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Abstract. We investigate the production of primordial black holes (PBHs) in a mixed
inflaton-curvaton scenario with a quadratic curvaton potential, assuming the curvaton is
in de Sitter equilibrium during inflation with ⟨χ⟩ = 0. In this setup, the curvature perturba-
tion sourced by the curvaton is strongly non-Gaussian, containing no leading Gaussian term.
We show that for m2/H2 ≳ 0.3, the curvaton contribution to the spectrum of primordial
perturbations on CMB scales can be kept negligible but on small scales the curvaton can
source PBHs. In particular, PBHs in the asteroid mass range 10−16M⊙ ≲ M ≲ 10−10M⊙
with an abundance reaching fPBH = 1 can be produced when the inflationary Hubble scale
H ≳ 1012 GeV and the curvaton decay occurs in the window from slightly before the elec-
troweak transition to around the QCD transition.
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1 Introduction

The study of primordial black holes (PBHs) formed via gravitational collapse of large primor-
dial density fluctuations was initiated over 50 years ago [1, 2]. Already in [3] it was proposed
that PBHs could form a cold dark matter component in the universe. The possibility that
PBHs of mass M ≳ 10−10M⊙ would constitute all of the dark matter is already ruled out by
constraints from lensing, dynamical effects, structure formation and gravitational waves [4].
In the asteroid mass window, 10−16M⊙ ≲ M ≲ 10−10M⊙ the constraints are uncertain and
it is possible that PBHs with masses in this range could constitute a dominant dark matter
component [4]. Even a subdominant PBH contribution to dark matter can have character-
istic observational imprints, such as gravitational waves from PBH mergers testable with
LIGO-Virgo-KAGRA data [5–9]. Observational signals associated to PBHs are among the
very few ways to probe small scale primordial perturbations and the process responsible for
their generation.

Several mechanisms for producing PBHs have been investigated in the literature, in-
cluding perturbations produced during inflation [10–32], cosmic strings [33–35], phase tran-
sitions [36–38], dark matter clumps [39], and bouncing cosmologies [40, 41]. In this work,
we focus on the curvaton scenario [42–46]. Several authors have already investigated PBH
formation in curvaton models [47–51] and other spectator scenarios [52–57] where the curva-
ture perturbation can acquire non-Gaussian contributions. The effect of this non-Gaussianity
is typically treated perturbatively, using the parameters fNL etc. [58–62]. Recently, a gen-
eral non-perturbative formalism for investigating the PBH abundance in the presence of
non-Gaussian perturbations has been developed e.g. in [63–65]. To our knowledge, the pre-
vious analyses of PBH production in the curvaton scenario have however focused on the case
where the curvaton field has a non-vanishing mean value during inflation, |⟨χ⟩| ≫ H, and
the curvature perturbation contains a leading Gaussian part proportional to δχ/⟨χ⟩ ≪ 1.
The non-Gaussianities can then be accommodated using a truncated expansion around the
Gaussian part, although see [48] for a discussion of limitations of this method when ⟨χ⟩ ≫ H.
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In this work, we will study PBH formation in the curvaton setup with a quadratic
potential, assuming ⟨χ⟩ = 0. This is the equilibrium configuration of a light spectator
during de Sitter inflation [66], provided the potential is minimized at χ = 0. Even if one
starts from an initial configuration with a non-zero ⟨χ⟩, the distribution is rapidly driven
towards the equilibrium during de Sitter inflation [66, 67].1 For ⟨χ⟩ = 0, perturbations
of the curvaton energy density obey the distribution of a squared Gaussian field and are
large, ⟨δρ2

χ⟩/⟨ρχ⟩2 = 2 [42]. Consequently, the curvature perturbation component sourced
by the curvaton has no leading Gaussian part and it can not be expanded in small pertur-
bations. Therefore, one needs to consider the full non-linear and non-Gaussian solution for
the curvature perturbation when investigating the PBH formation. The curvature pertur-
bation ζ on CMB anisotropy scales is Gaussian to a high precision [69] and contributions
sourced by δρχ/⟨ρχ⟩ must be strongly suppressed on these scales. If the curvaton spectrum
is sufficiently blue-tilted, it can however give a dominant contribution to ζ on small scales
k ≫ Mpc−1 where there are no constraints on non-Gaussianity. We focus on such a setup,
investigating a mixed inflaton-curvaton scenario with a strongly blue tilted curvaton com-
ponent which dominates the curvature perturbation on small scales and sources a strongly
non-Gaussian ζ with no leading Gaussian component. On the CMB scales, we require that
the spectrum of ζ is dominated by a Gaussian inflaton component and contributions from
the curvaton are suppressed to the 10−11 level at the CMB pivot scale k∗ = 0.05 Mpc−1. We
note that PBHs in a partially related phenomenological setup with a Gaussian blue tilted
spectator curvature perturbation component was investigated in [54].

