
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Explainability With Observation Sharing in Long Collaboration Chains of Automated
Systems-of-Systems

© 2023 IEEE

Accepted version (Final draft)

Daubaris, Paulius; Linkola, Simo; Inglés-Romero, Juan F.; Berrocal, Javier; Vicente-
Chicote, Cristina; Murillo, Juan Manuel; Mikkonen, Tommi; Mäkitalo, Niko

Daubaris, P., Linkola, S., Inglés-Romero, J. F., Berrocal, J., Vicente-Chicote, C., Murillo, J. M.,
Mikkonen, T., & Mäkitalo, N. (2024). Explainability With Observation Sharing in Long
Collaboration Chains of Automated Systems-of-Systems. IEEE Software, 41(1), 74-86.
https://doi.org/10.1109/ms.2023.3320742

2024

IEEE Software: Special Issue on Observability and Explainability for
Software Systems Decision Making

Explainability With Observation Sharing in
Long Collaboration Chains of Automated
Systems-of-Systems
Paulius Daubaris, University of Helsinki, Finland

Simo Linkola, GIM Robotics and University of Helsinki, Finland

Juan F. Inglés-Romero, Catholic University of Murcia, Spain

Javier Berrocal, University of Extremadura, Spain

Cristina Vicente-Chicote, University of Extremadura, Spain

Juan Manuel Murillo, Computing and Advanced Technologies Foundation of Extremadura, Spain

Tommi Mikkonen, University of Jyväskylä, Finland

Niko Mäkitalo, University of Jyväskylä and University Consortium Chydenius, Finland

Abstract—Robotics enabled by AI and advanced software technologies are taking
the world by storm. The advanced automation systems, systems-of-systems that
power them, and their collaboration are complex and difficult to understand.
Lacking knowledge about how they work can only improve our lives so much; in
fact, it can hamper the interactions between systems, harm businesses, disrupt
daily lives, and even endanger us. Increasing the observability and explainability
of these systems helps us remain in control and leverage the technologies to
improve our lives. This article introduces a blueprint architecture for long
collaboration chains formed by systems-of-systems, provided by multiple
companies, that can significantly improve the understanding of the processes and
events taking place. We illustrate the vision with an automated supply chain
scenario and utilizing example use cases of how different stakeholders can
benefit from the enhanced observability and explainability within long collaboration
chains.

S ociety is becoming ever more automated with
the emerging robotic and AI technologies. With
the increasing complexity of machine learning

and quantity of the produced data, the economies
of autonomous systems are in danger of becoming
black boxes. Such circumstances can lead to mis-
understandings with respect to different system pro-
cesses involved. This may lead to a lack of ac-
countability, hinder business collaboration and, in the
worst case, cause serious harm to humans and their
safety (D’Acquisto, 2020). Therefore, it is crucial that

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

humans remain in control and are fully able to under-
stand and make decisions how complex automated
systems work (D’Acquisto, 2020). Strengthening the
observability and explainability of systems-of-systems
(SoS) can help make this reality.

Observability is usually addressed from the operat-
ing context and the system maintenance point of view.
It is a property of the system capable of retrieving
information about the system’s behavior and to cor-
relate the behavior of the different modules. Observ-
ability allows system maintainers to obtain information
about what, how and why something happened on a
technical level (Niedermaier et al., 2019; Usman et al.,
2022). This information may be used to identify the root

January Published by the IEEE Computer Society IEEE Software Magazine 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

causes of operational failures. In multi-robot systems,
observability can enhance, for example, fault detection
and correlation (Khalastchi and Kalech, 2019) across
the whole robot population.

Explainability has a similar goal but, instead of
focusing on the ability to obtain information about the
behavior or the system, it focuses on processing the
observed information for the recipient. For instance,
in a multi-robot system, the information to transmit
a concrete problem about a delayed package should
be different for the customer than for the system
maintainer. Unlike observability, explainability usually
assumes spoken or written natural language output.
Explainability is both demanded by governing bod-
ies (Wachter et al., 2017) and a recognized challenge
in robotics, with no solution tackling all its issues even
within a single robot (Anjomshoae et al., 2019; Sakai
and Nagai, 2022).

There are multiple angles from which observability
and explainability of a system, and the decision making
with the system can be considered and improved.
Many of them are subject to who exactly is observing
and what needs to be explained. For example, on the
one hand, a customer buying a product may be willing
to understand the origin of the goods that they have ac-
quired as well as the manufacturing and transportation
processes. On the other hand, companies developing
autonomous systems desire information about how
their systems and software work in production and
in collaboration with other companies’ systems. For
instance, another robot in the logistics chain may need
observations, or information about specific character-
istics of the product or the logistics that may affect a
proper delivery.

At present, many obstacles to improving the ex-
plainability aspects of automated, complex systems-
of-systems exist. For example, relevant information
is often incomplete, lacking context, scattered across
various entities of the system, or known by only a
few people. Hence, the information is impossible to
leverage for understanding and improving SoS.

