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Topological regularity of isoperimetric sets

in PI spaces having a deformation property

Gioacchino Antonelli∗, Enrico Pasqualetto†, Marco Pozzetta‡, and Ivan Yuri Violo§

September 12, 2023

Abstract

We prove topological regularity results for isoperimetric sets in PI spaces having a
suitable deformation property, which prescribes a control on the increment of the perime-
ter of sets under perturbations with balls. More precisely, we prove that isoperimetric
sets are open, satisfy boundary density estimates and, under a uniform lower bound on
the volumes of unit balls, are bounded. Our results apply, in particular, to the class of
possibly collapsed RCD(K,N) spaces. As a consequence, the rigidity in the isoperimetric
inequality on possibly collapsed RCD(0, N) spaces with Euclidean volume growth holds
without the additional assumption on the boundedness of isoperimetric sets. Our strategy
is of interest even in the Euclidean setting, as it simplifies some classical arguments.

MSC(2020). Primary: 53C23, 49Q20. Secondary: 26B30, 26A45, 49J40.
Keywords. Isoperimetric set, PI space, deformation property.

1 Introduction

In this paper we consider length PI spaces, i.e. metric measure spaces (X, d,m) where m is a
uniformly locally doubling Borel measure, there holds a weak local (1, 1)-Poincaré inequality
(see Definition 2.4), and the distance between any two points x, y is realized as the infimum of
the lengths of curves joining x and y. The well-established theory of BV functions on metric
measure spaces [3, 35] allows the treatment of sets of finite perimeter in this generalized
setting. Hence, it makes sense to consider the classical isoperimetric problem, defined by the
following minimization:

inf
{

P (E)
∣

∣ E ⊆ X Borel, m(E) = v
}

,

for any assigned volume v ∈ (0,m(X)), where P (E) denotes the perimeter of E. A set E
minimizing the previous infimum is called an isoperimetric set, or an isoperimetric region.
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One of the fundamental questions about isoperimetric sets addresses their topological reg-
ularity. Namely, one aims at proving that, up to the choice of a representative, isoperimetric
sets are open, bounded and enjoy density estimates at points of the topological boundary. In
the Euclidean space, topological regularity follows from [25], subsequently generalized in [41].
The proof in the Euclidean setting can be further simplified, see [34, Example 21.3, Theo-
rem 21.11]. On Riemannian manifolds the result is due to [36]. In [6] the result has been
generalized to the setting of noncollapsed RCD(K,N) spaces (X, d,HN ), i.e. N ∈ N and m

coincides with the Hausdorff measure HN . We mention also [31], which addresses the case of
quasi-minimal sets in PI spaces.

The purpose of this paper is to prove the topological regularity of isoperimetric sets in the
general setting of length PI spaces that enjoy a so-called deformation property, which we are
going to introduce (we refer to Definition 3.3 for the precise definition). We say that a metric
measure space (X, d,m) has the deformation property provided the following holds: given a
set E ⊆ X of finite perimeter and a point x ∈ X, we can find R,C > 0 such that

P (E ∪Br(y)) ≤ C
m(Br(y) \E)

r
+ P (E) for every y ∈ BR(x) and r ∈ (0, R). (1.1)

Classes of spaces having the deformation property are collected in Remark 3.4. Notably, the
class includes RCD(K,N) spaces (X, d,m), thanks to [6, Theorem 1.1]. We shall not introduce
RCD spaces here, and we refer the reader to the survey [4] and to the references therein.

We point out that being a PI space does not imply that the deformation property holds,
see the examples in Remark 3.5 and in Remark 3.6. Anyway, we are not aware of any example
of a PI space where the deformation property fails when tested on an isoperimetric set E,
nor of an example of a PI space where the essential interior an some isoperimetric set is not
topologically open.

Deformation properties for sets of locally finite perimeter are well-known in the smooth
context [34, Lemma 17.21], and they represent a tool of crucial importance in several classical
arguments. We refer, for instance, to [2, VI.2(3)], to [24, Lemma 4.5] and [37, Lemma 3.6] in
the sub-Riemannian setting, and to [21,38] which study isoperimetric problems in a weighted
setting.

In fact, it is mostly powerful to couple the topological regularity of an isoperimetric set, or
of a set minimizing some variational problem, with the deformation property. For instance,
knowing that such a set E has an open representative allows to apply (1.1) centered at points
y in the interior, so that m(E∪Br(y)) > m(E) only for radii r sufficiently large, and thus (1.1)
implies that one can increase the volume of E controlling the perimeter of the deformed set
E∪Br(y) linearly with respect to the increase of mass m(Br(y)\E). An analogous observation
holds applying (1.1) to the complement, in case the complement of the considered set has an
open representative. Observe that the previous improved deformation property with linear
control follows from (1.1) only after topological regularity of the set has been established. This
is in contrast with the Euclidean setting, where the stronger form of deformation property
is always available [34, Lemma 17.21]. The latter result follows by deforming sets of finite
perimeter by flows of vector fields, an argument out of reach in the metric setting. Hence
the simplest Euclidean proof for the topological regularity of isoperimetric sets [34, Example
21.3] has no hope of being performed in our framework, and we must look for an alternative
argument.
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We can now state our main result, which yields the topological regularity at the more
general level of volume-constrained minimizers of the perimeter, i.e. sets which minimize
the perimeter with respect to any bounded variation that locally preserves the measure, see
Definition 3.1. We will denote by E(1), E(0), and ∂eE the essential interior, the essential
exterior, and the essential boundary, respectively, of a Borel set E ⊆ X; see Section 2.2 for
their definitions.

Theorem 1.1 (Topological regularity of volume-constrained minimizers). Let (X, d,m) be

a length PI space having the deformation property. Let E ⊆ X be a volume-constrained

minimizer of the perimeter. Then E(1) = int(E(1)) and E(0) = int(E(0)). In particular, it

holds that E(1), E(0) are open sets and ∂E(1) = ∂E(0) = ∂eE.

The previous theorem implies density estimates on the volume and on the perimeter
measure of a volume-constrained minimizer at points of the essential boundary, see Theorem
3.9. For an isoperimetric set, we can additionally prove its boundedness. Namely:

Theorem 1.2. Let (X, d,m) be a length PI space having the deformation property. Suppose

that infx∈Xm(B1(x)) > 0. Let E ⊆ X be an isoperimetric set. Then E(1) is bounded. In

particular, every isoperimetric set in X has a bounded representative.

Since RCD(K,N) spaces with N < ∞ are length PI spaces (see [39, 40] and [33]), and
as recalled above they have the deformation property, putting together Theorem 1.1 and
Theorem 1.2 we obtain the following.

Corollary 1.3. Let (X, d,m) be an RCD(K,N) space with N < ∞. Let E ⊆ X be an

isoperimetric set. Then the sets E(1), E(0) are open and ∂eE = ∂E(1) = ∂E(0). Moreover, if

in addition infx∈Xm(B1(x)) > 0, then E(1) is bounded.

In the case of noncollapsed RCD(K,N) spaces, the above result has been previously proved
in [6, Theorem 1.4].

