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Abstract: Two novel silver(I) coordination polymers, [Ag(4BP)(SCN)]n (1) and {(4BPH)+[Ag(SCN)2]−}n

(2) (4BP = 4-benzoyl pyridine), have been synthesized. The two complexes were prepared using almost
the same reagents, which were AgNO3, 4BP and NH4SCN. The only difference was the presence of 1:1
(v/v) HNO3 in the synthesis of 2. In the two complexes, the Ag(I) has distorted tetrahedral coordination
geometry. The structure of both complexes and the involvement of the thiocyanate anion as a linker
between the Ag(I) centers were confirmed using single-crystal X-ray diffraction. 4BP participated
as a monodentate ligand in the coordination sphere of complex 1, while in 2 it is found protonated
(4BP-H)+ and acts as a counter ion, which balances the charge of the anionic [Ag(SCN)2]− moiety.
The thiocyanate anion shows different coordination modes in the two complexes. In complex 1, the
thiocyanate anion exhibits a µ1,1,3 bridging mode, which binds three Ag(I) ions to build a boat-like
ten-membered ring structure leading to a two-dimensional coordination polymer. In 2, there are
mixed µ1,1 and µ1,3 bridging thiocyanate groups, which form the one-dimensional polymeric chain
running in the a-direction. Several interactions affected the stability of the crystal structure of the two
complexes. These interactions were examined using Hirshfeld surface analysis. The coordination
interactions (Ag-S and Ag-N) have a great impact on the stability of the polymeric structure of the
two complexes. Additionally, the hydrogen-bonding interactions are crucial in the assembly of these
coordination polymers. The O. . .H (10.7%) and C. . .H (34.2%) contacts in 1 as well as the N···H
(15.3%) and S···H (14.9%) contacts in 2 are the most significant. Moreover, the argentophilic interaction
(Ag. . .Ag = 3.378 Å) and π- π stacking play an important role in the assembly of complex 2.

Keywords: AgSCN coordination polymer; 4-benzoyl pyridine; X-ray diffraction; supramolecular;
Hirshfeld

1. Introduction

Coordination polymers (CPs) have gained prominence in the field of materials science.
Due to their many potential applications, particularly in gas storage [1,2], separation [3,4],
catalysis [5–7], sensors, optoelectronics [8,9], nanomaterial synthesis [10,11], illumination,
photodetection [12,13] and drug delivery [14,15], CPs with one- to three-dimensional
structures have been studied. In particular, silver is an effective metal to be used for
the synthesis of CPs because it can involve coordination numbers ranging from 2 to 6,
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providing a variety of coordination geometries [16]. Also, some Ag-CPs have coordination
numbers greater than six [17,18]. Furthermore, the structural diversity of silver-based CPs
is affected not only by the supramolecular Ag···ligand, Ag···C, Ag···π, C-H···π, H-bonds,
π-π stacking and anion interactions [19–22] but also by the significant Ag···Ag interactions
(argentophilicity) [23–25], which have an impact on the structural diversity and appealing
optoelectronic properties [26–34]. As a result, silver is one of the top ten metals chosen to
construct 2D CPs [35,36]. Moreover, 8% of all the CPs (1D–3D) in the MOF subset are Ag-
CPs [37]. These materials were found to exhibit fascinating structural motifs [21,38–40] and
intriguing properties, including electrical conductivity [41,42], photoluminescence [27,43],
guest exchange and sorption [44,45], magnetism [46,47], catalysis [48,49], antitumor [50] as
well as antibacterial activities [51]. More recently, Ag(I) compounds with N-heterocyclic
ligands have been reported to show more cytotoxic action than cis-platin against tested
cancer cell lines [52].

