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a b s t r a c t

In this paper, we prove first-order asymptotics on a bounded open set of the
heat content when the ambient space is an RCD(K, N) space, under a regularity
condition for the boundary that we call measured interior geodesic condition of
size ϵ. We carefully study such a condition, relating it to the properties of the
disintegration of the signed distance function from ∂Ω studied in Cavalletti and
Mondino(2020).
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The goal of this paper is to show a first-order heat content asymptotics in the setting of RCD(K,N)
paces. Let us state the problem in the setting of a smooth Riemannian manifold (M, g) and Ω ⊂ M open
nd bounded. We consider the function u : [0,∞) × Ω → R satisfying (formally)⎧⎪⎨⎪⎩

∂tu(t, x) − ∆u(t, x) = 0 for all (t, x) ∈ (0,∞) × Ω ,

u(t, x) = 0 for all (t, x) ∈ (0,∞) × ∂Ω ,

u(0, x) = 1 for all x ∈ Ω .

he heat content is the function defined as

QΩ (t) :=
∫
Ω

u(t, x) dVolg(x) for every t > 0. (1)

n [13], Van den Berg and Gilkey proved the existence of a complete asymptotic expansion in
√
t as t → 0,

or open and bounded subsets Ω ⊂ M with smooth boundary. Moreover, they computed explicitly the

∗ Corresponding author.
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362-546X/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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coefficients of the expansion up to order 4. Here, we report the expansion up to order 1, at time t = 0:

QΩ (t) = Volg(Ω) −
√

4t
π
σg(∂Ω) + t

2

∫
∂Ω

H dσg + o(t), as t → 0, (2)

here σg is the surface measure of ∂Ω and H : ∂Ω → R is the mean curvature of ∂Ω in M . The asymptotics
2) unveil a deep connection between the geometry of ∂Ω and the small-time behavior of the heat content of
, suggesting an effective strategy to investigate the curvature invariants of ∂Ω , such as its mean curvature.
his motivates our interest in studying such a problem in the non-smooth setting of RCD spaces. The
symptotic analysis of the heat content was initiated in the Euclidean setting in [11,15]. A first non-flat
ase was studied in [10], where the authors computed the heat content asymptotics to order 2 for the upper
emisphere. For smooth domains in a Riemannian manifold, the existence of an asymptotic expansion in

√
t

t arbitrary order was established in [13], and the coefficients were computed iteratively in [48]. Recently,
he heat content asymptotics has been proved for non-characteristic domains in the sub-Riemannian setting
n [47]. Finally, we also mention that similar problems have been studied in relation with different boundary
onditions, see for example [1,12,14,30].

CD spaces
In recent years, the theory of RCD spaces has experienced a surge of interest. Such spaces form a regular

lass of metric measure spaces where second-order calculus tools are available. The definition of RCD(K,N),
or a metric measure space (X, d,m), has been given in [33], by enforcing the curvature-dimension condition
D(K,N) with infinitesimal Hilbertianity. The CD condition has been introduced independently in the
eminal works by Sturm in [50,51] and Lott–Villani in [41], and it can be regarded as a synthetic notion
or (X, d,m) of having the Ricci curvature bounded below by K ∈ R and the dimension bounded above
y N ∈ (1,∞]. While, the infinitesimal Hilbertianity ensures the linearity of the heat flow, ruling out
insler geometries. Among its many merits, the RCD condition is consistent with the smooth Riemannian
etting, and stable with respect to pmGH-convergence. Moreover, as a consequence of the results of [8,31], the
efinition of RCD space can be equivalently formulated in terms of a distributional version of the N -Bochner
nequality. For a complete historical account to the subject, we refer to the survey [3] and the previous theory
n RCD(K,∞) (introduced in [6]). We recall that the class of spaces we consider includes the class of Ricci
imit spaces, as introduced and studied in [25–27], and the class of Alexandrov spaces, when endowed with
he appropriate Hausdorff measure, as proved in [44].

he heat content on RCD spaces and main result
For an RCD(K,N) space (X, d,m), the Dirichlet heat flow of an open and bounded set Ω ⊂ X can be

efined in a classical way as the gradient flow of the local energy EΩ :L2(Ω ,m) → [0,+∞], where

EΩ (u) :=
{∫

Ω
|Du|2 dm if u ∈ W 1,2

0 (Ω),
+∞ otherwise.

ere W 1,2
0 (Ω) is the set of local Sobolev functions with zero boundary condition. Then, letting (0,∞) ∋ t ↦→

t ∈ W 1,2
0 (Ω) be the Dirichlet heat flow starting from χΩ ∈ L2(Ω ,m), we may define QΩ is defined in an

analogous way to (1), namely

QΩ (t) :=
∫
Ω

ut(x) dm(x) for every t > 0.

Our goal is to generalize (2) to the RCD setting, however, already in smooth Riemannian manifolds,

the regularity of ∂Ω comes into play. Therefore, we introduce a notion, called measured interior geodesic

2
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condition at scale ϵ (in short (mIGC)ϵ condition), which quantifies the regularity of the boundary of Ω .
ore precisely, we say that ∂Ω satisfies the (mIGC)ϵ condition if the geodesics minimizing the distance from

he boundary, and of length at least ϵ, cover the tubular neighborhood of size ϵ, up to m-null sets (see
efinition 4.16 for a precise statement). Define the signed distance from ∂Ω , i.e.

δ(x) := (χΩ − χX\Ω ) d(x, ∂Ω), ∀x ∈ X,

nd let us give further insights about the (mIGC)ϵ condition, see Section 4 for details.

• The (mIGC)ϵ condition of ∂Ω is an intermediate condition between an ϵ-uniform interior ball condi-
tion and ϵ-uniform interior ball condition plus an exterior ball condition at every point of ∂Ω , cf.
Proposition 4.25;

• Consider the disintegration of m associated with δ as studied in [23]. This gives a ‘parameterization of
the tubular neighborhood in normal directions’ and we can characterize the (mIGC)ϵ condition in terms
of the fact that almost every transport rays inside Ω has length at least ϵ, cf. Proposition 4.20;

• Under the (mIGC)ϵ condition, the Laplacian of δ, defined as a Radon functional can be represented as
an L1 function, in tubular neighborhood of size ϵ inside Ω , cf. Corollary 4.21.

et state our main result, see Theorem 6.5.

heorem 1.1 (First-order Asymptotics). Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞)
nd let Ω ⊂ X be open and bounded. Assume ∂Ω satisfies the (mIGC)ϵ condition for some ϵ ∈ (0,∞).
oreover, assume that there exists ρ > 0 such that

∆δ ∈ L1+ρ({0 < δ < ϵ}).

hen, the heat content associated with Ω admits the following asymptotic expansion

QΩ (t) = m(Ω) −
√

4t
π

Per(Ω) +O

(
t

2(1+ρ)−1
2(1+ρ)

)
as t → 0+. (3)

Heat content asymptotics of the type (3) are known in the literature for C2-domains in Riemannian
anifolds. Our condition encompasses, but is not limited to, C1,1-domains in the Riemannian setting, cf.
emark 4.13. Furthermore, let us remark that, under the (mIGC)ϵ condition for ∂Ω , we have ∆δ ∈ L1({0 <
< ϵ}) (see Corollary 4.21); without any further assumption on the integrability of ∆δ, the error term

ppearing in the asymptotic expansion would be of order
√
t, preventing access to the first-order asymptotics.

or this reason, it is natural to assume a slightly better integrability, as is needed to obtain an error of the
orm o(

√
t). On the other hand, from Theorem 1.1, it seems necessary to assume ∆δ ∈ L∞({0 < δ < ϵ})

in order to get a second-order asymptotics. Such a condition, together with the (mIGC)ϵ, is satisfied by a
domain with a uniform interior and exterior ball condition, cf. Section 4. Finally, we underline that the
quantitative behavior of the remainder with respect to the integrability of ∆δ is new even in the smooth
setting.

