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Data Type Agnostic Visual Sensitivity Analysis

Nikolaus Piccolotto , Markus Bögl , Christoph Muehlmann , Klaus Nordhausen ,
Peter Filzmoser , Johanna Schmidt , and Silvia Miksch

Fig. 1: Illustration of the visualization pipeline used for the Discrepancy Dendrogram. The key idea of it is to use cluster diameters as 
a measure for variation in complex parameter settings and outputs. Given dissimilarity measures for each, we perform hierarchical 
clustering separately in each space. Distances are normalized by ranking or min-max normalization for comparison. For every 
cluster obtained through hierarchical clustering, we evaluate the difference in its diameter and visualize that by color.

Abstract—Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind 
source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to 
popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which 
requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial 
data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based 
on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic 
visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity 
measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through 
interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. 
Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter 
subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities.

Index Terms—Visual analytics, parameter space analysis, sensitivity analysis, spatial blind source separation

1 INTRODUCTION

In many domains, data analysis requires dealing with multivariate
measurements in space. For instance, mining corporations and public
agencies may analyze geochemical soil samples for mine prospecting or
investigating environmental pollution, respectively. Depending on the
specific goal and application, various tasks, e.g., dimension reduction
or finding meaningful linear combinations of variables, must be carried
out on such datasets. Spatial blind source separation (SBSS) [2, 45, 46]
is designed explicitly for multivariate spatial data and reveals linear
combinations of such data. SBSS offers various benefits compared
to alternative methods, e.g., it keeps the well-known loadings-scores

• Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Peter Filzmoser
and Silvia Miksch are with TU Wien, Austria. E-mail:
{firstname}.{lastname}@tuwien.ac.at.

• Klaus Nordhausen is with University of Jyväskylä, Finland. E-mail:
klaus.k.nordhausen@jyu.fi.

• Johanna Schmidt is with VRVis GmbH, Austria. E-mail:
johanna.schmidt@vrvis.at.

scheme from principal component analysis and adequately accounts
for spatial dependence due to its model-based approach. Therefore,
latent dimensions identified with SBSS often correspond to the physical
reality where data was collected, making it an excellent analysis tool
for spatial data. A detailed description of SBSS is out of scope for
this paper, and we refer interested readers to [45, 46, 51]. SBSS has
been successfully applied to a geochemical dataset [46] and may be
potentially used in any application domain that involves multivariate
quantitative measurements at different locations.

SBSS requires setting two complex tuning parameters: A partition
of the spatial domain in non-overlapping regions (regionalization) and
a ring-shaped point neighborhood (kernel). On the other side of the
model (Fig. 2), SBSS yields a set of latent spatial dimensions (i.e.,
maps), where each is a linear combination of original dimensions with
weights (loadings) given by the unmixing matrix. Consequently, pa-
rameter space analysis tasks [59] become relevant. Previous work [51]
focused on the optimization task, but sensitivity analysis (SA) is con-
sidered equally important for SBSS. SA compares the relative variation
in parameter settings and output of the model, thus highlighting rele-
vant/irrelevant parameters and their stable/sensitive ranges. This analy-
sis is essential to obtain and communicate reliable results, i.e., those
not a consequence of luck and coincidence. SA is especially important
for SBSS as it lacks so far any goodness-of-fit criteria; hence deciding
between alternative parameter settings is challenging. SA can help with
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Fig. 2: SBSS [45,46,51] takes a regionalization (R) and a kernel (K) as
parameters and outputs a linear combination of input variables (latent
spatial dimensions), described by the unmixing matrix (W).

this decision as in prior work on blind source separation [49, 51], ana-
lysts noted that they find stable parameter settings more trustworthy and
associated outputs more likely to be the “real” solution. SA may thus
further strengthen the outcome of an optimization task and, additionally,
inform geostatistical modeling: If, e.g., the regionalization parameter
barely influences the output, analysts might reasonably suspect that the
input dataset is spatially stationary (a geostatistical modeling decision).

SBSS is interesting for the visualization community primarily be-
cause of the mentioned affordances of its parameters and outputs: Pa-
rameter settings and outputs are spatial objects or otherwise complex
in a way that a multivariate representation does not do them justice.
While the literature contains many examples of visual parameter space
exploration [50, 59], to the best of our knowledge, none of them sup-
port complex parameters and outputs without resorting to multivariate
representation or feature derivation (Section 2). However, these require-
ments are not specific to SBSS, as many examples exist for models with
complex parameters and outputs. For instance, spatial or time-varying
inputs and outputs can arise in microclimate simulations [64]. They
predict meteorological variables (e.g., air temperature, humidity, or
wind speed) in a small area, typically for a single street or building.

We intend to close this gap with our paper. The core idea of our pro-
posal is illustrated in Fig. 1: We take a cluster’s diameter as a measure
of variation for the contained parameter settings or associated outputs
(referred to as data cases, respectively). Then we can enable SA for
SBSS in the following way. Given appropriate dissimilarity measures
for data cases, we compute pairwise distances in each space (parame-
ter and output), based on which a hierarchical clustering is produced.
After normalizing distances, we compute the diameter difference of
all clusters between one space and the another. This information is
then presented in our main visualization, the Discrepancy Dendrogram.
Supporting visualizations complete required user tasks. In particular,
the contributions of our design study are that we

• propose a task abstraction for SA in the context of SBSS (Sec-
tion 3);

• based on SBSS requirements, develop a visualization that supports
SA and works on any data type (Fig. 1, Section 4);

• integrate this and other visualizations in a visual analytics proto-
type (Section 5);

• evaluate the prototype with experts in visualization (Section 6.1)
and SBSS (Section 6.2);

• show the transferability to other problems by applying our ap-
proach to microclimate simulations (Section 6.3).

2 RELATED WORK

2.1 Sensitivity Analysis
Sensitivity Analysis (SA) is “the study of how the uncertainty in the
output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input [55, p. 1].” SA
allows analysts to determine how variations in the input influence the
output. A broad distinction between various SA methods can be drawn
at whether they are local or global [57]. Local methods are applicable
when the model is linear as they yield, e.g., a partial derivative according

to one parameter. An example of such local methods is the one-at-a-
time approach, where one parameter is varied while the others are kept
fixed. Global methods, on the other hand, are applicable to non-linear
models, too. A well-known example is the Sobol index [62], a variance-
based global SA method. Several surveys exist [7, 9, 24, 28, 29, 56] that
collect and discuss both local and global methods. Methods covered
in these surveys mainly consider models with multivariate parameters,
e.g., the output scalar y is a function of an input vector x: y = f (x).
Spatially-varying parameters [36, 52] or outputs [35, 42] have been
considered as well. However, these methods do not fit to SBSS (Fig. 2).