Pyridine derivatives are among the most often used nitrogen-containing heterocyclic
ligands. Due to the variety of ligand design and the ability to form labile and reversible
bonds, the metal–pyridine coordination bond is among the most ideal systems for the
self-assembly of well-organized CPs [53–56]. Various factors should be taken into consider-
ation for the successful preparation of these polymeric materials, including the reaction
conditions [57], the ratio of silver to ligand [58], silver ion stereochemistry coupled with
the functionality of the ligands [59] and the characteristics of counter-anions [60]. Recently,
our research groups reported the synthesis and X-ray structure analysis combined with
Hirshfeld and antimicrobial studies of polymeric [Ag(3-cyanopyridine)2(CF3COO)]n and
the dinuclear [Ag(4-benzoylpyridine)2]2(CF3COO)2 complexes [61]. In addition, the X-ray
structure of [Ag(4-benzoylpyridine)2](NO3).H2O revealed the monomeric structure of this
complex [62].

In this regard, thiocyanate (SCN−) is frequently used as a bridging ligand for creating
new silver clusters because of the strong Ag-S bond and the high ability of silver to
form relatively stable coordination compounds with nitrogen a as donor atom [63–67],
in addition to its various coordination modes (Figure 1) [68–75]. The crystal structure of
the simple silver(I) thiocyanate salt has been reported by Zhu and coworkers. Its X-ray
structure revealed a 3D network via Ag—S bonds and weak Ag. . .Ag interactions where
each Ag-atom has a T-shaped coordination environment [65]. Also, the X-ray structure
of the AgSCN adducts with pyridine and other heterocyclic ligands was reported in the
literature to have an oligo-nuclear structure [67], i.e., 1-, 2- and 3D polymeric networks that
use AgSCN fragments as their building blocks [65,73,74].

In the light of the interesting structural and supramolecular structure properties of
Ag(I) thiocyanato complexes, we report herein the synthesis of two new Ag(I)-CPs with
4-benzoyl pyridine (4BP) (Figure 2), using thiocyanate as a linker. The structure of the
synthesized complexes was verified using single-crystal X-ray diffraction analysis. In
addition, Hirshfeld calculations were used to investigate the supramolecular architectures
of the studied complexes.
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2. Results and Discussion
2.1. Synthesis and Characterizations

The X-ray structures of the Ag(I) complexes with 4-benzoylpyridine with different
anions such as CF3COO− and NO3

− were previously reported in the literature [61,62]. The
former complex [Ag(4BP)2]2(CF3COO)2 is dinuclear through a strong argentophilic interac-
tion connecting the two [Ag(4BP)2] cationic units [61] while the latter [Ag(4BP)2](NO3).H2O
is monomeric [62]. In both cases, the 4-benzoylpyridine molecule is acting as a monodentate
ligand via its pyridine N-atom, and no close contacts were found between the Ag(I) ion and
the carbonyl group. For [Ag(4BP)2]2(CF3COO)2, the nonpolar C···H (26.2%) and the polar
O···H (15.6%) interactions were found to be the most important in the molecular packing.
In this work, we present the synthesis of two new Ag(I) complexes with 4-benzoylpyridine
(4BP) in the presence of thiocyanate (SCN−) as a bridging ligand. Schematic illustration
for the synthesis of the two complexes is shown in Scheme 1. The two complexes were
prepared using almost the same reagents, which are AgNO3, 4BP and NH4SCN. The only
difference is the addition of 1:1 (v/v) HNO3 in the synthesis of 2. After mixing, the resulting
clear solutions were left for slow evaporation at room temperature. After a few days,
both complexes were formed in crystalline forms, which are suitable for single-crystal
X-ray diffraction analysis. Based on the CIF data, the Hirshfeld calculations were used to
investigate the intermolecular interactions of the studied complexes.
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Scheme 1. Synthesis of the two complexes, 1 and 2.

