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Can regime shifts in
reproduction be explained
by changing climate
and food availability?

Maria Tirronen1*†, Jochen Depestele2† and Anna Kuparinen1

1Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland,
2Fisheries and Aquatic Production, Flanders Research Institute for Agriculture, Fisheries and Food
(ILVO), Oostende, Belgium
Marine populations often show considerable variation in their productivity,

including regime shifts. Of special interest are prolonged shifts to low

recruitment and low abundance which occur in many fish populations despite

reductions in fishing pressure. One of the possible causes for the lack of recovery

has been suggested to be the Allee effect (depensation). Nonetheless, both

regime shifts and the Allee effect are empirically emerging patterns but provide

no explanation about the underlying mechanisms. Environmental forcing, on the

other hand, is known to induce population fluctuations and has also been

suggested as one of the primary challenges for recovery. In the present study,

we build upon recently developed Bayesian change-point models to explore the

contribution of food and climate as external drivers in recruitment regime shifts,

while accounting for density-dependent mechanisms (compensation and

depensation). Food availability is approximated by the copepod community.

Temperature is included as a climatic driver. Three demersal fish populations in

the Irish Sea are studied: Atlantic cod (Gadus morhua), whiting (Merlangius

merlangus) and common sole (Solea solea). We demonstrate that, while

spawning stock biomass undoubtedly impacts recruitment, abiotic and biotic

drivers can have substantial additional impacts, which can explain regime shifts in

recruitment dynamics or low recruitment at low population abundances. Our

results stress the importance of environmental forcing to capture variability in

fish recruitment.

KEYWORDS

Allee effect, environmental forcing, non-linear recruitment dynamics, regime shifts,
population recovery
1 Introduction

Fluctuations of population abundances are induced by stochastic processes related to

demographic dynamics and environmental forcing (Rouyer et al., 2012). Empirical

evidence shows that selective fishing amplifies these population fluctuations due to size-

selective mortality and rejuvenation of the population structure (Hsieh et al., 2006;
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Anderson et al., 2008). Fish populations experiencing higher levels

of variability in fishing are more responsive to temperature effects in

their size structure (Tu et al., 2018), which suggests that fishing

exacerbates the sensitivity of populations to climate-induced

changes (Perry et al., 2010; Gamelon et al., 2019). Indeed, despite

a general pattern of increasing population abundances following the

release of a long history of excessive fishing pressure (Hilborn et al.,

2020), the rebuilding of populations has only been partially

successful (Zimmermann and Werner, 2019). Failure to account

for environmental forcing in fisheries management has been

suggested as one of the primary challenges to address this lack of

recovery (Memarzadeh et al., 2019; Bastardie et al., 2021). The link

between environmental drivers and population growth has been

extensively demonstrated by studies investigating the causes of slow

or absent recovery of collapsed Atlantic cod (Gadus morhua)

populations (Beaugrand et al., 2003; Olsen et al., 2011; Sguotti

et al., 2019a; Möllmann et al., 2021; Winter et al., 2023).

Two meta-analyses of over 200 fish populations worldwide

showed that the ability to recover was best explained solely by

population abundance in only a small number of populations, while

the majority of populations were affected by productivity regime

shifts, either with or without direct relationship to population

abundance (Vert-Pre et al., 2013; Szuwalski et al., 2015).

Populations rebuild through somatic growth and reproduction,

whereby reproduction generally gets attributed a larger impact

(Zimmermann et al., 2018; Stawitz and Essington, 2019).

Reproduction is accounted for in fisheries management by the

assumed relationship between the population biomass of

spawning fish (Spawning Stock Biomass or SSB) and the number

of recruits, i.e., young fish entering the fished population or stock.

Recent meta-analyses of over 70 Northeast Atlantic fish populations

demonstrated significant density-dependent recruitment in two

thirds of the analyzed populations (Zimmermann et al., 2018;

Rindorf et al., 2022), demonstrating that population abundance

cannot be ignored when examining recruitment dynamics.

Recruitment mostly operates through compensation, implying

increased per capita population growth rates at low abundances

(Hilborn et al., 2014; Rindorf et al., 2022). The inverse, depensation

or the Allee effect, was found in fewer occasions, but debate on its

importance is ongoing, as declined [per capita] population growth

rates may act as an inhibitory force in rebuilding populations at very

low abundances (e.g., Neuenhoff et al., 2018; Perälä et al., 2022;

Winter et al., 2023).

The relationship between the population biomass of spawning

fish and the number of recruits are modelled using Stock-

Recruitment (SR) models, which were traditionally time-invariant

and did not take temporal productivity changes into account

(Beverton and Holt, 1957). If the recruitment dynamics are

nonetheless non-stationary and experience regime shifts, then

recruitment predictions derived using stationary SR models are

misguiding and may lead to unintentional overfishing (Möllmann

et al., 2021), particularly in the light of global climate change (Punt

et al., 2014). Substantial scientific progress to improve our

understanding of environmental forcing on SR relationships was

achieved over the last decades (e.g. Kell et al., 2005; Dorner et al.,

2013; Punt et al., 2014), and pursuing these research avenues is
Frontiers in Marine Science 02
further encouraged to this day (Kjesbu et al., 2023). Our forecasting

capacities using environmentally mediated SR models, however,

remain generally insufficient to improve tactical management

advice (Stige et al., 2013; Subbey et al., 2014; King et al., 2015;

Haltuch et al., 2019; Maunder and Thorson, 2019; Uriarte et al.,

2023). Fisheries management advice in the Northeast Atlantic

(NEA), for instance, showed that environmentally driven

recruitment is implemented in none of the 230 studied stock

assessments, and in only 11 out of 102 short-term forecasts

(Trenkel et al., 2023). Tactical operational management advice

therefore uses alternative approaches to account for changes in

productivity (Collie et al., 2021; Silvar-Viladomiu et al., 2021;

Trenkel et al., 2023). These alternative approaches are required

when the available data are insufficient to estimate SR models

(Conn et al., 2010; Nesslage and Wilberg, 2019), but are also used

in data-rich assessments by focusing on empirical methods without

knowing the underlying ecological mechanism. Examples are the

Peterman’s productivity method (Peterman et al., 2000; Silvar-

Viladomiu et al., 2022a), state-space models whereby variation in

productivity is stochastically assessed over time (e.g. Nishijima

et al., 2021; Stock and Miller, 2021; Su, 2023), and the truncation

of the recruitment time series to recent productivity conditions

(Van Deurs et al., 2021; Silvar-Viladomiu et al., 2022b).

Environmentally mediated SR models were, contrastingly, used in

most of the scientific advice for rebuilding plans in the NEA (24 out

of 30, Trenkel et al., 2023). Indeed, the need for continual

mechanistic insights at broader level is recognized and required

to inform strategic management in the longer term (Silvar-

Viladomiu et al., 2022a; Kjesbu et al., 2023), for instance for the

evaluation of climate-adaptive management measures (e.g.

Holsman et al., 2020; Kühn et al., 2023).