2.2 Visual Parameter Analysis

Visual parameter analysis (VPA) has a long history in the visualization
literature, with seminal works published in the 1990s, like Design Gal-
leries [41] or spreadsheet interfaces [30]. Sedlmair et al. [59] provided
a common data flow model and a task taxonomy, such as optimization,
uncertainty, or SA. Piccolotto et al. [50] surveyed user interfaces and
visualizations that support visual parameter space exploration. Several
examples of VPA for multivariate parameters can be found in the litera-
ture [5, 15, 22, 32, 48, 72]. However, these approaches do not apply to
SBSS parameters.

Many approaches have been used when it comes to visualizing
parameter-output relations [50]. When parameters are multivariate,
visualizations that show correlations and trends can be used to carry
out SA, such as histograms, scatterplots, or PCPs [4, 14, 66]. These
visualizations are often juxtaposed and linked, such that selections
in one view highlight the same data in other views [43]. Another
option is to embed parameters and outputs in the same visualization,
e.g., by encoding them as axes in the same PCP [63] or by color-
coding a 3D model [18]. A consequence of juxtaposition is that general
visualization-independent approaches may be used together. E.g., first
grouping data cases by similarity, then inspecting properties of in-
dividual groups [1, 8, 25] is popular. Orban et al. [47] devised two
linked dimensionally-reduced (DR) scatterplots, an approach that can
generally be extended to complex data and SBSS parameters/outputs.
However, our target users struggled with DR scatterplots in previous
work [49]. The difficulty was that the DR spatializations looked like
scatterplots but did not show the same information and required a differ-
ent way of reading, which was unintuitive to them. Therefore, we devel-
oped an alternative approach. A more specific form of juxtaposition is
to align data cases in useful ways that highlight dependencies between
parameters and outputs, e.g., as part of a spreadsheet [19, 38, 39]. The
idea is that dependencies become visible when the spreadsheet is sorted
by multiple columns. However, it requires a compact visual representa-
tion. Superposition may be possible if parameter and output refer to the
same space, such as particle trajectories and their initial position [21].
Sequential Superposition leverages a system’s interactivity. The ana-
lyst may rapidly browse between parameter/output pairs, and sudden
visual jumps in the emerging animation point to sensitive parameter
ranges [26, 54, 58]. Parameter and output visualizations may also be
integrated with explicit links drawn between them. E.g., a trapezoid
that connects parameter and output histograms shows sensitivity by
the relative length of horizontal segments [68]. Another option for
composite visualizations of parameters and outputs for SA is nesting,
i.e., putting visualizations inside the marks of another, like correlation
matrices in an interval tree [19].

Data mining methods may also support visual SA. E.g., if regression
analysis between parameter and output is possible, that information can
be shown in the parameter visualization in the spirit of scented widgets
[17, 33, 69]. Correlation analysis between parameters and derived
output features may also be done if they lend themselves to it [19].
Developing a surrogate model augmenting the original model with fast
but inaccurate output predictions for new parameter settings is standard
practice in VPA [59]. It may be possible to extract information from the
surrogate to support SA, such as parameters in linear regression [43],
or partial derivatives in neural networks [25].

Generally, in existing work, either the parameter (by multivariate
representation) or the output (by feature derivation) must have multi-
variate characteristics. Our contribution to visual sensitivity analysis
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enables it in situations where both parameter and output are of complex
data types, e.g., spatial objects.

2.3 Visual Cluster Analysis and Clustering Comparison
Clustering is an essential wide-spread class of data analysis methods,
and various flavors were proposed over time [71]. Generally, cluster-
ings partition data cases into coherent groups according to a distance
function. Visual inspection of these groups may reveal previously hid-
den patterns. To visualize the whole clustering, nowadays, color-coded
dimensionally-reduced scatterplots are commonly employed [12,34,70].
However, these scatterplots are only approximate, as they contain pro-
jection errors [31], and may require specialized knowledge to inter-
pret [67]. Glyph-based visualizations [11] were proposed in the context
of geospatial data. Dendrograms [20,61] commonly depict hierarchical
clusterings. Blanch et al. [6] proposed the Dendrogramix, a combina-
tion of dendrogram and matrix visualization. The clustering outcome
depends on the specific algorithm and parameters, so visualizations
were proposed to compare these. However, they focus on the analysis
of cluster members [12], comparison of clusterings concerning parame-
ters [12] or algorithms [34, 40]. I.e., the definition of distance between
data cases is fixed. Our work may be seen as comparing clusterings
with alternative distances (Fig. 1).

3 USERS & TASK ABSTRACTION

As in previous work on SBSS [51], our primary users are experts in
statistics. We anticipate our user base to eventually include domain
experts, e.g., from geochemistry. We conducted an extensive literature
review [50] to understand how visual VPA and, consequently, visual
SA work in other contexts. Based on that, we distilled generic SA sub-
tasks to enable SA on the SBSS-specific complex parameters with our
clustering-based approach (T1–T5). We presented and discussed them
with our collaborators (statistics/SBSS experts who are co-authors
of this paper) to ensure their suitability. Based on these tasks, we
developed the main visualization (Section 4).

Tasks. First, to start the analysis, analysts must compare the asso-
ciation between parameters and outputs (T1). Pairs of highly associated
parameters and outputs are less interesting to investigate. For any given
parameter/output, they must assess its overall variation (T2) to learn
about contained similarity structures and outliers. Furthermore, ana-
lysts must identify groups of data cases with low/high variation in a
parameter/output (T3) in order to compare variation between parame-
ters and outputs, both overall and for a group of data cases (T4). To
support analysts in reasoning why this variation happens, they must be
able to view individual data cases (T5).

Guidelines. In addition to user tasks, we formulate three design
guidelines for the visualizations. These were informed by evaluations
conducted in our past work [49, 51] and by widely used visualization
guidelines. First, visual marks of similar values should be adjacently
arranged (D1). This visual requirement suggests continuity that scalars
exhibit naturally, but complex objects do not. It will make it easier to
perceive stable/sensitive parameter ranges. Occlusion must be avoided
(D2) to not clutter the display. The visualization should, if possible,
resemble a familiar graphic (D3) that our target users are familiar with.