We use the δN approach [70–73] to obtain a non-linear solution for the superhorizon
scale curvature perturbation. We expand the curvaton field χ(x) in spherical harmonics and,
following [63], truncate the expansion to the monopole when considering fluctuations relevant
for PBHs. Within this approximation, we compute the probability distribution for Cl(r)
which determines the compaction function C(Cl(r)). The compaction function C(r) equals
the comoving gauge density contrast smoothed over a radius r. Using Cc = 0.55 [74] as the
PBH collapse threshold and modeling the PBH mass with the collapse parameters obtained
in [75] for the power law spectrum, we explore the fraction of dark matter in PBHs fPBH
and the mass distribution f(M) as functions of the curvaton model parameters. We show
that the curvaton scenario with the quadratic potential and the equilibrium configuration
⟨χ⟩ = 0 can lead to very efficient PBH production. In particular, we find that the scenario
can produce asteroid mass PBHs, 10−16M⊙ ≲ M ≲ 10−10M⊙, with fPBH = 1 when the
inflationary Hubble scale H ≳ 1012 GeV, the curvaton mass m2/H2 ≳ 0.3 and the curvaton
decay occurs in the window from slightly before the electroweak transition to around the
QCD transition.

The paper is organised as follows. In section 2 we present the setup and in section 3
we compute the probability distribution for the compaction function. In section 4 we collect
the expressions for the PBH abundance fPBH and the mass distribution f(M). In section 5
we present our main results and summarise the discussion in section 6.

2 The mixed inflaton-curvaton setup

We investigate the PBH abundance in a mixed inflaton-curvaton scenario where the inflaton
generates the Gaussian, nearly scale invariant curvature perturbations on CMB scales and

1When the inflationary solution deviates from de Sitter, the relaxation towards the de Sitter equilibrium
may happen at a slower rate, or there may also be parameter combinations for which the equilibrium is not
reached [68].
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curvaton-sourced perturbations dominate on small scales relevant for PBH formation. We
assume the quadratic curvaton potential

V (χ) = 1
2m

2χ2 . (2.1)

We further assume that the curvaton distribution during inflation follows the de Sitter equi-
librium result with a vanishing mean value ⟨χ⟩ = 0 [66]. Ebadi et al. [76] recently examined
the production of gravitational waves for this case. For the quadratic potential, the cur-
vaton χ is a Gaussian field and for m2/H2 < 3/2 its spectrum at the end of inflation on
superhorizon scales is given by the standard power-law expression [77]

Pχ(k) =
(
H

2π

)2 ( k

kend

)3−2ν 22ν−1Γ(ν)2

π
, ν =

√
9
4 − m2

H2 . (2.2)

We denote the Hubble scale at the end of inflation by H ≡ H(tend), and kend = a(tend)H(tend)
is the mode exiting the horizon at the end of inflation. Perturbations of the curvaton en-
ergy density

δρχ(x)
⟨ρχ⟩

=
ρχ(x) − ⟨ρχ⟩

⟨ρχ⟩
= χ2(x)

⟨χ2⟩
− 1, (2.3)

obey the statistics of a Gaussian squared quantity, and the perturbations are large since
⟨δρ2

χ(x)⟩/⟨ρχ⟩2 = 2. Consequently, any contribution to the curvature perturbation sourced
by δρχ/⟨ρχ⟩ must be suppressed on the large scales k ≲ Mpc−1 probed by the CMB and LSS
data [69].

Using the δN formalism [70–73], the superhorizon curvature perturbation ζ in the mixed
scenario with inflaton sourced perturbations in the radiation component and the perturbed
curvaton component obeys the non-linear equation [78]

e4ζ − Ωχe
3ζχeζ + (Ωχ − 1) e4ζr = 0 . (2.4)

The individual curvature perturbations of the radiation ζr and curvaton ζχ fluids, and Ωχ

are given in terms of spatially flat gauge quantities by the expressions,

ζr(x) = 1
4lnρr(x)

⟨ρr⟩
, ζχ(x) = 1

3lnρχ(x)
⟨ρχ⟩

, Ωχ = ⟨ρχ⟩
⟨ρr⟩ + ⟨ρχ⟩

. (2.5)

Both ζr and ζχ are separately conserved, i.e. constant in time. For the quadratic potential
eq. (2.1), the curvaton component ζχ can be written in terms of the field χ as

ζχ = 1
3ln χ2

⟨χ2⟩
. (2.6)

Here and in the rest of the text we use χ ≡ χend to denote the curvaton field at the end
of inflation.
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The solution for the fourth order algebraic equation (2.4) can be written as [78]

ζ = ζr + ln

K1/2
(4 − Ωχ

12

)1/3
1 +

(
3ΩχK

−3/2e3(ζχ−ζr)

4 − Ωχ
− 1

)1/2
 , (2.7)

K = 1
2

P 1/3 + 4Ωχ − 4
4 − Ωχ

(
12

4 − Ωχ

)1/3

P−1/3

 ,
P =

(
3Ωχe

3(ζχ−ζr)

4 − Ωχ

)2

+

(3Ωχe
3(ζχ−ζr)

4 − Ωχ

)4

+ 12
4 − Ωχ

(
4 − 4Ωχ

4 − Ωχ

)3
1/2

.

Here the only time dependent quantity is the curvaton density parameter Ωχ. Assuming the
curvaton is subdominant at the onset of oscillations, which we define as H(tosc) ≡ m, the
density parameter for t ≫ tosc can be written as

Ωχ = Ωχ,osc
Ωχ,osc + aosc

a

≈ 0.136⟨χ2⟩
0.136⟨χ2⟩ + aosc

a M2
P
. (2.8)

Here we used that ρχ,osc ≈ (1/2)m20.816χ2 which follows from solving the curvaton equation
of motion in a radiation dominated universe. We approximate the curvaton decay as an
instant process at H(tdec) = Γ. Within this approximation ζ ≡ ζ(t > tdec) = ζ(tdec) is
obtained by evaluating eq. (2.7) at the moment tdec.