In this article, we identify the four crucial observabil-
ity and explainability challenges of automated, complex
SoS. We introduce our novel vision of long collabo-
ration chains and a blueprint architecture aiming to
resolve the challenges. To highlight the benefits of
long collaboration chains, we present an Industry 4.0
scenario of heavily automated supply chains leverag-
ing autonomous robots capable of collaborating with
different entities.

Toward Explainability with Long
Collaboration Chains

Both observability and explainability make software
easier to manage and help in understanding why it
made certain decisions. However, catering for both in
SoS where different companies, robotic and software
solutions, and human partners participate brings spe-
cific challenges, especially considering data gathering
and sharing.

Observability and explainability require data from
the context and the internal state of systems. The
same data gathering and analysis processes that are
used for observability can be used as the basis for
explainability. However, fusing and analyzing the data
into meaningful observations, i.e., pieces of informa-
tion considering particular events or phenomena, are
not trivial considering the challenges that the physical
world imposes on data validity and the data gathering
processes.

In ubiquitous machine collaboration, a failure can
be a result of multiple incidents that befall to multiple
entities and stakeholders, and the first event leading
to the failure may have happened a substantial time
ago. Therefore, systems need to share observations
between collaborators to enable observability that tran-
scends the individual company’s systems and provides
explainability covering the whole collaboration.

Systems need to be able to decide which observa-
tions to share and with whom based on the validity
of the observations (e.g., trust in the original data
source, confidence in the observation correctness) and
the collaboration context. Moreover, the solutions that
enable observation sharing need to account for, to
the best of their ability, disruptions and gaps in the
sharing process. For example, some collaborators can
be humans who need digital representatives to share
the observations with. What observations to share and
with whom to enable observability and explainability
are currently an unresolved issue in the context of
automated, complex SoS.

Inspired by Sakai and Nagai (2022) and motivated
by the above discussion, we summarize four crucial
observability and explainability related challenges of
SoS as follows:

Challenge 1: SoS cannot unravel decision making
and overall behavior for humans.

Challenge 2: SoS cannot communicate how a
single entity’s decisions and behavior are estimated to
affect the overall decision making and behavior.

Challenge 3: SoS do not support extracting all the
relevant information from their systems.

Challenge 4: SoS cannot communicate explana-

2 Observability and Explainability for Software Systems Decision Making January 2024

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

tory factors among their systems.
Our objective is to address these four challenges

with a novel long collaboration chain vision and
blueprint architecture. Our proposed solution focuses
on observation sharing during collaboration to ensure
that the relevant observations from the context, in-
dividual machines and collaboration events are both
handed forward in the chain during collaboration and
available for later request. To bind systems to share
observations, they form contracts with one another.
A contract obligates the parties to share observations
considering relevant viewpoints (e.g., sustainability or
safety) of a particular scope, event, or phenomenon
(e.g. a single package delivery), enabling the use of
various explanation lenses – a novel concept that can
be applied by different stakeholders during different
tasks to better understand SoS behavior and to make
wiser decisions.

Scenario: Automated Supply Chains
in Industry 4.0

We use an Industry 4.0 supply chain scenario to
illustrate how the four previously identified observability
and explainability challenges can be mitigated. The
scenario as well as the main interactions and solution
details are depicted in Figure 1.

The supply chain often involves different stake-
holders, including employees who have contrasting
responsibilities, multiple vendors (delivering, storing,
and manufacturing packages), and end users. Such
a setup requires careful thinking about how these
parties interact, what information is shared and how
their observations are made useful to generate appro-
priate explanations using particular explanation lenses
and in turn improve a company’s operations in terms
of, for example, sustainability. Figure 1 (I) illustrates
five different explanation lenses (A–E), and Table 1
provides related use cases to highlight the benefits of
the explanation lenses.

Warehouse AI (Figure 1, center) maintains infor-
mation about stored packages, deliveries, human and
robot employees, and their observations. It collects
information to maintain the full picture of the supply
chain and to improve the company’s business pro-
cesses (Challenge 3), such as the observations sent
by robots. These observations can also be used by
collaborating companies and their systems (Company
B’s Intelligence; Figure 1, top left) to improve their own
operations as well. In addition, the accumulated obser-
vations are compiled and provided as explanations to
hardware and software developers to amend potential
system faults and improve the general efficiency of the

system (C).
Considering the warehouse environment (E), the

warehouse robot leverages sensors and other sys-
tems of the warehouse, which are governed by the
central warehouse intelligence system. In this case,
the robot observes its environment and surroundings
and generates an explanation suitable for a human
coworker. Such insights aid in maintaining the safety
of the warehouse and protecting other coworkers and
the robot’s surroundings.

While passing a package from the warehouse for-
ward to the delivery (B), two robots from different
vendors need to communicate about the package’s
delivery details. However, since the companies follow
strict data privacy rules, exchanging information re-
quires additional safety measures. In case there is no
predefined contract between the two companies, one
needs to be made on-demand. Therefore, the ware-
house robot communicates with the main warehouse
intelligence system, sharing its observations about the
delivery robot and its company and asking for guidance
on how a contract should be made. When the guidance
is received, the two robots agree on the terms and
observations related to the package that are passed
on to the delivery robot (Challenge 4).