Dynamic detection of regime shifts in real marine ecosystems and

reliable predictions of recruitment are, however, notoriously difficult,

even though incremental progress is being made (e.g. Nishijima et al.,

2021; Kühn et al., 2021; Mazur et al., 2022). Early warning signals for

critical transitions, at which the ecosystem shifts abruptly to an

alternative productivity state, are being developed (Scheffer et al.,

2009). These include elevated non-linearity and/or changes in the

variance of population parameters as indicators of shifting dynamics

(Dakos et al., 2017; Sguotti et al., 2019b). Bayesian Online Change-

Point Detection (BOCPD) algorithms is one of the techniques that

can successfully detect how SR parameter shifts over time (Perälä

et al., 2017; Tirronen et al., 2022), and provides a promising method

to account for regime shifts in recruitment dynamics. Concurrent

time series analysis of environmental forcing variables and

population productivity parameters have suggested coinciding

regime shifts of environmental and climatic variables with

population productivity (Thomson et al., 2010; Perälä et al., 2020),

but despite their suggested importance (Sguotti et al., 2019b;

Möllmann et al., 2021), the contribution of these environmental

variables to regime shifts in SR parameters remains underexplored in

BOCPD models.

In the present study, we build upon recently developed BOCPD

models to explore the contribution of food and climate as external

drivers in recruitment regime shifts, while accounting for density-

dependent mechanisms (compensation and depensation). Food
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availability is approximated by the copepod community.

Temperature is included as a climatic driver. Recruitment

variation is considered annually at the population level and is

partitioned between the variation that relates to spawning

biomass and the variation that relates to environmental

conditions. The focus on population-level SR models aims to

facilitate integration in future stock assessments, management

strategy evaluations and fisheries management (Maunder and

Thorson, 2019). Recruitment variability can have a myriad of

causes, including internal regulating factors such as population

age structure (e.g. Hixon et al., 2013; Fogarty and O'brien, 2016) and

external factors such as trophic interactions, hydrodynamics and

environmental drivers (see Houde, 2016; Houde et al., 2022 for a

review of drivers affecting early life stages). The increasing rate of

climate-induced changes also manifests itself through a plethora of

drivers of fish productivity, such as water temperatures, ocean

acidification and shifts in hydrodynamics at individual,

behavioral, population and ecosystem levels (Pörtner and Peck,

2010; Koenigstein et al., 2016). This study followed the suggestion

by Rijnsdorp et al. (2009) that changes in the pelagic egg or larval

stage and habitat alteration are key determinants of climate-induced

recruitment success. Sea surface temperature is selected as a

covariate for the pelagic phase, because pelagic egg and larval

development and mortality are strongly temperature dependent

(Gibson et al., 2015), as is the termination of the pelagic larval phase

(Lacroix et al., 2018). Larval development may be further

compromised by starvation and predation of which this study

focused on larval prey availability only (Arevalo et al., 2023).

Habitat alternation effects on recruits or juveniles manifest

through a wealth of environmental drivers such as food

abundance and quality, predators, river plumes, temperature and

human pressures such as eutrophication and contamination (e.g.

Brown et al., 2018). This study focused on sea bottom temperature

as one of the primary habitat-related drivers that is affected by

climate change (Henderson, 2019; Vaz et al., 2019), and because the

onset of spawning is also driven by sea bottom temperatures

(Gerritsen et al., 2003; Armstrong et al., 2004; Fincham et al., 2013).

Three demersal fish populations in the Irish Sea were selected as

case study examples: Atlantic cod, whiting (Merlangius merlangus)

and common sole (Solea solea). These commercially fished

populations represent good candidates for depensation dynamics,

as they met the threshold criterion defined by Hutchings (2014),

whereby SSB was below 0.26 SSBMSY during some years of the

observed time series. The Irish Sea has undergone regime shifts

during the eighties whereby the exact year of abrupt changes

depend on the considered species. Jellyfish abundance increased

gradually since 1970 with frequent outbreaks in the eighties.

Copepod biomass showed a step decrease in 1985, while

phytoplankton showed a step increase in 1989 (Lynam et al.,

2011). Across the entire North Atlantic region, calanoid copepod

assemblages showed large-scale biogeographical shifts between

1958 and 2005, whereby assemblages generally shifted northwards

following the movement of the 10°C isotherm (Beaugrand et al.,

2009). Bayesian network analysis confirmed these zooplankton
Frontiers in Marine Science
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regime shifts in the Irish Sea (Mitchell et al., 2021). Zooplankton

assemblages consisted of two separate ecological networks in the

seventies, comprising a network of sub-arctic and temperate

oceanic species such as Calanus finmarchicus and Acartia spp.,

and another network of warm temperate and shelf sea species such

as Calanus helgolandicus, Pseudocalanus spp. and Temora

longicornis. The eighties were characterized by a transitional

period with significantly higher dependence on environmental

factors. In the nineties there was an increased connectivity

between all zooplankton networks, which provided a broader prey

spectrum for generalist zooplanktonic predators such as the jellyfish

Aurelia aurita (Mitchell et al., 2021) and fish larvae. Fish population

biomass of spawning cod, whiting and sole decreased subsequently

to levels that were too low to support a sustainable fishery (ICES,

2019; ICES, 2022a; ICES, 2022b). The finfish fishery collapsed

despite consecutive years of reduced fishing pressure and

management efforts (Bentley et al., 2020). The objective of the

present study is to investigate whether the lack of recovery and

reduced recruitment of the three studied fish populations was due to

the interaction of low population abundances and environmental

forcing. To this end, we search for regime shifts in the density-

dependent recruitment dynamics and then explore whether those

can be explained by environmental covariates.
2 Materials and methods

2.1 Bayesian change-point model

We modelled recruitment by a Bayesian change-point model

that consists of a predictive model for recruitment and an unknown

number of change points at which the parameters of the

recruitment model change (Tirronen et al., 2022). The

recruitment model included spawning stock biomass (SSB) and

environmental factors as explanatory variables. Specifically, the

relationship between the number of recruits, adjusted to be for

age 0 and denoted by R1,  R2,…,RT, and the corresponding values of

SSB, denoted by S1, S2,…, ST , was modelled by nonlinear SR

models. The impact of environmental variables on recruitment

was modelled by including separate environmental coefficients to

this relationship following the formulation by Hilborn and

Walters (1992).

To estimate the relationship between recruitment, SSB and

environmental factors and possible changes in this relationship

on empirical data, we applied BOCPD (Adams and MacKay, 2007).

The method processes data in a sequential manner, updating

estimates for the parameter values and computing posterior

probabilities for a change point after each data point. In the

following, rt ∈ f0, 1,…, t − 1g, t = 1, 2,…,T , denotes the run

length at time t, i.e., the time elapsed since the last change point.