4 DISCREPANCY DENDROGRAM

We describe in this section how our main visualization, the Discrep-
ancy Dendrogram, is constructed (also compare Fig. 1). The complete
VA prototype will be discussed in the following section. We aim for
a visual-interactive approach for two reasons. First, we did not find
numerical SA approaches that are applicable to our data (Section 2.1).
Second, our approach needs configuration (e.g., Section 4.2 or Sec-
tion 4.3), where each choice highlights different patterns (compare
Fig. 10), impacting the conclusions to draw. Thus, in an interactive
setting, the analyst can quickly change between those configurations
and thoroughly compare them (see, e.g., Section 6.2).

The core of SA is to compare the relative variation in parameter
settings and outputs. It can readily be quantified for numbers (cf.
variance-based SA approaches), but measuring variation for complex

objects, like the spatial SBSS parameters, is not straightforward. Our
proposal’s core idea (Fig. 1) is to consider cluster diameters for that
purpose: A cluster gets wider the more dissimilar contained data cases
are. Conversely, the cluster diameter is zero when all contained data
cases are the same. There are advantages to that approach. First of all,
a clustering can be obtained when only pairwise similarity information
(Section 4.1) is available. Thus a formal notion of variation need
not exist for the data type at hand. Second, cluster analysis generally
supports tasks T2 and T3 when one investigates global cluster structures
(e.g., how many exist, how many data cases they contain) and local
structures (e.g., finding outlier cases). Hence we propose to augment
a visualization of cluster structures with the information required for
SA, i.e., whether clusters shrink or expand when applying another
dissimilarity measure to the data cases. This approach can be seen as
orienting guidance [13] that points analysts to interesting data cases.
The major available choices at this point are i) the type of visualization
and ii) how to compute the augmenting information. The two choices
are independent, and we focus on the latter before discussing the former
in Section 4.5.

Sampling. Any parameter space analysis task requires a reason-
able set of (parameter setting, output) tuples. Common desired sam-
pling properties are that it is uniform and spans a large part of the
parameter space, which is achieved via automated sampling techniques.
These are hard problems for SBSS, where two random parameter set-
tings are not a-priori equally reasonable. Domain knowledge critically
informs parameter selection in SBSS [51]. Single-execution runtimes
measured in minutes or hours further complicate the issue. Thus, fol-
lowing study participants’ current practices in SBSS and microclimate
simulations, we rely on a few dozen, mostly manually selected, param-
eter settings and limit SA insights to that subspace. While not solving
everything at once, our approach still improves their current situation.

4.1 Dissimilarity Measures
Dissimilarity measures, considerably the basic requirement for any
analysis, exist for many data types. A dissimilarity measure is a function
d(⋅, ⋅)→R+ that quantifies how similar two objects are. Generally, we
expect that d(a,b) = 0 iff a = b and that d(a,b) is strictly monotonically
increasing with the differences between a and b. We assume such a
dissimilarity measure for every model parameter and output.

4.2 Hierarchical Clustering
Flat partitioning cluster algorithms, like k-means, divide the dataset into
an a-priori specified number of groups while minimizing intra-group
distances. On the other hand, hierarchical clustering algorithms retain
all cluster structures in the dataset and, therefore, do not require a k
parameter. Hierarchical clustering is thus preferable because it will
contain all possible clusters the analyst might be interested in, and we
can enumerate them. We chose a clustering by agglomerative nesting
(AGNES) [53] because bottom-up hierarchical clustering is easier to
think about and, thus, easier to explain to analysts than the top-down
variant. Further, many current alternatives, such as HDBSCAN [10],
require Euclidean distances and can not be used with just dissimilarities.
The main parameter of AGNES is the linkage criterion, i.e., how to
compute the distance between two clusters. Only some linkage criteria
can be used in our case. E.g., centroid-based variants like Ward’s
method are not applicable as the concept of a centroid may not exist
for complex data types, such as regionalizations. Consequently, we
provide complete and average linkage as user-selectable hierarchical
clustering parameters.

4.3 Normalize Cluster Distances
We aim to evaluate whether a given cluster shrinks or expands when an
alternative dissimilarity measure dA() is applied. The obvious problem
here is that d() and dA() might have differing images, i.e., one maps to
the unit interval [0,1] while the other maps onto [0,1312]. We propose
ranking or min-max normalization to solve this issue. Both operations
work on a distance matrix. Ranking replaces values in all cells by
their rank, while min-max normalization maps values onto the unit
interval. When comparing ranks, the focus will naturally be on ordinal
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Data: Cluster C of data cases, normalized distance matrices D1
and D2, cluster diameter definition diam().

1 Function index(C, D1, D2, diam) is
2 D1[C]← upperTri(select(D1,C))
3 D2[C]← upperTri(select(D2,C))
4 return diam(D1[C])−diam(D2[C])
5 end

Algorithm 1: Pseudocode of sensitivity index computations.

changes, ignoring magnitude. Min-max normalization, on the other
hand, preserves magnitude. The analyst can switch between the two as
both approaches have advantages and drawbacks (compare Fig. 10).

4.4 Compare Cluster Diameters (Sensitivity Index)
Finally, we require a way to measure a cluster’s diameter, which roughly
corresponds to the linkage criterion in Section 4.2. To find candidates,
we turn to internal clustering validation measures [37], as no external
information exists in our case. These usually incorporate the compact-
ness of clusters, which measures the variation within a cluster. Based
on the selected linkage criterion, we use the largest distance between
any two elements (complete linkage) or the average distance between
all elements (average linkage).

Given two distance-normalized hierarchical clusterings P and O
(e.g., one with distances of parameter settings and one with output
distances) and a cluster diameter definition, we can compute by how
much a cluster in P shrinks or expands in O, or the other way around, as
P and O cluster the same data cases. We evaluate the index() function
(Alg. 1) for every cluster, i.e., every horizontal line in a dendrogram.
D{1,2} are the respective distance matrices of P and O. The subroutine
upperTri returns the upper triangle of a square matrix, and select
selects specified rows and columns of a square matrix. The function
can be seen as a sensitivity index as it quantifies how much the variation
differs between the parameter and output space.