We assume the perturbation of the radiation component ζr is entirely sourced by the
inflaton and uncorrelated with the curvaton, ⟨ζrζχ⟩ = 0. We further assume ζr obeys Gaussian
statistics with the power law spectrum

Pζr(k) = Ar

(
k

k∗

)nr−1
, (2.9)

where k∗ = 0.05 Mpc−1. As explained above, we want to realise a scenario where the Gaussian
inflaton sourced perturbations ζr dominate the two point function of ζ on large scales and
generate the observed CMB spectrum with Pζ(k∗) = As = 2.10 × 10−9, ns = 0.965 [79].
Correspondingly, contributions from ζχ to the spectrum of ζ must be sufficiently suppressed.
To this end, we require

Pζχ(k∗) < 2 × 10−11 , (2.10)

which, as we show in appendix B, allows us to obtain the observed CMB spectrum with
Ar ∼ 10−9 and |nr − 1| ∼ 0.01, assuming Ωχ ≲ 0.9. Note that the underlying computation
is somewhat non-trivial as ζ is a strongly non-linear function of the non-Gaussian ζχ. The
condition (2.10) constrains the curvaton mass from below as we show in detail in appendix A,
and implies a strongly blue tilted spectrum both for the curvaton field eq. (2.2) and for ζχ.
On small scales, k ≫ Mpc−1, the connected correlators of ζ are dominated by ζχ which, as we
show below, can lead to efficient formation of PBHs. For the maximal inflationary Hubble
scale H ≈ 5.2 × 1013 GeV consistent with the observational bound on the tensor-to-scalar
ratio rT < 0.044 [80], eq. (2.10) implies m2/H2 ≳ 0.29, assuming instant transition from
inflation to radiation domination. The lower bound on m2/H2 slowly grows as a function of
decreasing H. For example, for H = 1.6 × 1011 GeV, eq. (2.10) implies m2/H2 ≳ 0.31, see
figure 6 in appendix B.
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3 Probability distribution of density fluctuations

The central quantity in determining if an overdense region collapses into a primordial black
hole is the compaction function C(r) [81–83] which for spherical overdensities equals the
comoving density contrast coarse-grained with a top hat window function over a spherical
volume of comoving radius r. Denoting the background equation of state by w = ⟨p⟩/⟨ρ⟩,
the expression for C(r) can be written as [84, 85]

C(r) = Cl(r) − 1
2f(w)Cl(r)2 , (3.1)

where
f(w) = 6(1 + w)

5 + 3w , (3.2)

and Cl(r) is determined by the curvature perturbation ζ as

Cl(r) = −f(w)rζ ′(r) . (3.3)

Here the prime denotes a derivative with respect to r.
Around the high density peaks relevant for the PBH formation, spherical symmetry

can be expected to be a reasonable first approximation. We implement the approximation
following [63] by expanding the Gaussian field χ in spherical harmonics

χ(x) =
∫ dk

(2π)3χk4π
∑
l,m

iljl(kx)Ylm(x̂)Y ⋆
lm(k̂) , (3.4)

and retaining only the leading monopole term of the expansion

χ(r) =
∫ dk

(2π)3 j0(kr)χk . (3.5)

Here j0(z) = sin(z)/z. Since eq. (3.5) is a linear map from χ(x), the field χ(r) and its
derivative χ′(r) are Gaussian fields with the joint probability distribution given by

Pχχ′(χ, χ′) = 1
2π
√

|Σ|
exp

(
−1

2X
T Σ−1X

)
, XT = (χ, χ′) , Σ−1 =

(
σ2

χχ σ2
χχ′

σ2
χχ′ σ

2
χ′χ′

)
. (3.6)

The components of the covariance matrix depend on r and can be written as

σ2
χχ(r) = ⟨χ(r)χ(r)⟩ =

∫
dlnk j2

0(kr)P(k) , (3.7)

σ2
χχ′(r) = ⟨χ(r)χ′(r)⟩ =

∫
dlnk j′

0(kr)j0(kr)P(k) , (3.8)

σ2
χ′χ′(r) = ⟨χ′(r)χ′(r)⟩ =

∫
dlnk

(
j′

0(kr)
)2 P(k) , (3.9)

where a prime denotes a derivative with respect to r and P(k) is the power spectrum of the
full curvaton field χ(x)

⟨χkχk′⟩ = (2π)3δ(k + k′)2π2

k3 P(k) . (3.10)
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In our case P(k) is given by eq. (2.2). We denote the variance of the full field χ(x) by σ2,

σ2 ≡ ⟨χ2(x)⟩ =
∫

dlnk P(k) . (3.11)

We proceed to substitute χ(x) → χ(r) in eqs. (2.6) and (2.7) in places where the field
χ(x) appears with no brackets, but evaluate the background quantities that depend on ⟨χ2⟩
in eq. (2.7) using the variance of the full field (3.11). Using ⟨χ(r)2⟩ < ⟨χ(x)2⟩ would give
a higher probability for larger ζχ values and hence enhance the PBH abundance but it is
hard to quantify to what extent this is a spurious effect of the monopole truncation. We will
therefore conservatively use ⟨χ(x)2⟩ in the background quantities.

