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Abstract: A new Ag(I) adduct was synthesized by the reaction of 4-amino-4H-1,2,4-triazole (L)
with AgNO3. Its chemical structure was approved to be [Ag2(L)2(NO3)]n(NO3)n utilizing elemen-
tal analysis, FTIR spectra, and single crystal X-ray diffraction (SC-XRD). According to SC-XRD,
there are two independent silver atoms which are coordinated differently depending on whether
the nitrate anion is coordinated or not. The coordination geometry of Ag1 is a slightly bent con-
figuration while Ag2 has a distorted tetrahedral structure. The 4-amino-4H-1,2,4-triazole ligand
and one of the nitrate groups adopt bridging mode, which connects the crystallographically inde-
pendent Ag1 and Ag2 atoms resulting in the formation of two-dimensional coordination polymer.
Hirshfeld surface analysis displays that the intermolecular O···H (34.0%), Ag···N (10.6%), H···H
(10.4%), Ag···O (9.3%), and N···H (9.0%) contacts are the most abundant interactions. Regarding
anticancer activity, the [Ag2(L)2(NO3)]n(NO3)n demonstrates stronger cytotoxic efficacy against
lung (IC50 = 3.50 ± 0.37 µg/mL) and breast (IC50 = 2.98 ± 0.26 µg/mL) carcinoma cell lines than
the anticancer medication cis-platin. The [Ag2(L)2(NO3)]n(NO3)n complex showed interesting an-
tibacterial and antifungal activities compared to the free components (AgNO3 and 4-amino-4H-1,2,4-
triazole). The investigated silver(I) complex exhibits remarkable antibacterial activity against E. coli
(MIC = 6.1 µg/mL) that may be on par with Gentamycin (MIC = 4.8 µg/mL). As a result, the newly
synthesized Ag(I) complex could be suggested for anticancer and antibacterial treatments.

Keywords: Ag(I); 1,2,4-triazole; coordination polymer; Hirshfeld; anticancer; antimicrobial

1. Introduction

The coordination chemistry of physiologically and pharmacologically active silver(I)
compounds is a subject of extensive research, where several silver(I) complexes have been
demonstrated as excellent anticancer, antibacterial, or anti-inflammatory substances [1–10].
In particular, it is generally recognized that Ag(I) either in the form of silver salts or
coordination compounds, could be used medicinally to treat microbial infections resulting
from chronic burns or serious wounds [11–15]. The interaction of the Ag(I) ion with the
cell membrane, its ability to make enzyme inactivation, contact with DNA, and disturb the
electron transport chain are some of the suggested mechanisms for the biological actions
of Ag(I) complexes [16–19]. The type of atoms coordinated to the Ag center, and the
possibility of ligand substitutions, have a great impact on the antimicrobial capabilities
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of silver complexes. Ag(I) complexes having a higher potential for ligand replacement
by physiologically active ligands (sulfur compounds) have more potent antimicrobial
effects. As a result, complexes with weak Ag-N and Ag-O bonded species showed a wider
range of antimicrobial ability than complexes containing the more stable Ag-S and Ag-P
bonds [7,9,10,20,21]. Therefore, it is essential to look for new and superior metal-based
compounds as antimicrobial agents. This mission is important especially when considering
the rise in antibiotic-resistant bacteria and the difficulty in treating infections [22].

A significant group of heterocyclic compounds is known as triazoles, which have
three nitrogen atoms arranged in a five-membered ring. These are classified as 1,2,3- or
1,2,4-triazoles based on the relative positions of the nitrogen atoms in the heterocyclic ring.
Because of their wide variety of applications in agrochemicals, medicine, and material
sciences, the 1,2,4-triazole nucleus has piqued the interest of researchers. The 1,2,4-triazole
nucleus is resistant to metabolic degradation and exhibits target selectivity as well as a
broad spectrum of activity. In addition, this nucleus can also coordinate with a variety of
metal ions to generate organometallic compounds with diverse biological functions [23].
Several substituted 1,2,4-triazole compounds were reported to have interesting bioactiv-
ity as antimicrobial, antifungal [24], anti-tubercular [25], anti-inflammatory [26], antidia-
betic [27], hypoglycaemic [28], anticonvulsant [29], antidepressant [30], anti-malarial [31],
arthritis [32], anti-migraine [33], antiviral [34], antihypertensive [35,36], potassium channel
activators [37], antileishmanial [38], antioxidant [39], and antiplatelet [40].