4.5 Visualization
Two established visualization idioms for clusterings are dimensionally-
reduced scatterplots and dendrograms. As our target users (statistics
experts) found the former approach in previous work [49] rather unin-
tuitive, we chose the latter for our context, fulfilling design guideline
D3 (Section 3). Additionally, a dendrogram supports many other guide-
lines and user tasks. The leaves are juxtaposed (D2), and similar leaves,
which are joined into clusters earlier than dissimilar leaves, naturally
appear adjacent (D1). Optimal leaf orderings may be used [3]. Lines
encode the diameter of every possible cluster that could be interesting
(T2–T3). These lines do not overlap (D2). The open challenges are
encoding the sensitivity index (Section 4.4) in the dendrogram (T4) and
ensuring that visualizations of data cases are visible (T5).

The free visual channels in a dendrogram we could use to support
T4 are line color (hue, saturation), line texture (e.g., dashed or dotted),
and line thickness. We encoded the sensitivity index in color hue
(compare Fig. 1). The index diverges with 0 at the center. Hence, the
direction is as important as the magnitude. Two-directional encodings
are standard for color hue (diverging scales) but very uncommon for
the other attributes and likely confusing for our target users. We use
two diverging scales dependent on the choice of distance normalization
(Section 4.3): Red–blue (ranked) and purple–green (min-max). By
default, the color scale spans the whole theoretically possible index
interval, but the analyst may instead use the interval as found in the
dataset to highlight small-scale patterns.

To support task T5, we show customized space-efficient visualiza-
tions as leaves of the Discrepancy Dendrogram (Fig. 5-A, bottom).
There is little available space when the dendrogram shows many data
cases. We combat this issue with several strategies. First, clusters of the
dendrogram can be hidden. Second, when leaves are clicked, a tooltip
containing a more detailed visualization appears. I.e., we show the
regionalization parameter of SBSS as flat polygons in the dendrogram
and as an interactive Leaflet map in tooltips. Any cluster can be selected

Fig. 3: Parameter assessment changes depending on the assignment
to primary and alternative distance in the Discrepancy Dendrogram.
Glyphs in the document show the color of wider output clusters.

−4 −2 0 2 4

5

10

15

Fig. 4: XY Discrepancy Dendrogram of the function y = x2 (inset
top right), with some clusters collapsed for readability. Red color
highlights clusters that are wider in Y than X (=sensitive parameter
ranges, i.e., marked parabola arms in inset).

to be shown in the Gallery (Fig. 5-B). More interactions are described
in Section 5.1.

4.6 Interpretation, Notation and Example
The choice of the color scale’s orientation is arbitrary. We decided
that red (purple) highlights an expanded cluster while blue (green)
marks shrunk clusters in the alternative distance (O in Fig. 1). Con-
sequently, interpretations regarding stability or sensitivity depend on
how parameters and outputs are assigned to primary and alternative
distances (Fig. 3). E.g., sensitive parameter settings are associated with
wider clusters in the output space compared to the parameter space,
which can appear as blue (parameter as primary distance) or red (pa-
rameter as alternative distance). In the remainder of the paper, we will
use appropriate glyphs to denote the direction of sensitive parameters.
A XY Discrepancy Dendrogram will thus i) compare X and Y, ii)
show a dendrogram of clusters in X, iii) mark data cases with sensitive
parameter settings as red.

Fig. 4 shows a XY Discrepancy Dendrogram for the function y = x2

sampled uniformly in the interval [−4,4]. The dendrogram separates
the parameter space into three clusters with X 1.4 to 4, −4 to −1.9, and
−1.8 to 1.3 (from left to right). The lines’ hue may be interpreted as
the absolute gradient: Red lines mark wider clusters in Y (high) while
the right-most cluster is gray (low). When plotted as a line chart, these
patterns would refer to the parabola arms (red clusters) and the part
between them (gray) as visible in the inset.

5 VISUAL ANALYTICS PROTOTYPE

To facilitate SA of SBSS parameters and outputs, we propose a visual
analytics prototype (Fig. 5). We developed it in a user-centered design
process in collaboration with statistics experts, who are co-authors of
this paper. Links to a web version of the software are available in the
supplemental material.

5.1 Discrepancy Dendrogram (T2–T5, D1–D3)
We discuss the construction of the Discrepancy Dendrogram in Sec-
tion 4 and focus here on interactions. We provide several interactions
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Fig. 5: Screenshot of our prototype showing 48 SBSS parameters and outputs (Section 6.2). Components: (A) Discrepancy Dendrogram (Section 4,
Section 5.1), (B) Gallery (Section 5.2), (C) Subset Sensitivity View (Section 5.3), (D) Shepard Matrix (Section 5.4), (E) tooltip.

with the Discrepancy Dendrogram to allow detailed investigation of
clusters and to scale it to larger datasets. First of all, the user may
choose between ranked and normalized distances (Section 4.3) and
select the bounds of the color scale (Fig. 5, left top). Further, they
may choose the linkage criterion for the dendrogram (Section 4.2),
which also affects cluster diameter computations (Section 4.4). Second,
there might be multiple parameters and outputs in a given dataset. The
analyst can thus select which parameter/output to build the dendrogram
with (primary distance), which parameter/output to compare it to in the
sensitivity index calculation (alternative distance), and which param-
eter/output to show in the dendrogram leaves (Fig. 5-A1 to A3). As
color hue is not a precise visual channel, we encode a cluster’s diameter
difference additionally in the length of a vertical line segment next to
the dendrogram’s Y-axis legend. Other dendrogram interactions are
more concerned with scalability. It is possible to collapse a cluster
(shift + click), collapse all other clusters (meta + click), and collapse
all clusters below a user-defined height (click on the Y-axis). These
interactions free up additional display space for an area of interest. Col-
ored circles replace collapsed clusters. The circle size is proportional
to the amount of data cases in the cluster, while the color corresponds
to the clicked line’s color. The data cases of a collapsed cluster are
replaced by a cluster representative. Finally, a cluster can be selected,
after which contained data cases are shown in the Gallery (Fig. 5-B).

5.2 Gallery (T5)

The Gallery shows data cases of a selected cluster in a grid (Fig. 5-B).
The number of columns and their width can be selected by the analyst,
as can the sort order of data cases and which parameter or output they
should show. It is possible, e.g., to sort parameter visualizations by
output similarity, as is often done in visual parameter space analysis
[19, 39]. Thus, the Gallery can show complex patterns.