As an application of Corollary 1.3, we can refine the rigidity part in the sharp isoperimetric
inequality on RCD(0, N) spaces (X, d,m) with Euclidean volume growth. We recall that
“Euclidean volume growth” means that the asymptotic volume ratio

AVR(X, d,m) := lim
R→∞

m(BR(p))

ωNRN
, for some p ∈ X,

of the space is strictly positive. Recall that the existence of the above limit is guaranteed
by the monotonicity of (0,+∞) ∋ r 7→ m(Br(p))/ωNrN , which in turn follows from the
Bishop–Gromov inequality (see e.g. [40]). Observe that the condition AVR(X, d,m) > 0
implies that infx∈Xm(B1(x)) > 0. The sharp isoperimetric inequality on these spaces, see
(1.2) below, was obtained at different levels of generality in [1, 7, 9, 13, 16, 17]. In [7] the
rigidity for the isoperimetric inequality was proved for noncollapsed RCD(0, N) spaces. In the
recent [17, Theorem 1.5], the authors prove the rigidity for the inequality in all RCD(0, N)
spaces with Euclidean volume growth under the additional assumption that the set achieving
the equality is bounded. An application of our Corollary 1.3 allows to drop the previous
boundedness requirement, thus obtaining the following unconditional rigidity statement.
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Theorem 1.4 (Sharp and rigid isoperimetric inequality on RCD(0, N) spaces with Euclidean
volume growth). Let (X, d,m) be an RCD(0, N) space with 1 < N < ∞ having Euclidean

volume growth. Then for every set of finite perimeter E ⊆ X with m(E) < +∞ it holds that

P (E) ≥ Nω
1
N

N AVR(X, d,m)
1
N m(E)

N−1
N . (1.2)

Moreover, the equality in (1.2) holds for some set of finite perimeter E ⊆ X with m(E) ∈
(0,+∞) if and only if X is isometric to a Euclidean metric measure cone over an RCD(N −
2, N − 1) space and E is isometric, up to negligible sets, to a ball centered at one of the tips

of X.

In the previous theorem, when we say that X is a Euclidean metric measure cone over an

RCD(N −2, N −1) space we mean that there is a compact RCD(N −2, N −1) metric measure
space (Z, dZ ,mZ) such that (X, d,m) is isomorphic, as a metric measure space, to the metric
measure cone (C(Z), dc, t

N−1dt ⊗ mZ), where dc is the cone metric built using dZ . In case
1 < N < 2, it is understood that in the rigidity part of the previous statement, the space X
is either a weighted Euclidean half-line or a weighted Euclidean line.
We stress that Theorem 1.4 is not a straightforward consequence of the results in [7], according
to which the same result holds in the class of noncollapsed spaces. Indeed, an RCD(0, N) space
with 1 < N < ∞ and with Euclidean volume growth might not be noncollapsed. A simple
example is given by the weighted Euclidean half-line ([0,+∞), deu, t

N−1dt), with N > 1.

We now briefly discuss our strategy for the proof of Theorem 1.1. As mentioned above,
the Euclidean proof [34, Example 21.3] cannot be adapted to our setting. As in the classical
[25,41], we gain information on a volume-constrained minimizer by comparison with suitable
competitors exploiting the deformation property, but our argument is different, more direct,
and much shorter. The strategy of [25, 41] consists in proving first that E has an interior
and an exterior point, i.e. int(E(1)) 6= ∅ and int(E(0)) 6= ∅ (see [25, Theorem 1]), then one
deduces that E is a (Λ, r0)-perimeter minimizer, and thus finally that E is open. Instead,
we prove directly that if x ∈ E(0) and y ∈ E(1) are arbitrary points, then x ∈ int(E(0)) and
y ∈ int(E(1)). To do so we avoid deriving quantitative estimates on the decay of m(Br(y)\E)
as in [6, 25, 41], and we rather adopt a more qualitative approach. More precisely, the key
point is to show (see the key Lemma 3.7) that if the function v(r) := m(Br(x) ∩E) vanishes,
as r → 0+, slower than the function w(r) := m(Br(y) \ E), then x ∈ int(E(0)) (and vice
versa for y ∈ int(E(1))). By “slower” we mean, roughly speaking, that v(r) ≥ w(r) for many
r > 0 in a measure-theoretic sense (see Lemma 3.7 for the precise statement). However, up
to exchanging E with its complement X \ E, we can always ensure that v(r) vanishes slower
than w(r), thus deducing that x ∈ int(E(0)). By symmetry, we get y ∈ int(E(1)) as well.

We point out that the strategy of [25,41] does not seem to generalize to our setting, unless
we require additional assumptions – such as Ahlfors regularity – which we do not want to
make (in order to obtain a result which applies to the whole class of collapsed RCD(K,N)
spaces). This motivated us to look for an alternative proof of the topological result, which –
we believe – is of interest even in the Euclidean setting, since it brings simplifications to the
classical arguments in [25], still (necessarily) avoiding the use of the smooth structure of the
ambient.

We conclude the introduction by explicitly recording the following open problem.

Question 1.5. Let (X, d,m) be a length PI space and let E ⊆ X be a volume-constrained

minimizer of the perimeter. Is it true that E(1) is open?
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2 Preliminaries

Given a metric space (X, d), we denote by LIPloc(X) the space of all locally Lipschitz functions
from X to R, i.e. of those functions f : X → R such that for any x ∈ X there exists rx > 0 for
which f is Lipschitz on Brx(x). The slope lip(f) : X → [0,+∞) of a function f ∈ LIPloc(X)
is defined as lip(f)(x) := 0 if x ∈ X is an isolated point and

lip(f)(x) := lim
y→x

|f(x)− f(y)|

d(x, y)
if x ∈ X is an accumulation point.

The topological interior and the topological boundary of a set E ⊆ X are denoted by int(E)
and ∂E, respectively. A Borel measure µ ≥ 0 on X is locally finite if for any x ∈ X there exists
rx > 0 such that µ(Brx(x)) < +∞, while we say that µ is boundedly finite if µ(B) < +∞
whenever B ⊆ X is bounded Borel. Trivially, each boundedly finite measure is locally finite,
while the converse holds e.g. if (X, d) is proper, i.e. bounded closed subsets of X are compact.
Notice that locally finite Borel measures on a complete separable metric space are σ-finite.

2.1 Sets of finite perimeter in metric measure spaces

In this paper, by a metric measure space (X, d,m) we mean a complete separable metric space
(X, d) together with a boundedly finite Borel measure m ≥ 0 on X. Following [35], we define
the total variation |Df |(B) ∈ [0,+∞] of a given function f ∈ L1

loc(X) in a Borel set B ⊆ X
as

|Df |(B) := inf
B⊆Ω open

inf

{

lim
n→∞

ˆ

Ω
lip(fn) dm

∣

∣

∣

∣

(fn)n∈N ⊆ LIPloc(Ω), fn → f in L1
loc(Ω)

}

.

If for some open cover (Ωn)n∈N of X we have that |Df |(Ωn) < +∞ holds for every n ∈ N,
then |Df | is a locally finite Borel measure on X. We say that a Borel set E ⊆ X is of locally
finite perimeter if P (E, ·) := |DχE | is a locally finite measure, called the perimeter measure

of E. When P (E) := P (E,X) < +∞, we say that E is of finite perimeter.

Remark 2.1. If E ⊆ X is a set of locally finite perimeter and x ∈ X is a given point, then
P (E, ∂Br(x)) = 0 for all but countably many radii r > 0. This is due to the fact that
∂Br(x) ∩ ∂Bs(x) = ∅ whenever 0 < r < s and to the σ-finiteness of P (E, ·). �

Given any f ∈ LIPloc(X), it holds that |Df | is a locally finite measure and |Df | ≤ lip(f)m.

Theorem 2.2 (Coarea formula [35, Proposition 4.2]). Let (X, d,m) be a metric measure space.