In this article, we reported the synthesis and characterization of a new silver(I) complex
constructed from 4-amino-4H-1,2,4-triazole (L) (Figure 1) and AgNO3. The bioactive
ligand 4-amino-4H-1,2,4-triazole would work in concert with the Ag(I) ion to provide an
effective antimicrobial and anticancer material. In this regard, the in vitro antimicrobial and
anticancer activities of the new Ag(I) complex were reported and compared with the free
components, 4-amino-4H-1,2,4-triazole (L) and AgNO3. In addition, the supramolecular
structural aspects of the new complex were presented for the first time.
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Figure 1. Structural formula of 4-amino-4H-1,2,4-triazole (L).

2. Results and Discussion
2.1. Synthesis and Characterization

In previous work, the mononuclear adduct [Ag(L)2]NO3 was reported. Based on the
FTIR spectroscopic data, the 4-amino-4H-1,2,4-triazole (L) is proposed to be a terminal
N-donor ligand via N1 atom [41]. It was reported by authors that, the adduct [Ag(L)2]NO3
was obtained by mixing AgNO3 and 4-amino-4H-1,2,4-triazole in ratio of 1:3. It is worthy
of note that there no X-ray single crystal structure characterization was reported for this
complex. On the other hand, the [Ag(L)1.75]n(NO3)n and [Ag(L)1.25](NO3) complexes
were obtained by mixing equimolar amounts of AgNO3 and 4-amino-4H-1,2,4-triazole in
3 mL of MeCN [42]. The structure of [Ag(L)1.75]n(NO3)n was confirmed with no doubt
by X-ray diffraction of single crystal. In our work, we reported the synthesis of a new
polymeric silver(I) complex of the same ligand in which the Ag:L ratio is 1:1. The new
complex was obtained by mixing ethanolic solution of L with an aqueous solution of
AgNO3 then the resulting white precipitate was in situ dissolved in MeCN (Scheme 1).
After a couple of days, colorless crystals suitable for single crystal X-ray diffraction were
obtained. This procedure developed a new supramolecular crystalline complex that exists
as two-dimensional polymeric chains exploited by the bridging ligand groups, which act
as linkers between silver sites.
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2.2. X-ray Crystal Structure of [Ag2(L)2(NO3)]n(NO3)n

Single-crystal X-ray structural study showed that the [Ag2(L)2(NO3)]n(NO3)n complex
crystallizes in the orthorhombic crystal system and the Pccn space group with Z = 8. The
crystal information is displayed in Table S1, Supplementary Materials. The unit cell pa-
rameters are a = 6.97690(10) Å, b = 12.90670(10) Å and c = 27.7850(2) Å, while the unit cell
volume is 2502.00(4) Å3. Figure 2 shows the atom numbering and coordination geometry
of the [Ag2(L)2(NO3)]n(NO3)n complex. There are two silver ions, two organic ligands, and
two nitrate anions in the asymmetric unit (Figure 2). In the literature, the bridging mode of
1,2,4-triazoles via N1 and N2 (Figure 1) is well acknowledged and appears to be a general
feature [42–44]. In addition, Ag(I) is an extremely soft Lewis acid and it has a flexible and
versatile coordination sphere that can accommodate a wide range of stable coordination
numbers between 2 and 6 [45]. As a result, Ag(I) can establish linear [46,47], trigonal [48],
tetrahedral [49,50], square-planar [51], trigonal pyramidal [52,53], T-shaped [54] or octahe-
dral coordination geometries [55]. This variety in the coordination sphere of silver(I) is due
in part to the lack of stereochemical preference for the d10 electronic configuration. In this
context, the compound under study has two crystallographically independent silver atoms
that are differently coordinated depending on whether the nitrate group is coordinated
or not. The Ag1 is coordinated by N4 and N5 of two triazole moieties, forming a slightly
bent geometry where the N4–Ag1–N5 angle is 171.52(4)◦. The two coordinating triazole
systems are not co-planar because the angle between their ring mean planes is 41.54◦. Also,
these 4-substituted triazole rings are in anti-configuration to one another. On the other
hand, Ag2 has a distorted tetrahedral geometry where the Ag2 center is coordinated with
two N-atoms from two triazole ligand units that occupy syn-configuration to one another,
in addition to two oxygen atoms (O1 and O2) belonging to a bidentate nitrate group. In
this case, the two triazole ligand units are coordinated to the central Ag2 atom through
the nitrogen atoms N3 and N8, where the Ag–N distances are 2.2087(9) and 2.2184(9) Å,
respectively. Also, the two Ag2–O1 (2.5044(9) Å) and Ag2–O2 (2.5202(9) Å) bonds are nearly
equidistant. It is clear that the two coordinating triazole systems around the Ag2 center
are nearly co-planar, where the angle between their mean planes is only 10.83◦. Table 1
displays selected interatomic distances and bond angles.

