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Abstract: The widespread tree mortality caused by the European spruce bark beetle (Ips typographus
L.) is a significant concern for Norway spruce-dominated (Picea abies H. Karst) forests in Europe and
there is evidence of increases in the affected areas due to climate warming. Effective forest moni-
toring methods are urgently needed for providing timely data on tree health status for conducting
forest management operations that aim to prepare and mitigate the damage caused by the beetle.
Unoccupied aircraft systems (UASs) in combination with machine learning image analysis have
emerged as a powerful tool for the fast-response monitoring of forest health. This research aims to
assess the effectiveness of deep neural networks (DNNs) in identifying bark beetle infestations at the
individual tree level from UAS images. The study compares the efficacy of RGB, multispectral (MS),
and hyperspectral (HS) imaging, and evaluates various neural network structures for each image
type. The findings reveal that MS and HS images perform better than RGB images. A 2D-3D-CNN
model trained on HS images proves to be the best for detecting infested trees, with an F1-score of
0.759, while for dead and healthy trees, the F1-scores are 0.880 and 0.928, respectively. The study also
demonstrates that the tested classifier networks outperform the state-of-the-art You Only Look Once
(YOLO) classifier module, and that an effective analyzer can be implemented by integrating YOLO
and the DNN classifier model. The current research provides a foundation for the further exploration
of MS and HS imaging in detecting bark beetle disturbances in time, which can play a crucial role
in forest management efforts to combat large-scale outbreaks. The study highlights the potential
of remote sensing and machine learning in monitoring forest health and mitigating the impacts of
biotic stresses. It also offers valuable insights into the effectiveness of DNNs in detecting bark beetle
infestations using UAS-based remote sensing technology.

Keywords: bark beetle; drone; deep learning; hyperspectral imaging; image classification; multispectral
imaging; object detection; RGB; tree health; UAS

1. Introduction

The changing climate has resulted in an increase in forest damage globally, with
extreme weather events, wildfires, and insect disturbances being the main contributing
factors [1–3]. One of the most destructive forest pests is the European spruce bark beetle (Ips
typographus L.), which has benefitted from the warming climate as it provides opportunities
for the development of additional generations during a single growing season due to the
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temperature dependence of bark beetle development [4,5]. This bark beetle has already
caused vast tree mortality in central Europe, southern Sweden, and Russia, and large-scale
tree mortality events are witnessed increasingly at higher latitudes [3]. Extensive tree
mortality causes great economical, ecological, and social losses [6] that can be mitigated by
means of forest management and the monitoring of forest health [7].

To effectively monitor and manage forest pests, the accurate and timely detection
of damaged trees is essential. Traditional methods of detecting bark beetle damage have
involved in situ visual inspections, which are time consuming, inefficient, and challenging
for large forest areas [8,9]. Remote sensing technologies have emerged as a promising
alternative, offering the potential for the timely and accurate identification of affected
trees over large areas. Unoccupied aircraft systems (UASs) can promptly acquire the high-
resolution imagery data of forests, making them an attractive tool for monitoring and
estimating forest health [10,11].

The methods for detecting bark beetle infestations from UAS images are usually based
on crown discoloration symptoms that occur when the water and nutrient transportation
of the tree are disturbed, and tree health begins to decline. The color of the crown gradually
changes from green to yellow and finally to reddish brown and gray in the final step when
the tree dies [9]. These color symptoms can be detected from UAS images taken of the tree
crowns. A great challenge in the detection of bark beetle infestations is the identification
of the early stages of infestation. The first visible signs of bark beetle infestations include
entrance holes, thin resinous flows on the trunk of the tree, and boring dust below the
entrance hole; however, these symptoms are challenging to detect from above the tree
canopies [12]. Other trunk symptoms include bark flaking and shedding. The early stage
of infestation when the first trunk symptoms are already visible but the crown is still green
is referred to as the “green attack” phase [13].

Red–green–blue (RGB) [14,15] and multispectral (MS) cameras [13,16–20] have been
the most frequently used technologies in recent UAS studies on forest insect pests and dis-
eases. Hyperspectral (HS) cameras have been used in only a few studies from UAS [21,22]
and manned platforms [9,21]. There is a need for using HS cameras characterized by a high
radiometric resolution and a wide spectrum to enable a more rapid detection of infested
trees [22].

A variety of computational approaches have been employed to detect tree stress from
remote sensing images [18]. Thresholding spectral indices derived from different band
combinations, such as the Normalized Difference Vegetation Index (NDVI) and Chlorophyll
Vegetation Index (CVI), are a commonly used approach [9,13,16,23]. Other research efforts
have employed machine learning algorithms, such as Random Forests (RFs) and Deep
Neural Networks (DNNs), to classify healthy and stressed trees [14,15,19,20].

A study comparing three different convolutional neural network architectures and
RFs for bark beetle symptom classifications from MS images showed that the CNNs
outperformed RFs; the accuracies were 0.94 and 0.86 for infested and healthy spruces,
respectively [19]. Studies using multitemporal MS images collected at early and later stages
of bark beetle infestations showed that the classification of the different health stages was
more accurate at the end of the summer season [16,20]. Recently, state-of-the-art single-
stage DNN architectures You Only Look Once (YOLO) [24] and RGB images provided high
accuracies in the detection and classification of infested trees. A mean average precision of
0.94 was obtained in a study conducted in Bulgaria [14], whereas the F-scores were 0.90,
0.79, and 0.98, respectively, for healthy, infested, and dead trees in a study conducted in
Finland [15].

Despite the increasing research efforts, there is still a need for more precise and efficient
methods to monitor forest health. RGB UAS imagery is not sufficient for the detection of the
early infestation stage as the green attack trees cannot be detected from the visible crown
discoloration symptoms [14]. For the early detection of bark beetle infestations, it may
be advantageous to use MS and HS images that contain richer spectral information [11].
For example, the wavelength regions affected by leaf water content have been found to
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be sensitive to changes during the early stages of a bark beetle infestation [25]. MS and
HS imaging can capture more spectral bands than RGB images with a higher spectral
resolution. MS and HS capture wavelengths that have been shown to offer insights into
cellular-level changes affecting plant health and can therefore be a useful tool for bark
beetle infestation detection [26,27]. The limited use of advanced sensor technologies, such
as HS cameras and LiDARs, has been considered a shortcoming in the present research, and
it is expected that more detailed data would improve the performance of analytics [9,11,22].
Furthermore, the scientific literature lacks a thorough investigation of the performance of
different DNN architectures in connection with different imaging techniques.

The overall objective of this study is to develop and assess deep learning-based
methods for tree health analysis at individual tree levels utilizing high spatial and spectral
resolution image data collected by a UAS. The study compares the effectiveness of different
DNNs for identifying bark beetle damage on spruce trees using UAS RGB, MS, and HS
images. The specific research questions aim to answer the following questions: (i) does
the use of MS and HS images result in enhanced classification results compared to RGB
images when using deep learning techniques? (ii) Which network structures work best
for RGB, MS, and HS images? (iii) How does data augmentation impact the performance
of the investigated classifiers? (iv) What kind of performance level is achieved by using
single-stage detection and the classification network YOLO or integrating YOLO with a
separate image classification network?

Our results highlight the potential of DNNs for the accurate and efficient detection
of bark beetle damage and provide insights into the strengths and limitations of different
network architectures for this task. The study also shows that careful consideration must be
made to the data availability and model selection. Ultimately, this research has the potential
to inform and improve the timely management of bark beetle infestations, contributing to
more sustainable and resilient forest ecosystems.

2. Materials and Methods
2.1. Overview of the Method

We proposed to use a supervised machine learning approach to train DNN models
to detect spruce trees and classify their health in different classes (Figure 1). The required
input data were tree health references and UAS image datasets. Using these data, two
kinds of neural networks were trained: classifier networks and single-stage object-detector
and -classifier networks. Furthermore, these two approaches were cascaded to facilitate
a combined and refined detection and classification workflow. The major phases of the
method were data preparation, classifier model training, and object-detection model train-
ing. In the final stage, the cascaded object-detection and -classification models were used to
perform inferences over large areas (Figure 1). In this study, we focused on implementing
and assessing different models; however, we did not assess the full area inference model
due to the lack of testing materials. Different steps of the proposed method are described
in the following sections.