The terms agreed on by different companies imply
certain obligations. In this particular case, the de-
livery options and related sustainability aspects are
observed(D). Such information can be explained by the
robots based on the observations acquired through the
entire supply chain to different stakeholders to evaluate
the sustainability aspects and methods of delivery
(Challenge 2). Such insights can help the user have
the power to inspect and choose the most sustainable
option.

Upon delivery (A), the delivery robot possesses
observations of various steps taken during its opera-
tions, which are then used to provide information to
the recipient of the package (Challenges 1 and 2).
For example, if the recipient receives damaged goods,
he or she might demand that the robot explain why
the damage happened. This would prompt the delivery
robot to reiterate through all the observations that it
acquired from the previous robots and to use this
information to prepare a suitable explanation taking
into account the entity with which it interacts.

Blueprint Architecture for Long
Collaboration Chains

Considering the scenario and challenges discussed
previously, we propose a blueprint architecture, de-
picted in Figure 1 (II) which seeks to improve ob-

January 2024 Observability and Explainability for Software Systems Decision Making 3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

Table 1. Example use cases how different stakeholders can benefit from the different explanation lenses from the observability
(O), explainability (E), and decision making (D) perspectives.

Use case Benefits Technical Notes

Sustainability Lens

Motivation: Currently, having a
clear and truthful understanding of
the sustainability aspects of an au-
tomated supply chain is difficult
(Challenge 1). For example, infor-
mation may be stored only in each
vendor’s own systems, may not
be produced or stored at all, or
information is not communicated
between different systems (Chal-
lenges 2 and 3). The sustainabil-
ity lens provides a tool for a cus-
tomer to inspect the true carbon ox-
ide footprint and other sustainability
aspects of delivery.

O
• Based on contracts, different companies’

systems are obligated to generate and share
observations during the delivery process
(Challenges 3 and 4). Other stakehold-
ers can better understand the sustainability
viewpoint of the whole process, which thus
far has been beyond of their reach (Chal-
lenge 1).

• For example, entities need to generate
observations on CO2 emissions, the
packaging materials used during different
phases, the origins of the materials, and so
forth.

• An SoS entity vendor that has agreed to
contract terms, is obligated to make its
systems produce and communicate obser-
vations. Different software engineering do-
mains use different methods for commu-
nicating. For example, in the robotics do-
main, DDS provides a standardized and
efficient data distribution service and allows
the creation of a global data space, with
access control, security, data persistence,
etc., without a central broker (Challenges 3
and 4).

E
• With the explanation lens, the system is

capable of explaining and tracing the differ-
ent phases and stakeholders involved in the
delivery process based on the observations
within the supply chain (Challenges 1 and
2).

• For example, a stakeholder can query ob-
servation data from related systems to un-
derstand the sustainability aspects of the
entire delivery process.

• Individual observations are stored in
the long collaboration chain. Various
technologies can be used to store the
raw data related to the observations. For
example, the InfluxDB database can be
connected to DDS to store the entire
history of events (Challenge 4). Flux is the
advanced query language of InfluxDB for
data processing and time series analysis,
and it is a good fit to address explainability
issues regarding processes that potentially
take long periods of time (Challenge 3).

D
• The stakeholder can select different delivery

methods, packaging options or even en-
tire different products that better match the
stakeholder’s values (Challenges 1 and 2).

• The best configuration could result from
an optimization process according to the
stakeholder criteria and based on metrics
derived from observations (Challenge 2).

Safety Lens

Motivation: SoS safety becomes
a challenge when multivendor sys-
tems interact. This is because there
are either no observations shared
among entities or observations are
local to only a single vendor (Chal-
lenges 2 and 3). The safety lens
provides a tool for observing how
various systems interact and then
explaining this behavior to humans
(Challenge 1). Based on these ex-
planations, humans can better de-
tect potential safety issues, such as
how well machines communicate
when a human is detected, and
how other machines are expected
to react to a human’s actions (Chal-
lenges 1 and 2).

O
• Entities make important observations of

their own and other entities behavior, loca-
tion, etc., and then share these with the long
collaboration chain (Challenges 3 and 4).

• For example, while robots co-operate and in-
teract with each other and other systems in
the warehouse, they generate local observa-
tions about their own operating environment
including the entities surrounding them, and
whether they are other machines or human
coworkers (Challenges 3 and 4).

• Complex information derived from the
context can be shared using different
technologies (Challenges 3 and 4). For
example, a robot can perform facial
recognition of co-workers and update a
specific DDS Topic with their identities and
locations. Another system can follow this
topic and observe that an unauthorized co-
worker was in a prohibited area dedicated
to the transit of goods.

E
• The system can provide explanation views

that help different stakeholders improve
safety aspects in different situations (Chal-
lenge 1).

• For example, based on the various observa-
tions made by different robots, stakeholders
(the warehouse robot maintainer, robot de-
velopers, etc.) can better identify SoS safety
issues caused by the interplay of robots
when those aspects cannot be guaranteed
(Challenges 1 and 2).