We assumed that the run lengths form a Markov chain. Moreover,

h(r)
t denotes the approximation of the model parameters at time t,

inferred from the run length rt . For BOCPD, the change point

model was defined by the following distributions:
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Fron
• the underlying predictive model for recruitment,

p(Rt ∣ St ,Et ,h
(r)
t−1), t = 1,…,T , where E1,  E2,…,ET represent

the measured values of environmental factors affecting the

cohort of year t

• the joint prior distribution for the model parameters, p(h(0)
t ),

 t = 1,…,T

• the change point prior, p(rt ∣ rt−1), t = 2,…, T

• the initial run length, p(r1)
2.2 Underlying predictive
recruitment model

When modelling the relationship between recruits, SSB and

environmental variables, we allowed depensation and regarded the

impact of environmental variables as density-independent. The

relationship between mean recruitment, denoted by R̂ and SSB

was modelled by two different SR models: the sigmoidal Beverton-

Holt (SBH) and Saila-Lorda (SL) models (Needle, 2001; Saila et al.,

1988; Iles, 1994), hereafter called the plain SR models. The plain SR

models were extended (Hilborn and Walters, 1992) to include a

coefficient describing the impact of environmental factors (t

omitted for simplicity of notation):

bR (S,E) = f (S)g(E),            (eqn 1)

where f (S) is the plain SR model and

g(E) = exp o 
idiEi

� �
      (eqn 2)

extends the plain SR models with the impact of environmental

factors on recruitment (hereafter called extended SR models), the

parameter di describing the magnitude of the impact of each specific

environmental variable Ei.

The SBH model reads as

f (S) =
R∞

1 + (S50=S)
c ,            (eqn 3)

where R∞ is the asymptotic maximum number of recruits, S50 is

the SSB that produces half of R∞ and the parameter c > 0 controls

the type of the S-R relationship, producing compensatory

recruitment when c ≤ 1 and depensatory recruitment when c > 1.

The SL model read as:

 R̂ (S, E) = k
S
Sk

� �c

exp c(1 −
S
Sk

)

� �
: (eqn 4)

Above, k is the maximum number of recruits, produced when

S = Sk, and c denotes the depensation parameter as for SBH. While

for SBH, recruitment monotonically increases with increasing SSB

to R∞, the SL model is increasing when SSB < Sk and decreasing

when SSB > Sk, representing overcompensation.

To consider variation from the mean relationship, we modelled

the actual number of recruits, R, as lognormally distributed around

the mean SR relationship. Specifically, the logarithm of R was

modelled as a normally distributed random variable,
tiers in Marine Science 04
log (R) ∼ N log R̂ (S,E) −
s 2

2
,  s 2

� �
, (eqn 5)

where s > 0 is a variance parameter.

In our analysis, we considered models with one or two

environmental variables as well as the plain SR models without

environmental factors. Overall, the underlying predictive

recruitment model had from four to six parameters, depending

on the number of environmental variables. For two environmental

variables, h = (R∞,  S50,   c, d1, d2,s ) for SBH and h = (k,  Sk,   c,   d1,

d2,s ) for SL.
2.3 Priors

We assumed the parameters of the underlying predictive model

to be a priori independent and used weakly informative priors for

them, similar to the ones used in previous studies (Perälä et al.,

2017; Tirronen et al., 2022). With such priors, the parameter values

were constrained to realistic ones but any particular values in the

chosen ranges were not favored. However, as high uncertainty in

the priors may lead to high uncertainty in the posterior

distributions of the model parameters and obscure changes in the

parameters, we wanted to avoid priors with unnecessarily

wide supports.

For the (asymptotic) maximum number of recruits, R∞ and k

(for SBH and SL, respectively), we used the uniform distribution

Unif(Rmin,Rmax) as a prior, with Rmin = m in
t=1,…,T

Rt and Rmax =
max
t=1,…,T

Rt . Similarly, for S50 and Sk we used Unif (Smin, Smax), with

Smin = m in
t=1,…,T

St and Smax = max
t=1,…,T

St . The prior distribution of the

depensation parameter, c, was set to a mixture of two uniform

distributions, 1
2 · Unif(0:05, 1) +

1
2 ·Unif(1, 5), that gives equal prior

probabilities for depensatory and compensatory recruitment. The

support of the distribution was bounded from below by 0:05 to keep

the value of c strictly positive. The priors of the coefficients of

environmental variables, di, were initially set to Unif ( − 2, 2),   but

we also tested narrower supports within the range. For the results,

we considered the supports to be wide enough, not restricting

parameter inference. Moreover, the prior of the variance parameter,

s , was set to Unif (0:05, 1) : As such, the upper boundary of s was

higher than the coefficients of variation in the studied recruit time

series (0:95 for cod, 0:86 for common sole and 0:81 for whiting). As

for c, the support of the distribution was bounded from below by

0:05 to keep the value of s strictly positive. However, since the

lower boundary of s may have a considerable impact on change-

point detection (Tirronen et al., 2022), as it defines the amount of

scatter that is required around the mean curve, we tested also higher

values for the lower boundary (hereafter called regularization): 0:3

for cod and common sole, and 0:2 for whiting.

The change point prior was defined using a constant hazard

function (Adams and MacKay, 2007),

p(rt ∣ rt−1) =

1
l if rt = 0

    1 − 1
l        if rt = rt−1 + 1

0  otherwise

   

8>><
>>: (eqn 6)
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t = 2,…,T , that gives 1=l as the prior probability of a change

point. We set a high prior probability for a change point by fitting

the model to the data sets with l = 10 and assumed that a change

point occurred before the first data point, i.e., p(r1 = 0) = 1.
2.4 Bayesian inference

To estimate the parameters of our nonlinear recruitment model,

we combined the BOCPD method with simulation-based filtering

(Liu and West, 2001; Perälä et al., 2017). In previous studies (Perälä

et al., 2017; Tirronen et al., 2022), the method has been extensively

validated for SR models. All the change-point analyses using

BOCPD were run in MATLAB Release 2018b (The Mathworks,

Inc., Natick, Massachusetts, United States).

BOCPD starts a new run at each time point, updates estimates

for the parameter values in the existing runs and computes

posterior probabilities of the run lengths (Adams and MacKay,

2007; S1.1 in Supplementary Material). Following Perälä et al.

(2017), we used the run length probabilities obtained by filtering

to compute smoothed run length probabilities, i.e., run length

probabilities in retrospect, given the whole data (S1.2). The

smoothed run length probabilities are less sensitive to single

outliers than the filtered ones, and we used the smoothed

probabilities to divide the data into segments. In this, we

determined the most likely segmentation (MLS) of each data set

by maximizing the product of the smoothed run length probabilities

over all possible segmentations (Perälä et al., 2017; S1.2). We set the

maximum number of segments to five and considered only

segments that consisted of at least three years, except at the

beginning and at the end of the time series, since the data cannot

inform when the first segment started or the last one ended.

For parameter estimates, we considered the posterior

distributions of the model parameters at the end of the inferred

segments so that all the data within a segment would contribute to the

segment-specific estimates. The medians of such posterior

distributions of the parameters di and c are denoted by d̂ (omitting

component-specific notations) and ĉ respectively. For evidence of

depensation, we considered whether the posterior probability of

depensation and ĉ were high ( ≥ 0:8 and clearly above one) and

whether there were data at low abundance (Tirronen et al., 2022).

When there are no missing data, BOCPD enables computing

the model evidence (Adams and MacKay, 2007), or its counterpart,

the negative log marginal likelihood (nlml; S1.3), which can be used

for model comparison. Within this approach, the best fitting model

is the one with the lowest nlml. However, nlml may considerably

vary along with the priors used and the time range of the data.