2.2. Study Areas and Reference Data

The UAS flights were conducted in Ruokolahti (61◦29′21.840′′N, 29◦3′0.720′′E), south
Karelia, and the Paloheinä areas of Helsinki central park (60◦15′25.200′′N, 24◦55′19.200′′E)
in southern Finland (Figure 2). The Ruokolahti area had four study areas, dominated by
mature spruce stands: Murtomäki, Ryhmälehdonmäki, Paajasensalo, and Viitalampi. The
Ruokolahti area was hit by a disastrous summer thunderstorm in 2010, felling trees in high
numbers and a causing population explosion of the pest. Consequently, there was an out-
break of bark beetles in the area. Paajasensalo and Viitalampi are nature conservation areas.
Spruce mortality and damage are more extensive in these two areas than in Murtomäki
and Ryhmälehdonmäki, which are managed forests, and thus effective control measures
target for them. The Helsinki central park area has been suffering from a bark beetle
outbreak for a few years [20]. The main reasons for the outbreak are the favorable mature
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spruce-dominated forest stands as well as hot and dry summers, which have enabled the
development of a second generation of bark beetles during a single summer and increased
the bark beetle population at a calamitous level. All the study areas were in mature boreal
forests dominated by Norway spruce trees with admixtures of Scots pine (Pinus sylvestris
L.), Silver birch (Betula pendula L.), European aspen (Populus tremula L.), and rowan (Sorbus
aucuparia L.).
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The reference tree health data were collected during the fieldwork conducted by forest
health specialists in the Ruokolahti and Paloheinä study areas. The Ruokolahti study areas
were composed of 57 circular sampling plots with a 10 m radius, in which tree health status
was analyzed. The center of each plot was located using a Trimble Geo XT GPS device
(Trimble Navigation Ltd., Sunnyvale, CA, USA), and the individual trees were located by
measuring the distance to and azimuth of each tree from the plot center. For each tree
larger than 5 cm in diameter within a sampling plot, the tree species, diameter at breast
height (dbh), and height (h) were recorded in August 2019. Additionally, for spruce trees,
five symptoms indicating bark beetle infestation were recorded in August 2019 and 2020,
including crown discoloration, defoliation, bark beetle entrance and exit holes in the trunk,
resinous flow, and declined bark condition [8].

In the Paloheinä area, the health data for selected individual spruce trees distributed
throughout the area were recorded, aiming to ensure a uniform distribution of different
health statuses among the reference trees [20]. The positions of the trees were obtained
from orthophotos collected before the tree selection. The data were collected in the spring,
summer, and fall of 2020. Different trees were chosen for monitoring during each season.
In total, 380 trees were monitored and the health symptoms recorded were crown color,
defoliation, resinous flow, bark damage, and decreased vertical proportion of living canopy
(compared to a healthy tree at the same site).
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The labeling scheme classified trees into healthy, infested, or dead categories based
on the crown color symptoms. Specifically, green and faded-green trees were labeled as
healthy; yellow and yellowish trees as infested; while reddish/brown and gray trees were
labeled as dead. The total numbers of the reference trees were 1466 for RGB images, 1242
for MS images, and 995 for HSI images (Table 1). The differences in the number of reference
trees for different image datasets were the result of the differences in the data collection;
the HS data had the smallest coverage. Most samples were of healthy and dead trees, while
there were fewer samples from infested trees, especially in the Ruokolahti area.

Table 1. Total numbers of images assigned to each health class when using the crown color symptoms.

Area Data Type Total Healthy Infested Dead

RGB 604 231 162 211
Paloheinä MS 380 141 109 130

HS 502 208 130 164
RGB 862 538 11 313

Ruokolahti MS 862 538 11 313
HS 493 307 3 183

RGB 1466 769 173 524
Total MS 1242 679 120 443

HS 995 515 133 347

2.3. Remote Sensing Datasets

In the Ruokolahti area, the UAS images were captured in August, in the years 2019
and 2020, except for Murtomäki, which only had data from 2019. During 2019, the data
collection was conducted in blue-sky conditions; however, in 2020, the weather conditions
varied (Table 2). The Paloheinä datasets obtained captured in the spring, summer, and
fall of 2020. The sizes of individual study areas were 20–120 ha, and the total area was
252 ha in 2019 and 152 ha in 2020 (Table 2). The study areas were captured in 1–4 separate
flights, depending on the size of the area. A custom-built quadcopter UAS with a Gryphon

https://www.maanmittauslaitos.fi/en/opendata-licence-cc40
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Dynamics frame (Gryphon Dynamics Co., Ltd., Daegu, Republic of Korea) was used in all
campaigns (Figure 3).

Table 2. Instrument and acquisition details of the remote sensing datasets. FA: flying altitude;
GSD: ground sample distance of the final orthomosaics; MM: Murtomäki, PS: Paajasensalo, RM:
Ryhmälehdonmäki, VL: Viitalampi.

Dataset Date Area (ha) Weather FA (m) GSD
RGB; MS; HS (cm) Equipment

MM_2019
28 August 2019

60 Sunny 140 3; 6; - DualSonyA7RII, Altum14:08–14:32
14:46–15:11

PS_2019
28 August 2019

45 Sunny 140 3; 6; - DualSonyA7RII, Altum11:52–12:15
12:27–12:51

PS_2020
27 August 2020

32 Varying 140 6; 6; - SonyA7R, Altum
16:30–17:00

RM_2019
27 September 2019

27 Sunny 140 6; 6; - DualSonyA7RII, Altum
13:05–13:27
14:44–15:03 10 Sunny 140 -; -; 10 Rikola

RM_2020
27 August 2020

20 Sunny 140 4; 6; 10 DualSonyA7RII, Altum, Rikola
10:05–10:27

VL_2019

27 August 2019

120 Sunny 140 6; 8; - DualSonyA7RII, Altum

16:11–16:34
16:42–17:02

28 August 2019
9:26–9:47

9:55–10:16
29 August 2019

12 Sunny 140 -; -; 10 Rikola11:48–12:14

VL_2020
27 August 2020

25 Varying 140 6; 6; 10 DualSonyA7RII, Altum, Rikola
11:26–11:50
15:05–15:26 33 Varying 140 6; 6; - SonyA7R, Altum

PH_2020_1
20 May 2020

24 Varying 110 5; 5; - Sony A7R, Altum
12:18–12:39

PH_2020_2
15 July 2020

24 Sunny 110 5; 5; 10 DualSonyA7RII, Altum, Rikola
10:41–11:04

11 September 2020
24 Cloudy 110 5; 5; 10 DualSonyA7RII, Altum, Rikola

11:16–11:40

PH_2020_3
23 September 2020

24 Varying 110 5; -; 10 DualSonyA7RII, Rikola
10:08–10:32

The RGB images were captured using Sony A7R and Sony A7R II full-frame cameras
(Sony Group Corporation, Tokyo, Japan). The MS images were captured with a Micasense
Altum (AgEagle Aerial Systems Inc., Wichita, KS, USA) camera, of which five visible and
near-infrared (VNIR) channels were used in this study. HS images were collected with a
Rikola camera (Senop Ltd., Oulu, Finland), which captured 46 spectral channels in the range
of 500–900 nm, with a Full-Width of Half Maximum (FWHM) of 6.36–10.16 nm (average
6.9 nm) and a spectral resolution (distance between adjacent bands) between 4.87–14.94 nm
(average of 8.98 nm). To enable georeferencing, a Trimble’s APX-15 EI UAV GNSS-Inertial
OEM positioning system consisting of a multiband GNSS, an Inertial Measurement Unit
(IMU), and a Harxon HX-CHX600A Antenna (Harxon Corporation, Shenzhen, China) was
integrated into the system. Figure 3 shows the UAS setup used in 2019 with the HS and
dual RGB cameras; in this photo, Micasense RedEdge is used instead of Altum. The central
wavelengths (L0) and bandwidths (FWHM) of each spectral band of the Micasense Altum
and Rikola cameras are presented in Table 3.
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Table 3. Spectral camera settings for multispectral and hyperspectral cameras. L0: central wavelength;
FWHM: full-width of half maximum.