• In general, by leveraging CEP technolo-
gies, observations can be traced back to
the original events that produced the de-
tection of the corresponding pattern (Chal-
lenges 2 and 3). Moreover, in robot-to-
robot interactions, InfluxDB can be used
for making queries to the raw observation
data, which help in explaining causes and
effects for stakeholders (Challenges 1, 2
and 3).

D
• Based on the explanations provided by the

system, stakeholders can act to improve the
safety of the warehouse and its operations
(Challenge 1).

• For example, the warehouse robot main-
tainer could improve the network coverage
in case the robot has to halt its opera-
tions due to poor connectivity, or fix possible
issues with the robot hardware or in the
robot’s physical environment.

• Probabilistic networks can be used to esti-
mate the level of safety of a system based
on observations. The resulting metric pro-
vides a coarse-grained measure of how
well the system performs, which can sup-
port the decision-making process (Chal-
lenge 1).

4 Observability and Explainability for Software Systems Decision Making January 2024

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

Use case Benefits Technical notes

Optimization Lens

Motivation: Vendors provide tools
for developing and optimizing their
system’s behavior. However, when
deploying multivendor systems, the
overall system-of-system observ-
ability and explainability are hard
to achieve (Challenges 1-4). The
optimization lens provides intersys-
tem tool for understanding behav-
ior and optimizing system perfor-
mance (Challenges 1 and 2).

O
• Robot tracks its processes and simulta-

neously observes current operations and
measures their efficiency, and the stability
among other aspects (Challenge 3). Anoma-
lies are shared with the long collaboration
chain (Challenge 4).

• For example, two robots collaborating
closely can report their progress as
observations and share them with others
(Challenges 3 and 4).

• CEP technologies can be used for de-
scribing observations as expressions of
event patterns, e.g., using the Event Pro-
cessing Language (EPL) of Esper (https:
//espertech.com/) (Challenge 4). This ap-
proach requires precise pattern definitions,
which are not always possible. In this case,
fault detection techniques, e.g., based on
autoencoders or transformers, can be used
to identify deviations from normal behavior
(Challenge 3).

E
• The calculated measurements are stream-

lined into a dashboard-like explanation view
with various insights about the robot’s de-
cisions and operations in general that are
further processed for easy-to-understand in-
sights, which is useful for the developers
(Challenges 1 and 2).

• For example, developer can track each step
of two robots collaborating and observe why
performing certain tasks has taken a consid-
erable amount of time (Challenge 2).

• There are several tools that can be used for
visualizing observations which essentially
are time-based data. For example, Grafana
(https://grafana.com/) is a data visualization
tool for creating interactive dashboards for
time series data. It can support explain-
ability by visualizing outputs, metrics, and
contextual information (Challenge 1).

D
• Using the measurements and the explana-

tions of robot actions, developers can en-
hance the system relatively easily, as debug-
ging and tracking down system faults is al-
ready alleviated by the insights provided by
the robot explanations (Challenges 1 and 2).

• The nonfunctional properties of a system
can be observed with runtime quality of
service metrics (see Sidebar), and provide
support for decision making and improving
performance (Challenges 1 and 2).

Privacy Lens

Motivation: Currently, an ever-
increasing number of AI and other
software systems produce, store,
share, and use the personal in-
formation of their users. It is be-
coming impossible for any individ-
ual human to keep track of and
understand what sensitive informa-
tion these numerous systems pos-
seses and how this information is
being used (Challenges 1–3). The
privacy lens provides a tool for the
user to inspect what private infor-
mation each system of an auto-
mated supply chain possesses and
how these systems have reported
using this information. The privacy
lens can also help system vendors
support EU’s GDPR and AI Act
(Challenges 1 and 2).

O
• New privacy observations are generated

when a robot or any other system stores or
accesses user’s information (Challenge 1).

• Raw data should be stored in actual entities
and systems. The long collaboration chain
stores anonymized observations reported
by the entities. For example, with proper ac-
cess control, InfluxDB can provide the nec-
essary querying and analysis tools to fa-
cilitate transparency and understanding of
data usage in robotics applications (Chal-
lenges 3 and 4).

E
• With an explanation lens, a user can se-

lect a scope and study what entities have
accessed, stored, or handled private infor-
mation about the user (Challenge 1). The
user can also understand for what purpose
the data has been used for (e.g., training
a machine learning model) (Challenges 1
and 3).

• By using an ontology to build a taxonomy
and link semantics and implications, ad-
vanced access control to information can
be established based on whether it is sub-
ject to legislation, among other aspects
(Challenges 1 and 3).

D
• Users can better understand their data us-

age and make decisions to ask different
stakeholders to delete private information,
including privacy observations (Challenge
4). System vendors can also understand
how other systems use their produced data
(Challenges 1, 2 and 4).