In this setup, eq. (3.3) takes the form

Cl(r) = −rf(w)χ′(r)∂χζ(χ(r)) , (3.12)

where ∂χζ ≡ ∂ζ
∂χ is obtained by differentiating eq. (2.7). The probability distribution of Cl is

given by
PCl

(Cl, r) =
∫∫

dχdχ′ Pχχ′(χ, χ′)δ
[
Cl + rf(w)χ′(r)∂χζ(χ(r))

]
. (3.13)

Carrying out the integral over χ′, we obtain

PCl
(Cl, r) = 1

2πf(w)r|Σ(r)|1/2 (3.14)

×
∫ dχ

|∂χζ|
exp

[
− 1

2|Σ(r)|

(
σ2

χ′χ′(r)χ2 +
2σ2

χχ′(r)χCl

f(w)r∂χζ
+

σ2
χχ(r)C2

l

(f(w)r∂χζ)2

)]
,

where the remaining integral needs to be computed numerically.

4 Expression for the PBH abundance

The mass of a PBH formed by a collapsing region with compaction C can be approximated by

M = KMH (C − Cc)γ , (4.1)

obtained by fitting to numerical simulations [74, 86–91]. Here MH = 4π/3H−3ρ is the mass
within a Hubble volume at the collapse time, γ depends on the equation of state, and K
and the collapse threshold Cc depend on both the equation of state and the shape of the
collapsing overdensity. In a radiation dominated universe γ ≈ 0.36. For monochromatic
PBHs formed during radiation domination from a Gaussian ζ with the spectrum Pζ(k) ∝
δ(k − k∗), K = O(1) and Cc ≈ 0.59, and the overdensity peaks at the comoving scale
r∗ ≈ 2.74/k∗ [30, 75, 84, 92, 93]. For a Gaussian ζ with a nearly scale invariant power-law
spectrum and radiation domination, K ≈ 4 and Cc ≈ 0.55, and the overdensity generated by
a mode k∗ peaks at r∗ = 4.49/k∗ [74, 75].

There are no existing numerical collapse simulations corresponding to our case with a
strongly non-Gaussian ζ which does not have a leading Gaussian part. We adopt a phe-
nomenological approach and set the collapse parameters equal to the Gaussian power-law
results in radiation domination, γ = 0.36, Cc = 0.55, and K = 4. Therefore, we will compute
the PBH mass using

M(C, r) = 4MH(r) (C − 0.55)0.36 . (4.2)

– 6 –
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We evaluate MH(r) at the horizon entry of the smoothing scale a(tr)H(tr)r = 1,

MH(r) = 4π
3 H(tr)−3ρ(tr)

∣∣∣∣
a(tr)H(tr)r=1

. (4.3)

In our setup, the curvaton contribution to the energy density will in general not be negligible
at tr and the universe is therefore not fully radiation dominated. However, decreasing the
pressure decreases Cc and using the threshold Cc for radiation domination we should be
estimating the PBH abundance from below. In any case, our results should be regarded
as order of magnitude estimates both due to the use of eq. (4.2) and due to the monopole
truncation eq. (3.5).

The probability that a spherical overdensity coarse grained over the comoving radius r
collapses into a PBH upon horizon entry equals the probability that C exceeds the threshold
Cc. The contribution of the PBHs to the total energy density at the collapse time can then
be written as

β(r) ≡
ρM(r)
ρ

∣∣∣∣
tr

=
∫ f(w)

2

Cc
dC M(C, r)

MH(r) PC(C, r) (4.4)

=
∫ f(w)

Cl,c
dCl K

(
Cl(r) − 1

2f(w)Cl(r)2 − Cc

)γ

PCl
(Cl, r) ,

where Cl,c =f(w)
(
1 −

√
1 − 2Cc/f(w)

)
, we used dCPC(C, r)=dClPCl

(Cl, r), and PCl
(Cl, r)

is given by eq. (3.14). The upper limit C = f(w)/2 is the largest fluctuation amplitude that
forms a type I overdensity for which the areal radius is a monotonic function of the coordinate
r [94].

The fraction of the present day dark matter energy density constituted by the PBHs
reads

fPBH(r) ≡
ρM(r)
ρDM

∣∣∣∣
t0

= Ωm,0
ΩDM,0

1
keqr

β(r) , (4.5)

where keq = (aH)eq at the matter radiation equality, and we have omitted the O(1) factor
(g∗(tr)/g∗(teq))−1/6 from the effective number of relativistic degrees of freedom. This can be
recast as

fPBH(r) =
∫

dlnMf(M) , (4.6)

with the mass distribution function f(M) given by

f(M) = Ωm,0
ΩDM,0

1
keqr

(
Cl − 1

2f(w)C
2
l − Cc

)γ+1

γ
(
1 − 1

f(w)Cl

) PCl
(Cl, r) , (4.7)

where Cl ≡ Cl(M) = f(w)
(

1 −
√

1 − (2/f(w))
(
Cc + (M/(KMH))1/γ

))
, as obtained from

eq. (4.2).