Table 1. Bond lengths [Å] and angles [◦] for [Ag2(L)2(NO3)]n(NO3)n.

Bond Distance Bond Distance

Ag(1)–N(4) 2.1375(9) Ag(2)–N(8) 2.2184(9)
Ag(1)–N(5) 2.1407(9) Ag(2)–O(1) 2.5044(9)

Ag(2)–N(3)#1 2.2087(9) Ag(2)–O(2) 2.5202(9)

Bonds Angle Bonds Angle

N(4)–Ag(1)–N(5) 171.52(4) N(3)#1–Ag(2)–O(2) 127.71(3)
N(3)#1–Ag(2)–N(8) 132.98(3) N(8)–Ag(2)–O(2) 95.06(3)
N(3)#1–Ag(2)–O(1) 100.41(3) O(1)–Ag(2)–O(2) 51.31(3)

N(8)–Ag(2)–O(1) 123.76(3)
#1: −x, y + 1/2, −z + 1/2.
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Figure 2. X-ray structure of [Ag2(L)2(NO3)]n(NO3)n, symmetry code to generate N3#1 is −x, y + 1/2,
−z + 1/2.

The two Ag(1) and Ag(2) centers are bridged to one another via the two neighboring N-
atoms of the 1,2,4-triazole ring, which leads to a wavy-like coordination polymer extending
the along the b-direction (Figure 3). However, the Ag1–O2 and Ag1–O1#1 (#1 = 0.5 − x,
1.5 − y, z) bond lengths are determined to be 2.749(1) and 2.765(1) Å, which are close
to 2.75 Å. Hence, both of the 1,2,4-triazole ligand units and one of the nitrate groups,
which has lower atom numbering, adopt bridging modes, giving rise to the formation of
two-dimensional coordination polymer (Figure 3).
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Figure 3. The projections of the polymer chains showing the wavy-like pattern along b-direction
and the two-dimensional infinite coordination polymer of the [Ag2(L)2(NO3)]n(NO3)n complex. The
weak Ag1–O2 and Ag1–O1#1 (#1 = 1/2 − x, 1/2 − y, z) bonds are presented by dotted turquoise line.
All hydrogen atoms were omitted from this figure for better visualization.

It is clear from the reported X-ray structure that the amino group is not included
in the coordination environment of any of the two Ag atoms. On the other hand, the
amino groups are included in the supramolecular structure of the [Ag2(L)2(NO3)]n(NO3)n
complex as hydrogen bond donor, while the nitrate ions are the hydrogen bond acceptors.
Hence, the 3D crystalline structure of the [Ag2(L)2(NO3)]n(NO3)n complex is stabilized
by many polar intermolecular N–H···O hydrogen bonds shown in Figure 4, while Table 2
shows the respective hydrogen bond parameters. Particularly, the uncoordinated nitrate
group contributed greatly to the molecular packing via all of its oxygen atoms (O4, O5,
and O6) leading to the formation of strong N–H···O hydrogen bonds with the free amino
groups. The H2A and H2B of the amino group connect the O4 and O5 of the nitrate group
with hydrogen to acceptor distances of 2.12(2) and 2.281(19) Å, respectively. Also, the N–H
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protons H7A and H7B from the other amino group, as hydrogen bond donors, form two
N–H···O hydrogen bonds with O6 from the same nitrate counter-ion as the hydrogen bond
acceptor (Figure 4a). In addition, some non-classical C–H···O interactions are observed
in the supramolecular structure of the investigated complex, which occur between the
atom O3 of the coordinated nitrate group with H1 and H3 atoms from the triazole moiety
(Table 2). Also, the O4 and O5 atoms of the ionic nitrate form weak C–H···O interactions
with H2 and H4 atoms of the triazole unit. The H···O distances are 2.34 and 2.29 Å,
respectively. As shown in Figure 4b, the [Ag2(L)2(NO3)]n(NO3)n coordination polymer
chains are cross-linked by strong N–H···O hydrogen bonds and weak C–H···O interactions
to give a 3D supramolecular network.
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Table 2. Hydrogen bonds for [Ag2(L)2(NO3)]n(NO3)n [Å and ◦].