Fix any f ∈ L1
loc(X) such that |Df | is a locally finite measure. Fix a Borel set E ⊆ X. Then

R ∋ t 7→ P ({f < t}, E) ∈ [0,+∞] is a Borel measurable function and it holds that

|Df |(E) =

ˆ

R

P ({f < t}, E) dt.
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Corollary 2.3. Let (X, d,m) be a metric measure space. Fix x ∈ X and a Borel set E ⊆ X.
Define f : (0,+∞) → R as f(r) := |Ddx|(E ∩ Br(x)) for every r > 0, where we denote

dx := d(·, x) ∈ LIP(X). Then the function f is locally absolutely continuous and it holds that

f ′(r) = P (Br(x), E) for L1-a.e. r > 0.

Proof. By virtue of the coarea formula, we obtain that f(r) =
´

R
P
(

{dx < s}, E∩Br(x)
)

ds =
´ r
0 P (Bs(x), E) ds for every r > 0, whence it follows that f(r)− f(r̃) =

´ r
r̃ P (Bs(x), E) ds for

every r > r̃ > 0. Hence, f is locally absolutely continuous and f ′(r) = P (Br(x), E) for every
Lebesgue point r of s 7→ P (Bs(x), E), thus for L1-a.e. r > 0.

2.2 PI spaces

Even though the general theory of sets of finite perimeter is meaningful in any metric measure
space, a much more refined calculus is available in the class of doubling spaces supporting a
weak form of (1, 1)-Poincaré inequality, which we refer to as PI spaces. Below we recall the
definition of PI space we adopt in this paper, referring e.g. to [12,29] for a thorough account
of this topic. We will also recall some key features of sets of finite perimeter in PI spaces.

Definition 2.4 (PI space). Let (X, d,m) be a metric measure space. Then:

• We say that (X, d,m) is uniformly locally doubling if there is a function CD : (0,+∞) →
(0,+∞) such that

m

(

B2r(x)
)

≤ CD(R)m
(

Br(x)
)

for every 0 < r < R and x ∈ X.

• We say that (X, d,m) supports a weak local (1, 1)-Poincaré inequality if there exist a
constant λ ≥ 1 and a function CP : (0,+∞) → (0,+∞) such that for any function
f ∈ LIPloc(X) it holds that

 

Br(x)

∣

∣

∣

∣

f −

 

Br(x)
f dm

∣

∣

∣

∣

dm ≤ CP (R) r

 

Bλr(x)
lip(f) dm for all 0 < r < R and x ∈ X.

• (X, d,m) is a PI space if it is uniformly locally doubling and it supports a weak local
(1, 1)-Poincaré inequality.

We point out that if (X, d,m) is a uniformly locally doubling space, then (X, d) is proper,
so (X, d) is locally compact, and locally finite Borel measures on (X, d) are boundedly finite.

Remark 2.5. Let (X, d,m) be a PI space such that (X, d) is a length space, i.e. the distance
between any two points in X is the infimum of the lengths of rectifiable curves joining them.
Then the weak local (1, 1)-Poincaré inequality is in fact strong, namely it holds with λ = 1;
see for example [26, Corollary 9.5 and Theorem 9.7]. Moreover, the completeness and the
local compactness of (X, d) ensure that (X, d) is also geodesic. �

Given a Borel set E ⊆ X in a PI space (X, d,m), we define its essential interior and
essential exterior as

E(1) :=

{

x ∈ X

∣

∣

∣

∣

lim
r→0

m(E ∩Br(x))

m(Br(x))
= 1

}

, E(0) :=

{

x ∈ X

∣

∣

∣

∣

lim
r→0

m(E ∩Br(x))

m(Br(x))
= 0

}

,
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respectively. The essential boundary of E is defined as ∂eE := X \ (E(1) ∪ E(0)). Notice that
E(1), E(0), and ∂eE are Borel sets and that ∂eE ⊆ ∂E. It follows from the Lebesgue differen-
tiation theorem (which holds on every uniformly locally doubling metric measure space, see
e.g. [27, Theorem 1.8]) that m(E(1)∆E) = 0 and m(E(0)∆(X \ E)) = 0. Moreover, if E is a
set of finite perimeter, then we know from [3, Theorem 5.3] that P (E, ·) is concentrated on
∂eE.

Proposition 2.6. Let (X, d,m) be a PI space. Let E,F ⊆ X be sets of locally finite perimeter

with P (E, ∂eF ) = 0. Then

P (E ∩ F, ·) ≤ P (E, ·) F (1) + P (F, ·) E(1).

Proof. We know from [3, Theorem 5.3] that the perimeter measure P (G, ·) of a set G ⊆ X
of locally finite perimeter can be written as P (G, ·) = θGH

h|∂eG for some Borel function
θG : X → (0,+∞), where Hh stands for the codimension-one Hausdorff measure (see [3,
Section 5]). Since P (E ∩ F, ·) ≤ P (E, ·) + P (F, ·) and P (E, ·)|X\∂eE = P (F, ·)|X\∂eF = 0, we

deduce that θE∩F ≤ θE and θE∩F ≤ θF hold Hh-a.e. in ∂eE \∂eF and ∂eF \∂eE, respectively.
Moreover, we deduce from

´

∂eF θE dHh|∂eE = P (E, ∂eF ) = 0 that Hh(∂eE∩∂eF ) = 0. Given

that ∂e(E ∩F ) = (∂eE ∩F (1))⊔ (∂eF ∩E(1)) up to an Hh-negligible set, which is shown e.g.
in the proof of [6, Lemma 2.5], we conclude that

P (E ∩ F, ·) = θE∩FH
h|∂e(E∩F ) = θE∩FH

h|∂eE∩F (1) + θE∩FH
h|∂eF∩E(1)

≤ θEH
h|∂eE∩F (1) + θFH

h|∂eF∩E(1) ,

which yields the statement.

The following is a direct consequence of the study in [3], taking Remark 2.5 into account.

Theorem 2.7 (Relative isoperimetric inequality [3, Remark 4.4]). Let (X, d,m) be a length

PI space. Then there exists a function CI = CI(CD, CP ) : (1,+∞)× (0,+∞) → (0,+∞) such
that the following property holds: given a set E ⊆ X of finite perimeter, a radius R > 0, and
an exponent α > max{log2(CD(R)), 1}, we have that

min
{

m(Br(x) ∩ E),m(Br(x) \ E)
}

≤ CI(α,R)

(

rα

m

(

Br(x)
)

)
1

α−1

P
(

E,Br(x)
)

α

α−1 ,

for every x ∈ X and r ∈ (0, R).

In the next proposition we recall the well-known fact that in the class of PI spaces where
unit balls have measure uniformly bounded away from zero, there holds an isoperimetric
inequality for sets of small volume. Such a result is essentially due to [23], after [15, 20, 30].
For a proof, we refer the reader to the argument in [19, Lemma V.2.1].