2.2. X-ray Crystal Structure Description of [Ag(4BP)(SCN)]n (1)

The structure of complex 1 has been revealed using single-crystal X-ray crystallog-
raphy to be [Ag(4BP)(SCN)]n. It crystallizes in the orthorhombic system with the Pna21
space group and Z = 4. The unit cell parameters are a = 27.2079(9) Å, b = 6.0833(2) Å and
c = 7.5732(2) Å while the unit cell volume equals 1253.47(7) Å3. The asymmetric unit con-
sists of one [Ag4BP(SCN)] unit (Figure 3a). The structure of the title complex is approved
to have a 2D polymeric structure via the Ag-N and Ag-S interactions between the Ag(I)
and the bridged SCN− group.
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In complex 1, the Ag(I) is tetra-coordinated (Figure 3b) by one pyridine N-atom from
the 4BP; Ag1–N2; 2.331(2) Å, two thiocyanate sulfur atoms; Ag1–S1; 2.5885(8) Å, Ag1–S1#;
2.6136(8) Å and one nitrogen atom from another thiocyanate anion; Ag1–N1##; 2.175(3)
Å. The bond angles inside the coordination sphere range from 93.98(6)◦ (N2-Ag1-S1#) to
123.35(10)◦ (N1-Ag1-N2). Hence, the coordination geometry around the Ag(I) is considered
a distorted tetrahedron. Selected bond lengths and angles are given in Table 1. The Ag-N
distances were found to be 2.1708(11) Å and 2.1733(12) Å in the [Ag(4BP)2]2(CF3COO)2
complex [61] and 2.146(3) Å and 2.147(3) Å in the [Ag(4BP)2](NO3).H2O complex [62].
The Ag-N distances are shorter in these cases due to the absence of a coordinating anion
attached to the Ag(I) ion.
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Table 1. Selected bond lengths (Å) and angles (◦) for 1.

Bond Distance Bond Distance

Ag1-N1## 2.175(3) Ag1-S1 2.5885(8)
Ag1-N2 2.331(2) Ag1-S1# 2.6136(8)

Bonds Angle Bonds Angle

N1##-Ag1-N2 123.35(10) C1-S1-Ag1 96.34(12)
N1##-Ag1-S1 116.58(8) C1#-S1#-Ag1 94.97(11)
N2-Ag1-S1 103.91(7) Ag1-S1-Ag1 155.04(4)

N1##-Ag1-S1# 115.60(8) C1##-N1##-Ag1 158.2(3)
N2-Ag1-S1# 93.98(6) C2-N2-Ag1 122.0(2)
S1-Ag1-S1# 98.727(10) C6-N2-Ag1 118.59(19)

Symmetry codes: # 1 – x, 1 – y, −1/2 – z and ## 1 − x,2 − y, −1/2 + z.

Each thiocyanate anion exhibits a µ1,1,3-(S,S,N-) bridging mode, which binds three
Ag(I) centers leading to a boat-like ten-membered ring. These repeating units are fused
together to generate a 2D wavy-like structure extended along the ac plane (Figure 4a).
As a result, each sulfur atom connects two silver atoms, one from its own unit and the
other from another adjacent unit, leading to zig-zag chains extended along the c-direction,
where the Ag–S–Ag angle is 155.04(4)◦. These polymeric chains are further connected
by the coordination interaction between the Ag(I) ion and N-atom from the third thio-
cyanate group, which extends the coordination polymer along the b-direction leading to
the 2D polymeric structure shown in Figure 4b. The angles of the thiocyanate groups are
nearly linear (179.7(4)◦ and 158.2(3)◦ for S1–C1–N1 and C1##-N1##-Ag1, respectively) while
the Ag1–S1–C1 acquires bent conformation, with angles 96.34(12)◦ for Ag1–S1–C1 and
94.97(11)◦ for Ag1–S1#–C1#. These results are consistent with the mesomeric structure
of the thiocyanate group [69,75]. The 4BP organic ligand acts as a terminal monodentate
ligand via the pyridine N-atom and thus is not included in the polymer expansion but is
found located above and below the polymeric zig-zag chains (Figure 5).
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2.3. X-ray Crystal Structure Description of {(4BP-H)+[Ag(SCN)2]−}n (2)