The strategy we pursue was firstly proposed by Savo in [48] in the Riemannian setting and recently
adapted in [47] for obtaining the heat content asymptotics associated with non-characteristic domains
in subriemannian manifolds. Indeed, the assumption of absence of characteristic points in [47] acts as a
regularity assumption on Ω ; in the non-smooth setting of RCD(K,N) spaces, a similar role is played by the
(mIGC) condition.
ϵ

3
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Strategy of the proof
Let us describe the main tools needed in order to prove Theorem 1.1. First of all, an important property

of the solution to the Dirichlet heat equation ut in Ω concerns its relation with the heat flow (over the
hole space) of χΩ ∈ L2(m). More generally, we prove a version of the Kac’s principle of ‘not feeling the
oundary’ in infinitesimally Hilbertian metric measure spaces (see Corollary 3.17): for a nonnegative function
∈ L∞(m), given a compact set K ⋐ Ω , then

∥htf − hΩt f∥L1(K,m) = o(t), as t → 0+,

where htf denotes the heat flow of f over X. For details in the Riemannian setting, we refer the reader to [37].
econd of all, this property allows to decompose the term QΩ (t), and so the study of its asymptotics, in two

terms: in a compact set in Ω and in a neighborhood the boundary. In a compact set inside Ω , the Dirichlet
heat flow ‘behaves’ as the heat flow due to the aforementioned Kac’s principle, hence it is negligible in the
asymptotics. Thus, the only contribution to the asymptotic expansion of QΩ (t) comes from a neighborhood
of the boundary, namely it is enough to study the small-time asymptotics of∫

{0<δ<ϵ}
ut dm, (4)

which depends on the regularity of ∂Ω . To do so, we study a PDE associated with the quantity (4). In
particular, we show that a mean value lemma (cf. Proposition 5.5) holds for the function

F (t, r) :=
∫

{0<δ<r}
ut dm, for t > 0, r ∈ (0, ϵ].

e refer to [49] for the mean value lemma in the Riemannian setting. The former is a statement on the
econd distributional derivative of F in the r-direction and permits to show that F satisfies a suitable non-
omogeneous heat equation, whose solution can be explicitly expressed via the Duhamel’s principle (cf.
emma 6.4). Proposition 5.5 in the RCD setting is one of the most technically challenging step and our
trategy to prove it is based upon the one-dimensional localization à la Cavalletti–Mondino and a suitable
pproximation argument.

inal comments
The idea of considering the relation between the heat equation and the theory of sets of finite perimeter is

ot new in the literature. In the setting of RCD spaces, it has been recently proved in [16] that the short-time
ehavior of the heat flow (over the whole space X) can be used to characterize functions of bounded variation.
his improves a previous result in the more general setting of PI spaces obtained in [42].
Regarding future directions, we would like to improve Theorem 1.1 and obtain a second-order asymptotics.

s mentioned before, in the setting of Riemannian manifolds, this coefficient is the integral of the mean
urvature of ∂Ω with respect to the surface measure, see (2). In the non-smooth setting, we expect to be able
o express the second-order coefficient in terms of the notion of mean curvature given in [39] (see also [19]).

tructure of the paper

The presentation is organized as follows. In Section 2, we recall some preliminaries on calculus on metric
easure spaces, the definition of PI and RCD(K,N) spaces with some relevant properties for our purposes.

n Section 3, we present the heat equation on Ω with Dirichlet boundary conditions and we prove the Kac’s
rinciple. Section 4 is devoted to 1-dimensional localization technique applied to the signed distance function
rom ∂Ω , the definition of (mIGC)ϵ condition and their relation. In Section 5 we prove the mean value lemma

n the non-smooth setting. Finally, Section 6 contains the proof of Theorem 1.1.

4
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2. Preliminaries

Throughout the paper, we consider a metric measure space (X, d,m), i.e. (X, d) is a complete and separable
metric space and m is a non-negative Borel measure, finite on bounded sets. We assume that supp(m) = X.

2.1. Calculus in metric measure spaces

We recall the notion of absolutely continuous curves with values in a metric space. Let I ⊂ R be an
interval and denote by C(I,X) the metric space of continuous curves γ : I → X, endowed with the supremum
distance. Then, the space of absolutely continuous curves AC(I,X) is defined as the space of all γ ∈ C(I,X)
for which there exists g ∈ L1(I) such that g ≥ 0 and

d(γt, γs) ≤
∫ s

t

gr dr, for every t < s in I. (5)

We say that γ ∈ C(I,R) is locally absolutely continuous on I if γ ∈ AC(J,R), for any interval J ⊊ I. Given
γ ∈ AC(I,X), we can define the metric speed |γ̇t| of γ for a.e. t, namely we can prove that

∃ lim
h→0

d(γt+h, γt)
|h|

=: |γ̇t| for a.e. t ∈ I and |γ̇t| ∈ L1(I).

herefore, we can define the length of a curve γ ∈ AC(I,R) as ℓ(γ) =
∫

I
|γ̇t| dt. Moreover, for p ∈ (1,∞),

e say that γ ∈ ACp(I,X) if (5) holds with g ∈ Lp(I). In that case, the metric speed is in Lp(I). Finally,
ote that, if X = H is a Hilbert space, then a curve γ ∈ ACp(I,H) is differentiable (in a classical sense) for
.e. t ∈ I and the metric speed is the norm of its derivative.

.1.1. Sobolev spaces on metric measure spaces
For any metric space (Y, dY), let P(Y) be the set of probability measures on Y. Denote by et :

([0, 1],X) → X; et(γ) = γt the evaluation map at time t ∈ [0, 1]. We say that π ∈ P(C([0, 1],X)) is
test plan if:

(i) there exists a constant C > 0 such that (et)#π ≤ Cm, for any t ∈ [0, 1];
ii) π is concentrated on AC2([0, 1],X) and∫ ∫ 1

0
|γ̇t|2 dtdπ(γ) < +∞.

et f : X → R be a Borel function. We say that f belongs to the Sobolev class and write f ∈ S2(X) if there
xists 0 ≤ G ∈ L2(m) such that, for every test plan π,∫

|f(γ1) − f(γ0)| dπ(γ) ≤
∫ ∫ 1

0
G(γt)|γ̇t| dtdπ(γ). (6)

uch a function G is called a weak upper gradient of f . We may define the minimal weak upper gradient of
, denoted by |Df |, as the m-a.e. minimal non-negative function satisfying (6), namely:

|Df | ≤ G m-a.e. for every weak upper gradient G.

inally, we define the Sobolev space on X as W 1,2(X) := L2(m) ∩ S2(X), endowed with the norm:

∥f∥2 := ∥f∥2 + ∥|Df |∥2 . (7)
W 1,2(X) L2(m) L2(m)

5
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Note that, in general, W 1,2(X) is only a Banach space. Moreover, denoting by Lip(X) the set of Lipschitz
unctions on X, Lip(X) ∩W 1,2(X) is dense in W 1,2(X) with respect to the norm (7), as a consequence of the
ensity in energy of Lipschitz functions, cf. [4]. Define the slope of a function f : X → R as follows:

lip(f)(x) :=

⎧⎨⎩ lim
y→x

|f(x) − f(y)|
d(x, y) if x ∈ X is not isolated,

0 otherwise.

ne can check that if f ∈ Lip(X), then lip(f) ≤ Lip(f), where Lip(f) is the Lipschitz constant of f . We
ecall the definition of the Cheeger energy by means of relaxation of the L2-norm of the local Lipschitz
onstant with respect to L2-convergence. We define Ch:L2(m) → [0,+∞] as

Ch(f) := inf
{

lim
n→+∞

1
2

∫
(lipfn)2 dm , fn → f in L2(m) and fn ∈ Liploc(X)

}
, (8)

here Liploc(X) is the set of locally Lipschitz functions on X. It is proved in [5, Thm. 6.2] that W 1,2(X) =
f ∈ L2(m) | Ch(f) < ∞} and

Ch(f) = 1
2

∫
X

|Df |2 dm. (9)

We conclude this paragraph recalling the definition of infinitesimally Hilbertian metric measure space,
firstly introduced and studied in [33].

Definition 2.1 (Infinitesimal Hilbertianity). We say that (X, d,m) is infinitesimally Hilbertian if W 1,2(X)
is a Hilbert space.