Proposition 2.8 (Isoperimetric inequality for small volumes). Let (X, d,m) be a length PI

space. Then there exist constants α > 1, C > 0 such that the following holds. If v0 :=
infx∈Xm(B1(x)) > 0, then for all Borel sets E ⊆ X with m(E) < v0/2 it holds that

P (E) ≥ Cv
1
α

0 m(E)
α−1
α .
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Remark 2.9. Let (X, d,m) be a length PI space and E ⊆ X a set of finite perimeter such
that m(E),m(X \ E) > 0. Then the relative isoperimetric inequality ensures that P (E) 6= 0.
In order to prove it, fix any x ∈ X and notice that we have m(BR(x) ∩E),m(BR(x) \E) > 0
for some R > 0 sufficiently large, thus P (E) ≥ P (E,BR(x)) > 0. �

Lemma 2.10. Let (X, d,m) be a length PI space. Then there exists c = c(inf CD, inf CP ) ∈
(0, 1) such that

cm ≤ |Ddx| ≤ m for every x ∈ X, (2.1)

where we denote dx := d(·, x) ∈ LIPloc(X). In particular, it holds that

m

(

∂Br(x)
)

= 0 for every x ∈ X and r > 0. (2.2)

Proof. Recall that |Ddx| ≤ lip(dx)m. Moreover, we deduce from [5, Equation (4.5)] that there
exists a constant c = c(inf CD, inf CP ) ∈ (0, 1) such that c lip(dx)m ≤ |Ddx|. To obtain (2.1),
observe that lip(dx) ≡ 1: the inequality lip(dx) ≤ 1 holds in any metric space, while the
converse inequality readily follows from the fact that (X, d) is geodesic. Finally, (2.2) can be
proved by combining (2.1) with the coarea formula: we can estimate

m

(

∂Br(x)
)

≤
1

c
|Ddx|

(

∂Br(x)
)

=
1

c

ˆ

R

P
(

Bs(x), ∂Br(x)
)

ds = 0,

where the last identity follows from the fact that P (Bs(x), ·) is concentrated on ∂eBs(x) ⊆
∂Bs(x).

3 Topological regularity

Let us begin with the definition of a volume-constrained minimizer of the perimeter.

Definition 3.1 (Volume-constrained minimizer). Let (X, d,m) be a metric measure space.
Then a set E ⊆ X of locally finite perimeter is said to be a volume-constrained minimizer of
the perimeter if the following property is verified: given a Borel set F ⊆ X and a compact set
K ⊆ X satisfying m((E∆F )\K) = 0 and m(E∩K) = m(F ∩K), it holds P (E,K) ≤ P (F,K).

Observe that E is a volume-constrained minimizer if and only if X \ E is a volume-
constrained minimizer.

Remark 3.2. An isoperimetric set, i.e. a set E ⊆ X of finite perimeter with 0 < m(E) < +∞
such that P (E) ≤ P (F ) for any Borel set F ⊆ X with m(F ) = m(E), is a volume-constrained
minimizer of the perimeter. �

Next we introduce our definition of a metric measure space having the deformation prop-

erty, which will be our standing assumption throughout the rest of the paper.

Definition 3.3 (Deformation property). Let (X, d,m) be a metric measure space with (X, d)
proper. Then we say that (X, d,m) has the deformation property if the following property
holds: for every set of locally finite perimeter E ⊆ X and any point x ∈ X, there exist
constants R ∈ (0, 1] and C ≥ 0 such that

P (E \Br(y), B2R(x)) ≤ C
m(Br(y) ∩E)

r
+ P (E,B2R(x)) ∀y ∈ BR(x), r ∈ (0, R), (3.1a)

P (E ∪Br(y), B2R(x)) ≤ C
m(Br(y) \E)

r
+ P (E,B2R(x)) ∀y ∈ BR(x), r ∈ (0, R), (3.1b)
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For convenience, we define from now on Rx(E) ∈ (0, 1] to be the maximal R ∈ (0, 1] such
that the above holds for some C ≥ 0 and we define Cx(E) ≥ 0 to be the minimal constant
such that (3.1a) and (3.1b) hold with R = Rx(E). Note that, by symmetry, we have that
Rx(E) = Rx(X \ E) and Cx(E) = Cx(X \ E); this is the reason why in Definition 3.3 we
require the validity of both (3.1a) and (3.1b) with the same constants C and R. We also
observe that if E ⊆ X is a given set of finite perimeter (resp. of locally finite perimeter), then

(3.1a) is equivalent to asking that P (E \ Br(y), S) ≤ C m(Br(y)∩E)
r + P (E,S) holds for every

(y, r) ∈ BR(x)×(0, R) and every Borel set (resp. bounded Borel set) S ⊆ X with B2R(x) ⊆ S.
Similarly for (3.1b). We will often make use of this observation without further notice. Also:

inf
x∈B

Rx(E) > 0 for every bounded set B ⊆ X. (3.2)

Indeed, the compactness of the closure of B ensures that B ⊆
⋃n

i=1BRxi
(E)/2(xi) for some

x1, . . . , xn ∈ B, which gives Rx(E) ≥ δ := min
{

Rxi
(E)/2 : i = 1, . . . , n

}

> 0 for every x ∈ B.
The same argument shows also that (3.1a) and (3.1b) hold for every x ∈ B for some R and C
that depend only on B and E, e.g. by taking R := δ and C := max

{

Cxi
(E) : i = 1, . . . , n

}

.

Remark 3.4 (Spaces having the deformation property). These are some spaces with the
deformation property:

i) Euclidean spaces (see e.g. [25] and the references therein).

ii) Riemannian manifolds (this can be proved e.g. by following the proof of [6, Theorem
1.1] and using the fact that the Ricci curvature is locally bounded from below).

iii) RCD(K,N) spaces with K ∈ R and N ∈ [1,∞) (proved in [6, Theorem 1.1] building
upon the Gauss–Green formula in [14, Theorem 2.4]).

We point out that in the above cases a stronger version of the deformation property holds,
since, given an arbitrary R > 0, the constants Cx(E) for which the deformation property
holds at every point x ∈ X and for every 0 < r < R, can be chosen to be independent of E, x,
and to be dependent only on K,N,R.

It would be interesting to study whether there are other distinguished examples of PI
spaces having the deformation property. One natural class to investigate is the one of sub-
Riemannian manifolds, or, more specifically, the one of Carnot groups. For example, in the
first Heisenberg group one has a sub-Laplacian comparison theorem. Being r the Carnot–
Carathéodory distance from the origin, we have that ∆Hr ≤ 4/r holds in the distributional
sense, where ∆H is the horizontal Laplacian. See [11] for the study of sub-Laplacian com-
parison theorems in more general sub-Riemannian structures, and [18, Corollary 4.19] for
the Laplacian comparison theorem in arbitrary essentially non-branching MCP spaces. Then,
coupling this with the Gauss–Green formulae for Carnot groups in [22], one could argue fol-
lowing the lines of [6, Theorem 2.32 and Theorem 1.1] to obtain that at least H1, and more in
general all the groups that are essentially non-branching MCP(K,N) spaces, with K ∈ R and
N ∈ (1,∞) (cf. [10], [8]), have the deformation property. Since this is out of the scope of the
present note, and since there are also some regularity issues of the distance function to deal
with, we do not treat these examples here, but we leave it to possible future investigations.