• In private data management, user requests
and actions by the corresponding company
can be registered with blockchain technol-
ogy, providing a decentralized and trans-
parent mechanism to ensure data integrity
and trust. To omit data from the long collab-
oration chain, personal data is anonymized
using hash values and public key cryp-
tography (Challenge 4). Correspondingly,
system vendors take care of deleting the
raw data from their services – as they
would normally do. The long collaboration
chain keeps track of these changes and
privacy lens can then be used to ensure
that the data have actually been removed
(Challenges 1–4).

January 2024 Observability and Explainability for Software Systems Decision Making 5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

https://espertech.com/
https://espertech.com/
https://grafana.com/

Observability and Explainability for Software System Decision Making

Delivery Destination Company B
Package Delivery

Company A
Warehouse

Recipients

Observation

Verify Contracts

Human
(co-worker)

Package Data

Warehouse
Intelligence

Availability sensors

Check
Package

Consult Contract Details

Share
Observations

Explanation for
Requiring
Assistance

Observation

Observation

O
bs

er
va

tio
n

Improving the Safety of
the Warehouse Robots

Inspecting
Sustainability Aspects
of a Package Delivery

Resolving User's and
Delivery Information

Company A's
Intelligence

Update Processes

Current
Knowledge

Updated
Knowledge

Business Processes

Updated
Business

Processes

Company B's
Intelligence

Industry 4.0 Supply Chain

Share Observations

Observation

Ensuring Safe and
Reliable Collaboration

Optimizing Performance
and Business Processes

ED

CBA

Developers and maintainers
(1) benefit from the expanded observability,
(2) use the observations in their applications,
(3) define their own explanation lenses, and
(4) apply different explanation lenses
(e.g., ABCDE) on particular contexts
within the supply chain.

Communication Protocols

Warehouse
Robot

Delivery
Robot Warehouse

Robot
Delivery
Robot

The package is not
damaged, Confidence: 0.8

Entities with whom it is possible to interact

Physical Hardware

Data Interoperability & Storage Management

Raw Data External context &
observations

Ontology-based Data Models

Observation
Manager

Deliberation System

Se
cu

rit
y,

 P
riv

ac
y,

 &
 T

ru
st

 P
ol

ic
ie

s

Ve
rif

y
C

on
tr

ac
ts

C
er

tif
ic

at
es

Warehouse Intelligence

Observation Storage

Behavior Manager

Business Process
Manager

Warehouse System

Explainability Support

Behavior
Manager

Explainability
Support

I. Vision of Long Collaboration Chains

II. Architectural Details

Figure 1. I. An illustration of the long collaboration chain vision with an industry 4.0 supply chain. Sharing observations between
individual robots (B) and company intelligences (top) enables more comprehensive observability for system maintainers and
developers (right middle) and allows explanations for different stakeholders (A, B, C, D, E, right middle).
II. Blueprint architectures of the robot and the centralized system, in this instance the warehouse intelligence.

6 Observability and Explainability for Software Systems Decision Making January 2024

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

Motivation and Technologies for Improving Observability and
Explainability

Business Incentives for Multivendor Data Sharing
The autonomous machine industry aims to boost revenue through business collaboration with other
hardware and software vendors. Companies need to (a) be able to trust other systems and (b) be
able to reliably prove and provide explainability of their own systems operation. A Bad reputation can
harm business. Platform Economy for Autonomous Mobile Machines project explores collaborative
opportunities in robotics, such as five companies building an automated warehouse system using
each other’s components.

Research-based Solutions for Improving Observability of Quality-of-Service
Nonfunctional properties like safety impact how a system works, not just what it does. In the
RoQME project, we offered a framework to address these properties with global QoS metrics.
Their real-time estimation, based on robot operation observations, aids in behavior adaptation and
requirement assessment. We tested the project in an intralogistics setting, involving factory goods
transport (Vicente-Chicote et al., 2019).

Robot-to-Robot Collaboration and System Interoperability
Robot-to-robot collaboration is challenging, particularly in multi-vendor environments where different
technology stacks are involved. In our project on Creative and Adaptive Cooperation between Diverse
Autonomous Robots, we’ve explored the use of ontology-based communication methods to facilitate
information sharing and physical coordination in diverse robot populations (Linkola et al., 2022).

References
Linkola, S., Mäkitalo, N., Laurinen, T., Kantosalo, A., and Männistö, T. (2022). An architectural

approach for enabling and developing cooperative behaviour in diverse autonomous robots. In
Software Architecture: 15th European Conference, ECSA 2021 Tracks and Workshops, Revised
Selected Papers, pages 181–204. Springer.

Vicente-Chicote, C., García-Pérez, D., García-Ojeda, P., Inglés-Romero, J. F., Romero-Garcés, A., and
Martínez, J. (2019). Modeling and estimation of non-functional properties: Leveraging the power of
QoS metrics. From Bioinspired Systems and Biomedical Applications to Machine Learning, pages
380–388.

servability and explainability. We envision two different
kinds of systems: robots (or, by extension, autonomous
systems), providing local observations and explana-
tions to their collaborators; and warehouses, maintain-
ing integrated views of all the observations and their
relations with the business processes being executed.

Robot’s Software Architecture
Next, we describe the architecture’s main modules of
a robot operating in the supply chain.