Because of this, we used it only for comparison of models with the

same time range and same priors, particularly in terms of the

variance parameter s . Although we were interested in the highest

evidence among all our models, we also considered alternative

models for recruitment despite their overall rank. As such, we

especially used nlml to guide ranking and selection among models

with similar predictors.

The simulation-based filtering makes BOCPD a stochastic

method, and we addressed variation in the results caused by the
Frontiers in Marine Science 05
stochasticity by fitting the models to the data using three different

random samples in the filter. In this, we found that 106 samples in

the filter produced estimates with sufficiently low variation for

models with one environmental factor at maximum, while 5 · 106

was enough for models with two environmental factors.
2.5 Empirical case study data

Population and recruitment data were taken from the Stock

Assessment Database of the International Council for the

Exploration of the Sea (ICES, 2021), which are based on

estimated stock assessment outputs. All assessments were

categorized as data-rich ICES stocks (i.e. Category 1 stocks, with

full analytical assessment). Cod and whiting stocks were assessed

using an Age-Structured Assessment Programme (ASAP) with

commercial landings and multiple survey indices as input. The

sole stock assessment was based on age-based analytical assessment

(XSA) using commercial landings data and one survey index. Full

details are provided in ICES (2018: 122-182) for cod, ICES (2021:

1285-1352) for whiting and ICES (2021: 1013-1081) for sole. The

time series ranged from 1968 (cod age 0), 1980 (whiting age 0) and

1970 (sole, age 2) until 2018 and were sufficiently long (≥35 years)

to examine the effect of productivity regime shifts on recruitment.

Environmentally-driven productivity changes were examined

using i) sea bottom temperature (SBT) and sea surface temperature

(SST) as proxy for climate-induced changes and ii) a copepod-based

indicator as proxy for food availability during larval life stages.

Annual SBT data were averaged from CTD (conductivity,

temperature and depth) data in the ICES Dataset on Ocean

HydroChemistry (ICES, 2022c). SBT was estimated at different

depth levels (6, 17, 27, 37 and 47 m). SST was estimated from the

modelled HadISST 1° latitude-longitude grid product (Rayner et al.,

2003) by annual temperature means over the spawning grounds and

seasons, between January and June (Fox et al., 2000; Ellis et al., 2012;

Burns et al., 2019). Prey of fish larvae is dominated by copepods

(Pepin, 2022), with a gradual shift from naupliar (larval) stages of

copepods for first-feeding fish larvae to copepodite (juvenile) stages

and eventually to crustaceans and/or fish when they grow larger

(Pepin, 2022). Copepod abundances were derived from the

Continuous Plankton Recorder (CPR) data (Richardson et al.,

2006; Johns, 2022), and they were also limited by the spawning

season. Data were spatially restricted around 53.5° northern latitude

because missing records before the mid-1980s would bias the

copepod abundances (Figure S1). Annual composition was

constructed by applying standardized Principal Component

Analysis on log-transformed abundances (PCA, using years x

taxa). The first principal component (PC) explained 21.5%, the

second 11.3% of the total variability (Figure S2). Over half of the

taxa contributions to PC1 is based on young Calanus (stage I-IV)

(11.6%), Para-Pseudocalanus (13.3%), Temora longicornis (11.3%)

and Acartia (10.5%) species. Unidentified Centropages species

(22.5%), Centropages typicus (17.5%) and Candacia armata

(12.9%) are the main contributors to PC2 (Figures S3-S4). In our

analyses, we considered both the raw PC time series as well as

smoothed ones (Figure S5). The PC data had missing values in 1988.
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To be able to compute the model evidence, imputation was done

using the average of the smoothed PC values in 1987 and 1989

(Table S2).

In the analyses, all the environmental time series were rescaled

to have a mean of zero and a standard deviation of one.

Environmental variables for cod and whiting were included

without a time lag, as both species are recruited at age 0.

Environmental variables hypothesized to affect the larval stages of

common sole were included with a time lag of two years, while SBT

was averaged over the entire juvenile period (Table S1).

All empirical data preparation were made using the R software

(R Core Team, 2022) and additional R packages: ‘icesSAG’ (Millar

et al., 2022) to access the ICES Stock Assessment Database,

‘FactoMineR’ (Lê et al., 2008), ‘factoextra’ (Kassambara and

Mundt, 2020) for PCA and ‘MARSS’ (Holmes et al., 2012;

Holmes et al., 2021) for smoothed PC time trends.
3 Results

For all three populations studied, the results suggested that the

most prominent shifts from high to low recruitment could be

explained by changes in sea temperature or food availability

(Figures 1–6). The strongest evidence of environmental factors

explaining recruitment was found for cod (Tables 1–3). Among

the studied populations, there were differences in the environmental

factors that could have explained their recruitment. Nonetheless, for

all three populations, while the results suggested dependence

between recruitment and either the PC1 or the PC2 trend, the

raw PC time series were not found to predict recruitment.

While regularization may prevent overfitting of the plain SR

models, it was found to diminish the impact of environmental

variables, possibly distorting parameter estimation (Sections S3.1-

S3.2, S4.1-S4.2 and S5.1-S5.2 in Supplementary Material). Thus, in

the following, we focus on results without regularization, especially

for models with environmental variables.
3.1 Atlantic cod

According to the obtained nlml values, the best fitting SR model

for cod was SBH, with or without environmental variables (Table 1).

Yet, both of the plain SR models suggested a change-point in 1996-

1997 (Figure S8 in Supplementary Material), when the number of

cod recruits experienced a downward shift, accompanied by a

decrease in SSB (Figure 1A). The plain SBH model suggested that

the asymptotic maximum number of recruits shifted to a lower

level, accompanied by a minor change in S50 and increased variation

from mean recruitment (Figure S14a).

However, for cod, the results clearly suggested that changing

environmental conditions (colored bars in Figure 2) explained the

changes in recruitment. The strongest evidence for explaining

recruitment was found for SST and the PC2 trend. SST yielded

higher model evidence than PC2, although the difference was small

( < 0:5; Table 1). The extended SBH model including both SST and

smoothed PC2 obtained the highest model evidence.
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When environmental variables were included in the model, the

results suggested considerably different recruitment dynamics than

with the plain SR model. When SST was included in the model,

evidence for a change point in 1996-1997 vanished. The results

suggested that the recruitment of cod was inversely dependent on

SST (Figures 1B, 2A; d̂ = −0:4 for most of the period). Starting

around 1997, there was a period of approximately ten years with

relatively high SST values, on average, when compared to the rest of

the period. The results also suggested that a change in recruitment

occurred in 2016, but as the segment consisted only of two or three

years, the parameter inference remained uncertain.

Evidence of change points decreased also when the PC2 trend

was included in the SBH model. While the filtered run length

probabilities were high in 1997 (Figure S16a), only one of the

samples used in model fitting yielded evidence for a change point in

1997 after smoothing. The results suggested that the recruitment of

cod was negatively dependent on the PC2 trend (Figures 1C, 2B;

among the best fitting models that included only the PC2 trend, d̂ =

-0.9). In the smoothed PC2 data, values before and after 1995 were,

respectively, lower and higher than the average of the

studied period.