We mention that, on the other hand, the topological regularity of isoperimetric sets is
already proved in [32] in the setting of Carnot groups and in [24] on a certain class of sub-
Riemannian manifolds. �
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Remark 3.5. There exist PI spaces where the deformation property fails. For example,
fix a sequence of pairwise well-separated non-empty balls Bn := Brn(xn) in R

2 such that
xn → 0 and

∑

n rn < +∞. Now consider the density function ρ : R2 → [1, 2] given by
ρ := χE + 2χR2\E , where E :=

⋃

nBn. Letting m := ρL2 we have L2 ≤ ρL2 ≤ 2L2, so that
(R2, | · |,m) is an Ahlfors regular geodesic PI space. We claim that the deformation property
is not valid for the set of finite perimeter E at the origin 0. To check it, notice that for any
n ∈ N it holds P (Bn) = 2πrn, while P (Brn+ε(xn)) = 4π(rn + ε) and m(Brn+ε(xn) \ Bn) =
2π(2rnε+ ε2) for any ε ∈ (0, εn) for some εn > 0 sufficiently small. Therefore,

P (E ∪Brn+ε(xn))− P (E)

m(Brn+ε(xn) \ E)/(rn + ε)
=

(2πrn + 4πε)(rn + ε)

2π(2rnε+ ε2)
→ +∞ as ε ց 0,

which shows that the deformation property fails at the origin. However, we are not aware of
any example of a PI space where the deformation property fails when tested on an isoperi-
metric set, nor of an example of a PI space where the essential interior of some isoperimetric
set is not topologically open. �

Remark 3.6. The validity of the deformation property on a metric measure space (X, d,m)
entails a growth condition: given x ∈ X, there exist Cx, rx > 0 such that

P (Br(y)) ≤ Cx
m(Br(y))

r
for every y ∈ Brx(x) and r ∈ (0, rx). (3.3)

The previous (3.3) follows just by taking E := ∅ in the deformation property. We have
that (3.3) is not equivalent to the deformation property (e.g. in the example in Remark
3.5 the property (3.3) is satisfied). However, there are examples of PI spaces where also
(3.3) fails. The example we are going to describe has been pointed out to the authors by
Panu Lahti. Consider the measure m := |x|−1/2dx in R. Since the function |x|−1/2 is an
A1-Muckenhoupt weight, we know that (R, | · |,m) is a PI space (see e.g. [28]). Using that
m(Br(0))

r = 2
ffl r
0

1√
x
dx = 4√

r
→ +∞ as r ց 0, one can easily check that the codimension-one

Hausdorff measure of the singleton {0} diverges, i.e. Hh({0}) = +∞. It follows from [3,
Theorem 5.3] that B|y|(y) is not a set of locally finite perimeter when y ∈ (0,+∞). Hence,
(3.3) fails for x = 0. �

Given a metric measure space (X, d,m), a point x ∈ X, and a Borel set E ⊆ X, we
introduce the notation

vE,x(r) := m(Br(x) ∩ E), wE,x(r) := m(Br(x) \E) for every r > 0. (3.4)

The core of the proof of our main Theorem 1.1 is contained in the following technical
result.

Lemma 3.7. Let (X, d,m) be a length PI space having the deformation property. Let E ⊆ X
be a volume-constrained minimizer of the perimeter. Fix any x ∈ E(0) and y ∈ E(1). Define

the functions vE,x, wE,y : (0,+∞) → [0,+∞) as in (3.4). Fix a sequence (rn)n ⊆ (0, 1) such

that rn → 0. For any n ∈ N, we define the Borel set Ax,y
E,rn

⊆ (0, rn) as

Ax,y
E,rn

:=
{

r ∈ (0, rn)
∣

∣ vE,x(r) ≥ wE,y(r)
}

. (3.5)

Suppose the following conditions are verified:
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i) There exists δ ∈ (0, Ry(E)) such that B̄δ(x)∩ B̄δ(y) = ∅, vE,x(δ) > 0, and wE,y(δ) > 0.

ii) The inequality L1(Ax,y
E,rn

) ≥ rn/2 holds for infinitely many n ∈ N.

Then it holds that x ∈ int(E(0)).

Proof. We argue by contradiction: suppose that x /∈ int(E(0)). Recalling that m(Bδ(y)\E) =
wE,y(δ) > 0 and noticing that m(Br(x) ∩ E) → 0 as r → 0, we can extract a (not relabeled)
subsequence of (rn)n for which

rn < δ, m(Brn(x) ∩ E) < m(Bδ(y) \ E), L1(Ax,y
E,rn

) ≥
rn
2
, (3.6)

for every n ∈ N. Now let n ∈ N be fixed. We claim that for any r ∈ An := Ax,y
E,rn

there exists
s(r) ∈ [r, δ) such that

vE,x(r) = m(Br(x) ∩ E) = m(Bs(r)(y) \E) = wE,y(s(r)).

Indeed, if wE,y(r) = vE,x(r), then we can take s(r) := r. If wE,y(r) 6= vE,x(r), then vE,x(r) >
wE,y(r) by definition of An, thus the continuity of wE,y (which follows from (2.2)) ensures
that wE,y(s(r)) = vE,x(r) for some s(r) > 0. Since wE,y is non-decreasing, we infer that
s(r) ≥ r. Moreover, the second inequality in (3.6) implies that s(r) < δ.

Given any r ∈ An, we define the Borel set Er ⊆ X as Er := (E \ Br(x)) ∪ Bs(r)(y). The
first inequality in (3.6) ensures that B̄r(x) ∩ B̄s(r)(y) = ∅, whence it follows that m

(

Er ∩
(B̄r(x) ∪ B̄s(r)(y))

)

= m

(

E ∩ (B̄r(x) ∪ B̄s(r)(y))
)

. Denote K := B̄2δ(x) ∪ B̄2δ(y) for brevity.
The assumption that E is a volume-constrained minimizer of the perimeter then implies that
P (E,K) ≤ P (Er,K). For ease of notation from now on we will denote Cy(E) simply by Cy.
Thanks to Proposition 2.6, Remark 2.1, the deformation property, and s(r) ≥ r, we deduce
that for L1-a.e. r ∈ An one has

P (E,K) ≤ P (Er,K)

≤ P
(

E ∪Bs(r)(y), Br(x)
(0) ∩K

)

+ P
(

Br(x), (E ∪Bs(r)(y))
(1) ∩K

)

= P (E ∪Bs(r)(y),K)− P
(

E ∪Bs(r)(y), ∂
eBr(x) ∪Br(x)

(1)
)

+ P (Br(x), E
(1))

≤ P (E ∪Bs(r)(y),K)− P (E,Br(x)) + P (Br(x), E
(1))

≤ P (E,K) + Cy

m(Bs(r)(y) \E)

s(r)
− P (E,Br(x)) + P (Br(x), E

(1))

= P (E,K) + Cy
m(Br(x) ∩ E)

s(r)
− P (E,Br(x)) + P (Br(x), E

(1))

≤ P (E,K) + Cy
m(Br(x) ∩ E)

r
− P (E,Br(x)) + P (Br(x), E

(1)).

Notice that the constant Cy depends on y and E, but neither on n nor on r. Therefore, we
have shown that

P (E,Br(x)) ≤ Cy
m(Br(x) ∩ E)

r
+ P (Br(x), E

(1)) for all n ∈ N and L1-a.e. r ∈ An. (3.7)

Now fix any α > max{log2(CD(δ)), 1}. We know from the relative isoperimetric inequality,
i.e. Theorem 2.7, that

P (E,Br(x)) ≥ 2C̃min{vE,x(r), wE,x(r)
}1− 1

α
m(Br(x))

1
α

r
for every n ∈ N and r ∈ An,

(3.8)
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where we define C̃ := 1/2CI (α, δ)
(α−1)/α . Exploiting the fact that x ∈ E(0), we can find n̄ ∈ N

such that

vE,x(r) < wE,x(r), Cy

(

m(Br(x) ∩ E)

m(Br(x))

)
1
α

≤ C̃ for every n ≥ n̄ and r ∈ An. (3.9)

By combining (3.7), (3.8), and (3.9), we deduce that for every n ≥ n̄ and L1-a.e. r ∈ An it
holds that

2C̃m(Br(x) ∩ E)1−
1
α

m(Br(x))
1
α

r

≤ P (Br(x), E
(1)) +m(Br(x) ∩ E)1−

1
αCy

(

m(Br(x) ∩ E)

m(Br(x))

)
1
α m(Br(x))

1
α

r

≤ P (Br(x), E
(1)) + C̃m(Br(x) ∩ E)1−

1
α

m(Br(x))
1
α

r
.