5 Results

It is straightforward to compute the variances eq. (3.7) using eq. (2.2) and numerically per-
form the integral in eq. (3.14) to find the probability distribution PCl

(Cl, r). Using eqs. (4.4)
and (4.5) we then get fPBH(r) as a function of the coarse-graining scale r.

– 7 –
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Figure 1. Left panel: the fraction of the dark matter abundance in PBHs fPBH as function of the
coarse-graining scale r. Right panel: the curvaton density parameter Ωχ evaluated at a(tr)H(tr)r = 1
shown as a function of the coarse-graining scale r. Both panels are computed setting Γ = 5.5 ×
10−14 GeV, H = 8.9 × 1012 GeV, and m2/H2 = 0.31.

Figure 2. PBH abundance fPBH as a function of the curvaton decay rate Γ and the inflationary
Hubble scale H. Computed for m2/H2 = 0.31 (left) and 0.35 (right).

Figure 1 illustrates the typical shape of the function fPBH(r) and the curvaton density
parameter Ωχ at the horizon crossing of r, which enters in the computation via eq. (3.14).
The abundance fPBH(r) has a clearly peaked structure although the curvaton spectrum
eq. (2.2) is of pure power law form. This is a generic feature in the setup and it arises from
an interplay of two opposite effects. First, increasing the coarse-graining scale r makes the
variance σ2

χχ(r) smaller, see eq. (3.7), and therefore suppresses the probability of large χ(r)
values that can source PBHs. Second, the curvature perturbation ζ and Ωχ keep growing in
time until the curvaton decay at H(tdec) = Γ. For tr < (tdec), increasing r corresponds to
later horizon crossing times tr, making ζ(tr) larger and enhancing the probability for PBH
formation. This effect dominates to the left of the fPBH(r) peak in figure 1, and the peak
corresponds to tr = tdec. To the right of the peak, ζ stays constant as tr > tdec. In this
region, increasing r only acts to decrease σ2

χχ(r) and therefore fPBH(r) starts to decrease. In
the following, we will choose the coarse-graining scale r equal to the peak scale by setting
r = rdec ≡ 1/(a(tdec)H(tdec)), and define fPBH = fPBH(rdec).

Figures 2 and 3 illustrate the behaviour of fPBH as a function of the decay rate Γ, the
inflationary Hubble scale H, and the curvaton mass parameter m2/H2. Varying the decay

– 8 –
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Figure 3. PBH abundance fPBH as a function of the curvaton decay rate Γ and the curvaton mass
parameter m2/H2. Computed for H = 8.9 × 1012 GeV.

rate Γ alters the curvaton density parameter Ωχ at tr = tdec. As seen in figure 1, fPBH
is a strongly dependent function of Ωχ. Increasing Γ moves the decay to earlier times and
decreases Ωχ for fixed H, m2/H2 values. This explains the strong decrease of fPBH as a
function of Γ in figures 2 and 3. The figures further show that, for a fixed Γ, increasing
m2/H2 or decreasing H causes fPBH to decrease. The former is because larger m2/H2 makes
the curvaton spectrum eq. (2.2) more blue-tilted, decreasing the variance σ2

χχ(r), eq. (3.7),
and therefore suppressing the probability for large χ(r) values. The latter is because the
mean curvaton energy at the end of inflation ⟨ρχ⟩ ∝ m2⟨χ2⟩ ∝ H4 [66], and decreasing H
therefore decreases Ωχ for fixed Γ and m2/H2 values.

The observational constraints on the PBH abundance fPBH depend on the PBH mass
which, setting r = rdec in eqs. (4.2) and (4.3), in our setup is parametrically proportional to

MH = 4πM2
PΓ−1 ≈ 1.3 × 10−15M⊙

( Γ
5 × 10−14 GeV

)−1
. (5.1)

Black hole evaporation sets very strong constraints for PBHs with M ≲ 10−16M⊙. Con-
straints for M ≳ 10−10M⊙ PBHs from various different systems range downwards from
fPBH = O(10−2) depending on the mass [4]. In the asteroid mass window 10−16M⊙ ≲ M ≲
10−10M⊙, the constraints are subject to significant uncertainties and it can be possible to
have fPBH = 1 in this window [4]. Interestingly, asteroid mass PBHs can be efficiently pro-
duced in the curvaton scenario. This is demonstrated in figure 4 which shows the PBH mass
spectra f(M) computed using eq. (4.7) for Γ = 5.5 × 10−18 GeV, Γ = 6.5 × 10−16 GeV and
Γ = 5.5 × 10−14 GeV, with m2/H2 = 0.31, and H chosen in each case such that fPBH ≈ 0.10.
The corresponding curvaton decay temperatures are Tdec ∼ 2 GeV for Γ = 5.5 × 10−18 GeV,
Tdec ∼ 20 GeV for Γ = 6.5 × 10−16 GeV, and Tdec ∼ 200 GeV for Γ = 5.5 × 10−14 GeV, ap-
proximating the curvaton decay into radiation and the thermalisation of the decay products
as instant processes, and using the Standard Model g∗(T ). The respective mass spectra in
figure 4 are peaked at M ∼ 10−11M⊙, M ∼ 10−13M⊙ and M ∼ 10−15M⊙. In all three
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Figure 4. The PBH mass distribution f(M) normalised by the PBH abundance fPBH. In all figures
m2/H2 = 0.31. The first panel shows the results for Γ = 5.5 × 10−18 GeV, H ≈ 1.78 × 1012 GeV, the
second panel for Γ = 6.5×10−16 GeV,H ≈ 4.08×1012 GeV, and the third panel for Γ = 5.5×10−14 GeV,
H ≈ 8.85 × 1012 GeV. In all cases fPBH ≈ 0.10.

cases, the PBH abundance can be increased by slightly increasing H, see figure 2. For
example, fPBH ≈ 1.0 is obtained with H ≈ 1.85 × 1012 GeV, H ≈ 4.25 × 1012 GeV, and
H ≈ 9.19×1012 GeV for Γ = 5.5×10−18 GeV, Γ = 6.5×10−16 GeV, and Γ = 5.5×10−14 GeV,
respectively.