2.1.2. The language of normed modules
We introduce the notion of differential and gradient of a function in metric measure spaces. We assume

the reader to be familiar with the language of L2(m)-normed L∞(m)-module, see [34] for further details.
In particular, as proved in [34, Thm. 2.8], there exists a couple (L2(T ∗X),d) such that L2(T ∗X) is an

2(m)-normed L∞(m)-module and

(i) d: S2(X) → L2(T ∗X) is linear and |df |∗ = |Df | m-a.e., where | · |∗ : L2(T ∗X) → L2(m) denotes the
pointwise norm;

ii) The set {
∑n

i=1 χEi
dfi | fi ∈ S2(X), Ei ⊂ X Borel} is dense in L2(T ∗X).

oreover, the couple is unique in the sense that, given another couple (M , d̃) verifying items (i) and (ii) as
bove, then there exists an isomorphism Φ :L2(T ∗X) → M of normed modules which preserves the pointwise

norm. L2(T ∗X) is called the cotangent module and d is the differential. We report below some of the calculus
ools for the differential (see [34, Sec. 2]):

eibniz rule. Let f, g ∈ S2(X) ∩ L∞(m), then fg ∈ S2(X) and d(fg) = fdg + dfg;

hain rule. Let f ∈ S2(X) and φ ∈ Lip(R), then φ ◦ f ∈ S2(X) and d(φ ◦ f) = φ′ ◦ f df ;

losure of the differential. Let {fn} ⊂ S2(X) be such that fn → f m-a.e., for some Borel f and assume
dfn ⇀ w weakly in L2(T ∗X) for some w ∈ L2(T ∗X), then f ∈ S2(X) and df = w.

ocality. Let f, g ∈ S2(X), then χ{f=g}df = χ{f=g}dg.

e define the tangent module L2(TX) as the dual (in the sense of modules) of L2(T ∗X). Note that (X, d,m)
s infinitesimally Hilbertian if and only if L2(T ∗X) and L2(TX) are Hilbert L2(m)-normed L∞(m)-module.
n this case, there exists an isomorphism I :L2(T ∗X) → L2(TX) of normed modules which preserves the
ointwise norm and it is possible to define the gradient of a Sobolev function as the dual of its differential.
6
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Definition 2.2 (Gradient). Let (X, d,m) be an infinitesimally Hilbertian metric measure space. Then, the
radient is the operator ∇ := I◦d:S2(X) → L2(TX). Equivalently, for f ∈ S2(X), its gradient ∇f ∈ L2(TX)
s the unique vector field satisfying

df(∇f) = |∇f |2 = |df |2∗, m-a.e.,

here | · | :L2(TX) → L2(m) denotes the pointwise norm on L2(TX).

The operator ∇, being the dual of the differential, enjoys the same properties as d. Moreover, it is possible
o prove that for f, g ∈ S2(X), one has

df(∇g) = dg(∇f) = lim
ϵ→0

|D(f + ϵg)|2 − |Df |2

ϵ
, m-a.e.. (10)

dentity (10) provides a notion of pointwise scalar product of gradients setting ⟨∇f,∇g⟩ := df(∇g), and in
addition, ⟨∇f,∇g⟩ ∈ L1(m). In particular, it holds that

|⟨∇f,∇g⟩| ≤ |Df | |Dg|, m-a.e., provided f, g ∈ S2(X).

Let µ be a Borel non-negative measure. We define L0(µ) as the vector space of Borel measurable functions,
modulo equivalence µ-a.e.. We define L0(TX) as the completion of L2(TX) with respect to the distance

dL0(v, w) :=
∫

|v − w| ∧ 1 dm̃, for every v, w ∈ L2(TX),

here m̃ ∈ P(X) is such that m̃ ≪ m ≪ m̃. Note that we regard L0(TX) as a topological vector space, with
opology induced by dL0 (which is affected by the choice of m̃ but not its induced topology). In particular,
0(TX) can be endowed with the structure of L0(m)-normed L0(m)-module. We define

Lp(TX) := {v ∈ L0(TX) | |v| ∈ Lp(m)}, for any p ∈ [1,∞].

his set can be endowed with the structure of Lp(m)-normed L∞(m)-module. It is convenient to introduce
he notion of restriction of normed modules. Given E ∈ B(X), we define

Lp(TX)|E := {χEv | v ∈ Lp(TX)} for any p ∈ {0} ∪ [1,∞].

.1.3. Gradient flows on Hilbert spaces
Let (H, ⟨·, ·⟩) be a Hilbert space and E : H → (−∞,+∞] be a convex functional on H. We denote by

om(E) = {u ∈ H | E(u) < ∞} the domain of E. The subdifferential of E at u ∈ Dom(E), is defined as

∂−E(u) := {z ∈ H | E(v) ≥ E(u) + ⟨z, v − u⟩ for every v ∈ H}.

e recall here some properties of the theory of gradient flows of convex and lower semicontinuous functionals
n Hilbert spaces, see [17,40] for further details.

heorem 2.3 (Gradient Flow on Hilbert spaces). Let E : H → [0,+∞] be a convex and lower semicontinuous
functional and let x ∈ Dom(E). Then, there exists a unique locally absolutely continuous curve [0,+∞) ∋

↦→ xt ∈ H such that

x0 = x and ẋt ∈ −∂−E(xt) for a.e. t ∈ [0,+∞).

uch a curve is called the gradient flow of E starting from x.

7
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Using Theorem 2.3, we can define the heat flow on a metric measure space. We introduce the notion of
divergence and Laplacian.

Definition 2.4 (Divergence). Let (X, d,m) be infinitesimally Hilbertian. We say that an element w ∈
L2(TX) belongs to D(div) if there exists h ∈ L2(m) such that

−
∫
ghdm =

∫
dg(w) dm, for every g ∈ W 1,2(X).

We set divw := h. Note that h is uniquely determined since W 1,2(X) is dense in L2(m).

The divergence operator as defined above is linear. We recall a Leibniz formula for the divergence operator,
whose proof is a straightforward modification of [36, Prop. 4.2.7].

Proposition 2.5. Let (X, d,m) be infinitesimally Hilbertian. Let w ∈ L∞(TX) ∩ D(div) and let f ∈
L∞(m) ∩W 1,2(X). Then, fw ∈ D(div) and

div(fw) = fdivw + ⟨∇f, w⟩, m-a.e. on X.

Definition 2.6 (Laplacian). Let (X, d,m) be infinitesimally Hilbertian and let f ∈ W 1,2(X). We say that
f ∈ D(∆), if there exists h ∈ L2(m) such that∫

X
hg dm = −

∫
X

⟨∇f,∇g⟩ dm for every g ∈ W 1,2(X).

We set ∆f := h, where h is uniquely determined by the density.

Consider the Cheeger energy Ch defined in (8), which is convex and L2(m)-lower semicontinuous. Let
f ∈ L2(m), then the gradient flow t ↦→ htf of Ch starting from f (which exists and is unique by
Theorem 2.3) is called the heat flow of f . In particular, we have that ∂thtf ∈ −∂−Ch(htf) for a.e. t. We
can characterize the subdifferential of the Cheeger energy in terms of the Laplacian. Indeed, if f ∈ W 1,2(X),
then f ∈ D(∆) if and only if ∂−Ch(f) ̸= ∅. In this case, we have ∂−Ch(f) = {−∆f}. Therefore, the curve
[0,∞) ∋ t ↦→ htf ∈ L2(m) is locally absolutely continuous and

∂thtf = ∆htf for a.e. t > 0.

2.2. PI spaces

We say that (X, d,m) is locally uniformly doubling if, for every R > 0, there exists CD = CD(R) > 0 such
that for every x ∈ X and r ≤ R we have

m(B2r(x)) ≤ CDm(Br(x)) (11)

We refer to CD as the doubling constant up to scale R. A consequence of the definition of the doubling
assumption is that (X, d) is proper, i.e. closed and bounded sets are compact. We say that (X, d,m) satisfies
a weak local (1–1) Poincaré inequality provided for every R > 0 there exists CP = CP (R) > 0 and λ ≥ 1
such that for every f : X → R Lipschitz, x ∈ X, 0 < r < R we have

-
∫

Br(x)
|f − fBr(x)| dm ≤ CP r -

∫
Bλr(x)

lip(f) dm,

where f := 1 ∫
f dm.
Br(x) m(Br(x)) Br(x)

8
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Definition 2.7 (PI Space). We say that (X, d,m) is a PI space if it is locally uniformly doubling and satisfies
a weak local (1–1) Poincaré inequality.

This class of spaces is relevant for our presentation because the results in [24] apply. We recall below the
definition of W 1,2

loc (X):

W 1,2
loc (X) := {u ∈ L2

loc(X) : uη ∈ W 1,2(X), for every η ∈ Lip(X) with bounded support}.

Note that, if f ∈ W 1,2
loc (X), its minimal weak upper gradient |Df | can be defined by means of (75). In

particular, as proven in [24], given f ∈ Liploc(X) ⊂ W 1,2
loc (X), we have

|Df | = lipf m-a.e. in X, (12)

while the inequality ≤ holds in general metric measure spaces.

2.2.1. Signed distance function in metric measure spaces
We denote by dx(y) := d(x, y). Since the map is 1-Lipschitz, we have that lip dx ≤ 1; on the other hand,

if (X, d) is a length space, we have that lip dx ≥ 1, whence lip dx = 1. If we assume that (X, d,m) is a PI
space, due to [24], we get that |Ddx| = 1. By similar arguments, we can prove the same result for the signed
distance function from the boundary of an open set Ω ⊂ X. Here and throughout the paper, we assume that
∂Ω ̸= ∅.