Rearranging the terms, we infer that

C̃
m(Br(x))

1
α

r
m(Br(x) ∩ E)1−

1
α ≤ P (Br(x), E

(1)) for every n ≥ n̄ and L1-a.e. r ∈ An.

(3.10)
Now define the function f : (0,+∞) → R as f(r) := |Ddx|(Br(x) ∩ E(1)) for every r > 0.
Corollary 2.3 tells that f is locally absolutely continuous and f ′(r) = P (Br(x), E

(1)) for L1-
a.e. r > 0. Moreover, Lemma 2.10 gives f(r) ≤ m(Br(x) ∩ E) for every r > 0. Consequently,
it follows from (3.10) that

C̃
m(Br(x))

1
α

r
f(r)1−

1
α ≤ f ′(r) for every n ≥ n̄ and L1-a.e. r ∈ An. (3.11)

Using that x /∈ int(E(0)), which is the contradiction assumption, and Lemma 2.10 we see
that f(r) ≥ cm(Br(x) ∩ E) > 0 for every r > 0, thus we can divide both sides of (3.11) by

αf(r)1−
1
α , obtaining that

C̃

α

m(Br(x))
1
α

r
≤

f ′(r)

αf(r)1−
1
α

= (f
1
α )′(r) for every n ≥ n̄ and L1-a.e. r ∈ An. (3.12)

The third inequality in (3.6) implies that L1([rn/4, rn] ∩ An) ≥ rn/4 for every n ∈ N, thus
integrating (3.12) (and taking into account that (f1/α)′(r) ≥ 0 holds for L1-a.e. r > 0) we get
that

C̃

4α
m(Brn/4(x))

1
α ≤

C̃

α

m(Brn/4(x))
1
α

rn
L1([rn/4, rn] ∩An) ≤

C̃

α

ˆ

[rn/4,rn]∩An

m(Br(x))
1
α

r
dr

≤

ˆ

[rn/4,rn]∩An

(f
1
α )′(r) dr ≤

ˆ rn

0
(f

1
α )′(r) dr

= f(rn)
1
α ≤ m(Brn(x) ∩ E)

1
α

for every n ≥ n̄. Letting C := 1
CD(δ)2

(

C̃
4α

)α
, we can conclude that m(Brn(x) ∩ E) ≥

Cm(Brn(x)) for every n ≥ n̄. This leads to a contradiction with the fact that x ∈ E(0).
Therefore, the proof of the statement is achieved.
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Having Lemma 3.7 at our disposal, we can now easily prove Theorem 1.1.

Proof of Theorem 1.1. Since E(1) = (X \ E)(0), it is sufficient to check that E(0) = int(E(0)).
To prove it, we argue by contradiction: suppose there exists a point x ∈ E(0) \ int(E(0)). This
implies that both m(E) > 0 (otherwise E(0) = X = int(E(0))) and m(X \ E) > 0 (otherwise
E(0) = ∅), thus we know from Remark 2.9 that P (E) 6= 0. Since P (E, ·) is concentrated on
∂eE, we can find a point z ∈ ∂eE. Notice that m(Br(z) ∩ E) > 0 and m(Br(z) \ E) > 0 for
all r > 0. Since z 6= x, we can fix some radius δ ∈ (0, Rx(E)) ∩ (0, 2Rz(E)/3) ∩ (0, d(x, z)/3).
Thanks to the fact that m(Bδ/2(z) ∩ E) > 0, we can find a point y ∈ E(1) ∩ Bδ/2(z). Notice
that Bδ/2(z) \ E ⊆ Bδ(y) \ E, so that m(Bδ(y) \ E) ≥ m(Bδ/2(z) \ E) > 0. The fact that

x /∈ int(E(0)) implies that also m(Bδ(x) ∩ E) > 0. Hence, letting vE,x, wE,y be defined
in (3.4), we have proved that vE,x(δ) > 0 and wE,y(δ) > 0. By our construction and by
the definition of Rz(E), Ry(E) it holds 2Rz(E)/3 ≤ Ry(E), hence we have δ ∈ (0, Ry(E)).
Moreover, the inequality δ < d(x, z)/3 implies that d(x, y) > 2d(x, z)/3 > 2δ, which means
that B̄δ(x) ∩ B̄δ(y) = ∅. All in all, we showed that item i) of Lemma 3.7 holds. Hence, fixed
any sequence (rn)n ⊆ (0, 1) with rn → 0, we deduce from the assumption x /∈ int(E(0)) that
item ii) of Lemma 3.7 fails. Letting Ax,y

E,rn
be as in (3.5), we get that

L1(Ax,y
E,rn

) ≥
rn
2

holds only for finitely many n ∈ N. (3.13)

Since Ax,y
E,rn

∪Ay,x
X\E,rn

= (0, rn) for every n ∈ N, we infer that L1(Ay,x
X\E,rn

) ≥ rn/2 for infinitely

many n ∈ N. Given that vX\E,y(δ) = wE,y(δ) > 0 and wX\E,x(δ) = vE,x(δ) > 0, we are in a

position to apply Lemma 3.7 again, obtaining that y ∈ int((X \E)(0)) = int(E(1)). This gives
some r̄ > 0 satisfying wE,y(r) = 0 for every r ∈ (0, r̄). On the other hand, we know from
x /∈ int(E(0)) that vE,x(r) > 0 for all r ∈ (0, r̄). Choosing n̄ ∈ N so that rn < r̄ for all n ≥ n̄,
we conclude that Ax,y

E,rn
= (0, rn) for every n ≥ n̄, in contradiction with (3.13). This proves

that E(0) = int(E(0)).

Remark 3.8 (Some generalizations of Theorem 1.1). To keep the presentation of Theorem
1.1 as clear as possible, we decided not to prove it in its utmost generality. However, below
we discuss some generalizations of our result that can be obtained by slightly adapting our
arguments. The standing assumption is that (X, d,m) is a length PI space.

i) By inspecting the proof of Lemma 3.7, one can see that assuming the validity of a weaker
notion of deformation property is sufficient. Namely, one can allow for the constant C
appearing in (3.1a), (3.1b) to depend on y and it is sufficient to require the deformation
property only for volume-constrained minimizers E of the perimeter.

ii) A localized version of Theorem 1.1 holds as well: let E ⊆ X be a volume-constrained
minimizer of the perimeter in some open set Ω ⊆ X (i.e. as in Definition 3.1 but requiring
that K ⊆ Ω and with P (·) replaced by P (·,Ω)) satisfying P (E,Ω) > 0. Then E(1) ∩Ω,
E(0) ∩ Ω are open sets and ∂E(1) ∩ Ω = ∂E(0) ∩ Ω = ∂eE ∩ Ω.

iii) Theorem 1.1 can be generalized to volume-constrained minimizers of a suitable class of
quasi-perimeters. Fix an open set Ω ⊆ X and a functional G : B(Ω) → R ∪ {+∞} with
G(∅) < +∞ having the following property: for any U ⋐ Ω open, there exist constants
C = C(U) > 0 and σ = σ(U) ∈

(

1− 1
max{1,log2(inf CD)} , 1

]

such that

G(E) ≤ G(F ) + Cm(E∆F )σ whenever E,F ∈ B(Ω) satisfy E∆F ⊆ U.
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We then define the quasi-perimeter PG restricted to Ω as PG(E,Ω) := P (E,Ω) +
G(E ∩ Ω) for every E ∈ B(Ω). Then an adaption of the previous arguments yields the
validity of the following statement: if E ⊆ X is a volume-constrained minimizer of the
quasi-perimeter PG in Ω (i.e. as in Definition 3.1 but requiring that K ⊆ Ω, and with
P (·) replaced by PG(·,Ω)) satisfying P (E,Ω) > 0, then E(1) ∩Ω and E(0) ∩Ω are open
sets, and it holds that ∂E(1) ∩ Ω = ∂E(0) ∩ Ω = ∂eE ∩ Ω. �

Once we know that volume-constrained minimizers of the perimeter have an open rep-
resentative, we can obtain the following expected boundary density estimates by suitably
adapting the arguments in the proof of Lemma 3.7.