The crystal structure of complex 2 consists of the anionic complex [Ag(SCN)2]−, which
forms a one-dimensional polymeric structure, in addition to the protonated 4BP cation
(4BP-H)+ as an outer sphere. The compound crystallizes in the triclinic system with the
space group P-1 and Z = 2. The unit cell parameters are a = 6.0975(2) Å, b = 8.7626(4) Å,
c = 14.6204(6) Å, α = 95.010(2)◦ and β = 100.1270(10)◦ while the unit cell volume is 765.80(5)
Å3. The asymmetric unit and the coordination geometry of the Ag(I) together with the
numbering scheme are shown in Figure 6. The asymmetric unit is composed of one 4BP-H+

and one [Ag(SCN)2]− anion. In this complex, the N-atom (N3) from the 4BP is found
protonated and is not involved in any coordination interaction with the Ag(I) ion.

In the anionic part of this complex, the crystallographically unique Ag1 center is tetra-
coordinated by four thiocyanate groups via the three S-atoms S1, S1# and S2 in addition to
the N-atom N2##. The S(1)C(1)N(1)− exhibit a µ1,1-mode while the S(2)C(2)N(2)− exhibit
a µ1,3-mode. The main geometrical parameters of the [Ag(SCN)2]− anion are depicted
in Table 2. The Ag-S distances range from 2.5747(6) to 2.6788(7) Å while the Ag-N bond
distance is 2.213(2) Å. The angles around the silver atom are in the range from 99.980(19)◦

to 132.38(8)◦, revealing a distorted tetrahedral coordination geometry. As a result of the
end-to-end (µ1,3-) bonding mode of the S(2)C(2)N(2)−, the anionic part of the complex
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formed a one-dimensional polymeric chain running along the a-direction while the two
thiocyanate groups with the (µ1,1-) bonding mode bi-bridge two Ag(I) centers (Figure 7).
As a result, the anionic chain can more easily be considered as a lengthwise stacking of the
[(Ag)2(SCN)2]− dinuclear units. The Ag. . .Ag separation in the dinuclear unit is 3.379(4)
Å, which is a little bit shorter than the sum of the van der Waals radii of two silver atoms
(3.44 Å) [23], indicating weak argentophilic interactions, unlike the [Ag(4BP)2]2(CF3COO)2
complex in which the Ag-Ag distance is short 3.0740(2) Å, indicating a strong argentophilic
interaction, which leads to the dinuclear complex.
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Figure 6. The asymmetric unit (a) and the coordination geometries of the silver (I) ion (b) in the
polymeric structure of compound 2. Symmetry codes: # 2 − x, −y, −z and ## −1 + x, y, z.

Table 2. Selected geometric parameters (Å, ◦) for complex 2.

Bond Distance Bond Distance

Ag1-N2## 2.213(2) Ag1-S2 2.5890(8)
Ag1-S1 2.5747(6) Ag1-S1# 2.6788(7)

Bonds Angle Bonds Angle

N2##-Ag1-S1 132.38(8) S2-Ag1-Ag1# 115.482(15)
N2##-Ag1-S2 106.15(7) S1-Ag1#-Ag1 48.637(14)

S1-Ag1-S2 100.97(2) C1-S1-Ag1 103.49(8)
N2##-Ag1-S1# 105.56(7) C1-S1-Ag1# 98.38(9)

S1-Ag1-S1# 99.980(19) Ag1-S1-Ag1 80.020(19)
S2-Ag1-S1# 111.08(2) C2-S2-Ag1 97.88(9)

N2-Ag1-Ag1# 136.58(7) C2-N2-Ag1### 172.9(2)
S1#-Ag1#-Ag1 51.343(15)

Symmetry codes: # 2 − x, −y, −z, ## −1 + x, y, z and ### 1 + x, y, z.

The thiocyanates in 2 are slightly less linear compared to complex 1 as can be observed
from the S1–C1–N1 and S2–C2–N2 angles [179.1(3)◦ and 177.7(3)◦, respectively]. As evident,
the order of deviation from the linearity (180◦) of the SCN− group according to its bonding
mode is µ1,1,3 < µ1,1 < µ1,3.