Quantity Values

Micasense Altum L0 (nm) 475, 560, 668, 717, 840, 12,000
Micasense Altum FWHM (nm) 20, 20, 10, 10, 40, 6000

Rikola L0 (nm)

504.28, 512.91, 521.48, 530.75, 539.46, 548.45, 557.59,
566.28, 575.31, 583.98, 593.37, 601.4, 611.64, 620.27,
628.86, 643.8, 648.67, 657.82, 666.88, 676.21, 684.56,
693.97, 701.6, 711.43, 720.08, 728.95, 738.01, 746.76,
756.03, 764.56, 773.71, 782.85, 792.18, 800.88, 809.82,
818.49, 828.84, 837.57, 846.22, 855.44, 863.54, 873.07,

881.51, 890.21, 899.16, 908.17

Rikola FWHM (nm)

6.36, 7.26, 7.47, 6.75, 7.42, 6.64, 7.35, 6.47, 7.02, 6.6,
6.18, 6.49, 7.64, 8.3, 7.05, 6.76, 6.58, 7.58, 6.72, 7.52,

6.66, 6.82, 5.01, 4.43, 4.97, 3.92, 4.86, 4.11, 4.49, 3.67,
4.3, 5.95, 5.8, 6.46, 5.67, 6.62, 9.05, 10.16, 9.24, 9.93,

9.46, 9.21, 9.55, 9.03, 9.58, 8.9

The raw images underwent geometric and radiometric corrections to provide geo-
referenced orthomosaics and to eliminate external disturbances caused by the sensor,
atmosphere, and weather conditions. The processing of RGB and MS was conducting
using Agisoft PhotoScan 1.4.3 (Agisoft LLC, St. Petersburg, Russia). For the HS images, the
georeferencing of reference bands was performed using Agisoft PhotoScan 1.4.3, followed
by band matching and orthomosaic calculations using in-house software [28,29]. The
Ground Sample Distance (GSD) values of the final orthomosaics were 0.03 to 0.06 m for
RGB datasets, 0.05 to 0.08 m for MS datasets, and 0.10 m for HS datasets.

2.4. Data Preparation

The data preparation included individual tree crown extraction and the labeling of
datasets for object-detection networks.

For the object-detection task, the RGB orthophotos captured in the research areas were
cropped to cover only the sub-areas that contained the reference trees selected for tree
health monitoring. To optimize the detection algorithm’s performance, the large sub-areas
of monitored trees were divided into smaller sections. The dimensions of the resulting
images varied, with width and height ranging from 300 to 1000 pixels. The cropped sections
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comprised both labeled and unlabeled trees (Figure 4a). Unlabeled trees were removed
from the images to prevent them from being learned as negative samples. Since there was
no recorded information for the locations of unlabeled trees, they were manually removed
from the images via a visual inspection (Figure 4b). These types of images were used as the
input for the YOLO detection network. As the YOLO network was not designed to process
MS and HS images, the detection and classification were performed on RGB images.
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bounding boxes. (b) Input image for YOLO network. Unlabeled trees (white areas) are manually
removed from the image. Reference trees are depicted with different colors based on class. Green
denotes healthy trees, orange infested, and red dead trees.

To create the input images for the classifier networks, each reference tree crown was
cropped from the images based on its bounding box coordinates. For the RGB datasets
with the highest spatial resolutions, all tree crown images were resampled to uniform
square shapes of 150 × 150 pixels using nearest-neighbor resampling. The MS and HS
datasets were resampled to 100 × 100 pixels and 50 × 50 pixels, respectively. Notably, an
exception was made for the VGG16 and ViT networks, where all the images were resized
to 224 × 224 pixels. The resulting input image to the classifier networks was a data cube of
a w × h × d shape, where w and h represented the pixel width and height of the image,
respectively, and d represented the number of channels in the image. Figure 5 shows
examples of cropped tree crown images and depicts the appearance of the healthy, infested,
and dead classes on RGB, MS, and HS images.
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Figure 5. Tree crown images captured by RGB, MS, and HS cameras with 5, 5, and 10 cm ground
sample distances, respectively. MS images have visible color bands (B: 475, G: 560, R: 668 nm) and HS
images have false color bands (B: 557.59; G: 648.67; R: 855.44 nm).
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The reference datasets were divided into training, validation, and independent test
sets. The test set was chosen by manually selecting two study areas as the test data. The
selection criteria for the test set were established based on multiple factors. Firstly, it was
deemed essential for the test set to comprise a significant number of images that adequately
represented all health classes. Moreover, the test set needed to be suitable for conducting
tests on the RGB, multispectral, and hyperspectral images. Consequently, Viitalampi 2020
and Paloheinä 15 July 2020 datasets were identified as suitable candidates for the test data.
These specific datasets were selected due to their availability across all image types and
their ability to provide a satisfactory number of infested trees, thus meeting the desired
number required for a comprehensive analysis. The remaining data were divided into
training and validation sets using a random shuffle, adhering to an 80:20 split.

2.5. Classifier Model Training
2.5.1. Classifier Networks

The networks used were based on several research papers in the remote sensing field,
mainly used for tree species and health classifications [30–36]. The used networks included
VGG16, ViT, a simple 2D-CNN, and several 3D- and 2D-3D-CNNs. The different networks,
their layers, and numbers of trainable parameters are summarized in Table 4 for the CNNs
and Table 5 for ViT. All the models were trained from scratch, such that the initial weights
were chosen at random.

Table 4. CNN architectures and numbers of trainable parameters in each network model. FC: fully
connected layer; BN: batch normalization.

Network Layers Number of Kernels and
Kernel Sizes

Number of Trainable
Parameters

VGG16

2 × Conv2D–MaxPool– (64) 3 × 3

~134 million

2 × Conv2D–MaxPool– (128) 3 × 3
3 × Conv2D–MaxPool– (256) 3 × 3
3 × Conv2D–MaxPool– (512) 3 × 3
3 × Conv2D–MaxPool– (512) 3 × 3

3 × FC

2D-CNN

Conv2D–BN–MaxPool– (32) 3 × 3

~200,000
Conv2D–BN–MaxPool– (64) 3 × 3
Conv2D–BN–AvgPool– (64) 3 × 3

FC–Dropout–FC

3D-CNN 1

Conv3D–MaxPool– (32) 3 × 3 × 3

~300,000
Conv3D–MaxPool– (64) 3 × 3 × 3
Conv3D–AvgPool– (64) 3 × 3 × 3

FC–Dropout–FC

3D-CNN 2

Conv3D–MaxPool– (20) 5 × 5 × 5

~100,000
Conv3D–MaxPool– (50) 5 × 5 × 5

Conv3D– (3) 1 × 1 × 1
FC–FC

3D-CNN 3

Conv3D–MaxPool– (5) 3 × 3 × 3

~387 million
Conv3D–MaxPool– (10) 3 × 3 × 3
Conv3D–MaxPool– (15) 3 × 3 × 3

FC–FC

3D-CNN 4

Conv3D– (4) 3 × 3 × 7

~236 million

Conv3D– (8) 3 × 3 × 7
Conv3D– (16) 3 × 3 × 7
Conv3D– (32) 3 × 3 × 7

Conv3D–MaxPool– (64) 3 × 3 × 7
Dropout–FC–Dropout–FC
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Table 4. Cont.