Figures 2, 3 and 4 represent the main results of this work. In particular, they show that
the curvaton scenario can generate a significant dark matter fraction consisting of asteroid
mass scale PBHs when the inflationary Hubble scale is large enough H ≳ 1012 GeV, the cur-
vaton mass parameter m2/H2 ≳ 0.3 and the decay rate falls in the window 10−18 GeV ≲ Γ ≲
10−13 GeV, corresponding to decay temperatures from slightly above the electroweak transi-
tion to around the QCD transition scale. If the curvaton decay occurs earlier, 10−13 GeV ≲
Γ ≲ 10−8 GeV, the scenario generates PBHs with M ≲ 10−16M⊙ and, according to the depen-
dencies shown in figures 2 and 3, the observational constraints on fPBH constrains the viable
parameter space for H from above and for m2/H2 from below. For Γ ≳ 10−8 GeV there are
no constraints as the PBH abundance is exponentially suppressed for any H ≲ 5.2×1013 GeV
compatible with the observational bound on the tensor-to-scalar ratio rT < 0.044 [80], and
m2/H2 in the range compatible with eq. (2.10).2 For Γ ≲ 10−18 GeV, the scenario generates

2More precisely, for the maximal Hubble scale H = 5.2 × 1013 GeV, eq. (2.10) implies m2/H2 ⩾ 0.29, see
figure 6 in appendix B. The maximal PBH abundance is obtained for m2/H2 = 0.29 and we find fPBH < 10−10

for Γ > 7.45 × 10−9 GeV.
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Figure 5. The full probability distribution function PCl
(Cl, rdec) and a Gaussian distribution with

the same variance ⟨C2
l ⟩ ≈ 5.1 × 10−4. Parameters chosen as in figure 1.

PBHs with M ≳ 10−10M⊙ but in this region our numerical integration of eq. (3.14) starts to
become inaccurate for configurations leading to fPBH ≳ 0.01. We are therefore not able to
perform a detailed study of the Γ ≲ 10−18 GeV region in this work.

Finally, figure 5 depicts the probability distribution PCl
(Cl, rdec) given by eq. (3.14)

for the same choice of parameters as in figure 1, and in the third panel of figure 4. For
comparison, we also show a Gaussian distribution with the variance equal to the variance
computed from the full distribution for this set of parameters,

∫
dCl C

2
l PCl

(Cl, rdec) ≈ 5.1 ×
10−4. The full distribution deviates significantly from the Gaussian case and decays much
slower as a function of Cl. The slowly decaying tail of PCl

(Cl, rdec) is essential for the PBH
formation in our setup. We recall, that the fully non-Gaussian form of PCl

(Cl, rdec) follows
from the vanishing mean of the curvaton field ⟨χ⟩ = 0 which in turn is the equilibrium
configuration during inflation for the χ2 potential. The curvature perturbation component
ζχ ∝ lnρχ/⟨ρχ⟩ = lnχ2/⟨χ2⟩ has no leading Gaussian term and there is no suppression for
fluctuations χ2/⟨χ2⟩ ∼ 1. Together with the non-linear form of eq. (2.7), this gives rise to
the strongly non-Gaussian distribution of Cl seen in figure 5.

6 Summary

In this work we have investigated the PBH production in the mixed inflaton-curvaton scenario
with a quadratic curvaton potential and a strongly blue-tilted curvaton spectrum, assuming
the curvaton is in the de Sitter equilibrium ⟨χ⟩ = 0 during inflation. We require that the
inflaton sourced Gaussian component dominates the spectrum of the curvature perturbation
ζ on CMB scales and the curvaton sourced contribution is suppressed below the 2 × 10−11

level at the pivot scale k∗ = 0.05 Mpc−1. This constrains the curvaton mass from below,
for example for the inflationary Hubble scale H = 1013 GeV, the curvaton mass must satisfy
m2/H2 ≳ 0.3. On small scales, however, the curvaton sourced component of ζ can take large
values leading to PBH formation.
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A key feature in this setup, is that the curvaton sourced part of ζ is strongly non-
Gaussian. It contains no leading Gaussian term, unlike in scenarios with a non-vanishing
curvaton mean value |⟨χ⟩| ≫ H (a specific initial condition during inflation) which have been
studied previously in the PBH context e.g. in [47–51]. We use the δN formalism to obtain the
full non-linear solution for ζ as a function of χ and, following [63], include only the monopole
term of the spherical harmonics series of χ(x) when considering fluctuations relevant for
PBHs. With this approximation, we compute the probability distribution for Cl(r) which
determines the compaction function C(Cl(r)), and where r is the coarse-graining scale of
perturbations. Comparing to a fiducial Gaussian distribution with the same variance ⟨C2

l ⟩,
we find that the full distribution Pl(Cl, r) decreases exponentially slower as a function of Cl.
We use Cc = 0.55 as the threshold for the PBH collapse [75] and model the PBH mass with
parameters obtained for the power-law spectrum in [74, 75].