The cationic part (4BP-H)+ of complex 2 acts as the templating agent that fills the space
between the 1D anionic polymer. On the other hand, the 2D supramolecular framework of
the complex is constructed mainly via the C–H. . .S interactions. These interactions occur
between the carbon atom (C7) of the pyridine moiety in the (4BP-H)+ as the hydrogen bond
donor and the µ1,1- thiocyanato S-atom (S1) as the hydrogen bond acceptor and between the
C12-H12 from the phenyl moiety of the (4BP-H)+ cation and S2 of the µ1,3- thiocyanato group
(Figure 8). The C7. . .S1 and C12. . .S2 contact distances are 3.692 Å and 3.639 Å, respectively,
while the H7. . .S1 and H12. . .S2 distances are 2.900 Å and 2.908 Å, respectively. Moreover,
there is a significant N3-H3. . .N1 hydrogen-bonding interaction between the protonated
N-atom (N3) of the (4BP-H)+ as the hydrogen bond donor and the freely uncoordinated
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N-atom (N1) from the µ1,1- thiocyanate group as the hydrogen bond acceptor (Figure 8).
The H3. . .N1 and N3. . .N1 distances are 1.880 Å and 2.723 (3) Å, respectively.
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2.4. Analysis of Molecular Packing

The crystalline polymeric silver complexes 1 and 2 have a well-ordered arrangement
that maintains the stability of the crystal through a set of interactions. These interactions
involve primary bonds (covalent bonds) and secondary bonds (van der Waals, hydrogen
bonds, Ag···Ag interactions, π-π stacking, etc.). A leading method for finding and analyzing
all potential interactions that affect a crystal structure’s stability is Hirshfeld topology
analysis. Figure 9 shows the Hirshfeld surface mapped with the dnorm properties along
with the neighboring molecules involved in the closest contacts. The red and blue areas in
the dnorm map represent contacts shorter and longer than the sum of the van der Waals radii
of the contacting atoms. Figure 10 illustrates the 2D fingerprint (FP) plots of the important
interactions in the [Ag(4BP)(SCN)]n complex (1).
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interactions and other contacts (H. . .H and N. . .H), which have a high percentage in complex 1.

The polymeric Ag-S (5.1%) and Ag-N (5.7%) interactions appear as intense red spots
in the dnorm map (Figure 9) and as two distinct sharp spikes in the FP plot (Figure 10),
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indicating that these coordination interactions have great significance for the extension
of the polymeric chain structure and in the stability of complex 1 as well. Additionally,
other contacts such as C. . .H and O. . .H are important for the crystal stability of complex 1.
These interactions represent 34.2% and 10.7% of the total Hirshfeld surface area for this
complex. These interactions occur between the adjacent organic ligand (4BP) moieties. The
C2. . .H9 and O1. . .H5 are the shortest interactions, where their corresponding distances
are 2.741 Å and 2.592 Å, respectively.

Also, the supramolecular structure of the [Ag(4BP)(SCN)]n complex is affected by
other numerous weak interactions. Figure 11 displays a summary of all contacts and their
contributions to the molecular packing of this complex. The significant C. . .H (34.2%),
hydrogenic H. . .H (16.4%) and N. . .H (12.5%) interactions are the most frequent interactions.
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Figure 11. All the intermolecular interactions in [Ag(4BP)(SCN)]n (1).

For the compound {(4BP-H)+[Ag(SCN)2]−}n (2), the dnorm map and the 2D fingerprint
plots are presented in Figures 12 and 13, respectively. As in 1, the polymeric Ag-S and
Ag-N interactions appear as intense red spots in the dnorm map and as two distinct sharp
spikes in the FP plot. Their respective contributions are 3.5% and 5.3%, respectively. It
revealed the polymeric nature of this compound through coordination interactions between
the Ag(I) ion and the thiocyanato sulfur and nitrogen atoms, which form the 1D polymeric
chain of this complex. As shown in Figure 12, the dnorm map shows other red spots related
to the N. . .H, S. . .H, C. . .O and Ag. . .Ag contacts, which are also important for the crystal
stability of complex 2.
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Figure 13. Hirshfeld 2D fingerprint plots of the most significant (Ag-N, Ag-S, N. . .H, S. . .H, C. . .O
and Ag. . .Ag) interactions and other contacts (H. . .H, C. . .H, O. . .H and C. . .C) that contribute with
a high percentage to the stability of complex 2.