Physical Hardware. The robot’s physical hard-
ware is used to sense the context, and provide other

functionalities, e.g., movement through actuators. The
context data together with the internal state of the
robot, and the actions and interactions performed, are
later used to detect events of interest and produce
observations from them. Figure 1 illustrates physical
hardware as an abstract component. It is abstracted
because the physical hardware could comprise differ-
ent sensors and actuators whose differences from the
blueprint architecture point of view do not matter.

Communication Protocols. In multivendor col-
laborative scenarios (e.g., different robots involved in
the supply chain), communication between systems in

January 2024 Observability and Explainability for Software Systems Decision Making 7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

the environment is vital. Multivendor systems present
challenges because of diverse technology stacks and
communication standards. In previous projects, we’ve
addressed this by using Data Distribution Service
(DDS, https://www.omg.org/spec/DDS) as a common
middleware for efficient data distribution across ven-
dors. The data format in DDS is explicitly defined using
DDS Interface Description Language (IDL).

Security and Privacy. Data security, privacy and
trust are key when information, such as observations,
and needs to be shared with different entities. Com-
munications must be secure, and robots should only
share essential information to protect company and
personal data. This module uses contracts to specify
data-sharing conditions.

For example, when moving a package from the
warehouse to the delivery truck (Figure 1, B), the
warehouse robot has to collaborate with the delivery
robot. If these robots belong to different companies, it
will be necessary to sign a contract before the collabo-
ration (if it does not yet exist), for example, to establish
what information can be shared (Challenges 3 and 4).
Contracts can be generated on demand for specific
tasks, through an automatic process that involves the
parties negotiating the terms. This process can follow a
similar approach to QoS (quality of service) negotiation
in service composition (Buscemi and Montanari, 2011).
The resulting contract is signed with a certificate-based
signature. Note that the contract format should be
designed to be readable by both humans (since it is
a legal document that binds the two companies) and
machines (which must manage the interaction within
the agreed-upon limits).

Although the notion of contract is not inherently
part of DDS, it could be implemented at the application
layer. Additionally, DDS Security (https://www.omg.org/
spec/DDS-SECURITY) was released as an extension
to the standard to enable advanced authentication,
access control, and encryption, among other aspects,
providing the basis to develop the security and privacy
module.

Data Interoperability and Storage Management.
While the communication layer may predefine the for-
mat of the data exchanged (e.g., using IDL in DDS),
the meaning of these data could still be subject to
misinterpretation by the parties involved. As a result,
this module is responsible for providing common se-
mantics associated with context data, metrics, actions,
and observations to enable interoperability (Challenge
1). In this sense, an ontology-based approach can
help consolidate the information among systems. In
addition, this module stores the history of events (in-
cluding context and metric updates, actions taken,

and observations) to allow history-based explanations
(Challenge 2).

Deliberation System. This module enables the
base operations of the robot, including monitoring,
observing, acting, planning, learning, and goal reason-
ing (Ingrand and Ghallab, 2017), among others. The
dynamic selection of an appropriate behavior implies
establishing the causal relationships that enable the
prediction of how certain changes in the robot’s opera-
tion will impact its performance (Challenge 2). The sim-
plest approach is to establish a set of adaptation rules
at the design time. More advanced techniques include
reinforcement learning and multicriteria optimization.

Observation Manager. Robot-monitored data or
information from other systems can be processed to
derive new observations and obtain metrics on system
performance, QoS, or task completion. These metrics
must align with company objectives. Given the varied
sources of observations (e.g., other robots or diverse
data types), they might have different confidence lev-
els. For instance, the system might report "the package
is undamaged" with 80% confidence due to potential
inaccuracies in information sources.

Observations are event-type patterns predefined
based on context variables and detected at runtime
using complex event processing (CEP) techniques.
We employ the Esper platform (https://www.espertech.
com/esper), which enables observations like “the de-
livery robot collided with a fragile package”. Esper
facilitates event pattern identification, considering time
and aggregated data.

In our observability model (Romero-Garcés et al.,
2020), an observation can indicate system perfor-
mance regarding non-functional properties. For in-
stance, “robot collision during package delivery” im-
pacts the expectation of successful delivery. Using a
probabilistic method, we can estimate this expectation
with a performance metric.

Behavior Manager. Observations (and the result-
ing metrics) provide a means of assessing the robot’s
behavior on the assigned tasks. Therefore, if the robot
observes a decline in performance, this module pro-
vides adjustments to the robot to improve its operation.

We use behavior trees for the decision-making
processes and the behavioral logic of the robot. By
employing behavior trees, we can effectively represent
complex behaviors, define the hierarchical structure
of actions and conditions, and manage the flow of
control in a clear and organized way. This allows
us to design adaptable systems that can respond to
observations (Romero-Garcés et al., 2022).