Network Layers Number of Kernels and
Kernel Sizes

Number of Trainable
Parameters

2D-3D-CNN 1

Conv2D– (46) 3 × 3

~13 million
Conv3D–MaxPool– (200) 3 × 3 × 3
2D-Deconvolution– (1) 3 × 3

FC–FC

2D-3D-CNN 2

Branch 1:

~23 million

Conv3D– (1) 7 × 7 × 7
Conv2D (6 ∗ 46) 3 × 3
Branch 2:
Conv3D– (1) 5 × 5 × 5
Conv3D– (6) 3 × 3 × 3
Conv2D (12 ∗ 46) 3 × 3
Branch 3:
Conv3D– (1) 3 × 3 × 3
Conv3D– (8) 3 × 3 × 3
Conv3D– (12) 3 × 3 × 3
Conv2D (32 ∗ 46) 3 × 3

Concatenation
FC–FC–FC–FC

2D-3D-CNN 3

Feature extractor:

~10 million

Conv3D–BN– (1) 3 × 3 × 5
Conv3D–BN (8) 3 × 3 × 5
Conv3D–BN– (16) 3 × 3 × 5
Conv3D–BN (24) 3 × 3 × 5

Spatial encoder:
Conv2D– (32 ∗ 46) 3 ×

Conv2D–BN– (32 )3 × 3
Conv2D– (16) 3 × 3

Conv2D–BN– (16) 3 × 3
FC

Table 5. ViT architecture and number of trainable parameters.

Network Layers Number of Trainable Parameters

ViT
Transformer encoder

~22 million12 × (Layer norm–MHA block–Skip connection–
Layer norm–FC block–Skip connection)

VGG16 is a CNN architecture that was developed by the Visual Geometry Group
(VGG) at the University of Oxford [37]. It consists of 16 layers, including 13 convolutional
and 3 fully connected layers. The input to the network is a 224 × 224 image. Max pooling
layers follow convolution blocks, as described in Table 4. The final layer of the network
is a SoftMax layer that produces a probability distribution over the possible classes. The
VGG16 architecture has achieved state-of-the-art results on many computer vision tasks,
including the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014. The
used model was VGG-16-BN, which was downloaded from the Pytorch torchvision library.

The employed 2D-CNN architecture [30] comprised three consecutive convolutional
layers, each sequentially accompanied by a batch normalization layer and activated using
the ReLU function. Subsequent to the initial two convolutional layers, max pooling was
applied, while average pooling was employed after the final convolutional layer, enhancing
the network’s feature extraction. The convolution blocks were followed by two fully
connected layers with ReLU activation, and the first connected layer was followed by a
dropout layer.
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To evaluate the efficacy of 3D convolutions in the HS-image feature extraction, a
comparison was made between 3D-CNNs and the 2D-CNN network. The 3D-CNNs were
implemented based on four initial models described in research papers in the field [30–33].
In addition, three 2D-3D-CNNs were also implemented based on the literature [34–36].

The 3D-CNN 1 [30] exhibited resemblances to the 2D-CNN introduced in the same
study. However, the 2D-convolution layers were transformed into 3D convolutions, while
the batch normalization process was omitted. Retaining consistency, the remaining network
layers mirrored those of the 2D-CNN, including the quantities of kernels and kernel
sizes implemented.

The 3D-CNN 2 [31] featured three convolutional layers. Following the initial two
convolutional layers, the design incorporated max pooling, succeeded by ReLU activation
after the second pooling layer, just prior to the ultimate convolutional layer. Furthermore,
the model incorporated two fully connected layers into its configuration.

The 3D-CNN 3 [32] resembled the 3D-CNN 2 in structure, both encompassing three
convolutional layers and incorporating max pooling. Nevertheless, in contrast to the 3D-
CNN 2, each convolutional layer in the 3D-CNN 3 was accompanied by ReLU activation,
followed by max pooling. Additionally, the model integrated a pair of fully connected
layers into its configuration.

3D-CNN 4 [33], the deepest of the employed 3D-CNNs, showcased an architecture
featuring five convolutional layers. After each convolutional layer, ReLU activation was
incorporated, while max pooling was executed subsequent to the final convolution and
its accompanying ReLU activation. Additionally, the model included two fully connected
layers, preceded by dropout layers.

The utilized 2D-3D-CNNs consisted of alternating layers of 2D and 3D convolutions.
The first network, denoted here as 2D-3D-CNN 1 [34], comprised a 2D-convolution layer
followed by a 3D-convolution layer and then by a max pooling layer and ReLU activation.
Subsequently, a 2D deconvolution was applied, followed by two fully connected layers.

2D-3D-CNN 2 [35] consisted of three branches of convolutions. The first branch
contained one 3D-convolution layer, the second branch two 3D-convolution layers, and the
third contained three 3D-convolution layers. ReLU activation followed all 3D convolutions,
and each branch contained a single 2D-convolution layer. The outputs from all branches
were concatenated and passed through four fully connected layers.

2D-3D-CNN 3 [36] incorporated feature extractor and spatial encoder modules. The
feature extractor module was composed of four 3D-convolution layers, each followed by
a batch normalization layer and ReLU activation. The output of each convolution layer
was concatenated to create a stack of output data cubes. On the other hand, the spatial
encoder module transformed a 3D input into an encoded feature vector representation
using separable 2D convolutions, followed by a batch normalization layer and ReLU
activation. Finally, a fully connected layer was placed at the end of the network to produce
the output feature vector. It is worth noting that the feature extractor module was based on
3D convolutions, while the spatial encoder module employed 2D convolutions.

Vision Transformer (ViT) [38] is a transformer network designed for image classifica-
tion tasks (Table 5). The transformer-based architecture of ViT processes the image patches
as a sequence of tokens. The input to the network is a fixed-size image, which is split into
a grid of non-overlapping patches. These patches are then flattened into a sequence of
tokens and fed into a transformer encoder. The transformer consists of multiple layers of
self-attention and feed-forward networks, which learn to model the interactions between
the image patches. The output of the transformer is then fed into a classification head that
produces a probability distribution over the possible classes. ViT has achieved state-of-the-
art results on many image classification tasks, including the ImageNet dataset [39]. The
used ViT version was ViT-S, with 16 patches and an image size of 224 × 224 pixels. The
model was downloaded from the Pytorch image models library, timm.
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The hyperparameters used in the training stages for each network were selected with
the Optuna [40] hyperparameter optimization framework, as described in Section 2.5.2.
Each model was trained for 500 epochs.

2.5.2. Hyperparameter Optimization

The Optuna framework [40] was used to optimize model training and improve the
generalization ability of the models. The framework optimized an objective function,
which, in this study, aimed to maximize the mean F1-score of the model when evaluated
on the validation set (see description of F1-score in Section 2.8). Maximizing the mean
F1-score across all classes is a reasonable goal for achieving a good overall performance.
The parameters to optimize were the initial learning rate, weight decay, and batch size.
Default values were used for the rest of the parameters. The optimal parameter values
found with this method are presented in Table 6.

Table 6. Optimized hyperparameter values for each model.

Network Data Learning Rate Weight Decay Batch Size

VGG16 RGB 0.000005 0.02 12
ViT RGB 0.000001 0.05 32

2D-CNN RGB 0.00002 0.02 12
VGG16 MS 0.000001 0.03 32

ViT MS 0.000001 0.02 48
2D-CNN MS 0.0001 0.08 32
VGG16 HS 0.0000005 0.03 12

ViT HS 0.0000003 0.06 32
2D-CNN HS 0.000005 0.04 12

3D-CNN 1 HS 0.000004 0.01 32
3D-CNN 2 HS 0.000005 0.02 32
3D-CNN 3 HS 0.00001 0.01 32
3D-CNN 4 HS 0.00003 0.04 32

2D-3D-CNN 1 HS 0.00002 0.04 32
2D-3D-CNN 2 HS 0.00002 0.03 24
2D-3D-CNN 3 HS 0.00001 0.02 12

The default sampling algorithm, the tree structured Parzen estimator TPESampler,
was used, as recommended in a previous study [41], for an optimization with limited
parallel computing resources. TPESampler uses an iterative process that utilizes the history
of already-evaluated hyperparameter values to create a probabilistic model that suggests
new hyperparameter values to optimize the target function. The iteration continues until a
specified number of trials are performed. In this study, we set the number of initial random
selections as 10, after which the algorithm started to use the Parzen model estimation to
suggest new values. We use 200 trials as TPE requires many iterations to converge to an
optimal solution, and it is recommended to run it for at least 200 iterations.