Definition 2.8 (Signed Distance). Let (X, d) be a metric space and let Ω ⊂ X be open. Denote by
d(x, ∂Ω) = inf{d(x, y) | y ∈ ∂Ω}, for any x ∈ X. Then, the signed distance function from ∂Ω is

δ : X → R; δ(x) := d(x, ∂Ω)χΩ (x) − d(x, ∂Ω)χX\Ω (x). (13)

Proposition 2.9. Let (X, d,m) be a geodesic PI space. Let Ω ⊂ X be open and consider δ defined as in (13).
Then, we have that δ ∈ Lip(X) and

|Dδ| = 1 m-a.e. on X \ ∂Ω . (14)

Proof. For convenience, let us denote by δ+ := d(·, ∂Ω). We claim that lip δ+(y) = 1 for every y ∈ X \ ∂Ω .
By triangle inequality δ+ is 1-Lipschitz, thus, as before, we have that lip δ+(y) ≤ 1 for every y ∈ X. Let us
prove the converse inequality for fixed y ∈ X\∂Ω . Let us consider R > 0 such that BR(y)∩∂Ω ̸= ∅. Since PI
spaces are proper, BR(y)∩∂Ω is compact, hence there exists z = zy ∈ ∂Ω such that d(y, z) = δ+(y) > 0. We
onsider a geodesic γ : [0, 1] → X such that γ0 = z and γ1 = y. Then, since by definition, δ+(γt) ≤ d(γt, z),
e deduce that, for every t ∈ [0, 1),

1 ≥ |δ+(γt) − δ+(y)|
d(γt, y) ≥ −δ+(γt) + d(y, z)

d(γt, y) ≥ −d(γt, z) + d(y, z)
d(γt, y) = 1,

hus having that lip δ+(y) ≥ 1 for every y ∈ X \ ∂Ω and proving the claim. The fact that |Dδ+| = 1 m-a.e.
n X \ ∂Ω follows by the fact that on PI spaces lip δ+ = |Dδ+| m-a.e. as a consequence of (12). To prove the

result for δ, we argue as follows. By definition, we have that

δ(y) =
{
δ+(y) if y ∈ Ω ,

−δ+(y) if y ∈ X \ Ω ,

ence we conclude applying the locality of the minimal weak upper gradient, see for instance [34, Sec. 2.1].
n particular, we have |Dδ| = |Dδ+| m-a.e. on Ω̄ = {δ = δ+} and |Dδ| = |D(−δ+)| m-a.e. on X \ Ω = {δ =
δ+}, thus concluding the proof. □
9
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2.2.2. Sets of finite perimeter on metric measure spaces
We recall the definition of a set of finite perimeter, following [43].

Definition 2.10 (Perimeter and Sets of Finite Perimeter). Let (X, d,m) be a metric measure space and let
E ⊂ X be Borel, U ⊂ X be open. The perimeter of E in U , Per(E,U) is defined as

Per(E,U) := inf
{

lim
n→∞

∫
U

lipun dm : un ∈ Liploc(U), un → χE ∈ L1
loc(U,m)

}
.

e say that E is a set of finite perimeter if Per(E,X) < ∞.

As shown [43], the set function Per(E, ·) defined on open sets is the restriction of a Borel measure, defined
s

Per(E,B) := inf{Per(E,U) | B ⊂ U, U ⊂ X open} for every B ∈ B(X).
n a metric measure space (X, d,m), given a set E ⊂ X, we define its capacity as

Cap(E) := inf
{

∥f∥W 1,2(X) : f ∈ W 1,2(X) and f ≥ 1 m-a.e. on a neighborhood of E
}

f (X, d,m) is a PI space, and Ω ⊂ X is an open set of finite perimeter, then

Per(Ω , ·) ≪ Cap. (15)

his is a consequence of two facts:

(1) Per(Ω , ·) ≪ H cod−1|∂eΩ
≪ H cod1 from [2, Thm. 5.3];

(2) H cod−1 ≪ Cap from [18, Thm. 1.12].

he measure H cod−1 is the codimension-one Hausdorff measure and ∂eΩ is the essential boundary of Ω ,
s considered in [2]. Since, for what concerns this work, they enter into play only for the above mentioned
esults, we refer the reader to [2] for their definitions and properties.

.3. RCD(K,N) spaces and second onder calculus

We introduce the definition of a more regular class of metric measure spaces, the so-called RCD(K,N)
paces, firstly introduced in [33] enforcing the CD(K,N) with infinitesimally Hilbertianity. For the present
equivalent) formulation, see [31].

efinition 2.11 (RCD(K,N) Spaces). Let K ∈ R and N ∈ (1,∞). Then a metric measure space (X, d,m)
s an RCD(K,N) space if the following conditions hold:

(i) there exists C > 0 and a point x ∈ X such that m(Br(x)) ≤ CeCr2 , for every r > 0;
ii) Sobolev-to-Lipschitz property: for every f ∈ W 1,2(X) with |Df | ∈ L∞(m), there exists a Lipschitz

function f̃ which is a representative of f and ∥|Df |∥L∞(m) = Lip(f̃);
iii) the space (X, d,m) is infinitesimally Hilbertian;
iv) for every f ∈ D(∆) and 0 ≤ g ∈ D(∆) ∩ L∞(m) such that ∆f ∈ W 1,2(X) and ∆g ∈ L∞(m), it holds

that
1
2

∫
|Df |2 ∆g dm ≥

∫ ( (∆f)2

N
+ ⟨∇f,∇∆f⟩ +K|Df |2

)
g dm.

We point out that CD(K,N) spaces are PI spaces. This is a consequence of the fact that they are locally
uniformly doubling, since in this setting Bishop–Gromov monotonicity formula holds (see [51]), and satisfy
a local Poincaré inequality (see [45]). Moreover, it follows from the definition that CD(K,N) spaces are
geodesic, hence also length spaces. In the case of RCD(K,N) spaces, we have at disposal functions with
more regularity. In particular, we recall the existence of good cut-off functions, as proved in [8].
10
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Proposition 2.12 ([8, Lem. 6.7]). Let (X, d,m) be an RCD(K,N) space with K ∈ R and N ∈ (1,∞). Then,
or every compact E ⊂ X and open and relatively compact G ⊂ X such that E ⊂ G, there exists φ : X → R
uch that 0 ≤ φ ≤ 1 and φ = 1 in a neighborhood of E and suppφ ⊂ G. Moreover, ∆φ ∈ L∞(m) and
Dφ| ∈ W 1,2(X).

We report here a result on the structure of geodesics in RCD spaces, improving a previous result of [46].
ecall that we say two geodesics γ1, γ2 : [0, 1] → X branch if

γ1|[0,t] = γ2|[0,t], for some t ∈ (0, 1),

ut γ1 ̸= γ2. We say that a metric space (X, d) is non-branching if no couple of geodesics branch.

heorem 2.13 ([29, Thm. 1.3]). Let (X, d,m) be an RCD(K,N) space for some K ∈ R and N ∈ (1,∞).
hen (X, d,m) is non-branching.

. The Dirichlet heat flow on Ω and the Kac’s principle

.1. Cheeger energy and local Sobolev spaces

Let (X, d,m) be a metric measure space and let Ω ⊂ X be open. For f ∈ L2(Ω ,m), we define its Cheeger
nergy on Ω as

ChΩ (f) := inf
{

lim
n→∞

1
2

∫
Ω

(lipfn)2 dm , fn → f in L2(Ω ,m) and fn ∈ Liploc(Ω)
}
.

hen, the local Sobolev space W 1,2(Ω) is the set where ChΩ is finite, i.e.

W 1,2(Ω) := {f ∈ L2(Ω ,m) | ChΩ (f) < ∞}

ndowed with the following norm:

∥f∥2
W 1,2(Ω) := ∥f∥2

L2(Ω,m) + ChΩ (f), f ∈ W 1,2(Ω).

sing the L2(Ω ,m)-lower semicontinuity of ChΩ , arguing similarly as in the case of W 1,2(X), one can show
hat (W 1,2(Ω), ∥ · ∥W 1,2(Ω)) is a Banach space. Our definition is equivalent to the one given in [7, Def.