D–H···A d(D–H) d(H···A) d(D···A) <(DHA)

C(2)–H(2)···O(4)#1 0.95 2.34 3.0520(15) 131.2
N(2)–H(2A)···O(4)#2 0.85(2) 2.12(2) 2.9308(15) 160.5(19)
N(2)–H(2B)···O(5)#3 0.876(19) 2.281(19) 3.0142(14) 141.2(17)
C(3)–H(3)···O(3)#3 0.95 2.36 3.2420(13) 154.7
N(7)–H(7A)···O(6)#4 0.828(19) 2.301(19) 3.0714(15) 154.9(17)
N(7)–H(7B)···O(6)#5 0.878(19) 2.119(19) 2.9295(14) 153.1(16)
C(1)–H(1)···O(3)#6 0.95 2.4 3.3135(14) 160.3
C(4)–H(4)···O(5) 0.95 2.29 3.1399(14) 147.9

Symmetry codes: #1: −x, y − 1/2, −z + 1/2; #2: x, −y + 3/2, z − 1/2; #3: x + 1/2, −y + 1, −z + 1/2; #4: −x, −y + 1,
−z + 1; #5: x + 1/2, y − 1/2, −z + 1; #6: −x + 1/2, −y + 3/2, z.

The X-ray structure of [Ag2(L)2(NO3)]n(NO3)n is significantly different from that of the
previously reported complex [Ag(L)1.75]n(NO3)n. The latter crystallized in the monoclinic
crystal system and C2/c space group with Z = 8. Also, the asymmetric unit consists of two
different Ag(I) cations, three whole and one-half of L, and two uncoordinated NO3

− anions.
Also, it consists of two crystallographically independent silver atoms; the Ag1 atom has
triangular planar coordination geometry, while Ag2 is tetrahedrally coordinated. Unlike
Ag2 in [Ag2(L)2(NO3)]n(NO3)n, the Ag2 in [Ag(L)1.75]n(NO3)n is coordinated by triazole
rings only, whereas all the nitrate anions are freely uncoordinated. In both complexes, the
4-amino-4H-1,2,4-triazole acts as µ2-N1,N2 bridging ligand without any participation for
the amino group in the coordination environment [42].

2.3. FTIR Spectra

The IR spectral analyses of the complex [Ag2(L)2(NO3)]n(NO3)n and its free organic
ligand, 4-amino-4H-1,2,4-triazole, have been recorded and presented in Figures S1 and S2
(Supplementary Materials). The FTIR spectrum of the complex differs slightly from that
of the free ligand. For the [Ag2(L)2(NO3)]n(NO3)n complex, the appearance of a sharp,
prominent peak at 1383 cm−1 points to the existence of the nitrate group, which is absent
in the spectrum of the free organic ligand. In the spectrum of the free ligand, the band
at 1635 cm−1 could be assigned to the ν(C=N) stretching mode of the triazole ring. It is
slightly shifted to lower wavenumber of 1631 cm−1 in case of the [Ag2(L)2(NO3)]n(NO3)n
complex. The observed change in the shape and the slight shift in the band position of the
ν(C=N) mode in the FTIR spectrum of the [Ag2(L)2(NO3)]n(NO3)n complex demonstrates
the coordination of L with the silver ion. In the spectra of the complex and its free ligand,
the bands appearing at 3130 cm−1 could be attributed to the C(sp2)-H stretching vibrations
of the triazole ring. Furthermore, there are strong absorption peaks at 3201–3203 cm−1 and
3302–3321 cm−1 corresponding to υ(NH2).