As shown in Figure 12, there are two large and intense red spots corresponding to the
N. . .H interactions that also appear as sharp spikes in the FP plot (15.3%) (Figure 13), re-
vealing the importance of this interaction in the crystal stability of 2. The N. . .H interaction
occurs between the uncoordinated N-atom (N1) of the µ1,1-thiocyanato group in the 1D
polymeric chain of [Ag(SCN)2]− anion and the hydrogen atom (H3) of the protonated 4BP
in (4BP-H)+ cation where the N1. . .H3 distance is 1.734Å.

The S. . .H interaction appeared in the FP as wings and contributed to the crystal
structure packing by 14.9%, indicating the importance of the interactions between the
hydrogen atoms from the (4BP-H)+ cation and the S-atoms of the µ1,1- (S1. . .H7 = 2.778 Å)
and µ1,3-thiocyanato (S2. . .H12 = 2.798 Å) groups from the anionic complex part, leading
to the extended 2D supramolecular framework. Moreover, the C. . .O interaction occurred
between the adjacent (4BP-H)+ cations where the C7. . .O2 distance is 2.916 Å. In addition,
the argentophilic (Ag. . .Ag) interaction occurred in complex 2 (Ag1. . .Ag1 = 3.378 Å). On
the other hand, the contribution of the C. . .C contact by 5.4% in the FP plot (Figure 13),
along with the red/blue triangles and green flat area in the shape index (SI) and curvedness
maps, respectively, confirm the existence of π- π stacking interactions between the parallel
phenyl rings of the (4BP-H)+ cation (Figure 14). The C11. . .C13 (3.712 Å) and C12. . .C12
(3.714 Å) are the shortest distances between the stacked phenyl rings. These distances are
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longer than twice the van der Waals radii (3.40 Å) of the carbon atoms, indicating rather
weak π-π stacking interactions.
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The other weak non-covalent interactions that occurred in complex 2 are shown in
Figure 15. The hydrogenic H. . .H (21.9%), N. . .H (15.3%), S. . .H (14.9%) and C. . .H (14.8%)
contacts were the most frequent interactions.
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3. Experimental
3.1. Material and Instrumentation

All chemicals were obtained from Sigma-Aldrich Company and used as received.
A Perkin Elmer 2400 Elemental Analyzer (PerkinElmer, New York, NY, USA) was used
to perform the CHN analyses. Additionally, the amount of Ag was determined using a
Shimadzu atomic absorption spectrophotometer (AA-7000 series, Shimadzu, Ltd., Kyoto,
Japan).

3.2. Synthesis of the AgSCN/4BP CPS
3.2.1. Synthesis of [Ag(4BP)(SCN)]n Complex (1)

An aqueous solution of silver(I) nitrate (170 mg, 1 mmol) in 10 mL was mixed with
a saturated solution of ammonium thiocyanate followed by the addition of an ethanolic
solution (10 mL) of 4BP (183.2 mg, 1 mmol). This mixture was left at room temperature
and allowed to evaporate slowly. Complex 1 was obtained as pale-yellow block crystals
after 10 days. [Ag(4BP)(SCN)]n (1); (76% yield). Anal. Calc. C13H9AgN2OS: C, 44.72; H,
2.60; N, 8.02; Ag, 30.89%. Found: C, 44.59; H, 2.56; N, 7.94; Ag, 30.71%.
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3.2.2. Synthesis of {(4BP-H)+[Ag(SCN)2]−}n Complex (2)