To reduce the time taken to reach the optimal solution, we used pruning algorithms
that could be used to automatically stop un-promising trials at the early stages of the
training stage. This reduced the time taken to reach the optimal solution as trials likely
to achieve poor results were pruned out. We use the HyperbandPruner algorithm, which
takes advantage of the asynchronous successive halving algorithm [42] by using multiple
successive halving pruners that are referred to as brackets. Each bracket observes multiple
trials and prunes out the worst trials in the bracket. The number of brackets is determined
by the parameters min_resource, max_resource, and reduction_factor. The max_resource
parameter should be set to the number of epochs used in the training, and min_resource
controls the sensitivity of the pruning behavior. A smaller min_resource leads to faster
run times; however, a higher min_resource achieves more reliable results as it provides a
better guarantee of successful judging between the trials. The reduction_factor parameter
specifies the fraction of trials to be reduced. In this study, we set the max_resource value to
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500, according to the number of training epochs, and min_resource to three to increase its
value from the default of one but kept the number of brackets as four. The reduction_factor
was kept as the default, which was three.

2.5.3. Data Augmentation

The dataset used in this study displayed an imbalanced distribution of object classes,
with a significantly higher proportion of healthy trees in comparison to those classified as
infested and dead. Specifically, the proportion of healthy trees was approximately four-
times greater than that of infested trees and 50% larger than the proportion of dead trees.
This imbalance in the distribution of classes could lead to a biased training of the network
due to the overwhelming number of healthy trees in the dataset.

To counter this issue, data augmentation was employed to increase the number of
infested and dead tree samples in the training dataset. Three copies were created for each
infested tree image, and one copy was created for half of the dead tree images. These
duplicated images were then subjected to various augmentation techniques.

To determine the optimal augmentation procedure, a selection of transforms from
PyTorch’s torchvision [43] transforms library was tested. Initially, all transforms were
applied to the images and, subsequently, each transform was excluded in subsequent trials
to identify any transforms that positively impacted the results. The evaluation criterion
focused on the F1-score of infested trees, emphasizing the augmentation strategy’s specific
aim to improve the classification results for this category. The augmentations were tested
using different models: VGG16 for RGB images, 2D-CNN for MS images, and 2D-3D-CNN
2 for HS images.

The selection of transforms included random rotation [44], the horizontal and vertical
flipping of images [45,46], Gaussian blurring [47], padding [48], and random perspective
shifts [49]. In the random rotation transform, each augmented image was rotated by a
random degree within the range of [–180, 180], padding added whitespace to the sides
of the image, effectively reducing its size. Random perspective shifts altered the image
perspective by a random distortion factor, while Gaussian blur applied a randomly selected
Gaussian blur to the image.

2.6. YOLO Implementation

The single-stage object-detection and -classifier framework YOLOv4-p5 [50] was used
to implement the entire tree-detection and -classification procedure. A similar setup was
used, as in reference [15] (Table 7). In this study, the spruces identified by YOLO were fed
into the classifier networks to compare their performances to YOLO.

The YOLOv4 architecture is built on a strong backbone, namely, CSPDarknet53 [51],
which leverages cross-spatial partial connections. This architectural design effectively splits
the feature map of the base layer into two branches, one passing through convolution
layers and the other bypassing convolutions, facilitating an improved gradient flow. The
neck component, comprising modified spatial pyramid pooling and a path aggregation
module, enhanced feature representation and information fusion processes. Finally, the
dense predictor block (head) employed multiple prediction layers with anchor boxes to
locate bounding boxes and predict object classes. YOLOv4 uses several approaches to
enhance accuracy and address the challenges in object detection. Data augmentation
techniques, such as mosaic data augmentation and random anchor shapes, were employed
to augment the training data diversity and improve model robustness. The anchor boxes
were optimized using the K-means clustering algorithm to align with the distribution of
object sizes, enabling a better localization.

A YOLOv4-p5 model, initially pretrained on the COCO [52] 2017 object-detection
dataset, was utilized and subsequently fine-tuned with the RGB dataset. The fine-tuning pro-
cess involved training the model for 200 epochs, employing default hyperparameter values.
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Table 7. YOLO architecture and number of trainable parameters. *: Layers inside brackets are
repeated four times; **: Layer is repeater five times.

Network Layers Number of Kernels
and Kernel Sizes

Number of Trainable
Parameters

YOLO

Conv2D–MaxPool– (64) 7 × 7

~64 million

Conv2D–MaxPool– (192) 3 × 3
Conv2D– (128) 1 × 1
Conv2D– (256) 3 × 3
Conv2D– (256) 1 × 1

Conv2D–MaxPool– (512) 3 × 3
4 × (Conv2D– (256) 1 × 1

Conv2D–) * (512) 3 × 3
Conv2D– (512) 1 × 1

Conv2D–MaxPool– (1024) 3 × 3
Conv2D– (512) 1 × 1
Conv2D– (1024) 3 × 3
Conv2D– (512) 1 × 1

5 × Conv2D– ** (1024) 3 × 3
FC–FC

2.7. Computing Platform

Each classifier network model was trained using a NVIDIA Quadro RTX 6000 Graphics
Processing Unit (GPU) with 24 GB of memory. The durations of the training sessions ranged
from 15 min to approximately 3 hours, depending on the complexity of the models and
used data. For the YOLO object-detector network, training was performed on a NVIDIA
GeForce GTX 1080 Ti GPU equipped with 11 GB of memory (Table 8).

Table 8. Training time for each model on the used datasets.

Model Training Time (min)
RGB MS HS

VGG16 135 128 157
2D-CNN 16 15 17

3D-CNN 1 - - 48
3D-CNN 2 - - 36
3D-CNN 3 - - 173
3D-CNN 4 - - 189

2D-3D-CNN 1 - - 62
2D-3D-CNN 2 - - 128
2D-3D-CNN 3 - - 115

ViT 144 139 168
YOLO 144 - -

2.8. Evaluation Metrics

The performances of the trained models were evaluated on independent test sets
containing data not used in the training. The evaluation metrics employed in the study
were class-wise precision (1) and recall (2) scores, along with their harmonic means, F1-
scores (3) [53]. Additionally, the overall accuracy was calculated.

Precision measures the specificity of a model as the ratio of true positive (TP) pre-
dictions to the sum of true positive and false positive (FP) predictions. The formula for
precision can be mathematically represented as:

precision =
TP

TP + FP
(1)
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Recall is a metric that quantifies the sensitivity of a model as the ratio of true positive
predictions to the sum of true positive and false negative predictions. The mathematical
formula for recall can be represented as:

recall =
TP

TP + FN
(2)

Precision and recall are inversely related metrics. As the precision increases, the recall
tends to decrease, and vice versa. Achieving high precision and recall scores simultaneously
is a desirable element of a model’s performance, and the F1-score provides a measure of
the optimal balance between these two metrics. The F1-score is calculated as the harmonic
mean values of precision and recall. The mathematical formula for the F1-score can be
represented as:

F1 = 2 · precision·recall
precision + recall

(3)

The overall accuracy provides the proportion of correct classifications out of the total
number of classifications made. However, the overall accuracy may not always be the
best metric to use, especially if the dataset is imbalanced or if certain classes are more
important than others. Hence, class-wise evaluation metrics are crucial for evaluating the
model performance with regard to the infested class predictions when the proportion of
the infested tree samples is small.