When both SST and the PC2 trend were included in the SBH

model, the results were similar for each environmental factor.

Nonetheless, the impact of PC2 was inferred weaker (Figures 1D,

2C; − 0:9 ≤ d̂ ≤ −0:8 for most of the period) than for the model

including only PC2. Evidence for a change point at the end of the

period (2017) was obtained, as for the model including only SST,

but there were only two years of data for parameter inference.

For cod, the results did not yield strong evidence for

depensation. When SST was included in the model, the posterior

probability of depensation was one during the whole period, but the

second segment consisted only of three years and, in the first

segment (1968-2015), ĉ was low (1:2), yielding more evidence for

compensatory recruitment than for depensation. Nonetheless,

during the studied period, the recruitment of cod was at its lowest

in 2016, accompanied by low SSB (Figure 1A).
3.2 Common sole

Of the plain SR models for common sole, SBH obtained higher

model evidence than SL (Table 2). However, for SBH, MLS

consisted of considerably many change points at the end of the

time series (Figure 3A). Regularization decreased the number of

change points, yielding evidence only to the years 2000 and 2013

and no considerable difference in nlml between SBH and SL

(Figures S19, S21). The inferred change points reflected the shifts

in the SR data from 1995 onwards (Figure 3A). In 1995, SSB shifted

to a lower level, accompanied by a decrease in average recruitment

in 2000. In 2008, SSB (and recruitment) shifted to a lower level still

but, in 2013, recruitment partly recovered.

The evidence of environmental factors explaining recruitment

was weaker for common sole than for cod, as the plain SR models

obtained the highest model evidence (Table 2). Nonetheless, the

results suggested that the recruitment of common sole was

negatively dependent on the PC2 trend, although the relationship
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was weaker than for cod (Figures 3C, 4B; Figure S20; d̂ = −0:4 for

SBH). Among the best fitting models, evidence of change points

vanished when PC2 was included in the SBH model, similarly as

for cod.

Moreover, although models including sea temperature were not

ranked first according to nlml, the predicted impact of SBT-27

suggested an inverse relationship between recruitment and the sea

temperature (Figures 3B, 4A). Some evidence of similar impact was

also found for SBT-6 and SBT-17 (Figures S24b, c). When SBT-27

was included in the SBH model, the number of inferred change
Frontiers in Marine Science 07
points decreased considerably, yielding evidence only to 1988.

Interestingly, the results suggested that the dependence of

recruitment on SBT-27 had vanished in 1988 (d̂ switched from

-0.6 to 0). The results suggested a similar effect for SBT-17 and SBT-

6. Although the SBH model including PC2 obtained higher model

evidence than the one including SBT-27, the difference was not

considerable (0:6 for mean nlml).

When both SBT-27 and the PC2 trend were included in the

model, the predicted impact of PC2 did not change, when change

points obtained no evidence (Figures 3D, 4C). In such a case, the
A

B

D

C

FIGURE 1

The data and predicted mean recruitment by different models for cod. The plain sigmoidal Beverton-Holt (SBH; equation 3; A) model includes only
spawning stock biomass (SSB) as an explanatory variable. The extended SBH models (equation 1) include also sea-surface temperature (SST; B),
plankton (smoothed PC2; C) or both of them (D). The colored areas (A-D) illustrate the 90% credible intervals of the plain SBH (equation 3) model
over time, the colors scaled to the posterior probability of depensation in each inferred segment. The black areas (B-D) correspond to the 90%
credible intervals of the extended recruitment models (equation 1). The position of dots (A-D) represents the number of recruits in each year, while
their size is scaled to the value of SSB and their color (B-D) to the value of environmental variables. The outline color (D) refers to upper
environmental driver (SST), the filled color to lower driver (PC2 trend). The solid lines show the medians of the posterior distributions. For the results,
no regularization was used.
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impact of SBT-27 was inferred weak (d̂ = −0:1). When the change

point in 1988 gained support, the predicted impact of SBT-27

remained similar but the results suggested that the impact of PC2

shifted from positive to negative in 1988 (d̂   switched from 0.2 to

-0.5). In addition, a change in the parameters was inferred in 1973

but the first segment consisted of only two years. Overall, the

combined impact of SBT-27 and PC2 remained uncertain.

Depensation evidence was found for the plain SBH model

between 2000-2012, with and without regularization (the

posterior probability of depensation was 0.9 and ĉ = 1:6 with

regularization), although recruitment was not inferred

depensatory for the whole period in the latter case. Similar results

were obtained for SL. Both SSB and the number of recruits were low

during the suggested depensation period. Nonetheless, when SBT-

27 or the PC2 trend was included in the model, evidence of

depensation vanished.
3.3 Whiting

For whiting, model evidence was highest for the plain SL model,

with a change point in 1992 (Table 3, Figure S36). The parameter

estimates suggested that the change occurred mostly in the

maximum number of recruits, accompanied by smaller changes

in other parameters (Figure S42a). In the SR data of whiting, there
Frontiers in Marine Science 08
was a considerable downward shift in the number of recruits and

SSB in 1992 (Figure 5A).

As for common sole, the evidence of environmental variables

explaining recruitment was not strong for whiting (Table 3).

Highest evidence of environmental factors explaining recruitment

was obtained for SBT-47. The relationship between recruits and

SBT-47 was inferred positive (Figures 5B, 6A; d̂ was 0.1-0.2). No

evidence for a change point was found, when SBT-47 was included

in the SR model. Similar, but more uncertain, impacts on

recruitment were suggested for SBT-27 and SBT-37 (Figures

S40d-e). These sea-bottom temperatures were at their lowest in

1993 during the period.

Highest model evidence among plankton variables was

obtained, when the PC1 trend was included in the SBH model.

Although model evidence was lower for SL than for SBH in this

case, the highest evidence was obtained by using PC1 also for SL.

The relationship between recruitment and the PC1 trend was

inferred positive for both SR models (Figures 5C, 6B; d̂ was 0.3-

0.4 for most the period). The inclusion of PC1 yielded to some

evidence of change points, but they were located at the beginning

and end of the time series (1983 and 2016) so that a change point in

1992 was not supported. In the smoothed PC1 data, values before

and after 1990 were, respectively, higher and lower than the average

of the studied period.

When both SBT-47 and the PC1 trend were included in the SR

models, the predicted environmental impacts did not change

considerably (Figures 5D, 6C; d̂ was 0.1 and 0.3 for most of the

period, respectively). In this case, evidence of a change point in 1983

was still obtained.