Theorem 3.9 (Boundary density estimates). Let (X, d,m) be a length PI space having the

deformation property. Let E ⊆ X be a volume-constrained minimizer of the perimeter. Let

B ⊆ X be a given bounded set. Then there exist constants r̄ = r̄(E,B,CD, CI) > 0 and

C = C(E,B,CD, CI) > 1 such that

1

C
≤

m(Br(x) ∩ E)

m(Br(x))
≤ 1−

1

C
,

1

C
≤

rP (E,Br(x))

m(Br(x))
≤ C, (3.14)

for every x ∈ ∂eE ∩B and r ∈ (0, r̄).
In particular, there exists a constant C̃ = C̃(C,CD(r̄/2)) ≥ 1 such that

P (E,B2r(x)) ≤ C̃ P (E,Br(x)) for every x ∈ ∂eE ∩B and r ∈ (0, r̄/2). (3.15)

Proof. If ∂eE contains only one point, the first one in (3.14) follows by the definition ∂eE,
while the second follows from [3, Theorem 5.4]. Thus we can assume that ∂eE contains
at least two distinct points z and z̃, otherwise there is nothing to prove. In particular,
letting ρ := min

{

Rz(E), Rz̃(E), 15d(z, z̃)
}

, we can find two points y ∈ Bρ/2(z) ∩ E(1) and

ỹ ∈ Bρ/2(z̃) ∩ E(1). In fact, Theorem 1.1 ensures that y, ỹ ∈ int(E(1)), so that there exists
r0 ∈ (0, ρ) such that

m(Br0(y) \E) = m(Br0(ỹ) \ E) = 0. (3.16)

Notice that m(Bρ(y)\E) ≥ m(Bρ/2(z)\E) > 0 and similarly m(Bρ(ỹ)\E) > 0. The doubling
assumption ensures that the closure K of B is compact, thus an application of Dini’s theorem
yields the existence of r1 > 0 such that

m(Br(x)∩E) < min
{

m(Bρ(y)\E),m(Bρ(ỹ)\E)
}

for every x ∈ K and r ∈ (0, r1). (3.17)

Thanks to (3.2), we can also find r2 > 0 such that r2 < Ry(E), r2 < Rỹ(E), and r2 < Rx(∅)
hold for every x ∈ K. Now define r̄0 := min{r0, r1, r2} > 0. Let x ∈ ∂eE ∩ B be fixed. Our
choice of ρ ensures that B̄ρ(x) is disjoint from at least one between B̄ρ(y) and B̄ρ(ỹ). Up
to relabeling y and ỹ, say that B̄ρ(x) ∩ B̄ρ(y) = ∅. Given any r ∈ (0, r̄0), we deduce from
(3.16), (3.17), and the continuity of s 7→ m(Bs(y)\E) that there exists s(r) ∈ (r̄0, ρ) such that
m(Br(x)∩E) = m(Bs(r)(y) \E). Define the Borel set Er ⊆ X as Er := (E \Br(x))∪Bs(r)(y).
By the minimality assumption on E, arguing as we did in the proof of Lemma 3.7 we obtain

P (E,Br(x)) ≤ max{Cz , Cz̃}
m(Br(x) ∩ E)

r̄0
+ P (Br(x), E

(1)), (3.18)
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for any x ∈ ∂eE ∩B and L1-a.e. r ∈ (0, r̄0). For any x ∈ ∂eE ∩B, define Ax(E) :=
{

r > 0 :
|Ddx|(Br(x) ∩E) ≤ |Ddx|(Br(x) \E)

}

. Fix α > max{log2(CD(ρ)), 1}. Applying the relative
isoperimetric inequality to the left-hand side of (3.18) and using Lemma 2.10, we deduce that

2C0
m(Br(x))

1
α

r
|Ddx|(Br(x) ∩E)1−

1
α

= 2C0
m(Br(x))

1
α

r
min

{

|Ddx|(Br(x) ∩E), |Ddx|(Br(x) \ E)
}1− 1

α

≤ 2C0
m(Br(x))

1
α

r
min

{

m(Br(x) ∩ E),m(Br(x) \E)
}1− 1

α

≤ P (Br(x), E
(1)) +

max{Cz, Cz̃}

c1−
1
α

r

r̄0

m(Br(x))
1
α

r
|Ddx|(Br(x) ∩ E)1−

1
α

(3.19)

holds for L1-a.e. r ∈ (0, r̄0) ∩ Ax(E), where we set C0 := 1/
(

2CI(α, ρ)
(α−1)/α

)

for brevity.
Therefore, if we let

r̄ := min

{

c1−
1
αC0r̄0

max{Cz, Cz̃}
, r̄0

}

∈ (0, r̄0],

then we infer from (3.19) that

C0
m(Br(x))

1
α

r
|Ddx|(Br(x)∩E)1−

1
α ≤ P (Br(x), E

(1)) for L1-a.e. r ∈ (0, r̄)∩Ax(E). (3.20)

This also proves (by considering X\E instead of E) that, up to shrinking r̄ > 0, it holds that

C0
m(Br(x))

1
α

r
|Ddx|(Br(x) \E)1−

1
α ≤ P (Br(x), E

(0)) for L1-a.e. r ∈ (0, r̄) ∩Ax(X \ E).

(3.21)
Let us now define the function fx : (0,+∞) → R as

fx(r) := min
{

|Ddx|(Br(x) ∩ E(1)), |Ddx|(Br(x) ∩ E(0))
}

for every r > 0.

Corollary 2.3 ensures that fx is locally absolutely continuous and

f ′
x(r) =

{

P (Br(x), E
(1))

P (Br(x), E
(0))

for L1-a.e. r ∈ Ax(E),
for L1-a.e. r ∈ Ax(X \ E).

Observe that Ax(E)∪Ax(X\E) = (0,+∞). Arguing as in Lemma 3.7, we deduce from (3.20)
and (3.21) that

C0

α

m(Br(x))
1
α

r
≤ (f

1
α

x )′(r) for L1-a.e. r ∈ (0, r̄). (3.22)

Given any r ∈ (0, r̄), we can integrate the inequality in (3.22) over the interval [r/2, r], thus
obtaining that

C0

2α (CD(r̄/2))
1
α

m(Br(x))
1
α ≤

C0

α

m(Br/2(x))
1
α

r

r

2
≤

C0

α

ˆ r

r/2

m(Bs(x))
1
α

s
ds

≤

ˆ r

0
(f

1
α
x )′(s) ds = fx(r)

1
α ≤ min

{

m(Br(x) ∩E),m(Br(x) \ E)
}

1
α .

(3.23)

15



It follows that m(Br(x)) ≤ C1m(Br(x) ∩ E) for every x ∈ ∂eE ∩ B and r ∈ (0, r̄), where we
define C1 := CD(r̄/2)

(

2α
C0

)α
.