2.4. Analysis of Molecular Packing

It is generally known that the molecules in the crystals are packed through intermolec-
ular interactions, which enhance the crystal’s stability. Hirshfeld surface calculations gave a
full description of the supramolecular structure of crystalline materials. Hence, it presents
a better understanding of the molecular packing even for weak interactions, which are hard
to detect but are critical for crystal packing. The contributions of all possible intermolecular
contacts in the [Ag2(L)2(NO3)]n(NO3)n complex are estimated using fingerprint plots and
reported in Figure 5. As expected, the O···H (34.0%) contacts are the most important in the
supramolecular structure of the [Ag2(L)2(NO3)]n(NO3)n complex. Additionally, Ag···N
(10.6%), H···H (10.4%), Ag···O (9.3%), and N···H (9.0%) contacts contributed significantly
to the molecular packing.

The different Hirshfeld surfaces (dnorm, curvedness, and shape index) of the asym-
metric [Ag2(L)2(NO3)](NO3) unit are shown in Figure 6. In the upper part of this figure,
the dnorm maps reveal the presence of numerous red spots attributed to the significant
intermolecular interactions. The small percentage of C···C interactions (1.0%) and the
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absence of blue/red triangles in the shape index map pointed out to the absence of π–π
stacking interactions.
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The significance of O···H and N···H contacts in the supramolecular structure of
[Ag2(L)2(NO3)]n(NO3)n complex is evident from Figure 7, since their dnorm surfaces and
fingerprint (FP) plots showed intense red spots and sharp spikes, respectively (Figure 7).
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The packing is also dominated by numerous Ag–N coordination interactions (10.6%),
which are involved in the polymeric structure of [Ag2(L)2(NO3)](NO3) via the bridging
triazole ligand. Additionally, Ag–O interactions contributed to the packing by 9.3%. All
Ag–N and Ag–O interactions are manifested as red spots in the corresponding dnorm maps
and strong spikes in fingerprint plots, as shown in Figure 8.
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As shown in Figure 9, there are some Ag···Ag interactions (2.2%) among the polymeric
chains since the Ag···Ag distance equals 3.516 Å, which means the presence of some
argentophillic interaction [56]. Also, nitrogen atoms from the amino, nitrate, and triazole
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groups have an important role in the packing through C···N, N···N, and N···O contacts.
Their percentages are 5.9, 5.0, and 5.0%, respectively (Figure S3).
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2.5. Cytotoxic Activity

The MTT methodology was applied to evaluate the in vitro cytotoxicity of the [Ag2(L)2
(NO3)]n(NO3)n complex as IC50 values in µg/mL towards two human tumor cell lines,
lung (A-549) and breast (MCF-7) carcinoma. The comprehensive outcomes are included in
Tables S2–S5 (Supplementary Materials) and visually shown in Figure S4. A summary of
these results is provided in Table 3. The cytotoxic potential of the [Ag2(L)2(NO3)]n(NO3)n
complex is compared to that of the free L and AgNO3 as well. The [Ag2(L)2(NO3)]n(NO3)n
complex exhibited greater potency and lower IC50 values than the free ligand against the
two cell lines (Table 3). In comparison with AgNO3, the [Ag2(L)2(NO3)]n(NO3)n complex
displays better cytotoxicity in case of lung carcinoma while both AgNO3 (2.81 ± 0.97 µg/mL)
and [Ag2(L)2(NO3)]n(NO3)n (2.98 ± 0.26 µg/mL) complex have comparable cytotoxicity
against breast carcinoma.

Table 3. IC50 values (in µg/mL) for [Ag2(L)2(NO3)]n(NO3)n, free L, AgNO3 and cis-platin against
selected cancer cell lines.