For whiting, no evidence of depensation was found. Although

the posterior probability of depensation was high for some models,

the suggested depensation segments lied within 1980-1991, during

which SSB and the number of recruits were not low.
4 Discussion

Regime shifts and compensation/depensation are properties

that emerge from population dynamics. In other words, they are

empirically detectable patterns but provide no explanation about

the underlying causal mechanisms. In the present study we

demonstrated that the inclusion of climate and food abundance

related covariates confounded these patterns, which can be seen

through the disappearance of statistical support for regime shift and

depensation. In general, lower recruitment was linked to reduced

food availability for the recruits (positively related to the smoothed

PC1 trend and inversely to the smoothed PC2) and was further

affected by temperatures. These results are in line with previous

studies that provide evidence about the importance of

environmental drivers on recruitment (Möllmann et al., 2021;

Winter et al., 2023). While spawning stock biomass undoubtedly

impacts recruitment and, albeit our study cannot rule out or

estimate the role of other potential environmental covariates, our

study suggests that temperature and prey abundance may have

substantial impacts on recruitment and that these drivers can
A

B

C

FIGURE 2

The predicted impact of environmental variables on recruitment by
different models (Figure 1) for cod. The colored bars illustrate the
90% credible intervals of the impact of SST (A) and PC2 (B) as well
as their combined impact (C) on recruitment (equation 2). The
colors show the magnitude of the environmental variables
themselves. The solid lines show the medians of the posterior
distributions. Specifically, the grey line (C) illustrates the posterior
median of the combined impact of SST and PC2.
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explain regime shifts in recruitment dynamics or low recruitment at

low population abundances (i.e., the presence of Allee effects).

In our Irish Sea study system low population levels eventually

resulted in the collapse of the finfish fishery (Bentley et al., 2020),

and the flatfish beam trawl fishery temporarily collapsed when the

landings of their primary target species plumetted from over 1000

tonnes of sole (2001-2003) to a historic low of<100 tonnes (2014-

2018) (ICES, 2022b). The Irish Sea fisheries shifted target

assemblages from demersal fish to invertebrate fisheries, following

the global trend towards invertebrate fisheries (Anderson et al.,

2011). Failure to account for a shift to low recruitment patterns in

fish population could be one of the causes for the collapse of the

socio-ecological system (Thurstan and Roberts, 2010; Britten et al.,
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2016). The lacking recovery of Irish Sea fish populations and its

related management failure (Kelly et al., 2006) has led to a scientific

endeavour to incorporate ecosystem considerations into single

species stock assessments, such as the results from the Irish Sea

Ecopath with Ecosim model (Bentley et al., 2021). This Irish Sea

case study follows the wider ranging trend whereby ecosystem

considerations are slowly being incorporated into the existing

advisory and management frameworks of single species stock

assessments (Link, 2002; Howell et al., 2021; Trenkel et al., 2023),

and which is particularly relevant in the face of forestalling climate

driven collapses (Holsman et al., 2020). This pragmatic and

incremental approach is envisaged as a valuable step forward,

although Thorpe et al. (2021) suggested that its implementation
A

B

D

C

FIGURE 3

The data and predicted mean recruitment by different models for sole, illustrated similarly as in Figure 1. The plain sigmoidal Beverton-Holt (SBH;
equation 3; A) model includes only spawning stock biomass (SSB) as an explanatory variable. The extended SBH models (equation 1) include also the
sea-bottom temperature at the depth of 27 meters (SBT-27; B), plankton (smoothed PC2; C) or both of them (D). For the results, no regularization
was used.
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requires further scrutiny, such as resolving the discrepancies

between ecosystem and single species models. Our study intends

to boost the increased uptake of ecosystem considerations in

operational fisheries management by investigating why the fishing

mortality reference points in Bentley et al. (2021) required

environmental mediation, and this is, more precisely, addressed

by investigating how environmental mediation affected stock-

recruitment relationships of three key single species populations.

One of the pathways to assess recovery failure by reduced

recruitment performance was already captured in modelling

approaches of Tirronen et al. (2022) by considering dynamic

changes in the type of recruitment, i.e., temporary Allee effects.

The present study takes a next step by extending these models to

include environmental factors.

The results of the present study should nonetheless be viewed

critically, as several uncertainties are, as usual, involved with

complex data and complex models. Population and recruitment

data were based on modelled outputs from stock assessments rather

than ‘raw’ survey observations, following standard practice in

similar recent studies (e.g. Zimmermann et al., 2019; Brosset

et al., 2020; Tirronen et al., 2022; Bell et al., 2023; Ma et al.,

2023). Although these data represent the best available source of

integrated information across the entire population, and are subject

to regular quality control, given their use in management advice

(Szuwalski et al., 2019; Silvar-Viladomiu et al., 2022a), we

acknowledge criticism in using modelled outputs as ‘data’ in

analyses (Brooks and Deroba, 2015) and call for caution by

suggesting the use of our study results as one of the multiple lines

of evidence (Thorson et al., 2015; see discussion on case study
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species below). Extending SR data with environmental variables can

be dangerous practice, as it may be easy to find spurious

correlations (Hilborn and Walters, 1992; Subbey et al., 2014). We

re-iterate Bentley et al. (2021) by recognizing our limited

forecasting ability, as environmental forcing variables cannot be

used to infer causal relationships. The environmental drivers in our

analysis, however, coincide with the prominent shifts and overall SR

dynamics of the studied populations, rather than being associated

with a few data points. Moreover, although extending SR models by

environmental factors can lead to overfitting, the inclusion of

environmental data can also prevent overfitting by nonstationary

SR models, as shifts in recruitment may get explained by changes in

environmental factors. Another point of potential criticism is that,

when the number of parameters increases in BOCPD, this may yield

to increased uncertainty in parameter estimates and change point

inference which may, ultimately, obscure change points. To

mitigate this, we aimed to use as informative prior distributions

for the model parameters as were reasonable. It should also be

noticed that, although we presented only the results according to

the most likely segmentation of the data sets, BOCPD provides the

posterior probability of a change point for each year and enables

addressing alternative segmentations. Lastly, we call for caution in

directly incorporating the environmental drivers of the SR models

in operational management advice, as concerns have been raised

about the species-specific nature of the environmental mediaton of

SR models (see below for more details on our case study species)

and about the non-stationary nature of these relationships.

Moreover, the inclusion of appropriate environmental drivers

further depends on the availability of relevant long-term data

series. Our study focused on the inclusion of environmental

drivers in BOCPD models, which requires a broader framework if

it is to be used for fisheries management advice. To this end, we

refer to a non-exhaustive list of reviews on good practices (e.g.

Crone et al., 2019; Maunder and Thorson, 2019; Punt, 2023) and on

the pros and cons of using environmental forcing in SR models

(Subbey et al., 2014; King et al., 2015; Haltuch et al., 2019; Sharma

et al., 2019; Silvar-Viladomiu et al., 2022a).

In our case study, the use of environmental variables had the

strongest evidence for cod SR models. When environmental forcing

was ignored, the cod time series was segmented into two periods

(prior and post 1997) which corroborates the findings of Bentley et al.

(2020); Bentley et al. (2021). When environmental forcing variables

were included, our time series was best represented by one prolonged

period (ignoring the last few years where parameter estimation was

uncertain). The regime shift was explained away by including

temperature and food as environment-mediating variables. Those

results are in line with findings of cod recruiment models in the

North Sea, which substantially improved when food and climate were

added as environmental covariates (Olsen et al., 2011). Cod

recruitment levels were low when food abundance was low but

increased with increasing prey availability. Under high food

abundance, cod recruitment levels ceased to increase at higher

temperatures. The North Sea cod model explained 45 per cent of

the total variance when food and climate were included, whereas only

10 per cent of the variance was explained by the traditional Beverton-

Holt models (Olsen et al., 2011).
A

B

C

FIGURE 4

The predicted impact of environmental variables on recruitment by
different models (Figure 3) for sole. The figure illustrates the impact
of SBT-27 (A) and PC2 (B) as well as their combined impact (C) on
recruitment, similarly as in Figure 2.
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The importance of prey availability for controlling early life

stages has led to several recruitment hypotheses highlighting prey

abundance as a critical constraint of larval production, such as the

critical period hypothesis by Hjort (1914), and the match-mismatch

hypothesis by Cushing (1990) (Houde et al., 2022). The mismatch

of timing schedules and levels of zooplankton production was

identified as an important determinant of low recruitment levels

for several fish species (Peck et al., 2012). Prey preferences of fish

larvae are primarily (but not exclusively) characterized by their size.