Let x ∈ ∂eE∩B and r ∈ (0, r̄) be fixed. Sincem(Br(x)) ≤ C1min
{

m(Br(x)∩E),m(Br(x)\
E)

}

by (3.23), by using the relative isoperimetric inequality, and recalling that 2C0 =

1/CI(α, ρ)
(α−1)/α , we get that

2C0

C
1− 1

α

1

m(Br(x))

r
≤ 2C0

m(Br(x))
1
α

r
min

{

m(Br(x) ∩ E),m(Br(x) \ E)
}1− 1

α ≤ P (E,Br(x)).

On the other hand, up to shrinking r̄ (depending only on B), we can find a constant C2 > 0

(depending only on B) such that P (Br̃(x)) ≤ C2
m(Br̃(x))

r̃ for every r̃ ∈ (0, r̄); recall the
discussion after (3.2). Then

P (E,Br(x)) ≤ P (E,Br̃(x)) ≤ max{Cz, Cz̃}
m(Br̃(x) ∩ E)

r̃
+ P (Br̃(x), E

(1))

≤ max{Cz, Cz̃}
m(Br̃(x))

r̃
+ P (Br̃(x)) ≤

(

max{Cz , Cz̃}+ C2

)m(Br̃(x))

r̃
,

for L1-a.e. r̃ ∈ (r, r̄), thanks to (3.18) and to the deformation property. Hence, rP (E,Br(x))
m(Br(x))

≤

max{Cz, Cz̃}+ C2 for all x ∈ ∂eE ∩B and r ∈ (0, r̄). Picking

C := max
{

C1, C
(α−1)/α
1 /(2C0),max{Cz , Cz̃}+ C2

}

,

we conclude that (3.14) holds. Finally, applying (3.14) we conclude that for every x ∈ ∂eE∩B
and r ∈ (0, r̄/2) it holds that

P (E,B2r(x))

P (E,Br(x))
≤

Cm(B2r(x))

2r

Cr

m(Br(x))
≤

C2CD(r̄/2)

2
,

which proves the validity of (3.15). Consequently, the statement is achieved.

We conclude with a final comment on further minimality properties satisfied by volume-
constrained minimizers. Such properties can be derived by reproducing well-known argu-
ments, see, e.g. [6, Remark 3.23, Theorem 3.24], exploiting Theorem 1.1 and the deformation
property.

Remark 3.10. Let (X, d,m) be a length PI space having the deformation property. Let
E ⊆ X be a volume-constrained minimizer of the perimeter. Using Theorem 1.1 and with
arguments similar to those in the proof of Theorem 3.9, it is possible to prove that for any
compact set K ⊆ X there exist Λ, r0 > 0 such that E is a (Λ, r0)-perimeter minimizer
on K, i.e. whenever F∆E ⊆ Br(x) for some x ∈ K and r < r0 it holds P (E,Br(x)) ≤
P (F,Br(x)) + Λm(E∆F ).

Moreover, for any given compact set K ⊆ X there exist constants L, r0 > 0 such that E
is (L, r0)-quasi minimal on K, i.e. whenever F∆E ⊆ Br(x) for some x ∈ K and r < r0 it
holds that P (E,Br(x)) ≤ LP (F,Br(x)). The class of quasi-minimal sets has been studied
e.g. in [31].

It is worth pointing out that, once we know that volume-constrained minimizers of the
perimeter are (L, r0)-quasi minimal sets, Theorem 3.9 follows directly from [31, Theorem 4.2
and Lemma 5.1]. Nevertheless, we opted for a self-contained proof of Theorem 3.9, which
takes advantage of the openness of volume-constrained minimizers. �
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4 Boundedness of isoperimetric sets

In this last section, we prove the boundedness of isoperimetric sets in length PI spaces satis-
fying the deformation property and with a uniform lower bound on the volume of unit balls
(Theorem 1.2). The argument makes use of the topological regularity given by our main
result Theorem 1.1.

Proof of Theorem 1.2. Suppose by contradiction that E has no bounded representatives, i.e.
m(E \BR(x)) > 0 for all R > 0 and x ∈ X. In particular X is unbounded and, since

v0 := inf
x∈X

m(B1(x)) > 0,

we have m(X) = ∞ and m(X \ E) > 0. Then P (E) > 0 and, arguing as in the proof of
Theorem 1.1, we can find y ∈ E(1) and ρ ∈ (0, Ry(E)) such that δ := m(Bρ(y) \ E) > 0. By
Theorem 1.1 it holds that y ∈ int(E(1)), i.e. there exists r0 > 0 such that m(Br0(y) \E) = 0.
We consider the function f : (0,+∞) → R defined by

f(R) := |Ddy|(E
(1) \BR(y)) = |Ddy|(E

(1))− |Ddy|(E
(1) ∩BR(y)),

and observe that |Ddy|(E
(1)) ≤ lip(dy)m(E(1)) = m(E) < +∞. By Corollary 2.3 the function

f is locally absolutely continuous and satisfies f ′(r) = −P (BR(x), E
(1)) for L1-a.e. R > 0.

Thanks to Lemma 2.10 and since m(E(1)∆E) = 0, there also exists a constant c > 0 such
that

0 < cm(E \BR(y)) ≤ f(R) ≤ m(E \BR(y)), ∀R > 0. (4.1)

Observe that, since m(E) < +∞, it holds m(E \BR(y)) → 0 as R → +∞. Hence f(R) → 0
as R → +∞ and so we can find R0 > ρ such that f(R) < min{δ, v0/2} for all R ≥ R0. By
continuity, for every R ≥ R0 there exists r(R) ∈ (0, ρ) such that

m(Br(R)(y) \ E) = m(E \BR(y)). (4.2)

For every R ≥ R0 we define the set FR := (E ∪ Br(R)(y)) ∩BR(y), which satisfies m(FR) =
m(E) thanks to (4.2) and r(R) < R. Hence, by minimality, P (E) ≤ P (FR) for every R ≥ R0.
Moreover, using Proposition 2.6 and the deformation property, for L1-a.e. R ≥ R0 we have

P (E) ≤ P (FR) = P ((E ∪Br(R)(y)) ∩BR(y))

≤ P (E ∪Br(R)(y), BR(y)
(1)) + P (BR(y), (E ∪Br(R)(y))

(1))

≤ P (E ∪Br(R)(y)) − P (E ∪Br(R)(y), BR(y)
(0)) + P (BR(y), E

(1))

≤ P (E) + Cy(E)
m(Br(R)(y) \ E)

r0
− P (E,BR(y)

(0)) + P (BR(y), E
(1))

≤ P (E) + Cy(E)
m(Br(R)(y) \ E)

r0
− P (E \BR(y)) + 2P (BR(y), E

(1))

≤ P (E) + Cy(E)
m(E \BR(y))

r0
− Cv

1
α

0 m(E \BR(y))
α−1
α + 2P (BR(y), E

(1)),

with C > 0, α > 1 constants independent of R, where in the fifth line we used again Proposi-
tion 2.6 and in the last line we used the isoperimetric inequality for small volumes in Propo-
sition 2.8 (recall that m(E \BR(y)) < v0/2). This combined with (4.1) shows that

2f ′(R) ≤ Cy(E)c−1r−1
0 f(R)− Cv

1
α

0 f(R)
α−1
α ≤ −C1f(R)

α−1
α , for a.e. R ≥ R1,
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for some constant R1 ≥ R0 big enough and where C1 > 0 is a constant independent of R. Note
that in the last inequality we used that f(R) → 0 as R → +∞ and α > 1. Since f(R) > 0
for all R > 0, this shows that

(f
1
α )′(R) ≤ −

C1

2α
, for a.e. R ≥ R1,

which contradicts the fact that f(R) is strictly positive for any R > 0.
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