2.14], as proven in the appendix in Theorem A.2. Moreover, the equivalence between the definition by
Ambrosio–Honda and the one due to Cheeger in [24, Def. 2.2] is proved in [7, Rmk. 2.15]. We also set

W 1,2
0 (Ω) := Lipbs(Ω)W 1,2(Ω)

,

here Lipbs(Ω) is the set of Lipschitz functions f : Ω → R with bounded support such that inf{d(x, y) |
∈ supp f, y ∈ X \ Ω} > 0. Our goal is to define a Dirichlet energy on the space W 1,2

0 (Ω). To do so, we
ntroduce the following extension operator:

Tf = g, where g(x) =
{
f(x) if x ∈ Ω ,

0 otherwise,
∀ f ∈ Lipbs(Ω). (16)

roposition 3.1. Let (X, d,m) be a metric measure space and let T : Lipbs(Ω) → W 1,2(X) be the linear
perator defined in (16). Then, T extends to an isometric embedding of

(
W 1,2

0 (Ω), ∥ · ∥W 1,2(Ω)

)
into

W 1,2(X), ∥ · ∥ 1,2

)
.
W (X)

11
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Proof. Let f ∈ Lipbs(Ω). Since outside of Ω , the function Tf is identically zero the L2-norm is preserved,
amely ∥Tf∥L2(m) = ∥f∥L2(Ω,m). Now, we claim that,

ChΩ (f) = Ch(Tf), ∀ f ∈ Lipbs(Ω). (17)

he inequality ChΩ (f) ≤ ChX,2(Tf) is trivial since any sequence of locally Lipschitz function on X restricts
o a sequence of locally Lipschitz functions on Ω with the same slope. The converse inequality can be proved
s follows. Let {fn} ⊂ Liploc(Ω) such that

fn −−−−−→
L2(Ω,m)

f and ChΩ (f) = lim
n→∞

1
2

∫
Ω

(lipfn)2 dm. (18)

Consider a cut-off function φ ∈ Lip(X) such that φ ≡ 1 on supp f and φ ≡ 0 on the complement of Ω . Define
the auxiliary sequence f̃n = φfn and we shall prove that the sequence {f̃n} is a competitor for the Cheeger
energy of Tf in X. Indeed, first of all, f̃n → Tf in L2(m). Secondly, f̃n satisfies the pointwise Leibniz rule

lipf̃n(x) ≤ φ(x)lipfn(x) + fn(x)lipφ(x), ∀x ∈ Ω ,

therefore, applying the Young’s inequality, we obtain for any ε > 0,

(lipf̃n(x))2 ≤ (1 + ε)φ2(x)(lipfn(x))2 +
(

1 + 1
ε

)
f2

n(x)(lipφ(x))2, ∀x ∈ Ω . (19)

inally, integrating (19) and noticing that lipf̃n is 0 outside of Ω by locality, we have∫
X

(lipf̃n)2 dm =
∫
Ω

(lipf̃n)2 dm ≤ (1 + ε)
∫
Ω

φ2(lipfn)2 dm +
(

1 + 1
ε

)∫
Ω

f2
n(lipφ)2 dm.

sing the properties of {fn} in (18), we conclude that

Ch(Tf) ≤ lim
n→∞

1
2

∫
X

(lipf̃n)2 dm ≤ (1 + ε)ChΩ (f),

for any ε > 0, proving the claim (17). This proves that T is a continuous isometry on Lipbs(Ω). We can
extend the operator T on W 1,2

0 (Ω) by density, setting

Tf := lim
n→∞

Tfn, where {fn} ⊂ Lipbs(Ω) and fn −−−−−−→
W 1,2(Ω)

f.

This concludes the proof. □

With a slight abuse of notation, in the rest of the paper, we will use the same name for a function
f ∈ W 1,2

0 (Ω) and its extension, if there is no confusion. A first byproduct of Proposition 3.1 is an analogue
to (9) for ChΩ , indeed

ChΩ (f) = Ch(Tf) = 1
2

∫
X

|DTf |2 dm, ∀f ∈ W 1,2
0 (Ω). (20)

he locality of the minimal weak upper gradient on X and the definition of |Df | in Appendix gives that
DTf | = |Df | m-a.e. on Ω , which, together with (20), yields that

ChΩ (f) = 1
2

∫
Ω

|Df |2 dm, ∀f ∈ W 1,2
0 (Ω).

From (20) we also deduce that ChΩ is convex. Moreover, if X is infinitesimally Hilbertian, then W 1,2(Ω) is
Hilbert, cf. Remark A.3, and the energy ChΩ is quadratic and, in particular, we have

ChΩ (f) = 1 ∫ ⟨∇f,∇f⟩ dm, ∀f ∈ W 1,2
0 (Ω),
2 Ω

12
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where the equality follows from (79) of Appendix. We refer the reader to Appendix for the definition of
∇f ∈ L2(TX)|Ω for f ∈ W 1,2

0 (Ω).
A second consequence of Proposition 3.1 is the following property, whose proof is based upon the results

n [28]. We refer to [28] for the precise definitions and statements. For the reader’s convenience, we recall
hat f : X → R is quasi-continuous provided that, for every ϵ > 0, there exists a set E ⊂ X with Cap(E) < ϵ

uch that f |X\E
: X\E → R is continuous. We define QC(X) as the vector space given by equivalence classes,

p to Cap-a.e. equality, of quasi-continuous functions.

roposition 3.2. Let (X, d,m) be a PI space and let Ω ⊂ X be an open set of finite perimeter. Then, for
every f ∈ W 1,2

0 (Ω), it holds that QCR(f) = 0 Per(Ω , ·)-a.e., where

QCR :W 1,2(X) → QC(X)

is the map associating to f is unique quasi-continuous representative.

Proof. Let f ∈ W 1,2
0 (Ω) and let {fn}n∈N ⊂ Lipbs(Ω) be a sequence such that fn → f in W 1,2(Ω). Applying

Proposition 3.1, we deduce that fn → f in W 1,2(X). Moreover, by construction, fn = 0 everywhere on ∂Ω .
We claim that, up to subsequences, fn → QCR(f), Cap-a.e.. First of all, by [28, Thm. 1.20], the map QCR
is well-defined, linear and continuous, hence dQC(fn,QCR(f)) → 0. Note that QCR(fn) = fn since fn is
Lipschitz. Second of all, applying [28, Prop. 1.17, (ii)], the canonical embedding(

QC(X), dQC
)
↪→
(
L0(Cap), dCap

)
is continuous, then dCap(fn,QCR(f)) → 0 as n → ∞. Finally, applying [28, Prop. 1.12], there exists a (not
relabeled) subsequence for which fn → QCR(f) Cap-a.e., proving the claim. As a consequence, QCR(f) = 0
Cap-a.e. on ∂Ω . Since (X, d,m) is a PI space, we have that Per(Ω , ·) is concentrated on ∂eΩ ⊂ ∂Ω . This
fact, together with (15), yields that QCR(f) = 0 Per(Ω , ·)-a.e.. □

Remark 3.3. The local Sobolev space with zero boundary values remains unchanged if we remove from the
open set Ω ⊂ X a closed set with zero capacity. More precisely, let E ⊂ Ω be a closed set with Cap(E) = 0,
then

W 1,2
0 (Ω) = W 1,2

0 (Ω \ E).

Analogously, by locality of the differential of a function, ChΩ (f) = ChΩ\E(f).

3.2. The Dirichlet heat flow

We are in position to define the Dirichlet heat flow in Ω as the gradient flow of the Dirichlet energy associ-
ated to ChΩ in infinitesimally Hilbertian metric measure spaces (X, d,m). Precisely, define EΩ :L2(Ω ,m) →
[0,+∞] as

EΩ (f) :=
{

ChΩ (f) if f ∈ W 1,2
0 (Ω),

+∞ if f ∈ L2(Ω ,m) \W 1,2
0 (Ω).