Cod and whiting have a similar prey size selection and exhibit

pronounced preferences for Calanus species, even when

abundances of Calanus species are low such as in the Irish Sea

(Heath, 1992; Rowlands et al., 2006; de Figueiredo et al., 2007;

Rowlands et al., 2008). The synchronous seasonality of high
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abundances of Calanus finmarchicus and young gadoids was

hypothesized to support recruitment of cod and whiting in the

Irish Sea and to coincide with the oscillations in the NAO (Nash

and Geffen, 2004). Cod larvae preferentially select Calanus species,

but also prey upon Para/Pseudocalanus and Temora species (Pepin,

2022). Other planktonic prey such as Oithona and Centropages

species are often found in disproportionally low amounts in cod

larvae in comparison to their environmental incidence, which

implies that cod larvae defer from predating those species (Heath

and Lough, 2007). These prey selection patterns explain why the

increasing trends of the smoothed PC2 (with a higher prevalence of

Centropages species) nullifies the change point in the cod SR model

without environmental predictors. The increasing prevalence of

Centropages species and a reduction in abundance of Calanus
A
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FIGURE 5

The data and predicted mean recruitment by different models for whiting, illustrated similarly as in Figure 1. The plain Saila-Lorda (SL; equation 4; A)
model includes only spawning stock biomass (SSB) as an explanatory variable. The extended SL models (equation 1) include also the sea-bottom
temperature at the depth of 47 meters (SBT-47; B), plankton (smoothed PC1; C) or both of them (D). For the results, no regularization was used.
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species coincided with a reduction in cod recruitment. It appears

that the timing of prey availability and first-feeding cod larvae is not

only correlated (Nash and Geffen, 2004) but also coincident.

Neuheimer et al. (2018) suggested that the temperature-induced

variation in spawning peak (up to 86 days across Atlantic cod

populations) is related to the local adaptation of parental cod, which

are matching their spawning time to environmental conditions in

order to match the abundance of first-feeding larvae with the

expected occurrence of prey abundance.

For whiting, the evidence for using environmental variables in

the SR models was, however, not strong. Whereas our study

corroborate a regime shift from high to low whiting recruitment

in the early 1990s and whereas inclusion of environmental

covariates nullified this regime shift, model evidence was higher

for whiting models without environmental forcing variables.

Environmental mediation of whiting recruitment was suggested

to follow similar mechanisms as for cod (Lauerburg et al., 2018;

Bentley et al., 2021). The diet composition of whiting larvae is

indeed largely similar as that of cod larvae throughout their larval

development (Rowlands et al., 2008), but low whiting recruitment

has also been linked to other factors such as forage fish abundance

and predation mortality in the North Sea and the interplay of

temperature-induced climatic changes and benthic prey availability

in the Bristol Channel (Floeter et al., 2005; Lauerburg et al., 2018;

Henderson, 2019). Other differences between cod and whiting
A
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FIGURE 6

The predicted impact of environmental variables on recruitment by
different models (Figure 5) for whiting. The figure illustrates the
impact of SBT-47 (A) and PC1 (B) as well as their combined impact
(C) on recruitment, similarly as in Figure 2.
TABLE 1 Plain and extended SR models for Atlantic cod without
regularization.

SR
model

Environmental drivers of
extended SR models

Mean
nlml

Time
range of
data

SBH SST 62.6636

1968-2018

SBH – 64.4323

SL SST 68.1418

SL – 68.8916

SBH SBT-27 69.3781

SBH SBT-6 69.5334

SBH SBT-17 69.9358

SBH SBT-37 70.2877

SBH SBT-47 70.9792

SL SBT-27 73.4132

SL SBT-6 73.5146

SL SBT-17 74.2558

SL SBT-47 74.8948

SL SBT-37 75.0361

SBH SST & smoothed PC2 57.5489

1971-2018SBH SST 60.0656

(Continued)
TABLE 1 Continued

SR
model

Environmental drivers of
extended SR models

Mean
nlml

Time
range of
data

SBH Smoothed PC2 (narrower support
for d) 60.5362

SBH Smoothed PC2 60.7088

SBH – 62.2503

SL Smoothed PC2 62.4225

SL
Smoothed PC2 (narrower support
for d) 62.8822

SL – 66.2713

SBH Raw PC2 66.3352

SBH Raw PC1 66.4977

SBH
Smoothed PC1 (narrower support
for d) 68.2336

SL Raw PC1 69.7775

SBH Smoothed PC1 70.7141

SL Smoothed PC1 71.9326

SL
Smoothed PC1 (narrower support
for d) 72.3665

SL Raw PC2 72.8052
Models are ordered according to the negative log marginal likelihood (nlml), whereby the
lowest nlml represents the best fitting model. The time range of the environmental time series
differed, and the results are grouped according to the range of the data. SBH, Sigmoid
Beverton-Holt SR model; SL, Saila-Lorda SR model; SST, Sea Surface Temperature; SBT, Sea
Bottom Temperature; PC, principal component (see Materials and methods for details).
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recruits include settlement duration, which occurred in a single

pulse of one month for cod in the North Sea whereas whiting settled

over a more protracted period (Bastrikin et al., 2014). Settlement in

the nursery areas depends on the timing and location of adult

spawning and the developments of egg and larval stages, which are

both strongly mediated by temperature (Kjesbu, 1994; Gerritsen

et al., 2003; Armstrong et al., 2004; Geffen et al., 2006).
Frontiers in Marine Science 13
Indeed, while density dependence and prey availability are

highly cited as drivers of fish productivity, temperature is the

most cited factor affecting recruitment (Savina-Rolland et al.,

2022) and suggested as a primary driver of changes in fish

productivity (Rijnsdorp et al., 2009; Pörtner and Peck, 2010;

Koenigstein et al., 2016), supporting the inclusion of temperature

as an appropriate candidate forcing variable to explain recruitment

variability. Temperature correlated well with cod and whiting

recruitment in earlier Irish Sea studies (Planque and Fox, 1998;

Beggs et al., 2014; Bentley et al., 2020) and with sole recruitment in

the North Sea and Bristol Channel, albeit not in the Irish Sea
TABLE 2 Plain and extended SR models for common sole without
regularization (see Table 1 for abbreviations).