5.3 Subset Sensitivity View (T4)

The Gallery shows data cases of a selected cluster in a grid (Fig. 5-B).
The number of columns and their width can be selected by the analyst,
as can the sort order of data cases and which parameter or output they
should show. It is possible, e.g., to sort parameter visualizations by
output similarity, as is often done in visual parameter space analysis

[19, 39]. We obtain the sort order by a 1D multidimensional scaling
projection. Thus, the Gallery can show complex patterns.

5.4 Shepard Matrix (T1)
We want to give analysts a way to judge which parameter-output rela-
tions to investigate (T1). To this end, we use a Shepard diagram [16]
showing all pairwise distances of data cases in a scatterplot. Each axis
is the distance according to one measure. A diagonal line in a Shepard
diagram thus means a perfect correspondence between two distance
measures, and a dispersed Shepard scatterplot may be more interest-
ing to investigate. We use the same color hue as in the Discrepancy
Dendrogram for dots in a Shepard diagram, i.e., the further away from
the diagonal, the more color hue is used. As the dataset usually has
more than two parameters/outputs, we adapt the scatterplot matrix to
Shepard diagrams to show all possible combinations (Fig. 5-D).

6 EVALUATION

We evaluated our visualizations heuristically and with expert interviews.
The TU Wien pilot ethics board assessed our methods. Thus, our
research adheres to the highest ethical standards. Specifically, our
research questions were:

• (RQ1) Does our visualization design allow efficient and effective
SA for SBSS parameters/outputs?

• (RQ2) Is our designed guidance effective?

• (RQ3) Does our visualization design transfer to other contexts
than SBSS?

For RQ1 and RQ2, we conducted a heuristic evaluation with five
visualization experts (Section 6.1). Two SBSS experts used our visual-
izations on their own data (Section 6.2), which also informs RQ1 and
RQ2. Finally, for RQ3, we discussed visualizations with a microclimate
simulation expert using an appropriate dataset. In this section we use
two-letter shortcuts for people: Just letters indicate authors (e.g., NP)
and a trailing number refers to participants (e.g., ME1).

Procedure. All sessions started with a 30 minutes introduction
where we explained our problem context and the visualizations inde-
pendently from the available datasets in the prototype. The slides are
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Component Mean Std.dev

Insight 6.26 1 7 1.06
Confidence 5.11 1 7 2.03
Essence 5.32 1 7 1.45
Time 6.08 1 7 0.91

Total 5.83 1 7 1.50

Table 1: Results of the ICE-T evaluation with visualization experts.
Responses were on a 7-point Likert scale. A total mean greater than
five (small bar) is considered a success.

available in the supplemental material. After the introduction, visualiza-
tion experts continued with the questionnaire. The other experts used
the prototype on a dataset and parameter settings they were familiar
with. A semi-structured interview followed for all participants.

6.1 Visualization Experts (RQ1, RQ2)
We evaluated our visualization design heuristically with visualization
experts according to the ICE-T method [65]. While a good design does
not imply that the visualizations are effective, we think the inverse
most likely holds (bad design → ineffective). Our chosen method is
a good compromise between insights gained and the time requested
from participants. We asked five participants (four Ph.D. students
and one post-doc) from various universities to join our evaluation.
We mostly met them over Zoom, and the sessions took around one
hour each. According to ICE-T guidelines, five people are sufficient.
Participants were free to use the prototype with various datasets on
their own computers. They could always return to the visualization
while filling out the ICE-T questionnaire. ICE-T responses are on a
7-point Likert scale. We asked them to share their thought process to
understand their critique better.

Table 1 holds the results of these questionnaires, split by ICE-T
component. The complete responses are available as supplemental
material. Wall et al. [65] state that a visualization design is successful
when the mean score exceeds five, which we clearly achieved with an
overall mean of 5.83. Our visualization’s worst-scoring component
(mean 5.11) is Confidence, which is also the one with the highest stan-
dard deviation. While participants agreed that we use “meaningful and
accurate visual encodings” (question Q18 in the ICE-T questionnaire)
and “avoid misleading representations” (Q19), they mostly disagreed
that our visualization “promotes understanding beyond individual data
cases” (Q20) or highlights data quality issues (Q21). It would take
some effort to detect duplicate or invalid data cases in our visualization,
but that was a conscious design choice. The second-worst component is
Essence, which also has the second-highest standard deviation, indicat-
ing disagreement between participants. In fact, the two most contested
questions here were whether the visualization “facilitates generaliza-
tions and extrapolations” (Q16) or “helps understand how variables
relate in order to accomplish different analytic tasks” (Q17). Low rat-
ings in the former were, e.g., because the Discrepancy Dendrogram
assesses individual clusters but does not indicate differences between
elements. This issue could be tackled in the future by specially crafted
comparison visualizations. In the latter question, some participants fo-
cused on the “different analytic tasks” and argued that our visualization
does not fulfill this criterion due to its singular focus.

On the other hand, participants rated the Insight and Time com-
ponents very well. Two questions of the former seemed somewhat
controversial, as they are associated with higher standard deviations
(1.79 and 1.64). One participant somewhat disagreed that the visual-
ization “facilitates perceiving relationships in the data” (Q2). Their
reasoning was as follows. We show data cases as leaves in the Dis-
crepancy Dendrogram and also in a gallery to the side. However, all
data cases are separate visualizations, so it would be akin to showing
individual bars instead of a histogram. However, they also realized that
this was not a goal of our visualization design. The other contested
question was whether the visualization “helps identify unusual or unex-
pected, yet valid, data characteristics” (Q5). One participant somewhat

(a) R (b) K (c) W

Fig. 6: Leaf visualizations for SBSS regionalization (R) and kernel (K)
parameter, and output (W).

disagreed, mentioning that data cases with unusual or unexpected fea-
tures would be hard to spot if the distance metrics would not consider
these. We do not see this as an issue because the chosen dissimilarity
metrics might as well measure local differences.

6.2 SBSS (RQ1, RQ2)
Two experts (SE1 and SE2) in statistics and SBSS, who were not part
of the design process, used our visualizations on familiar datasets.
They were recruited from the authors’ professional network as they
were required to have knowledge of SBSS. They both hold a Ph.D. in
statistics and published on spatial data analysis. Sessions took around
2 hours. We guided them in the process as much as necessary, e.g.,
formulated possible analysis goals and answered any questions they had.
After that, we continued with a semi-structured interview, inquiring
about their confidence in findings, possible insights, and how these
relate to prior expectations.