(21)

On the one hand, using the convexity of ChΩ , it is straightforward to check that EΩ is convex. On the other
hand, EΩ is lower semicontinuous with respect to L2(Ω ,m)-topology. Indeed, let fn → f in L2(Ω ,m) and
we may assume that limn EΩ (fn) < ∞, otherwise there is nothing to prove. Hence for n sufficiently large
fn ∈ W 1,2

0 (Ω) and {fn} is bounded in the W 1,2(Ω)-norm. Then, being (X, d,m) infinitesimally Hilbertian,
there exists a subsequence (not relabeled) such that fn ⇀ f in W 1,2

0 (Ω). Then, by Mazur’s lemma, there
exists a sequence {s } ⊂ W 1,2(Ω) of convex combinations of f such that s → f in W 1,2(Ω). Since
n 0 n n

13
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{sn} ⊂ W 1,2
0 (Ω), by a diagonal argument we can also assume that {sn} ⊂ Lipbs(Ω), implying that

∈ W 1,2
0 (Ω). We conclude that EΩ is L2(Ω ,m)-lower semicontinuous, from the analogous property of

hΩ . Finally, by construction D(EΩ ) = W 1,2
0 (Ω) is dense in L2(Ω ,m), since Lipbs(Ω) is dense in L2(Ω ,m).

herefore, we can apply Theorem 2.3, obtaining the existence of the gradient flow of EΩ . This solves the
irichlet heat equation on Ω , in the sense explained below.

efinition 3.4 (Dirichlet Laplacian). Let (X, d,m) be an infinitesimally Hilbertian metric measure space.
iven f ∈ W 1,2

0 (Ω), we say that f ∈ D(∆Ω ), if there exists h ∈ L2(Ω ,m) such that∫
Ω

hg dm = −
∫
Ω

⟨∇f,∇g⟩ dm for every g ∈ W 1,2
0 (Ω).

he element h, uniquely determined by the density of W 1,2
0 (Ω) in L2(Ω ,m), will be denoted by ∆Ωf .

roposition 3.5. Let (X, d,m) be infinitesimally Hilbertian. Define EΩ :L2(m) → [0,+∞] as in (21). Given
f ∈ W 1,2

0 (Ω), we have
f ∈ D(∆Ω ) ⇔ ∂−EΩ (f) ̸= ∅.

In this case, it holds that ∂−EΩ (f) = {−∆Ωf}.

We omit the proof of this proposition, being a straightforward modification of [36, Prop. 5.2.4] relying on
(79). This statement allows to build the Dirichlet heat flow as the gradient flow of EΩ .

Definition 3.6 (Dirichlet Heat Flow). Let (X, d,m) be an infinitesimally Hilbertian metric measure space
and let Ω ⊂ X be open. For every f ∈ L2(Ω ,m), the Dirichlet heat flow of f is the gradient flow of EΩ

starting from f , and it is denoted as [0, 1] ∋ t ↦→ hΩt f ∈ W 1,2
0 (Ω). By Proposition 3.5, the Dirichlet heat

flow satisfies the following: {
∂th

Ω
t f = ∆Ωh

Ω
t f, for a.e. t > 0,

hΩt f
t→0+
−−−−→ f, in L2(Ω ,m),

(22)

where the derivative ∂th
Ω
t f has to be intended in the L2(Ω ,m)-sense.

For a different construction of the Dirichlet heat flow using spectral theory, we refer the reader to [52].

Definition 3.7 (Heat Content). Let (X, d,m) be a metric measure space and let Ω ⊂ X be an open and
bounded set. Let ut ∈ W 1,2

0 (Ω) be the Dirichlet heat flow (22) with initial datum f = χΩ ∈ L2(Ω ,m),
namely ut := hΩt χΩ , for every t > 0. Then, we define the heat content as

QΩ (t) =
∫
Ω

ut dm, ∀ t > 0.

Remark 3.8. Note that, according to Remark 3.3, if Cap(E) = 0, for f ∈ L2(Ω ,m) = L2(Ω \ E,m), we
have hΩt f = h

Ω\E
t f for every t > 0. The analogous property holds for the heat content. Moreover, if Ω has

empty boundary, QΩ (t) ≡ m(Ω), so our standing assumption ∂Ω ̸= ∅ is not restrictive.

Proposition 3.9 (Weak Maximum Principle). Let (X, d,m) be infinitesimally Hilbertian, let Ω ⊂ X be open
and bounded and let C ≥ 0. Consider f ∈ L2(Ω ,m) such that f ≤ C (respectively f ≥ −C) m-a.e.. Then, for
every t ≥ 0, hΩf ≤ C (respectively hΩf ≥ −C) m-a.e..
t t

14
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Proof. We fix ϵ > 0 and define φ(t) :=

√
ϵ2 + (t− C)2 − ϵ for t > C and φ(t) := 0 for t ≤ C. In particular,

e have that φ ∈ C2(R), φ′ ≤ 1 and φ′′ ≤ ϵ−
1
2 . Let F (t) :=

∫
Ω
φ(hΩt f) dm. Then the estimate

|F (t) − F (s)| ≤ Lipφm(Ω) 1
2 ∥hΩt f − hΩs f∥L2(Ω,m), for every t, s > 0

gives that F ∈ C0([0,∞)) ∩ ACloc(0,∞). Therefore, F is differentiable for a.e. t > 0 with derivative given
by

F ′(t) =
∫
Ω

φ′(hΩt f)∆Ωh
Ω
t f dm for a.e. t > 0. (23)

Note that, by construction, φ′ ∈ C1(R), it has bounded derivative and satisfies φ′(0) = 0. Thus, by
application of Proposition A.5 we deduce that φ′ ◦ hΩt f ∈ W 1,2

0 (Ω), therefore we can integrate by parts
in (23) obtaining

F ′(t) = −
∫
Ω

φ′′(hΩt f) |∇hΩt f |2 dm ≤ 0 for a.e. t > 0,

where the last inequality follows by the convexity of φ. Hence, since F ≥ 0 for every t > 0, and F is
continuous up to t = 0, we have

0 ≤ F (t) ≤ F (0) = 0, ∀ t > 0,

yielding that φ(hΩt f) = 0 m-a.e. on Ω , which, by the very definition of φ, gives that hΩt f ≤ C m-a.e.. For
the lower bound, we can argue similarly, by considering as test function φ̃(x) := φ(−x). □

3.3. Kac’s principle on metric measure spaces

In this section, we derive a proof of the Kac’s principle, by means of functional analytic arguments. The
main technical tool is Lemma 3.12, which rely on the following auxiliary operator.

Definition 3.10 (Restricted Laplacian). Let (X, d,m) be an infinitesimally Hilbertian metric measure space.
Given f ∈ W 1,2(Ω), we say that f ∈ D

(
∆|Ω

)
if there exists a function h ∈ L2(Ω ,m) such that∫

Ω

hg dm = −
∫
Ω

⟨∇f,∇g⟩ dm, for every g ∈ Lipbs(Ω).

Note that the function h ∈ L2(Ω ,m) is unique, as a consequence of the density of Lipbs(Ω) in L2(Ω ,m). In
this case, we set h := ∆|Ω f .

It is straightforward to check, by the very definition of W 1,2
0 (Ω), that the function g in Definition 3.10

can be taken in W 1,2
0 (Ω). Moreover, by definition,

D
(
∆|Ω

)
∩W 1,2

0 (Ω) = D(∆Ω ) and D(∆)|Ω ⊂ D
(
∆|Ω

)
, (24)

and, whenever they exist, the Laplacians coincide. Note that the inclusion above may be strict in general
(see for instance [7, Rem. 4.9]). Let us recall the Leibniz rule for the restricted Laplacian: its proof is a
straightforward modification of the argument in [33, Thm. 4.29].

Proposition 3.11. Let Ω ⊂ X. Let u, v ∈ L∞(Ω ,m) ∩ D(∆|Ω ). Moreover, assume that |∇u| ∈ L∞(Ω ,m).
Then uv ∈ D(∆|Ω ) and

∆ (uv) = v∆ u+ u∆ v + 2⟨∇u,∇v⟩ m-a.e. in Ω . (25)
|Ω |Ω |Ω
15
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Proof. Recall that, by Proposition A.4, since u, v ∈ L∞(Ω ,m) ∩W 1,2(Ω), then uv ∈ W 1,2(Ω) and

∇(uv) = v∇u+ u∇v, as elements of L2(TX)|Ω . (26)

et g ∈ Lipbs(Ω) and compute∫
Ω

⟨∇(uv),∇g⟩ dm (26)=
∫
Ω

⟨v∇u+ u∇v,∇g⟩ dm (26)=
∫
Ω

⟨∇u,∇(vg)⟩ + ⟨∇v,∇(ug)⟩ + 2g⟨∇u,∇v⟩ dm

= −
∫
Ω

(
v∆|Ωu+ u∆|Ωv + 2⟨∇u,∇v⟩

)
g dm,

where the last equality follows from the fact that u, v ∈ D(∆|Ω ) and ug, vg ∈ W 1,2
0 (Ω). The last term is in

L2(Ω ,m) since |∇u| ∈ L∞(Ω ,m), thus uv ∈ D(∆|Ω ) and (25) holds. □

Lemma 3.12. Let (X, d,m) be an infinitesimally Hilbertian metric measure space and let Ω ⊂ X be open
and bounded. Let (t ↦→ vt) ∈ C([0, 1], L2(Ω ,m)) ∩ ACloc((0, 1), L2(Ω ,m)) such that vt is non-negative and

t ∈ D(∆|Ω ) for a.e. t, {
∂tvt = ∆|Ωvt

v0 = 0.
(27)

onsider a compact set K ⋐ Ω ; then,

∥vt∥L1(K,m) = o(t), as t → 0+.