An aqueous solution of silver(I) nitrate (170 mg, 1 mmol) in 10 mL was mixed with a
saturated solution of ammonium thiocyanate followed by the addition of an ethanolic solu-
tion (10 mL) of 4BP (183.2 mg, 1 mmol). To the resulting mixture, 2 mL of 1:1 (v/v) aqueous
solution of nitric acid was added. Complex 2 was obtained as colorless needle crystals after
6 days. {(4BP-H)+[Ag(SCN)2]−}n (2); (71% yield). Anal. Calc. C14H10AgN3OS2: C, 41.19;
H, 2.47; N, 10.29; Ag, 26.42%. Found: C, 41.07; H, 2.44; N, 10.20; Ag, 26.29%.

3.3. X-ray Crystallography

The crystal structure of the two complexes was measured with the aid of Bruker
APEX II machine employing graphite monochromator and MoKα radiation. Absorption
corrections were performed using SADABS while all steps performed to solve the structure
were executed using the SHELXTL program package [76]. Table S1 (Supplementary Data)
provides a summary of the crystallographic results.

3.4. Hirshfeld Surface Analysis

The program Crystal Explorer 17.5 [77] was used to analyze the various intermolecular
interactions in the investigated silver complexes.

4. Conclusions

The supramolecular structures of the 2D [Ag(4BP)(SCN)]n (1) and 1D {(4BP-H)+[Ag(SC
N)2]−}n (2) coordination polymers are presented. Both complexes were prepared from the
reaction of 4-benzoyl pyridine (4BP) with AgNO3 in the presence of thiocyanate as a linker.
As shown from the X-ray structure analysis of both complexes, the 4BP does not participate
in expanding the polymeric structure. In complex 1, it acts as a N-donor monodentate
ligand while in 2 it does not participate in coordination and was found monoprotonated
(4BP-H)+. The thiocyanate anion displays different coordination modes in complexes 1 and
2, which affects the interconnection of the (AgSCN)n fragments and the propagation of the
network structure in the different dimensions. In the case of complex 1, the SCN− exhibits
a µ1,13- bonding mode, while in 2 there are two types of bonding modes, which are the µ1,1-
and µ1,3-types. As a result, 2D and 1D polymeric structures are obtained for complexes 1
and 2, respectively. The supramolecular structure aspects of both complexes were analyzed
quantitatively using Hirshfeld analysis. The non-covalent C. . .H and O. . .H interactions are
the most significant contacts in 1 where the percentages of these interactions are 34.2% and
10.7%, respectively. In 2, the N. . .H (15.3%), S. . .H (14.9%) and C. . .O (3.2%) contacts are
the most significant. Additionally, the hydrogenic H. . .H interactions largely contributed
to the packing of complexes 1 (16.4%) and 2 (21.9%).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11100417/s1, Table S1: Crystal data and structure refinement for
complexes 1 and 2.
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monomer and coordination polymer with organic thiocyanate ligand: Structural, computational and antiproliferative activity
study. Polyhedron 2019, 173, 114132. [CrossRef]

67. Bowmaker, G.A.; Di Nicola, C.; Hanna, J.V.; Healy, P.C.; King, S.P.; Marchetti, F.; Pettinari, C.; Robinson, W.T.; Skelton, B.W.;
Sobolev, A.N.; et al. Oligo-nuclear silver thiocyanate complexes with monodentate tertiary phosphine ligands, including novel
‘cubane’and ‘step’tetramer forms of AgSCN: PR3 (1:1)4. Dalton Trans. 2013, 42, 277–291. [CrossRef] [PubMed]

68. Mautner, F.A.; Scherzer, M.; Berger, C.; Fischer, R.C.; Vicente, R.; Massoud, S.S. Synthesis and characterization of five new
thiocyanato-and cyanato-metal (II) complexes with 4-azidopyridine as co-ligand. Polyhedron 2015, 85, 20–26. [CrossRef]

69. Kabesova, M.; Gazo, J. Structure and classification of thiocyanates and the mutual influence of their ligands. Chem. Zvesti. 1980,
34, 800.