3. Results
3.1. Classification Results

Overall, different datasets and classifiers provided relatively high and even classifica-
tion accuracies for the healthy and dead spruce classes, while the accuracies were poorer
for the infested class (Table 9). The healthy-class F1-scores were 0.76–0.90 and, on average,
0.82. Correspondingly, the F1-scores were 0.85–0.98 and, on average 0.93, for the dead class.
The infested-class F1-scores were 0.46–0.74 and had an average of 0.60.

Table 9. Classification results of networks trained on unaugmented RGB, MS, and HS images.
Numbers of reference trees in the training (Tr), validation (Va), and test (Te) sets are also given.

Model Data Overall Accuracy Class Precision Recall F1-Score N-Reference
Tr; Va; Te

VGG16 RGB 0.813
Healthy 0.776 0.894 0.831 524; 131; 114
Infested 0.800 0.466 0.589 118; 29; 26

Dead 0.816 1.000 0.899 374; 93; 57

ViT RGB 0.815
Healthy 0.780 0.889 0.831 524; 131; 114
Infested 0.598 0.406 0.484 118; 29; 26

Dead 0.958 1.000 0.979 374; 93; 57

2D-CNN RGB 0.789
Healthy 0.712 0.883 0.788 524; 131; 114
Infested 0.582 0.561 0.571 118; 29; 26

Dead 0.941 0.972 0.956 374; 93; 57

VGG16 MS 0.867
Healthy 0.935 0.864 0.898 452; 113; 114
Infested 0.528 0.865 0.656 75; 19; 26

Dead 0.943 0.978 0.960 309; 77; 57

ViT MS 0.800
Healthy 0.877 0.655 0.750 452; 113; 114
Infested 0.585 0.699 0.637 75; 19; 26

Dead 0.893 0.988 0.938 309; 77; 57

2D-CNN MS 0.901
Healthy 0.946 0.879 0.911 452; 113; 114
Infested 0.765 0.684 0.722 75; 19; 26

Dead 0.825 0.979 0.895 309; 77; 57
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Table 9. Cont.

Model Data Overall Accuracy Class Precision Recall F1-Score N-Reference
Tr; Va; Te

VGG16 HS 0.758
Healthy 0.972 0.589 0.734 321; 80; 114
Infested 0.531 0.699 0.604 86; 21; 26

Dead 0.901 0.988 0.942 232; 58; 57

ViT HS 0.827
Healthy 0.872 0.797 0.833 321; 80; 114
Infested 0.673 0.437 0.530 86; 21; 26

Dead 0.899 1.000 0.947 232; 58; 57

2D-CNN HS 0.801
Healthy 0.887 0.717 0.793 321; 80; 114
Infested 0.588 0.476 0.526 86; 21; 26

Dead 0.796 0.915 0.851 232; 58; 57

3D-CNN 1 HS 0.866
Healthy 0.896 0.859 0.877 321; 80; 114
Infested 0.597 0.648 0.621 86; 21; 26

Dead 0.901 0.968 0.933 232; 58; 57

3D-CNN 2 HS 0.807
Healthy 0.866 0.762 0.811 321; 80; 114
Infested 0.539 0.788 0.640 86; 21; 26

Dead 0.958 0.962 0.960 232; 58; 57

3D-CNN 3 HS 0.859
Healthy 0.776 0.976 0.864 321; 80; 114
Infested 0.577 0.811 0.674 86; 21; 26

Dead 0.912 0.988 0.948 232; 58; 57

3D-CNN 4 HS 0.847
Healthy 0.768 0.955 0.851 321; 80; 114
Infested 0.564 0.846 0.677 86; 21; 26

Dead 0.882 0.968 0.952 232; 58; 57

2D-3D-CNN
1

HS 0.833
Healthy 0.855 0.900 0.877 321; 80; 114
Infested 0.596 0.423 0.495 86; 21; 26

Dead 0.889 0.971 0.928 232; 58; 57

2D-3D-CNN
2

HS 0.829
Healthy 0.893 0.742 0.809 321; 80; 114
Infested 0.626 0.911 0.742 86; 21; 26

Dead 0.938 0.968 0.952 232; 58; 57

2D-3D-CNN
3

HS 0.755
Healthy 0.848 0.797 0.822 321; 80; 114
Infested 0.542 0.393 0.456 86; 21; 26

Dead 0.845 0.933 0.887 232; 58; 57

When comparing the F1-scores of the infested class using different RGB and MS
models, VGG16 and 2D-CNN outperformed the ViT model, despite ViT achieving a slightly
higher overall accuracy than VGG16 and 2D-CNN for the RGB images. The good overall
accuracy can be attributed to its effective classification of healthy and dead trees. However,
the VGG16 and 2D-CNN models demonstrated better F1-scores when dealing with the
infested class. VGG16 provided the best classification results with the RGB data, and
2D-CNN provided the best classification results with the MS-data for the infested class.
However, among all the models and datasets (MS and HS), the ViT model trained on the
RGB dataset yielded the best results for the dead class, achieving an F1-score of 0.98.

For the HS dataset, 3D-CNN 3 and 4 produced 5–8% better F1-scores for the infested
class than the 3D-CNN 1 and 2 models. All HS 3D-CNN models outperformed the HS
VGG16, ViT, and 2D-CNN models. The HS 2D-3D CNN 2 model provided the best results
for the infested class, with an F1-score of 0.742. The 2D-3D CNN 1 and 3 models produced
the poorest performances for the infested class of all HS models.

The best F1-scores for the infested class were 0.589, 0.722, and 0.742, for RGB, MSI, and
HS models, respectively; thus, the HS models provided the best classification performance
for the infested trees. The overall accuracies were 0.813, 0.901, and 0.829, respectively, for
the corresponding models. The MS models thus provided a better overall accuracy than
the HS models. This was due to the better results of the healthy trees in the MS models; the
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healthy class dominated the accuracy results due to the larger number of test samples in
the healthy test data.

3.2. Impact of Data Augmentation

Through the analysis of the impact of different augmentations, the study identified the
optimal data augmentation method, which comprised the utilization of random rotation,
padding, and random perspective shift transforms. These selected transforms demonstrated
the greatest potential for enhancing the performance of the model and were deemed crucial
components of the augmentation process.

The best classifier models were all trained on the augmented dataset. Data augmenta-
tion improved the results in most cases (Table 10). The greatest improvements of 2.0–4.0%
were obtained for the infested class with the RGB and HS models. In the case of MS models,
the data augmentation reduced the F1-scores by approx. 4.0% for the healthy and infested
classes, while the dead-class F1-score stayed practically the same.

Table 10. Classification results of models trained on augmented data. In column “Relative F1-score
change”, positive values indicate an improvement. OA: overall accuracy.

Model Data OA Class Prec. Recall F1-Score
Relative
F1-Score

Change (%)

N-reference
Tr; Va; Te

VGG16 RGB 0.848
Healthy 0.882 0.851 0.866 4.04 524; 131; 114
Infested 0.722 0.500 0.591 0.34 588; 147; 26

Dead 0.826 1.000 0.905 0.66 570; 142; 57

2D-CNN RGB 0.821
Healthy 0.773 0.855 0.812 2.96 524; 131; 114
Infested 0.577 0.601 0.589 3.06 588; 147; 26

Dead 0.954 0.976 0.965 0.93 570; 142; 57

2D-CNN MS 0.858
Healthy 0.898 0.851 0.874 −4.23 452; 113; 114
Infested 0.739 0.654 0.694 −4.03 360; 90; 26

Dead 0.833 0.965 0.894 −0.11 370; 92; 57

3D-CNN 3 HS 0.861
Healthy 0.813 0.924 0.865 0.12 321; 80; 114
Infested 0.619 0.811 0.702 3.99 428; 107; 26

Dead 0.945 0.978 0.961 1.56 297; 74; 57

3D-CNN 4 HS 0.863
Healthy 0.789 0.945 0.860 1.05 321; 80; 114
Infested 0.597 0.855 0.703 3.70 428; 107; 26

Dead 0.913 0.988 0.949 −0.32 297; 74; 57

2D-3D-CNN 2 HS 0.863
Healthy 0.968 0.807 0.880 8.07 321; 80; 114
Infested 0.688 0.846 0.759 2.24 428; 107; 26

Dead 0.880 0.982 0.928 −2.59 297; 74; 57

The confusion matrix of the best-performing models showed that the greatest mis-
classification appeared between the healthy and infested trees (Table 11). The HS model
classified 85% of the infested spruce trees correctly to the infested class, whereas 35% and
50% of them were misclassified to the healthy class by the MS and RGB models, respectively.
Practically all dead spruce trees were classified to the dead class; however, 15–20% of the
healthy spruce trees were classified as infested or dead.
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Table 11. Confusion matrices of the best-performing RGB, MS, and HS models.