We find that the curvaton scenario with ⟨χ⟩ = 0 can lead to very efficient production of
PBHs. In particular, the setup can generate asteroid mass PBHs, 10−16M⊙ ≲M ≲ 10−10M⊙,
with an abundance equal to the observed dark matter abundance, fPBH = 1, when the Hubble
scale at the end of inflation H ≳ 1012 GeV, the curvaton mass m2/H2 ≳ 0.3 and the curvaton
decay occurs in the window from slightly before the electroweak transition to around the
QCD transition. If the curvaton decays before or after the aforementioned window, PBHs
with masses below or above the asteroid mass range can be generated, respectively. The
PBH abundance depends sensitively on H, m2/H2 and the curvaton decay rate Γ, and
the observational bounds on fPBH imply non-trivial constraints on these parameters when
Γ ≲ 10−8 GeV. For larger values of Γ the PBH production in the setup is exponentially
suppressed.

The main uncertainties in our results arise from the monopole truncation eq. (3.5)
and the phenomenological choice of collapse parameters in eq. (4.2). Changing the collapse
parameter values would affect fPBH predicted for a fixed set of curvaton parameters. However,
even order of magnitude changes of fPBH are compensated by just slight changes of H, m2/H2

and Γ, as can be seen in figures 2 and 3. The error caused by the use of eq. (3.5) is harder
to quantify but we expect that the very efficient PBH production from the strongly non-
Gaussian ζ is a robust conclusion.
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A The spectrum of ζχ

We use the stochastic formalism [66] and the spectral expansion method [95–97] to compute
the infrared spectrum of ζχ in our setup where ⟨χ⟩ = 0 and eq. (2.6) cannot be expanded in
small perturbations around a mean field. For the quadratic curvaton potential (2.1), the joint
equal time two-point distribution of χ(t, r) in de Sitter equilibrium is given by the spectral
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sum [95–97]

ρ2(χ, r, t;χ′, r′, t) = m2

H4ψ0(x)ψ0(x′)
∞∑

n=0
ψn(x)ψn(x′)

(
a(t)H|r − r′|

)−2Λn/H
, (A.1)

where

x = mχ

H2 , Λn = nm2

3H , ψn(x) = 1√
n!2n

(4π
3

)1/4
e−2π2x2/3Hn

(2πx√
3

)
, (A.2)

and Hn(x) = (−1)nex2/2 dn

dxn e−x2/2 are the Hermite polynomials. The eigenfunctions ψn(x)
are orthonormal, ∫ ∞

−∞
dx ψm(x)ψn(x) = δmn . (A.3)

Using that ⟨χ2⟩ = 3H4/(8π2m2), we have from eq. (2.6) ζχ = (1/3)ln(8π3x2/3), and the
connected part of its two-point function can be written as

⟨ζχ(r)ζχ(r′)⟩c =
∫ ∞

−∞
dχ
∫ ∞

−∞
dχ′ ζ(χ)ζ(χ′)ρ2(χ, r, t;χ′, r′, t)

=
∞∑

n=1

(∫ ∞

−∞
dx 1

3ψ0(x)ψn(x) ln x2
)2 (

a(t)H|r − r′|
)− 2nm2

3H2 . (A.4)

Truncating the series at the leading order we get

⟨ζχ(r)ζχ(r′)⟩c = 2
9
(
aH|r − r′|

)− 4m2
3H2 + O

[(
aH|r − r′|

)− 8m2
3H2

]
. (A.5)

The corresponding power spectrum is given by

Pζχ = k3

2π2

∫
d3r e−ik·r⟨ζχ(r)ζχ(r′)⟩c

= 23− 4m2
3H2

9
√
π

Γ
(

3
2 − 2m2

3H2

)
Γ
(

2m2

3H2

) (
k

aH

) 4m2
3H2

. (A.6)

The existence of the Fourier transform requires 4m2 < 9H2 which we assume here.
Assuming an instant transition from de Sitter inflation to radiation dominated epoch,

and approximating the universe as radiation dominated until the curvaton decay,3 we can
write

k

aH
= 6 × 10−24 k

0.05 Mpc−1
1015GeV
ρ1/4 , (A.7)

where ρ = 3H2M2
P denotes the energy density during inflation. Using eqs. (A.6) and (A.7)

we can directly solve for the m2/H2 range where the condition eq. (2.10) is satisfied, i.e.
Pζχ(k∗) < 2 × 10−11. The result is shown in figure 6 where the shaded orange area marks
the region where eq. (2.10) holds.

3This is strictly valid for Ωχ ≪ 1 but suffices here because we only consider cases where the curvaton
decays before it fully dominates the universe, and therefore the period when Ωχ ≪ 1 may not hold is short.
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Figure 6. Above the solid line Pζχ
(k∗) < 2×10−11. The dashed line shows the maximum inflationary

Hubble scale H ≈ 5.2×1013 GeV consistent with the observational bound on the tensor-to-scalar ratio
rT < 0.044 [80]. The shaded orange area between the solid and dashed lines depicts the phenomeno-
logically viable region where Pζχ

(k∗) < 2 × 10−11.