Compound A-549 MCF-7

[Ag2(L)2(NO3)]n(NO3)n 3.50 ± 0.37 2.98 ± 0.26
L 366.99 ± 13.94 270.39 ± 11.86

AgNO3 14.70 ± 0.53 2.81 ± 0.97
cis-Platin 7.5 ± 0.69 4.59 ± 0.53

cis-platin is a powerful, well-known anticancer medication which is still currently in
use [57], in spite of its undesirable side effects [58–60]. Ag(I) complexes have gained some
popularity as candidates for cancer treatments with little side effects on healthy human
cells [3–5,8,61–65]. In comparison to cis-platin and under the same experimental conditions,
the new complex [Ag2(L)2(NO3)]n(NO3)n has a higher cytotoxic potential towards lung
and breast cancer cell lines since the IC50 values of the studied complex are about half of
those of cis-platin for both cell lines (Table 3).

2.6. Antimicrobial Activity

Ag(I) complexes based on various N-heterocycles exhibited fascinating antimicrobial
properties [2,10,66,67]. In this regard, the antimicrobial characteristics of the [Ag2(L)2(NO3)]n
(NO3)n complex were assessed as minimum inhibition concentrations (MIC) and inhibition
zone diameters towards six pathogens. The results have been compared with those of other
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commercially available antibiotics such as Gentamycin and Ketoconazole as antibacterial
and antifungal positive controls, respectively (Tables 4 and S6 (Supplementary Materials)).
The free ligand has no antimicrobial activity towards all tested microbes. On the contrary,
the [Ag2(L)2(NO3)]n(NO3)n has wide-spectrum action against all examined microorgan-
isms except A. fumigatus. This shed the light on how biological activity is boosted when
Ag(I) is coordinated. Interestingly, the investigated silver (I) complex displays excellent
antibacterial activity towards E. coli (MIC = 6.1 µg/mL), which could be comparable to
Gentamycin (MIC = 4.8 µg/mL). On the other hand, the Ag(I) complex, AgNO3, and
the free organic ligand, all have no antifungal activity against A. fumigatus at the applied
concentration. It is well known that the higher the activity of the complex, the larger
the diameters of the inhibition zones and the smaller the MIC values (Tables 4 and S6
(Supplementary Materials)).

Table 4. The MIC (µg/mL) values for [Ag2(L)2(NO3)]n(NO3)n, free L, AgNO3, and positive controls.

Compound
Gram-Positive Bacteria Gram-Negatvie Bacteria Fungi

S. aureus B. subtilis E. coli P. vulgaris A. fumigatus C. albicans

[Ag2(L)2(NO3)]n(NO3)n. 30.5 64 6.1 32 ND 156
AgNO3 64 312.5 32 156 ND 128

L ND ND ND ND ND ND
Control 9.7 a 4.8 a 4.8 a 4.8 a 156.25 b 312.5 b

a Gentamycin; b Ketoconazole; ND: Not determined.

3. Materials and Methods
3.1. Chemicals and Physicochemical Characterizations

All the chemicals were obtained from Sigma-Aldrich Company (Burlington, MA,
USA). The FTIR spectral analysis was conducted at 4000–400 cm−1 by a Bruker Tensor
37 FTIR instrument (Bruker Company, Karlsruhe, Germany) in KBr pellets. The CHN
elemental analysis was performed by a Perkin Elmer 2400 Elemental Analyzer (PerkinElmer,
New York, NY, USA). A Shimadzu atomic absorption spectrophotometer (AA-7000 series,
Shimadzu, Ltd., Kyoto, Japan) was used to measure the quantity of Ag.

3.2. Synthesis of [Ag2(L)2(NO3)]n(NO3)n

A 10 mL aqueous solution of silver nitrate (84.9 mg, 0.5 mmol) was mixed with a
solution of 4-amino-4H-1,2,4-triazole (42.0 mg, 0.5 mmol) in ethanol at room temperature.
This mixture gives rise to the formation of a precipitate which then dissolved in acetonitrile.
The resulting solution was kept at room temperature and allowed to evaporate slowly. The
complex [Ag2(L)2(NO3)]n(NO3)n was obtained as colorless crystals within a few days. The
crystals obtained were appropriate for single crystal X-ray measurements.