roof. We consider a non-negative φ such that φ = 1 on K, suppφ ⋐ Ω and φ ∈ D(∆) ⊂ D(∆|Ω ). It
ollows

0 ≤
∫

K

vt dm ≤
∫
Ω

vtφdm =: F (t).

onsider η ∈ Lipbs(Ω) ⊂ L∞(X,m) ∩ Lip(X) such that η = 1 on suppφ; then, since vt ∈ W 1,2(Ω), by
heorem A.2, ηvt ∈ W 1,2(X) and

∇(vtη) = η∇vt + vt∇η as elements of L2(TX)|Ω .

ince L2(Ω ,m) ∈ f ↦→
∫
Ω
fφdm ∈ R is Lipschitz and v ∈ ACloc((0, 1), L2(Ω ,m)), then F ∈ ACloc(0, 1) and

F ′(t) =
∫
Ω

φ∂tvt dm =
∫
Ω

φ∆|Ωvt dm = −
∫
Ω

⟨∇vt,∇φ⟩ dm = −
∫
Ω

⟨∇vt,∇φ⟩η dm

=
∫
Ω

vt⟨∇η,∇φ⟩ dm −
∫
Ω

⟨∇(vtη),∇φ⟩ dm =
∫
Ω

vt

(
⟨∇η,∇φ⟩ + η∆|Ωφ

)
dm

=
∫
Ω

vt∆|Ωφdm

or a.e. t. We notice that the function
(
t ↦→ G(t) :=

∫
Ω
vt∆|Ωφdm

)
∈ C([0, 1]), therefore extending F by 0

t t = 0, we have F ∈ C1([0, 1]). Thus,

F (t) = F (0) + F ′(0)t+ o(t) = o(t)

ielding ∥vt∥L1(K,m) = o(t). This concludes the proof. □

emark 3.13. Arguing as in the previous proof, in a smooth Riemannian manifold we would get higher-
rder estimates, using more regular test functions; indeed, for every n ∈ N, ∥vt∥L1(K,m) = o(tn), by

∞
onsidering a test function φ ∈ Cc (Ω) such that φ = 1 on K and reasoning as in the proof of Lemma 3.12.
16
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In order to deduce our version of the Kac’s principle, we combine Lemma 3.12 with a monotonicity result
for the Dirichlet heat flow with respect to domain inclusion. Before proving the latter, we highlight the
relations between the Laplacian defined on the whole space ∆, the Dirichlet Laplacian Ω and the restricted
Laplacian. We introduce the following notation. Let Ω1 ⊂ Ω2 ⊂ X be open sets, then for i = 1, 2 we denote
by mi := m|Ωi

and by πm2,m1 :L0(m2) → L0(m1) the restriction map defined as πm2,m1([f ]m2) = [f ]m1 , where
[f ]mi

is the equivalence class of f as an element of L0(mi).

emma 3.14. Let (X, d,m) be infinitesimally Hilbertian and let Ω1 ⊂ Ω2 ⊂ X be open sets. Let g ∈ D(∆|Ω2
).

hen πm2,m1g ∈ D(∆|Ω1
) and ∆|Ω1

(πm2,m1g) = πm2,m1

(
∆|Ω2

g
)
.

roof. We have a natural isometric embedding i :W 1,2
0 (Ω1) ↪→ W 1,2

0 (Ω2) by zero extension. Set g̃ :=
m2,m1g ∈ W 1,2(Ω1) by construction. Then, for every φ ∈ W 1,2

0 (Ω1), we have∫
Ω1

⟨∇g̃,∇φ⟩ dm =
∫
Ω2

⟨∇g,∇i(φ)⟩ dm = −
∫
Ω2

i(φ)∆|Ω2
g dm = −

∫
Ω1

πm2,m1

(
∆|Ω2

g
)
φdm,

bserving that i(φ) = |∇i(φ)| = 0, m-a.e. on Ω2 \Ω1. Hence, by arbitrariness of φ ∈ W 1,2
0 (Ω1), we conclude

hat g̃ ∈ D(∆|Ω1
) and ∆|Ω1

g̃ = πm2,m1

(
∆|Ω2

g
)
. □

roposition 3.15 (Domain Monotonicity). Let (X, d,m) be infinitesimally Hilbertian, let Ω1 ⊂ Ω2 ⊂ X be
pen sets and assume Ω1 is bounded. Let also 0 ≤ f ∈ L2(Ω2). Then, for every t ≥ 0,

hΩ1
t f(x) ≤ hΩ2

t f(x), for m-a.e. x ∈ Ω1.

roof. Let us consider 0 ≤ f ∈ L2(Ω2). We fix ϵ > 0 and define φ(t) :=
√
ϵ2 + t2 − ϵ for t > 0 and φ(t) := 0

or t ≤ 0. In particular, we have that φ′ ≤ 1 and φ′′ ≤ ϵ−
1
2 . We define G(t) :=

∫
Ω1
φ(hΩ1

t f − hΩ2
t f) dm. We

stimate, using that φ is 1-Lipschitz

|G(t) −G(s)| =
⏐⏐⏐⏐∫

Ω1

φ(hΩ1
t f − hΩ2

t f) − φ(hΩ1
s f − hΩ2

s f) dm
⏐⏐⏐⏐

≤ m(Ω1) 1
2 (∥hΩ1

t f − hΩ1
s f∥L2(Ω1) + ∥hΩ2

t f − hΩ2
s f∥L2(Ω1))

≤ m(Ω1) 1
2 (∥hΩ1

t f − hΩ1
s f∥L2(Ω1) + ∥hΩ2

t f − hΩ2
s f∥L2(Ω2))

hich, using the fact that (t ↦→ h
Ωi
t f) ∈ ACloc((0,+∞), L2(Ωi)) for i = 1, 2, grants that G ∈ ACloc((0,+∞)),

ence differentiable a.e. with derivative given by

G′(t) =
∫
Ω1

φ′(hΩ1
t f − hΩ2

t f)
(
∆Ω1h

Ω1
t f − ∆Ω2h

Ω2
t f

)
dm for a.e. t. (28)

y Lemma 3.14 and (24), we have, with a slight abuse of notation, that hΩ1
t f − hΩ2

t f ∈ D(∆|Ω1
) and

∆Ω1h
Ω1
t f − ∆Ω2h

Ω2
t f = ∆|Ω1

(hΩ1
t f − hΩ2

t f). (29)

e claim that φ′(hΩ1
t f − hΩ2

t f) ∈ W 1,2
0 (Ω1), for every t > 0. For the sake of notation, let u = hΩ1

t f and
v = hΩ2

t f . By the weak maximum principle (cf. Proposition 3.9), since f ≥ 0 m-a.e. on Ω2, we deduce

u ≥ 0, m-a.e. on Ω1 and v ≥ 0, m-a.e. on Ω2.

By definition of local Sobolev space, there exist sequences {un} ⊂ Lipbs(Ω1), {vn} ⊂ Lipbs(Ω2) such that
1,2 1,2 ′
un → u in W (Ω1) and vn → v in W (Ω2). Moreover, we can choose vn ≥ 0 (cf. Remark A.6). Set ψ := φ

17
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and define ψn := ψ ◦ (un − vn), for every n ∈ N. On the one hand, since vn ≥ 0 and ψ(t) = 0 for t ≤ 0, we
btain

ψn(x) = ψ(−vn(x)) = 0, ∀x ∈ (suppun)c. (30)

n the other hand, ψn ∈ Lip(Ω1), indeed, for any x, y ∈ Ω1, we have

|ψn(x) − ψn(y)| ≤ Lip(ψ) (|un(x) − un(y)| + |vn(x) − vn(y)|) ≤ Lip(ψ) (Lip(un) + Lip(vn)) d(x, y). (31)

ombining (30) and (31), we prove that ψn ∈ Lipbs(Ω1), for every n ∈ N. Moreover, arguing as in
roposition A.5, we can prove that ψn → ψ ◦ (u − v) in W 1,2(Ω1). This finally proves that ψ ◦ (u − v) ∈

1,2
0 (Ω1), as claimed. At this stage, using (29), we can integrate by parts in (28), obtaining

G′(t) = −
∫
Ω1

φ′′(hΩ1
t f − hΩ2

t f) |∇(hΩ1
t f − hΩ2

t f)|
2

dm ≤ 0.

herefore, 0 ≤ G(t) ≤ G(0) = 0 for every t ≥ 0, hence G(t) ≡ 0 yielding that hΩ1
t f ≤ hΩ2

t f m-a.e. on Ω1.
his concludes the proof. □

emark 3.16. As a consequence of [4] and the reflexivity of W 1,2(X), we have that W 1,2
0 (X) = W 1,2(X).