Datasets and Parameter Settings. The experts used two spatial
datasets. SE2 worked on the Colorado dataset, which is a geochemical
survey of 960 locations and 27 variables in Colorado, USA. Both SE2
and NP contributed parameter settings to investigate, as was agreed
upon prior to the interview. SE2 provided an R script to obtain regional-
izations (10 slices along four directions) and kernels (0–200 km radii).
NP added regionalizations obtained in a prior study [51]. SE1, on the
other hand, worked on the meteorological Veneto dataset, which con-
sists of 72 locations and 7 variables in Veneto, Italy. Parameter settings
were obtained in a pilot session by SE1 and NP together using an exist-
ing prototype [51]. We computed outputs for a full factorial of selected
regionalizations and kernels for both datasets. In total, 42 settings were
available for the Veneto and 48 for the Colorado dataset.

Dissimilarity Measures. We chose appropriate functions together
with our collaborators. For the unmixing matrix W, we use the MD-
Index [27], a specialized comparison tool for unmixing matrices. For
two kernels (K), we compute the difference of their so-called Spatial
Kernel Matrix [45]. We compare two regionalizations (R) by counting
location pairs for which the region assignment is not identical.

Leaf Visualizations. We used three visualizations to represent R,
K, and W (Fig. 6). For R, we showed as multiple polygons representing
the concave hull of regions (Fig. 6a). In tooltips, these were integrated
into interactive Leaflet maps. For K, we showed concentric circles
representing the ring size (Fig. 6b), also overlaying them to the spatial
context with Leaflet in tooltips (Fig. 5-E). We visualized W as a tilemap
where each tile represented one latent dimension (Fig. 6c). Tiles were
colored in a univariate continuous gray color map showing Moran’s I
[44], a measure for spatial autocorrelation. High values of that measure
point to large-scale spatial patterns, which analysts might find easier to
interpret. Tiles were ordered as the SBSS algorithm returned respective
dimensions. Tooltips of tiles showed static plots of latent dimensions
overlayed on OpenStreetMap.

SE1. NP guided SE1 to focus on SA because other than SE2,
SE1 initially focused more on the spatial relationship between region-
alizations (R) and locations in the dataset. Regarding SA, SE1 was
interested in the influence of the kernel (K) parameter on the output.
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Fig. 7: KW Discrepancy Dendrogram (average linkage with some
clusters collapsed, cropped) for the Veneto dataset. The dashed box
marks the most stable kernel setting identified by SE1.

Fig. 8: RW Discrepancy Dendrogram (complete linkage with some
clusters collapsed, cropped) for the Veneto dataset. Dashed boxes mark
the most stable regionalization settings identified by SE1.

NP pointed SE1 to a KW dendrogram configuration and explained
that the red color points to sensitive parameter settings. Almost all K
clusters were colored red. As they were wider in W, it indicated that the
other parameter (R) exerts more influence on the output than K. SE1
switched to average linkage to account for any outliers that may skew
the complete linkage criterion. Using this view (Fig. 7), they found that
K with a radius 0–60 km was the least red compared to others. Hence,
this setting was most stable regarding the choice of R, with K=0–30 km
a close second. SE1 explained that most locations in the dataset are
within 75 km, so a kernel up to 60 km will likely capture most of the
spatial dependency structure. SE1 also observed kernels up to 90 km
radius (three big circles on the left in Fig. 7) generally showing wider
clusters in W than the smaller kernels due to their stronger red color.
SE1 concluded that two levels of spatial variability exist in the dataset.

Next, a RW configuration of the Discrepancy Dendrogram, was
investigated (Fig. 8). Here, clusters of the 3-partitions chosen by alti-
tude and precipitation were the most stable, meaning they were more
independent of the choice of K than other partitions. This fact was
initially surprising to SE1. However, SE1 reconciled it such that the two
partitions are similar in that they both separate Veneto’s mountainous
and flat region. However, another separation in the plane seemed nec-
essary. 2-partitions with just the mountain-flat separation were linked
to wider clusters in the output, thus more sensitive to the choice of K.

In the interview, SE1 voiced many positive sentiments. They found
the visualization “not difficult” to understand, and the construction of
the Discrepancy Dendrogram was logical and easy to follow. SE1 liked

Fig. 9: WR Discrepancy Dendrogram for the Colorado dataset. Blue
lines mark data cases with variation in W despite similar R. Closer
inspection revealed that the presence of a hole of at least 100 km size
in associated K settings distinguishes these cases (red arrow).

the interactive maps and that “you can analyze the data by looking at
different aspects in different ways.” “Half of the work is made [with this
tool],” so analysis time is saved compared to the “classical methods.”
In sum, SE1 found our visualizations “help evaluate the parameters”
and identified an interesting parameter subspace to consider for future
analysis: Smaller K in higher resolutions, as 0–60 km kernels were
found to be most stable. SE1 could see our visualizations working for
people who are “not completely expert [sic]” in SA. Based on these
sentiments, we think RQ1 and RQ2 can be answered positively.

SE1 thought that the Discrepancy Dendrogram is not very easy to
interpret but also attributed this to lack of familiarity with our approach
and visualizations. Other than SE2, SE1 did not confirm or challenge
expectations about parameter importance/sensitivity, as they find it
necessary to compare multiple datasets before concluding anything. In
the same spirit, SE1 remarked that a proper data analysis pipeline uses
multiple complementing methods, prohibiting sweeping conclusions
using our visualizations alone.

SE2. First, SE2 focused on a WK Discrepancy Dendrogram. SE2
observed many red lines and asked if it was correct to conclude that
those outputs are less sensitive to kernel (K) choice, which it was. SE2
was then interested in regionalizations (R) and switched to WR. There,
SE2 observed a very salient pattern (Fig. 9): Most of the dendrogram
was gray, indicating that cluster diameters match well between W and
R. Thus, R is an important parameter for the Colorado dataset. A
few clusters showed blue highlights, indicating clusters of sensitive
R parameter settings. SE2 looked at one of the clusters (red arrow in
Fig. 9), saw the same R combined with various K, and considered the
local dendrogram shape. SE2 concluded that two groups of W exist for
this R setting (10 horizontal slices): One using very “un-local” kernels
(K) with a 100 km hole and another group containing the dataset’s
remaining K settings. Hence, the choice of K matters a lot for this
particular R setting. Other salient blue patterns were visible on the
dendrogram’s right side but not investigated by SE2. SE2 then returned
to the WK configuration, but set the leaves to show R and investigated
how these parameter settings were distributed in the dendrogram. They
observed mostly neat clusters (by SBSS output W) of 6 data cases and
identical R in each cluster, which was another hint that R is the more
important parameter.

