett et al., 1997; Rintala
et al., 2008). The heat generated by direct sunlight can increase indoor humidity - a factor
that contributes to these seasonal variations (Frankel et al., 2012; Knudsen, Gunnarsen &
Madsen, 2017). Therefore, when investigating microbial compositions, humidity within
the building envelope would likely be an important environmental factor causing variation.

To examine the most relatively abundant taxa, we grouped the ASVs at genus level
and identified the top fifteen (see Figs. S1 and S2 for fungi and bacteria, respectively).
Several of the top relatively abundant genera identified in this study are associated with
building and occupant health. For example, fungal species of Antrodia, and Heterobasidion
are key house-rot fungi, as they decay wooden building materials (Huckfeldt & Schmidt,
2006; Schmidt, 2007; Schmidt & Huckfeldt, 2011; Gabriel & Švec, 2017; Haas et al., 2019).
Sarocladium species are associated with problems in biodegradation of mineral-based
materials (Ponizovskaya et al., 2019). Species of Aspergillus are reported from multiple
studies of the indoor environments (Tanaka-Kagawa et al., 2005; Mousavi et al., 2016;
Chen et al., 2017) and some species from this genus, along with species of Phialocephala,
affect the severity of asthmatic symptoms (Hedayati, Mayahi & Denning, 2010;Dannemiller
et al., 2016;Mousavi et al., 2016). Many of the top relatively abundant bacterial genera have
also been identified in studies on the indoor environment. Acinetobacter (Hui et al., 2019;
Wu et al., 2022), Cutibacterium (Sun et al., 2022), Staphylococcus (Moon, Huh & Jeong,
2014; Madsen et al., 2018) and Blaudia (Fu et al., 2021), for example, occur in samples of
indoor dust and swabs. Previous studies have also made links between these genera and
negative impacts on human health (Kozajda, Jeżak & Kapsa, 2019; Fu et al., 2021; Sun et
al., 2022;Wu et al., 2022). Further investigations are necessary to determine if similar risks
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Figure 2 ITS alpha diversity analysis: The average Shannon diversity index and number of individ-
ual ASVs (±standard error of mean). Comparing (A) direction, (B) height, (C) position. Smaller points
represent raw data from each sample. Sample sizes: internal= 5, north= 7, west= 6, south= 4, east= 6;
lower= 11, middle= 9, upper= 8; left= 8, centre= 14, right= 6. An * indicates a significant F-test re-
sult.

Full-size DOI: 10.7717/peerj.16355/fig-2

exist when these genera are inhabiting areas that are not frequently in direct contact with
humans. Regarding fungal genera, it is possible that they may remain dormant and only
become problematic when certain environmental changes occur, such as excess moisture.
But identifying the presence of these microbial genera is important because it provides
valuable insights into the potential risks and could allow for mitigation of problems.

As the microbial communities observed in household surfaces can be sourced from
building occupants (Cao et al., 2021), or the surrounding environment (Barberán et al.,
2015a) and geographic location (Chen et al., 2017), we wanted to examine the potential
impact of the indoor and outdoor microbial communities on the communities found
within the walls. Source tracking revealed that the fungal communities found within the
wall are likely to be independent of the communities found in the indoor and outdoor air
(Fig. S3). Within the bacterial communities, half of the wall samples had more than 50% of
ASVs that could not be sourced to the air samples (Fig. S4), while the remaining had more
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Figure 3 16S alpha diversity analysis: The average Shannon diversity index and number of individ-
ual ASVs (±standard error of mean). Comparing (A) direction, (B) position, (C) height. Smaller points
represent raw data from each sample. Sample sizes: internal= 5, north= 7, west= 6, south= 4, east= 6;
lower= 11, middle= 9, upper= 8; left= 8, centre= 14, right= 6.

Full-size DOI: 10.7717/peerj.16355/fig-3

of a mix of air and unknown sources (Fig. S4). Of the top fifteen bacterial genera (Fig. S4),
a number of these could be traced to human as a source, such as Faecalbacterium (Bai et al.,
2023), Blaudia (Dobay et al., 2019) and Cutibacterium (Sun et al., 2022), or could be traced
to soil, for example Sphingomonas (White, Sutton & Ringelberg, 1996) and Acinetobacter
(Hui et al., 2019). Understanding when microbes could colonize the building, such as
during material processing or when being stored on a building site, and investigating if
their relative abundance increases over time, would provide information on their potential
sources and dynamics within the built environment. This knowledge could contribute to a
better understanding of the factors influencing the microbiota of a building. Additionally,
as many microbes have dormant stages, it would be interesting to determine which of these
taxa are viable.