Measured

Healthy Infested Dead

VGG16 RGB

Predicted

Healthy 97 13 0
Infested 5 13 0

Dead 12 0 57

2D-CNN MS
Healthy 97 9 2
Infested 6 17 0

Dead 11 0 55

2D-3D-CNN 2 HS
Healthy 92 3 0
Infested 9 22 1

Dead 13 1 56

3.3. Integrating YOLO and Classifiers

The YOLO model provided F1-scores of 0.706, 0.580, and 0.815, for the healthy, infested,
and dead classes, respectively (Table 12). When integrating the trees detected by YOLO and
tuning the classification further using the VGG, 2D-CNN, and 2D-3D-CNN 2 classifiers,
the classification accuracies improved significantly. For example, the infested class results
improved by 5%, 20%, and 26% with the RGB, MS, and HS models, respectively. The used
2D-CNN model was trained without augmentation as the utilization of data augmentation
led to a decrease in the model’s performance. The VGG and 2D-3D-CNN 2 models were
trained with augmentations. The YOLO tree-detection results differed slightly from the
visually identified reference trees, and therefore the classification results differed from the
initial classification results (Tables 9 and 10).

Table 12. Results of the VGG16, 2D-CNN, and 2D-3D-CNN 2 models compared with the classification
results of the YOLO network. OA: overall accuracy; Prec.: precision.

Model Data OA Class Prec. Recall F1-Score
Relative
F1-Score

Change (%)

YOLO RGB 0.699
Healthy 0.605 0.848 0.706
Infested 0.652 0.522 0.580

Dead 0.824 0.806 0.815

VGG16 RGB 0.803
Healthy 0.769 0.855 0.810 12.8
Infested 0.749 0.516 0.611 5.07

Dead 0.873 0.980 0.923 11.7

2D-CNN MS 0.880
Healthy 0.900 0.897 0.898 21.4
Infested 0.715 0.739 0.727 20.2

Dead 0.886 0.967 0.925 11.9

2D-3D-CNN 2 HS 0.890
Healthy 0.913 0.955 0.883 20.0
Infested 0.765 0.801 0.783 25.9

Dead 0.922 0.967 0.945 13.8

4. Discussion
4.1. Assessment of Classification Models for Different Datasets

An extensive evaluation of different neural network models was conducted on RGB,
MS, and HS images captured by UASs. The findings reveal that the VGG16 model outper-
forms other networks when applied to RGB images. For the MS images, the three-layer
2D-CNN model showed the most promising performance. Meanwhile, the most effec-
tive model for HS images was the 2D-3D-CNN 2 model. The study also found that data
augmentation improved the classification results in most cases. The findings of the study
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further indicate that MS and HS images exhibit superior performances compared to the
RGB images for the task of tree health classification.

The HS 2D-3D-CNN 2 model stood out as the top performer, regarding the infested
class, with an overall accuracy of 0.863 and F1-scores of 0.880, 0.759, and 0.928 for healthy,
infested, and dead trees, respectively. The next-best results for the infested class were
obtained with the 2D-CNN model trained on MS images, with an overall accuracy of 0.901
and F1-scores of 0.911, 0.722, and 0.895 for healthy, infested, and dead trees, respectively.
The RGB images provided the poorest results for the infested class; the VGG16 model
achieved an overall accuracy of 0.848 and F1-scores of 0.866, 0.591, and 0.905 for healthy,
infested, and dead trees, respectively. The superiority of MS and HS images was further
supported by the fact that the RGB dataset consisted of a larger number of data samples
compared to the MS and HS datasets, providing it with an advantage in the learning
process. Despite the limitations imposed by smaller sample sizes, the models trained on
MS and HS images outperformed the RGB-trained model.

The 2D-3D-CNN 2 model performed well on HS images due to its use of 3D convolu-
tions, which captured spatial, spectral, and joint spatial–spectral features efficiently. Using
only 2D convolutions led to interband information loss as they could not fully exploit
the structural characteristics of high-dimensional data, such as HS images. Combining
2D and 3D convolutions reduced the trainable parameters and computational complexity
compared to using 3D convolutions alone, explaining the network’s superior performance
over the 3D-CNN networks. The suboptimal performance of the other 2D-3D-CNN mod-
els can be attributed to specific factors. The 2D-3D-CNN 1 model may lack the depth
to capture intricate data patterns effectively. The 2D-3D-CNN 3 model’s performance
might be negatively impacted by batch normalization, which, given the small dataset size,
could overly regularize the model and hinder generalization. In contrast, 2D convolution-
based networks work well on MS and RGB images due to their lower dimensionality
(5 channels for MS). The simple 2D-CNN model outperformed VGG16 for MS images,
possibly because of the scarcity of the MS data, causing VGG16 to overfit and reduce the
generalization capacity.

The findings from the model comparison align with the existing literature and discus-
sions in the relevant section. Notably, the success of the 2D-3D-CNN 2 model concerning HS
images corroborates the previous research conducted by various authors [34–36]. These au-
thors demonstrated the effectiveness of 3D-CNNs on HS images; however, acknowledged
the high complexity of such models, requiring a large number of trainable parameters
and extensive data for training purposes. In contrast, 2D-3D convolutional networks were
found to be better suited for the cases with limited data, as they significantly reduce the
number of parameters and data requirements. The most complex 3D-CNNs in this study
demanded several -hundred-million trainable parameters, while 2D-3D-CNNs required
only around 10–20 million trainable parameters.

The simplest and fastest model tested, 2D-CNN, proved to be the best performer for
MS images. This same 2D-CNN model performed well for HS images in grass sward-
quality estimations [30]. Although the model’s performance on HS images in this study
was not as strong, both investigations showcased the network’s ability to identify relevant
features from the multi-dimensional data. The differences in the results can be attributed
to the distinct tasks and datasets used in each study. For the RGB images, the VGG16
network showed the best performance for the infested class, aligning with the previous
research [32,54,55]. In contrast, the ViT network did not achieve comparable results for the
infested class, despite the promising findings in other studies [5,30,56,57].

One of the primary findings of this study is that the use of MS and HS images results
in a significant improvement in the classification accuracy of bark beetle-infested trees, as
compared to using RGB images. The literature on this topic presents different findings,
depending on the application and network. Some studies indicate that MS and HS images
enhance the performances of tree species and health classification tasks, while others
present no significant improvement over RGB images [31,58]. These outcomes can be
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attributed to the critical role of network selection when training models on MS and HS
images. For example, a Mask R-CNN model [58] might not be optimal for extracting the
features from MS images, while a 3D-CNN model [31] demonstrates great potential for HS
images. In addition, the complexity of classification tasks might also have an impact, i.e.,
the detection of different health classes in comparison to species classifications.

4.2. Complete Pipeline for Detections and Classifications

The integration of classifier networks with the YOLO object detector resulted in a
framework that enabled both the detection and classification of trees with a high accuracy.
The use of YOLO object detections in conjunction with the VGG16, 2D-CNN, and 2D-3D-
CNN classifiers outperformed the results obtained from utilizing only the classifier module
of the YOLO network. It is worth mentioning that the YOLO network was not designed
to process MS and HS images; hence, the detection and classification were performed on
RGB images. Despite this, the VGG16 network, which was also trained on RGB images,
still exhibited a superior performance in terms of classification.