70. Norbury, A.H. Coordination chemistry of the cyanate, thiocyanate, and selenocyanate ions. Adv. Inorg. Radiochem. 1975, 17,
231–386.

71. Armstrong, D.R.; Khandelwal, A.H.; Raithby, P.R.; Snaith, R.; Stalke, D.; Wright, D.S. Structure of the lithium thiocyanate-
tetramethylpropylenediamine complex dimer,[LiNCS-Me2N (CH2)3NMe2]2, with asymmetric NCS-bridge bonding: A new
bonding mode for the thiocyanate ligand. Inorg. Chem. 1993, 32, 2132–2136. [CrossRef]

72. Zhu, H.-L.; Liu, G.-F.; Meng, F.-J. Refinement of the crystal structure of silver (I) thiocyanate, AgSCN. Z. Kristallogr.—N. Cryst.
Struct. 2003, 218, 263–264.

73. Luo, G.G.; Sun, D.; Zhang, N.; Huang, R.B.; Zheng, L.S. Two novel silver (I) coordination polymers: Poly [(µ2-2-
aminopyrimidine-κ2N1:N3)bis(µ3-thiocyanato-κ3S:S:S)disilver(I)] and poly [(2-amino-4,6-dimethylpyrimidine-κN) (µ3-
thiocyanato-κ3N:S:S)silver(I)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2009, 65, m377–m381. [CrossRef] [PubMed]

74. Etaiw, S.E.D.H.; Abd El-Aziz, D.M.; Ibrahim, M.S.; El-din, A.S.B. Synthesis and crystal structures of three novel coordination
polymers constructed from Ag (I) thiocyanate and nitrogen donor ligands. Polyhedron 2009, 28, 1001–1009. [CrossRef]

75. Krautscheid, H.; Emig, N.; Klaassen, N.; Seringer, P. Thiocyanato complexes of the coinage metals: Synthesis and crystal structures
of the polymeric pyridine complexes [AgxCuy (SCN) x+ y (py) z]. J. Chem. Soc. Dalton Trans. 1998, 18, 3071–3078. [CrossRef]

76. Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122.
77. Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer17;

University of Western Australia: Crawley, Australia, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/sym13112026
https://doi.org/10.1039/C7TC04177B
https://doi.org/10.1039/a909868b
https://doi.org/10.1021/ic0512835
https://doi.org/10.1039/C8NJ02823K
https://doi.org/10.1039/b706781j
https://doi.org/10.1016/j.molstruc.2022.133210
https://doi.org/10.1071/CH9871603
https://doi.org/10.1021/acs.cgd.8b01255
https://doi.org/10.1021/acs.inorgchem.8b03166
https://www.ncbi.nlm.nih.gov/pubmed/30793896
https://doi.org/10.1007/s11243-021-00457-5
https://doi.org/10.1016/j.poly.2019.114132
https://doi.org/10.1039/c2dt31853a
https://www.ncbi.nlm.nih.gov/pubmed/23114624
https://doi.org/10.1016/j.poly.2014.08.031
https://doi.org/10.1021/ic00062a043
https://doi.org/10.1107/S0108270109032934
https://www.ncbi.nlm.nih.gov/pubmed/19805869
https://doi.org/10.1016/j.poly.2009.01.005
https://doi.org/10.1039/a803468k

	Introduction 
	Results and Discussion 
	Synthesis and Characterizations 
	X-ray Crystal Structure Description of [Ag(4BP)(SCN)]n (1) 
	X-ray Crystal Structure Description of {(4BP-H)+[Ag(SCN)2]-}n (2) 
	Analysis of Molecular Packing 

	Experimental 
	Material and Instrumentation 
	Synthesis of the AgSCN/4BP CPS 
	Synthesis of [Ag(4BP)(SCN)]n Complex (1) 
	Synthesis of {(4BP-H)+[Ag(SCN)2]-}n Complex (2) 

	X-ray Crystallography 
	Hirshfeld Surface Analysis 

	Conclusions 
	References