We next quantified patterns in beta diversity (the diversity between two microbial
communities). To determine the sampling variable most influencing differences in
communities, we analysed Brays-Curtis dissimilarity (index based on the abundance
of individual ASV groups) and Jaccard distance (index based on the presence and absence
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Table 2 Statistical results from the ADONIS tests for the beta diversity of fungal and bacteria commu-
nities.Distance matrices Brays–Curtis dissimilarity and Jaccard were both tested with each variable used
as the predictor variable.

Brays–Curtis Jaccard

Kingdom Variable R-squared P-value R-squared P-value

Direction 0.16 0.31 0.15 0.35
Fungi Height 0.08 0.71 0.07 0.68

Position 0.07 0.67 0.07 0.74
Direction 0.21 0.08 0.19 0.06

Bacteria Height 0.03 0.90 0.04 0.97
Position 0.08 0.25 0.07 0.41

of individual ASV groups). For bothmeasures, direction particularly caused variation across
the fungal and bacterial communities (Table 2, Figs. 4A, 5B). As with height, differences
in macroenvironment will influence the survival and selection of different microbial taxa
(Storze & Hengge, 2011; Haruta & Kanno, 2015). Variation among walls in their exposure
to wind and/or sun can generate differences in envelope temperature that could explain
variation in the community composition.

To investigate how the most abundant ASVs contributed to the variability, we examined
the differential abundance patterns of the top fifteen genera across the cardinal directions
(see Figs. S1 and S2 for fungi and bacteria, respectively). To do this, we used similarity
percentages (Clarke, 1993) and identified the genera that most contributed to the beta-
diversity measures based on Bray–Curtis dissimilarity indices. Among the top fifteen
relatively abundant genera, eleven fungal and ten bacterial genera were present across
the pairwise comparisons and were therefore considered to be influencing the observed
variations (Table S1). A Kruskal–Wallis and subsequent Dunn test on the eleven fungal
genera found a significant difference in the relative abundance of Ceriporiopsis; the relative
abundance was significantly higher in west-facing walls compared to east (Table S2).
The relative abundance of the bacterial genus Bradyrhizobium was significantly higher
in internal walls compared to north-facing walls (Table S2). A limitation with our data,
though, is sample size, and a larger dataset would have greater statistical power. We would
expect buildings with different uses and built using different materials to exhibit different
patterns across the structure. Further research involving a diverse range of building types
and materials would provide an interesting and comprehensive understanding of the
factors driving compositional changes in building microbiota. Additionally, a further
direction could be to also quantify the microbial load at different locations, although this
would be challenging to do so (Galazzo et al., 2020). Nonetheless, despite being limited
to one building, we show the occurrence of compositional changes in microbiota, even
across a relatively small building. As such, our data shows how in-wall sampling needs to
encompass multiple locations within and across different regions of any building element
to avoid sampling bias when studying the building microbiota.
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Figure 4 Fungi beta diversity analysis. The ordination was obtained by conducting a distance-based re-
dundancy analysis based on Brays–Curtis dissimilarity matrices for (A) direction, (B) height, (C) posi-
tion. Each smaller point represents the fungal community in a sample. Ellipses represent a 95% CI centred
around a centroid shown by a transparent, larger point. Sample sizes: internal= 5, north= 7, west= 6,
south= 4, east= 6; lower= 11, middle= 9, upper= 8; left= 8, centre= 14, right= 6.

Full-size DOI: 10.7717/peerj.16355/fig-4

CONCLUSION
Here we present a case study using an overlooked approach in sampling and understanding
the processes that determine the composition of the building microbiota. Our aim was
to characterize the microbial communities within the building envelope and determine
which building elements, if any, have the largest impact on compositional variation found
within structures. Our results show significant differences in the alpha diversity across
different heights of the wall and that factors such as cardinal direction can elicit variation
in the community composition. While our study focused on one building, we show the
potential for diverse microbiota across the building envelope and that to get a fuller
picture of the microbiota of the built environment, variation across height or the cardinal
direction of the building must be taken into account during sampling. The identification
of independent communities within the walls shows that future investigations should
therefore think of a building as its own ecosystem amongst the indoor biome (Adams et al.,
2015). Studies should take into consideration these ‘hidden’ microbial communities that
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Figure 5 Bacteria beta diversity analysis. The ordination was obtained by conducting a distance-based
redundancy analysis based on Brays–Curtis dissimilarity matrices for (A) direction, (B) height, (C) posi-
tion. Each smaller point represents the bacterial community in a sample. Ellipses represent a 95% CI cen-
tred around a centroid shown by a transparent, larger point. Sample sizes: internal= 5, north= 7, west=
6, south= 4, east= 6; lower= 11, middle= 9, upper= 8; left= 8, centre= 14, right= 6.

Full-size DOI: 10.7717/peerj.16355/fig-5

have the potential to cause damage to buildings and cause problems to occupants’ health
while also accounting for microenvironmental changes across building structures. These
preliminary findings serve as the foundation for expanding our approach and delving
deeper into investigating the microbiotas beneath the surface.
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