NP suggested looking at a parameter-focused dendrogram, after
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(a) Rank (b) Min-max

Fig. 10: Rank and min-max distance normalization highlight different
relations. Note the enclosed circles’ color. With ranked distance (a), the
small kernel is shown as most stable of the three (lighter color). Min-
max distances (b) show that the absolute difference is low (saturated
colors). Our visualizations offer more precise visual encodings in
addition to color hue for such comparisons (see, e.g., Section 5.1).

which SE2 changed it to KW. Here SE2 suggested that one K setting
(0–50 km radius) is much more stable than the others due to its lighter
color and wrongly concluded that R choice matters less for that. While
their first assessment (more stable than others) was correct, the second
part did not consider the magnitude of the cluster diameter difference
in W. If SE2 would have used min-max normalized distances Discrep-
ancy Dendrogram (Fig. 10), they would have seen that also for that K,
the cluster diameter difference in W was very high in absolute terms.
Finally, SE2 also considered RW to investigate the stability of R.
Here, a completely different picture than for KW emerged: The lines
touching dendrogram leaves were gray instead of red, thus suggesting
that less variation happens within R settings than between them. This
image was consistent with WR, underlining the importance of the
regionalization (R) parameter even more.

In the interview afterward, SE2 offered mainly positive comments.
The visualization is “very intuitive to use”, and it “speeds up analysis
because one can see all parameter combinations at once.” It “does
exactly what it’s supposed to do” because “the color pointed [them] to
[data cases] where there was something going on” and, therefore, SE2
is “very confident in results obtained with this tool, I don’t doubt it.”
They mentioned that “many observations would not have been possible
without this [visualization]” and that, therefore, it can be a qualitative
complementary to the quantitative methods they use in their research.
E.g., as a more systematic replacement for the trial & error they do now.
SE2 confirmed their suspicion that R is the more important parameter
using our visualizations. Again, we think these sentiments strongly
support both RQ1 and RQ2.

SE2 also mentioned that the Discrepancy Dendrogram was not par-
ticularly easy to understand. I.e., the syntax, so to say, was clear (red,
gray, and blue pointing in the direction of wider clusters), but translat-
ing that into actionable steps in parameter analysis was difficult. SE2
expects that this effect will get smaller with more familiarity with the
visualizations. Finally, SE2 admitted they mostly looked at the tilemap
in the leaves to judge W similarity. Since tiles contain a summary
(Moran’s I) of actual maps, the visualization may be misleading. A
possible remedy could be a glyph design incorporating a derived feature
and map similarity.

6.3 Microclimate Simulations (RQ3)
To demonstrate that the approach used in our prototype is transferable
to other problem contexts (the goal of design studies [60]), we applied
it to microclimate simulation results [64]. Such simulation models
predict meteorological variables (e.g., air temperature or humidity) in
a very small area, typically for a single street or a building. Microcli-
mate simulations are critical nowadays as the climate crisis pressures
cities and real estate developers to adapt to changing climate conditions.
Usually, stakeholders, like city planners and architects, use existing
simulation models and do not develop them themselves. Hence, param-
eter space analysis so far was mostly done by studying derived features
(e.g., maximum temperature) with respect to grid size, often carried
out with visual inspection, and computing relations (e.g., correlation)

between individual variables. Analysts have certain expectations about
parameter relations. These come partially from known model limita-
tions (e.g., the model does not perform well in extreme conditions) and
partially from the modeled physical reality (e.g., the humidity of cold
vs. hot air or wind chill effects).

In the conducted session, two authors (NP, JS) of this paper met
with a microclimate simulation expert ME1, who has a Ph.D. in civil
engineering and was recruited from the authors’ professional network.
JS controlled the prototype and suggested findings that ME1 assessed,
while NP took notes.

Dataset and Parameter Settings. The experts’ use case was to
analyze the climatic conditions around a potential building (available
as a 3D model) in several cities, seasons and meteorological conditions
(called a scenario) to find the best location. The tested cities were
Vienna, Helsinki, and Gothenburg in various seasons. ME1 computed
a dataset containing 12 parameter settings and respective outputs. The
low number of data cases follows the simulation model’s computational
demands as a single run takes several minutes to a couple of hours.
The four outputs were wind speed (OW ), temperature on the surface
(OS) and in the air (OA), and humidity (OQ) at 6 am after a simulated
interval of 24 h. The output values are spatially distributed on a grid.
Parameters of the model were air temperature (PA) and humidity (PQ)
as time series over 24 h, and wind speed and direction (PW ). We agreed
to use Euclidean distance to measure similarity.

Leaf Visualizations. Three visualizations were used to show the
model’s parameters and outputs, both as leaf and tooltip visualiza-
tions. For the spatially distributed outputs (OW ,OS,OA,OQ), we used
heatmaps with univariate color scales of varying hue. Time series
(PA,PQ) were shown as line charts. Wind speed and direction were
shown as arrows, with speed as length and direction as rotation.

ME1. In the beginning, we asked ME1 about the most important
output in the dataset, which ME1 answered to be the surface temper-
ature (OS). The goal was to identify a scenario where OS is both low
and stable so as to not be a threat to the human circulatory system.
At the same time, general parameter-output relations were of interest.
To achieve these tasks, JS set up a Discrepancy Dendrogram with OS
as primary distance and cycled through parameters as alternative dis-
tance. We started with a OSPW configuration, i.e., compared surface
temperature output to the wind (direction and speed) parameter. The
dendrogram showed many red lines, indicating wider clusters in PW and
thus generally no strong association between PW and OS. JS changed
from ranked to min-max distances to see if the pattern persists when the
magnitude is considered, which it did. This relation was expected for
ME1. We also observed an OS outlier with temperatures up to 36 °C,
which seemed unexpected (red arrow in Fig. 11). ME1 recalled that
“the simulation model in question aims to capture extreme conditions in
summer, like overheating, and there is really the question of how it per-
forms in other conditions and different climates.” ME1 concluded that
the outlier might be a failure case of the model. Later analysis showed
that the presumed model failure was related to extreme temperatures in
the PA parameter. However, it became clear that wind alone “does not
really make a difference” when it comes to surface temperature.