SR
model

Environmental drivers of
extended SR models

Mean
nlml

Time
range of
data

SBH – 51.8752

1970-2016

SL – 55.4702

SBH SBT-27 56.7359

SBH SBT-6 56.8235

SBH SBT-17 56.9774

SBH SBT-47 57.7191

SBH SST 57.9395

SBH SBT-37 58.7303

SL SST 60.7696

SL SBT-6 60.9418

SL SBT-17 61.359

SL SBT-37 61.5738

SL SBT-27 62.0794

SL SBT-47 63.3029

SBH – 50.2436

1971-2016

SL – 53.2496

SBH Smoothed PC2 54.4605

SBH SBT-27 55.0591

SL Smoothed PC2 55.5153

SBH
Smoothed PC2 (narrower support
for d) 55.8377

SBH Smoothed PC1 56.6168

SBH Raw PC2 56.8996

SBH Smoothed PC1 (narrower support
for d) 57.3687

SBH Raw PC1 57.8546

SL Smoothed PC1 58.1926

SBH SBT 27 & smoothed PC2 59.5389

SL Smoothed PC2 (narrower support
for d) 60.8114

SL Smoothed PC1 (narrower support
for d) 61.3114

SL Raw PC2 61.6749

SL Raw PC1 61.997
TABLE 3 Plain and extended SR models for whiting without
regularization (see Table 1 for abbreviations).

SR
model

Environmental drivers of extended
SR models

Mean
nlml

SL – 23.696

SBH – 25.2942

SL SBT-47 26.8873

SBH Smoothed PC1 (narrower support for d) 27.7616

SBH Smoothed PC2 (narrower support for d) 27.9088

SL SBT-37 28.6715

SL SBT-27 28.739

SBH Smoothed PC2 28.8066

SL Smoothed PC1 (narrower support for d) 28.8555

SBH Smoothed PC1 29.0094

SL Smoothed PC2 (narrower support for d) 29.157

SBH SST 30.0113

SL Smoothed PC1 30.0667

SL SBT-17 30.0825

SL SST 30.1677

SBH SBT-47 30.243

SBH SBT-37 30.3676

SL SBT-6 30.8967

SBH SBT-27 31.0152

SL Raw PC2 31.1905

SBH Raw PC2 31.2307

SL Raw PC1 31.2681

SL Smoothed PC2 31.4814

SBH SBT-17 31.6643

SBH SBT-6 31.7126

SL SBT-47 & smoothed PC1 31.9012

SBH Raw PC1 32.2274

SL SBT-47 & raw PC1 33.2985

SBH SBT-47 & smoothed PC1 34.5361
fr
For all environmental time series, the range of the data was 1980-2018.
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(Rijnsdorp et al., 1992; Henderson and Seaby, 2005; Akimova et al.,

2016). Temperature affects the early life stages of fish in a myriad of

ways, and is manifested through both physical and biological

processes (Houde, 2016). Direct biological temperature effects

relate to fishes’ ectotherm nature, implying that physiological

changes are instantly affected by temperature (growth,

metabolism, reproduction) (e.g. McBride et al., 2015). Indirect

temperature effects relate to hydrodynamics and their physical

environment (Ohlberger, 2013; Houde, 2016) and to changes in

the food web (Cushing, 1990; Beaugrand et al., 2003; Olsen

et al., 2011).

Temperature effects have differential effects on our case study

species, as their dome-shaped thermal optima differ. When thermal

ranges were prorated by their spatial distribution, they varied

between 3 and 12°C for cod, 9 and 13°C for whiting and 10 and

19°C for sole (Bentley et al., 2019). Cod is a boreal species with its

southern range edge to the south of the Irish Sea, while the Irish Sea

is in the center of the distributional range of whiting (Baudron et al.,

2020). Sole is at its northern distributional edge (Hermant et al.,

2010). Species at the edge of their latitudinal ranges are potentially

more susceptible to climate-induced changes beyond their preferred

thermal ranges, the ‘species range hypothesis’ (Neuheimer et al.,

2011), and particularly so for spawners and embryos (Dahlke et al.,

2020). Indeed, cod recruitment has shown a highly significant and

pronounced correlation with temperature signals across a

latitudinal gradient, whereby warmer years increased cod

recruitment in cold waters and colder years favored cod

recruitment in warmer waters (Planque and Fox, 1998; Brander,

2000; Pörtner et al., 2001). The pattern of recruitment variation

along latitudinal gradients was confirmed for gadoids (Leggett and

Frank, 1997), but the species range hypothesis was rejected as a

generic pattern for flatfishes (Leggett and Frank, 1997; Philippart

et al., 1998) even though it was apparent for sole. Sole spawning and

recruitment starts earlier in southernmost areas (Vaz et al., 2019)

and has been shown to exhibit an increased variability at its

northern distributional ranges, as demonstrated by a higher

coefficient of variation for recruitment and growth in the Irish

Sea and the North Sea as opposed to its southern population in the

Bay of Biscay (Rijnsdorp et al., 1992; Leggett and Frank, 1997).

Several studies suggested that sole recruitment variability was

predominantly generated during the pelagic egg and larval stages

and the variability of larval supply to the nursery areas (van der

Veer et al., 2000; Gibson et al., 2015). These findings motivated the

inclusion of environmental forcing variables in the pelagic stage,

and temperature as main temporal driver during the benthic stage.

Our results, however, suggest that sole recruitment was only

partially explained by the inclusion of copepod prey and

temperature. One potential reason is that not only copepod prey

contribute to the diet of sole larvae, but also the larvae of

polychaetes and bivalves (Last, 1978; Fonds, 1979; Lagardère

et al., 1999). Another plausible reason is that sole only recruits at

the age of two years in the Irish Sea, in contrast to whiting and cod

(recruitment age of zero). The longer pre-recruit window extends

the period of environmental mediation, and complicates the

inclusion of the most crucial environmental variables (Haltuch

et al., 2019; Brosset et al., 2020). Habitat-related processes during
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its spatially concentrated benthic juvenile stage were expected to

dampen rather than to generate recruitment variability (van der

Veer et al., 2000), but occasionally the opposite is true, e.g. during

cold and strongly varying winter temperatures (van der Veer et al.,

2000), or due to human-induced habitat degradation (Brown

et al., 2018).

Overall, we conclude that BOCPD models can successfully

identify regime shifts and compensatory or depensatory

mechanisms. When regime shifts of fish recruitment are

concurrent with environmental regime shifts, and nullified by

inclusion of environmental forcing variables in the SR models,

then we suggest that recruitment is likely impaired by selected

environmental drivers. The low whiting and sole recruitment could

only be partially explained by planktonic prey and temperature,

which suggests that an expanded selection of environmental drivers

is required. The tenfold reduction in Irish Sea cod recruitment of

the late nineties was not satisfactorily explained by depensatory

mechanisms alone but was convincingly nullified by increasing

temperatures and reduced planktonic prey. This finding

corroborates with similar findings in the North Sea (Olsen et al.,

2011), and warrants further testing of cod SR models that account

for food and temperature mediation. The present study hereby

demonstrates how the formerly identified regime shifts of several

ecosystem constituents in the Irish Sea have also affected the

recruitment of fish populations. Retrospective BOCPD time series

analysis provides a useful tool to this end. BOCPD helps identifying

ecosystem shifts to low productive states, and the possible

environmental drivers that affect the altered SR relationships.
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