Explainability Support. This module provides
stakeholders with the tools to facilitate explainability,

8 Observability and Explainability for Software Systems Decision Making January 2024

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

https://www.omg.org/spec/DDS
https://www.omg.org/spec/DDS-SECURITY
https://www.omg.org/spec/DDS-SECURITY
https://www.espertech.com/esper
https://www.espertech.com/esper

Observability and Explainability for Software System Decision Making

limited to the information stored in the system. It can
be considered part of a larger ecosystem, comprising
the systems involved in the supply chain to collectively
support explainability through the exchange of context,
metrics, actions, and observations.

This module leverages: (1) databases like InfluxDB
with Flux for efficient time-series data handling; (2)
data visualization tools like Grafana for insights via
interactive dashboards; (3) traceability in CEP to track
observation sources; and (4) metrics to highlight sys-
tem facets for improvement. Explanations should be
tailored to the audience, ensuring non-technical users
aren’t overloaded and respecting privacy guidelines
from the Security and Privacy module.

Warehouse’s Software Architecture
Each robot has a local view of the collaboration pro-
cess being executed. Therefore, the central warehouse
needs to obtain a general view of the whole process
to identify deviations and improve the coordination
between entities. To that end, we envision a system
with, at least, the following modules:

Business Process Manager. It stores the busi-
ness processes to identify the correctness of the exe-
cuted actions, the deviations, and the reasons behind
each deviation.
Storage Management stores all the information pro-
vided by robots to obtain a general view, which can be
combined with the business processes to trace back
actions and observations (Challenge 2).

Behavior Manager. The obtained general view is
used to identify predictions, bottlenecks, etc. In ad-
dition, different recommendations can be identified to
adapt the behavior of the whole collaboration chain to
better meet the business goals (Challenge 2).

Explainability Support. Observations and recom-
mendations should be explained to operators and an-
alysts, integrated with business processes, and pre-
sented in business-friendly language, as discussed in
Table 1.

Other Challenges
Our solution does not take a stance on all the chal-
lenges of observability and explainability in automated,
complex SoS. Below, we point out a few fundamental
challenges.

Observation uncertainty and communication.
Local observations made with physical sensors of
the real world are noisy and uncertain. To enable
reliable communication of these observations across
machines, the first step is for the machines to analyze
and validate their own observations. However, as the

observations are shared with other machines, we also
need to be sure that the machines do not propagate
errors in the communication chain by misinterpreting
the observations, which require unified standards for
how the observation scope, content, and validity (e.g.,
confidence) are inferred and communicated.

Aligning observations and fault detection. Col-
laborating robots should agree on the observations
that they make about the collaboration. While different
agreement algorithms exist, it is not currently clear
how close to each other the observations should be
for agreement. Furthermore, if robots disagree, which
robot(s) should be believed? Broken physical hardware
can cause incorrect assessments of the collaboration,
and should be taken into account in the reasoning for
increased reliability.

Trust in observations and explanations. Trust
is a social property that is separate from observation
or the explanation confidence computations of single
entities. A robot with a low-fidelity sensor may have
high confidence in its own observations while oth-
ers assess them incorrectly. Thus, long collaboration
chains need shared trust mechanisms that take into
account the hardware and software limitations – as well
as malicious intents – of its actors so that only appro-
priately trustworthy observations and explanations are
propagated along the chain.

Business incentives for long collaboration
chains. In multivendor autonomous systems, software
companies must trust each other and demonstrate
their solutions’ reliability (see Sidebar). Legislation like
the EU’s explainable AI and GDPR make companies
accountable. Our solution improves collaboration by
breaking down data "silos" and allowing inspection of
data handling between entities.

Conclusions
Considering the advancements of robotics and artificial
intelligence, as well as the improved interoperability be-
tween systems, we will witness ever more automated
and complex software systems in the coming years.
To leverage these systems efficiently and effectively,
all parties involved (users, system administrators, other
systems, etc.) must be able to understand how each
subsystem works. This can be achieved only if ob-
servations can be obtained, shared and appropriately
explained to other systems and stakeholders.

In this paper, we identified four crucial challenges
that may affect how well automated, complex SoS
can serve humans. To resolve these challenges, we
presented a vision of long collaboration chains and
illustrated the vision in the context of an Industry 4.0

January 2024 Observability and Explainability for Software Systems Decision Making 9

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

supply chain. We also provided a blueprint architec-
ture that seeks to address the identified challenges
by leveraging the described components and realiz-
ing the vision. With these suggestions, we anticipate
that intelligent systems will become more observable
and explainable, thus enabling different stakeholders
to make better decisions and leverage technological
advancements in more sustainable ways.

Acknowledgments
This work was supported by Business Finland and
Academy of Finland project #328729.

References
Anjomshoae, S., Najjar, A., Calvaresi, D., and Främling,

K. (2019). Explainable agents and robots: Results
from a systematic literature review. In 18th Interna-
tional Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2019), Montreal, Canada,
May 13–17, 2019, pages 1078–1088. International
Foundation for Autonomous Agents and Multiagent
Systems.

Buscemi, M. G. and Montanari, U. (2011). Qos nego-
tiation in service composition. The Journal of Logic
and Algebraic Programming, 80:13–24.