JS then switched to other parameters. Air temperature (PA) was
strongly correlated, as expected (Fig. 12). A similar picture emerged
for humidity (PQ), except for a group of three scenarios (Fig. 11-A)
that arrived at similar OS with significantly varying PQ settings. ME1
noted that to determine the actual impact of PQ here, one has to account
for the different seasons and cities. This observation was noted as
something to investigate later, as, at the time, season and city were not
displayed in the prototype. JS then proceeded to compare other outputs
with parameters. Our visualizations showed, and ME1 confirmed,
the known relationship between humidity and air temperature. The
next interesting observation came from the connection between wind
and temperature. Wind parameter (PW ) and output (OW ) were not
strongly correlated, and air temperature (PA) was identified as another
relevant factor (red arrow in Fig. 12a). Regarding how temperature
could influence wind, ME1 mentioned horizontal and vertical mixing
effects but that those would be smaller than the wind-to-temperature
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Fig. 11: OSPW Discrepancy Dendrogram used for microclimate simu-
lations. Red lines indicate wider clusters in PW and thus little influence
of that parameter on OS. The red arrow marks a data case suspected
to be a model failure. Data cases enclosed by A were also investigated
with a OSPQ configuration. Data cases enclosed by A–C were consid-
ered for the final location choice.

(a) Subset Sensitivity View (Section 5.3)
of data cases in Fig. 11-A.

(b) Shepard Matrix (Section 5.4) of mi-
croclimate dataset.

Fig. 12: Subset Sensitivity View (a) of cluster in Fig. 11 shows that air
temperature PA is be the driving parameter for surface temperature OS,
as expected. Shepard diagrams of air-related parameters/outputs in
Shepard Matrix (b) show that this relation holds for all data cases.

effects. ME1 speculated that some correlations might come from the
used 3D grid slices being on pedestrian level (1.8 m) while surface
temperature is only valid for the slice at 0 m.

Asked about disadvantages or improvements, ME1 mentioned not
picking a winning location for their use case because the city and season
were missing in the visualization. NP checked together with JS later.
Of all the surface temperature (OS) clusters (A–C in Fig. 11), OS was
least sensitive to air temperature (PA) in the three scenarios enclosed
by A. They belonged to Helsinki (2/3) and Vienna (1). Thus, Helsinki
could be identified as the most suitable choice due to the more constant
surface temperature. This choice is also consistent with the latest report
of the Intergovernmental Panel on Climate Change [23], which predicts
more stable mean temperature for Northern than Central Europe.

To summarize, we could apply our visualizations in a domain they
were not originally designed for in the following way. We could find a
suitable location for the building, which was the main goal for ME1,
thus solving this domain’s SA task. ME1 could reconcile visualiza-
tion images with domain knowledge and find interesting relations to
investigate in the future, like the humidity parameter’s impact. We see
this session as evidence to support RQ3, that our visualizations can be
transferred to other contexts.

7 LIMITATIONS

As we rely on cluster diameters, the particular choice of nested parti-
tions will greatly influence our sensitivity index, visualization image
and, ultimately, the analysis outcome. The partitions are in turn influ-
enced by the dataset, dissimilarity measure, clustering algorithm, and
its parameters. We took care to select reasonable defaults, but they
may not work for every situation. While it may be a demanding task,
truthful clusterings can be obtained (cf. Section 2.3) and the particular
groupings could be modifiable by the analyst. Another consequence
of relying on relative cluster diameter differences for SA is that the
sensitivity index likely changes when new data is considered, thus the
visualization image may be unstable with regard to additions to the
underlying dataset. While that may seem like a big constraint, we argue
that the same is true for visual SA of multivariate parameters: If they
are sampled too coarsely or in too narrow intervals, then the analysis
outcome may change a lot when the previously excluded parameter
space is considered.

Our approach (Section 4.4) roughly corresponds to a one-at-a-time
sensitivity index, i.e., a local method. Saltelli et al. [56] argue that local
methods are only appropriate when the model under investigation is
demonstrably linear. We did not confirm whether SBSS (Section 6.2) or
the microclimate simulations (Section 6.3) are linear models. However,
we do not see this as an issue for two reasons. First, local indices in
the SA literature make precise quantitative statements for the whole
parameter. As we defined our index only for subsets of data cases, it
does not do that. Second, we developed the index for visual guidance
in an interactive visualization. As all relevant data cases are visible in
detail at any time, the analyst may consider much more context and
existing domain knowledge than they would when interpreting only a
single number, as demonstrated in Section 6.

8 DISCUSSION AND CONCLUSION

Based on requirements and observations in the context of SBSS, we
developed a data type agnostic approach to visual SA. It only requires
dissimilarity measures and thus works for complex parameters and
outputs alike. The core innovation is measuring variation in parameter
settings and outputs by cluster diameters. SA then becomes possible by
looking at the difference of the same cluster’s diameter in parameter
and output space. Evaluation participants expressed high confidence in
our visualizations. Future work may improve this paper’s proposal by
accounting for noise or simultaneously supporting multiple parameters.

The Discrepancy Dendrogram and supporting visualizations (Sec-
tion 5) were also received very well by evaluation participants, espe-
cially considering the task complexity and short training time (around
30 minutes). The construction of the Discrepancy Dendrogram was
logical for all participants, and the prototype provided sufficient in-
teractions and levels of detail. The successful heuristic evaluation
(Section 6.1) further supports this evidence. SBSS and microclimate
simulation experts could confirm suspected or expected parameter-
output relations with our visualizations, while mentioning the need
to familiarize themselves more with our approach. E.g., the region-
alization parameter R is more important for SBSS than the kernel
configuration K (suspected by SE2), or that surface temperature mainly
depends on air temperature (expected by ME1). Further, they could
make high-level decisions (building location, ME1), find new relevant
parameter subspaces (smaller kernels, SE1), or just obtain interesting
observations (kernels with holes, SE1 and SE2). Considering the utility
of the Discrepancy Dendrogram it will also be interesting to apply
our approach to other visualization idioms, e.g., to DR scatterplots
(Section 2.3).

We noted, e.g., during introductory explanations, that some partic-
ipants found it mentally demanding to reason simultaneously about
1) groups of elements instead of single elements and 2) two distances
within a group of elements. This issue is, to some extent, inherent to
the problem we want to solve. On the other hand, we think rephrasing
SA or finding visual representations so that analysts can reason about
single elements instead of groups has much simplification potential.
Achieving this would allow even more powerful SA visualizations
potentially applicable to many contexts (Section 6.3).
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