The performance of the YOLO algorithm was evaluated and compared with the results
obtained in a previous study [15], where a setting very similar to that used in this study
was employed to detect and classify spruce trees into healthy, infested, and dead categories.
The F1-scores were 0.788, 0.578, and 0.827 for healthy, infested, and dead trees, respectively,
using the data from the Paloheinä, Ruokolahti, and Lahti areas, and the same class-labeling
scheme as in the current study. The current study’s F1-scores of 0.706, 0.580, and 0.815 were
comparable to these results, with the F1-scores for healthy trees being lower, infested trees
being almost the same, and dead trees being slightly lower. The slightly better performance
of the YOLO algorithm in [14] can be attributed to the larger dataset used, which also
included samples from an additional study area in southern Finland (city of Lahti), as well
as for the use of different training and test sets. In the current study, the city of Lahti’s
data were not used due to the absence of MS and HS data from the same cameras, whereas
considering the training and test sets, they were optimized so that the same trees could
be used for the datasets from all sensors. It is worth noting that the previous study [15]
reported higher F1-scores of 0.90, 0.79, and 0.98, albeit with a different labeling scheme
and solely using Paloheinä data in the test set. The study acknowledges that the results
obtained from the Paloheinä data may be somewhat optimistic compared to the data from
the other areas. This was attributed to the specific processing techniques applied to the
Paloheinä data, which enhanced the detectability of trees in this particular dataset, as well
as being due to the better distribution of different health classes.

4.3. Further Research

The development of the proposed method involved several design choices that could
affect the outcomes. Data preprocessing was an integral part of the process and included
the cropping and resampling of images. These operations could impact the learning
capabilities of the models under evaluation. Resampling images to very high or low spatial
sizes results in either reduced resolutions or limited convolutional layer sizes. The original
tree crown images were of varying sizes, which made the choice of optimal image size
challenging. In the end, a compromise was reached by selecting the optimal size for the
majority of the images. A further optimization of preprocessing should be considered in
future developments.

We did not perform a statistical analysis to determine whether the observed differences
in the F1-scores were statistically significant or fell within the margin of experimental
errors. To properly establish the significance of the observed variations in the results,
hypothesis testing should be conducted in future studies. In addition, the splitting of
data into training, validation, and test sets was found to have an impact on the results.
This holds true, especially when the amount of data was limited. To ensure that the data
split was optimal, efforts were made to ensure that each set had enough samples of each
class and that the training and test sets were independent. Ideally, the results should have
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been cross-validated with several different data splits and multiple rounds of training
and testing; however, this was not feasible due to the limited amount of data. Therefore,
the reproducibility of the results was not fully addressed in this study. However, it was
emphasized that all the results were validated using independent test data.

The limited nature of the data could also impact the comparability of the models that
were tested on various image types. The number of samples in each dataset varied, with the
RGB dataset having the largest number of samples in each class. The MS dataset contained
a slightly lower number of samples of infested trees and a higher number of healthy tree
samples than the HS dataset. This disparity could be the primary reason for why the
MS 2D-CNN model exhibited a lower F1-score for infested trees and a higher F1-score
for healthy trees, compared to the HS 2D-3D-CNN model. To overcome the challenges
caused by the insufficient data, future research should focus on collecting a more extensive
reference dataset, enabling a more accurate detection of infested classes.

The characteristics of applied camera technology can impact the results of an empirical
study. The RGB and MS cameras used in this study represent widely applied camera
technologies in UAV remote sensing, thus the obtained results can be considered represen-
tative. The HS camera sampled spectral signatures with a relatively high spectral resolution
(average of 8.98 nm) and FWHM (average of 6.9 nm) in the visible to near-infrared spectral
range (500–900 nm). It is worth recognizing that the state-of-the-art technology offers
enhanced-performance figures, for example, a spectral resolution of 2.6 nm and an FWHM
of 5.5 nm in the spectral range of 400–1000 nm, as well as extending the spectral range
beyond visible and near-infrared to the short-wave-infrared region [59]. Furthermore, this
study does not apply spectral-band selection or handcrafted spectral features or indices
that are commonly used in the context of classical machine learning approaches [13,20,59].
Instead, we considered that the DNN models could find the relevant features from the
spectral signatures. Further studies should evaluate if enhancing camera and spectral
qualities, as well as band selection, would be beneficial for assessing tree health.

4.4. Contributions and Outlook

The literature on the classification of bark beetle-infested trees is limited, and to the
best of our knowledge, there is no systematic study comparing the performances of RGB,
MS, and HS images in this type of tree health assessment task. Furthermore, prior to this
study, the use of different network structures for each specific data type had not been
investigated in this field. The important contribution of this study is the comprehensive
evaluation of several types of deep learning architectures and various remote sensing
camera types. The presented results thus provide new information and offer a basis for the
further exploration of the use of MS and HS images in detecting bark beetle disturbances
using deep learning techniques, as well as for other image classification tasks in the field of
remote sensing.

The fundamental need of this research is the development of methods for managing
bark beetle outbreaks. For example, in Finland, the outbreaks typically appear in scattered
individual trees [15], and therefore high-resolution datasets are required. The UAS-based
techniques provided an effective tool to rapidly detect new infestations at the individual tree
level. Our results show that dead trees can be reliably detected, even using RGB images.
The analysis of multitemporal RGB or MS datasets can be used to detect, understand,
and predict the spread of outbreaks. The effective methods for detecting green attacks
are still absent from the scientific literature, and HS images, in particular, is expected
to be a potential tool for performing this task [9]. Our research will continue to develop
strategies for bark beetle management, particularly in terms of developing efficient machine
learning and inference pipelines, increasing the datasets for model training, studying the
performance of state-of-the-art visible- to shortwave-infrared HS imaging techniques, using
novel beyond-visual lines-of-sight drone techniques that enable larger area surveys, as
well as developing strategies for green attack detections. Efficient monitoring tools offer
knowledge-based decision support to the authorities, politicians, forest owners, and other
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stakeholders for performing optimized forest management actions in the cases where
bark beetle outbreaks continue to spread. This will enable minimizing the negative social,
economic, and environmental impacts of bark beetle disturbances.

5. Conclusions

The important contribution of this study is the comprehensive evaluation of several
types of deep learning architectures with UAS-acquired RGB, multispectral (MS), and
hyperspectral images (HS) to assess the health of individual spruce trees in a test area
suffering from a bark beetle outbreak. The presented results thus provide new information
and offer a basis for the further exploration of the use of MS and HS images for detect-
ing bark beetle disturbances using deep learning techniques, as well as for other image
classification tasks in the field of remote sensing.

The results show that MS and HS images can achieve superior classification outcomes
compared to RGB images and identify the most appropriate network structures for each
image type. High-accuracy results were obtained for the classifications of healthy and dead
trees with all tested camera types, whereas the infested class was often mixed with the
healthy class due to the smaller spectral difference between these two classes. Considering
the best-performing models with different cameras, the best results for the infested class
were obtained using the 2D-3D-CNN 2 model trained on an augmented set of HS images,
the next-best results were obtained with the 2D-CNN model trained on an unaugmented
set of MS images, and the VGG16 model for augmented RGB images had the lowest
performance. The study demonstrated that data augmentation may be used to balance the
training class sizes and slightly improve the classification performance, particularly when
complex networks with millions of parameters were employed. Additionally, the outcomes
reveal that integrating separate classifier networks with the YOLO object detector achieves
improved results compared to the YOLO classifier.

The findings of this study offer a basis for the further development of the use of
MS and HS images in detecting bark beetle disturbances using deep learning techniques,
as well as for other image classification tasks in the field of remote sensing. With the
ongoing developments, these technologies have the potential to play a crucial role in
forest management efforts to combat large-scale bark beetle outbreaks by providing timely
information on the health status of trees.
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