We will also need the two point functions of the powers ζℓ
χ in the analysis below. These

can be directly computed using the spectral expansion expression

⟨ζℓ
χ(r)ζℓ′

χ (r′)⟩c =
∫ ∞

−∞
dχ
∫ ∞

−∞
dχ′ ζℓ(χ)ζℓ′(χ′)ρ2(χ, r, t;χ′, r′, t) (A.8)

=
∞∑

n=1

∞∑
n′=1

(∫ ∞

−∞
dx 1

3ψ0(x)ψn(x) ln x2
)ℓ (∫ ∞

−∞
dx′ 1

3ψ0(x′)ψn(x′) ln x′2
)ℓ′

×
(
a(t)H|r − r′|

)− 2(n+n′)m2

3H2 .

Truncating the series again at the leading order we obtain

⟨ζℓ
χ(r)ζℓ′

χ (r′)⟩c =
(√

2
3

)ℓ+ℓ′ (
aH|r − r′|

)− 4m2
3H2 + O

[(
aH|r − r′|

)− 8m2
3H2

]
. (A.9)

B The spectrum of ζ on CMB scales

We express the full solution eq. (2.7) for ζ in the form

ζ = ζr + Z(ζχ, ζr) , (B.1)

where the explicit expression for Z(ζχ, ζr) can be read off from eq. (2.7). The connected part
of the two point function of ζ is given by

⟨ζ(r)ζ(r′)⟩c = ⟨ζr(r)ζr(r′)⟩c + 2⟨Z(r)ζr(r′)⟩c + ⟨Z(r)Z(r′)⟩c . (B.2)
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Figure 7. The solid line shows A/Ar defined in eq. (B.7) as a function of the curvaton density
parameter Ωχ. The dashed line shows the corresponding quantity computed in linear perturbation
theory.

Expanding Z(ζχ − ζr) around ζr = 0, the last two terms can be written as

⟨Z(r)ζr(r′)⟩c =
∞∑

n=0

1
(2n+ 1)!⟨Z

(2n+1)(ζχ)⟩⟨ζr(r)ζ2n+1
r (r′)⟩c (B.3)

⟨Z(r)Z(r′)⟩c =
∞∑

n=1

∞∑
n′=1

1
n!n′!⟨Z

(n)(ζχ)⟩⟨Z(n′)(ζχ)⟩⟨ζn
r (r)ζn′

r (r′)⟩c (B.4)

+terms involving ⟨ζn
χ(r)ζn′

χ (r′)⟩c .

We assume the curvature perturbation of the radiation component is sourced by the
inflaton, and is Gaussian distributed with a nearly scale invariant spectrum

Pζr(k) = Ar

(
k

k∗

)nr−1
, Ar ≫ Pζχ(k∗) , (B.5)

and require that the curvaton component is suppressed on CMB scales such that Pζχ(k∗) <
2 × 10−11 according to eq. (2.10). Using eq. (A.9), we then observe that on scales k ≲ k∗ we
can to leading precision drop all terms involving connected correlators of ζn

χ in eq. (B.4). On
scales k ≲ k∗, the leading contribution to the two point function eq. (B.2) then reads

⟨ζ(r)ζ(r′)⟩c ≈ ⟨ζr(r)ζr(r′)⟩c
(
1 +

〈
Z(1)(ζχ)

〉)2
. (B.6)

The non-linear function ⟨Z(1)(ζχ)⟩ involves contributions from closed ζχ loops attached to
the points r or r′. Since ⟨Z(1)(ζχ)⟩ has no dependence on spatial coordinates, the spectrum
of the curvature perturbation for k ≲ k∗ is simply given by

Pζ(k) = A

(
k

k∗

)nr

, A = Ar
(
1 +

〈
Z(1)(ζχ)

〉)2
, k ≲ k∗ . (B.7)

Figure 7 shows the ratio A/Ar as function of Ωχ. For comparison, we have also plotted
the corresponding linear perturbation theory result A/Ar = (4(1 − Ωχ)/(4 − Ω))2 obtained
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from ζ = 4ζr(1−Ωχ)/(4−Ω)+3ζχΩχ/(4−Ω), see e.g. [98], when Pζχ(k) ≪ Pζr(k). As seen in
figure 7, for Ωχ ≲ 0.9 we have 0.2 ≲ A/Ar ⩽ 1, indicating that the observed CMB spectrum
amplitude Pζ(k∗) = A = 2.10×10−9 is obtained by adjusting the inflaton sector to give Ar in
the range 5 ≳ Ar ⩾ 1, correspondingly. From eqs. (A.9) and (B.2)–(B.4) we further see that
when eq. (2.10) holds, the contributions from ζχ to the spectral index ns − 1 = dlnPζ/dlnk
are parametrically suppressed to O(0.01). The measured spectral index ns = 0.965 at k = k∗
should then be obtainable with slow roll inflationary models having ϵ = O(0.01) which can
be adjusted to give the correct ns. We thus conclude that when eq. (2.10) holds, we obtain
inflaton dominated, Gaussian and nearly scale-invariant perturbations on CMB scales.
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