[Ag2(L)2(NO3)]n(NO3)n; (77% yield). Anal. Calc. C4H8Ag2N10O6: C, 9.46; H, 1.59; N,
27.58; Ag, 42.48%. Found: C, 9.50; H, 1.56; N, 27.49; Ag, 42.61%. FTIR cm−1: 3436, 3302,
3201, 3130, 1631, 1528, 1383, 1197, 1073, 982, 865, 825, 619. L: 3411, 3321, 3203, 3130, 1635,
1527, 1196, 1073, 979, 864, 620 (Figures S1 and S2, Supplementary Materials).

3.3. Crystal Structure Analysis

X-ray structural analysis and instrument details are illustrated in the Supplementary
Materials [68–71]. Table S1 displays the crystal information for the [Ag2(L)2(NO3)]n(NO3)n
complex.

3.4. Hirshfeld Surface Analysis

The 2D fingerprint plots and Hirshfeld surfaces were generated using the Crystal
Explorer Ver. 3.1 software program [72].
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3.5. Determination of Cytotoxic and Antimicrobial Activities

The technique described in Method S1 (Supplementary Materials) was used to assess
the cytotoxic effectiveness of the [Ag2(L)2(NO3)]n(NO3)n complex against lung (A-549) and
breast (MCF-7) cancer cell lines (American Type Culture Collection (ATCC, Rockville, MD,
USA)) [73]. Gram-positive bacteria, Gram-negative bacteria, and harmful yeasts were used
for testing the antimicrobial potency of the Ag(I) complex, AgNO3 and its free ligand. More
details can be found in Method S2 (Supplementary Materials).

4. Conclusions

In this work, the structure of the polymeric [Ag2(L)2(NO3)]n(NO3)n complex was dis-
cussed based on the X-ray single crystal diffraction analysis. There are two crystallographi-
cally independent silver centers which are differently coordinated. Ag1 has a slightly bent
AgN2 coordination environment while Ag2 has strongly distorted AgN2O2 coordination
geometry. The 1D polymer grows via the bridging triazole ligand. Hirshfeld analysis was
used to perform qualitative and quantitative analyses of the supramolecular architecture
of the [Ag2(L)2(NO3)]n(NO3)n complex. The most crucial contact is the O···H interaction
(34%). Biological investigations showed the excellent antimicrobial and anticancer proper-
ties of the [Ag2(L)2(NO3)]n(NO3)n complex. Depending on inhibition zone diameters and
MIC values, the Ag(I) complex has interesting potential towards Gram-negative bacteria,
Gram-positive bacteria, and fungi, whereas the free ligand 4-amino-4H-1,2,4-triazole (L)
showed no activity against all examined microbes. The anticancer activities of the silver(I)
complex are higher than those of the triazole ligand and the anticancer drug cis-platin
against lung and breast cancer cell lines. As a result, we are inspired to conduct additional
research on this interesting group of Ag(I) compounds, which have attractive prospects for
antitumor characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11100395/s1, Figure S1: FTIR spectrum of the free
ligand; Table S1: Crystallographic details and crystal refinement parameters for the complex
[Ag2(L)2(NO3)]n(NO3)n; FTIR spectrum of the free ligand; Figure S2: FTIR spectrum of the
complex; [Ag2(L)2(NO3)]n(NO3)n; Figure S3. dnorm maps of C···N, N···N, and N···O contacts. The
C···N contacts occur between the parallel triazole rings, N···N interactions occurred between amino
groups while N···O contacts occur between the nitrate groups; Figure S4. The anticancer action
of the studied complex, free ligand and AgNO3 against A-549 lung (upper) and MCF-7 breast
(lower) carcinoma cells lines; Table S2: Evaluation of cytotoxicity against the A-549 cell line for
the free ligand; Table S3: Evaluation of cytotoxicity against the A-549 cell line for the complex
[Ag2(L)2(NO3)]n(NO3)n; Table S4: Evaluation of cytotoxicity against the MCF-7 cell line for the free
ligand; Table S5: Evaluation of cytotoxicity against the MCF-7 cell line for [Ag2(L)2(NO3)]n(NO3)n;
Table S6: Inhibition zone diameters (mm) for [Ag2(L)2(NO3)]n(NO3)n, free L, AgNO3, and positive
controls; Method S1: Evaluation of cytotoxic effects against the two human lung (A-549) and breast
(MCF-7) cancer cell lines; Method S2: Testing of antimicrobial activity.
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