D’Acquisto, G. (2020). On conflicts between ethical
and logical principles in artificial intelligence. AI &
SOCIETY, 35(4):895–900.

Ingrand, F. and Ghallab, M. (2017). Deliberation for
autonomous robots: A survey. Artificial Intelligence,
247:10–44. Special Issue on AI and Robotics.

Khalastchi, E. and Kalech, M. (2019). Fault detection
and diagnosis in multi-robot systems: A survey. Sen-
sors, 19(18).

Niedermaier, S., Koetter, F., Freymann, A., and Wag-
ner, S. (2019). On observability and monitoring
of distributed systems–an industry interview study.
In Service-Oriented Computing: 17th International
Conference, ICSOC 2019, Toulouse, France, Oc-
tober 28–31, 2019, Proceedings 17, pages 36–52.
Springer.

Romero-Garcés, A., Freitas, R. S. D., Marfil, R.,
Vicente-Chicote, C., Martínez, J., Inglés-Romero,
J. F., and Bandera, A. (2022). Qos metrics-in-the-
loop for endowing runtime self-adaptation to robotic
software architectures. Multimedia Tools and Appli-
cations, 81:3603–3628.

Romero-Garcés, A., Martínez-Cruz, J., Inglés-Romero,
J., Vicente-Chicote, C., Marfil, R., and Bandera, A.
(2020). Measuring quality of service in a robotized

comprehensive geriatric assessment scenario. Ap-
plied Sciences, 10.

Sakai, T. and Nagai, T. (2022). Explainable au-
tonomous robots: a survey and perspective. Ad-
vanced Robotics, 36(5-6):219–238.

Usman, M., Ferlin, S., Brunstrom, A., and Taheri, J.
(2022). A survey on observability of distributed edge
& container-based microservices. IEEE Access,
10:86904–86919.

Wachter, S., Mittelstadt, B., and Floridi, L. (2017).
Transparent, explainable, and accountable ai for
robotics. Science Robotics, 2(6):eaan6080.

Paulius Daubaris is a doctoral researcher at the De-
partment of Computer Science of the University of
Helsinki, where he also finished his M.Sc. in 2021.
His research interests involve software engineering for
robotic systems, machine learning for resource con-
strained devices, edge computing and IoT. Contact him
at paulius.daubaris@helsinki.fi.

Simo Linkola finished his Ph.D. in 2022 at the Depart-
ment of Computer Science of the University of Helsinki
where he worked as a postdoctoral researcher until
June 2023. His research revolves around autonomous
agents and robots, with special interest in collaboration
and creativity in machines. Currently he works at GIM
Robotics. Contact him at simo.linkola@gimrobotics.fi.

Juan F. Inglés-Romero is a postdoctoral researcher at
the Catholic University of Murcia (Spain). Contact him
at jfingles@ucam.edu.

Javier Berrocal (Member, IEEE) is an associate pro-
fessor at the University of Extremadura. His main
research interests are software architectures, mobile
computing, computing continuum and digital twins.
Contact him at jberolm@unex.es.

Cristina Vicente-Chicote is currently an associate pro-
fessor with the Department of Informatics and Telem-
atics System Engineering, University of Extremadura,
Badajoz, Spain. Contact her at cristinav@unex.es.

Juan Manuel Murillo (Member, IEEE) is a full profes-
sor at the University of Extremadura and the general
manager of the Computing and Advanced Technologies
Foundation of Extremadura. His main research inter-
ests are software architectures, mobile computing and
Quantum computing. Contact him at

10 Observability and Explainability for Software Systems Decision Making January 2024

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

Observability and Explainability for Software System Decision Making

juanmamu@unex.es.

Tommi Mikkonen is a full professor of software engi-
neering at the University of Jyväskylä, Finland. He re-
ceived his Ph.D. in Software Engineering from Tampere
University of Technology, Finland year 1999. His current
research interests include IoT, software engineering for
robotics, and multi-device programming. Contact him at
tommi.j.mikkonen@jyu.fi.

Niko Mäkitalo is an assistant professor at the Univer-
sity of Jyväskylä, Finland. Niko shares his time with the
Faculty of Information Technology and the University
Consortium Chydenius. He received Ph.D. degree in
computer science from the Tampere University of Tech-
nology, in 2016. His research interests are robotics,
system architectures, IoT and Fog/Edge Computing.
Contact him at niko.k.makitalo@jyu.fi.

January 2024 Observability and Explainability for Software Systems Decision Making 11

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3320742

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on October 05,2023 at 04:33:13 UTC from IEEE Xplore. Restrictions apply.

	Toward Explainability with Long Collaboration Chains
	Scenario: Automated Supply Chains in Industry 4.0
	Blueprint Architecture for Long Collaboration Chains
	Robot's Software Architecture
	Warehouse's Software Architecture

	Other Challenges
	Conclusions
	Biographies
	Paulius Daubaris
	Simo Linkola
	Juan F. Inglés-Romero
	Javier Berrocal
	Cristina Vicente-Chicote
	Juan Manuel Murillo
	Tommi Mikkonen
	Niko Mäkitalo