ence, the Dirichlet Laplacian on X and the Laplacian in the sense of Definition 2.6 coincide, i.e. D(∆X) =
(∆) and ∆X = ∆. Therefore, the domain monotonicity applies with Ω2 = X.

orollary 3.17 (Kac’s Principle). Let (X, d,m) be an infinitesimally Hilbertian metric measure space and
et Ω ⊂ X be open and bounded. Let 0 ≤ f ∈ L∞(m) and t ↦→ htf, h

Ω
t f being respectively the heat flow of f

nd the Dirichlet heat flow of f associated to Ω . Consider a compact set K ⋐ Ω ; then

∥htf − hΩt f∥L1(K,m) = o(t), as t → 0+. (32)

roof. Set vt := htf − hΩt f . Then, by the regularity of htf, h
Ω
t f , we get v ∈ C([0, 1], L2(Ω ,m)) ∩

Cloc((0, 1), L2(Ω ,m)). Moreover, using (24), we see that vt ∈ D(∆|Ω ) and (27) is satisfied. Finally, applying
roposition 3.15 (cf. Remark 3.16) we get that, for every t, vt ≥ 0 m-a.e.. Thus, we are in position to apply
emma 3.12, which shows the validity of (32). □

emark 3.18. Note that it would be possible to deduce a stronger Kac’s principle for RCD spaces, with
∞-norm in place of L1-norm and with exponential error, by means of stochastic calculus and adapting

he proofs of [37]. We refrain to pursue this strategy here in order to avoid using stochastic analysis tools;
ndeed, our proof is purely Eulerian and do not require any lower curvature bound.

. One-dimensional localization of the CD condition

In this section we summarize some results obtained in [20–23], which show that the CD condition can
e properly localized in one-dimensional sets. In particular, we follow the presentation of [23], where the
ne-dimensional localization is obtained without assuming m(X) = 1.

For the reminder of the section, we assume the metric measure space (X, d,m) to be such that (X, d) is
eodesic and proper and m is σ-finite with suppm = X. Given a 1-Lipschitz function u : X → R, we associate
o it the d-cyclically monotone set
Γu := {(x, y) ∈ X × X : u(x) − u(y) = d(x, y)}
18
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and its transpose Γ−1
u := {(x, y) ∈ X × X : (y, x) ∈ Γu}. Consequently, we introduce the transport relation

u and the transport set Tu as

Ru := Γu ∪ Γ−1
u and Tu := π1

(
Ru \ {(x, y) ∈ X × X : x = y}

)
,

here π1 denotes the projection on the first factor. We denote by Γu(x) the section of Γu through x in the
rst coordinate. Then, we define the set of forward and backward branching point as

A+ := {x ∈ Tu : ∃y, z ∈ Γu(x), (y, z) /∈ Ru}, A− := {x ∈ Tu : ∃y, z ∈ Γ−1
u (x), (y, z) /∈ Ru}.

onsider respectively the non-branched transport set and the non-branched transport relation

Tnb
u := Tu \ (A+ ∪A−), Rnb

u := Ru ∩ (Tnb
u × Tnb

u ).

s shown in [20], Rnb
u is an equivalence relation on Tnb

u and for every x ∈ Tnb
u , Ru(x) := {y ∈ X : (x, y) ∈ Ru}

s isometric to a closed interval of R. In particular, from the non-branched transport relation we obtain a
artition of the non-branched transport set Tnb

u into a disjoint family {Xα}α∈Q of sets, where Q is a set of
ndices. Moreover, X̄α is isometric to a closed interval of R, for any α ∈ Q.

emark 4.1. Let us introduce two families of distinguished points of the transport set: the set of initial
nd final points. These are defined respectively as follows:

a = {x ∈ Tu | ∄y ∈ Tu, y ̸= x, (y, x) ∈ Γu}, b = {x ∈ Tu | ∄y ∈ Tu, y ̸= x, (x, y) ∈ Γu}.

ote that the sets a and b may or may not be a subset of Tnb
u , A+ or A−. We will denote by a(Xα), b(Xα)

he initial and final point, respectively, of the transport set Xα, whenever they exist.

Consider now the quotient map Q :Tnb
u → Q associated to the partition, that is

Q(x) = α ⇐⇒ x ∈ Xα.

ith this map we can endow Q with the quotient σ-algebra, that is the finest σ-algebra on Q for which Q is
easurable. At this point we can identify a disintegration of the measure m|T nb

u

associated to the partition
Xα}α∈Q. Denote by M+(X) the set of non-negative Radon measure on X.

heorem 4.2 ([23, Thm. 3.4]). Let (X, d,m) be a metric measure space and assume suppm = X. Let
: X → R be 1-Lipschitz. Let q ∈ P(Q) such that Q#(m|T nb

u

) ≪ q. Then the measure m restricted to
he non-branched transport set Tnb

u admits the following disintegration

m|T nb
u

=
∫

Q

mα dq(α), (33)

nd the map Q ∋ α ↦→ mα ∈ M+(X) satisfies the following

(1) for every m measurable set B, the map α ↦→ mα(B) is q-measurable,
(2) for q-almost every α ∈ Q, the measure mα is concentrated in Q−1(α),
(3) for every m measurable set B and every q-measurable set C, it holds that

m(B ∩ Q−1(C)) =
∫

C

mα(B) dq(α),

(4) For every compact set K ⊂ X there exists a constant CK > 0 such that mα(K) ≤ CK for q-almost every

α ∈ Q.

19
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e

Moreover, for every fixed probability measure q such that Q#(m|T nb

u

) ≪ q, the disintegration (33) is q-
ssentially unique, meaning that, if any other map Q ∋ α ↦→ m̃α ∈ M+(X) satisfies (1)–(4), then mα = m̃α

for q-a.e. α ∈ Q.

The last statement is quite general and does not require any particular rigidity assumption on the
metric measure space (X, d,m). However, it becomes particularly interesting when applied to essentially
non-branching CD(K,N) spaces. We refer the reader to [23] for the precise definitions. Note that, In our
setting, as RCD(K,N) spaces are non-branching (see Theorem 2.13), and so essentially non-branching, the
following results apply.

Proposition 4.3 ([23, Lem. 3.5]). Let (X, d,m) be an essentially non-branching space satisfying the
CD(K,N) condition for some K ∈ R and N ∈ (1,∞). Then, for every 1-Lipschitz function u : X → R,
it holds that m(Tu \ Tnb

u ) = 0.

The disintegration presented in Theorem 4.2 then allows to localize the CD(K,N) condition to the
one-dimensional elements of the partition {Xα}α∈Q.

Theorem 4.4 ([23, Thm. 3.6]). Let (X, d,m) be an essentially non-branching space satisfying the CD(K,N)
condition for some K ∈ R and N ∈ (1,∞). For any 1-Lipschitz function u : X → R and fixed q ∈ P(Q)
such that q ≪ Q#(m|T nb

u

) ≪ q, there exists a q-essentially unique disintegration

m|Tu
=
∫

Q

mα dq(α),

provided by Theorem 4.2. Moreover, for q-almost every α ∈ Q, mα is a Radon measure with mα =
hα · H 1|Xα

≪ H 1|Xα
and (X̄α, | · |,mα) verifies the CD(K,N) condition.

Remark 4.5. We point out that, in the original statement of [23, Thm. 3.6], the measure q ∈ P(Q) is
assumed to satisfy the property Q#(m|T nb

u

) ≪ q. However, in the proof of [23, Lem. 3.3], the authors actually
build a measure m̃ ∈ P(X) such that m̃ ≪ m|T nb

u

≪ m̃. Thus, we deduce that q := Q#m̃ ∈ P(Q) satisfies
q ≪ Q#(m|T nb

u

) ≪ q.

4.1. The Laplacian of the distance function

We report here one of the main results contained in [23], namely a representation formula for the Laplacian
of the signed distance function from the boundary of an open set. Firstly, we recall the notion of Radon
functional.

Definition 4.6 (Radon Functional). Let (X, d) be a proper metric space and let Ω ⊂ X be an open set.
Then, a Radon functional over Ω is a linear functional T : Lipbs(Ω) → R such that, for every compact subset
K ⋐ Ω , there exists a constant CK ≥ 0 so that

|T (f)| ≤ CK max
K

|f |, ∀ f ∈ Lipbs(Ω) with supp f ⊂ K.

One can consider the following two operations involving Radon functionals:

(i) Multiplication. Given a Radon functional T over an open set Ω ⊂ X, we define, for v ∈ Lip(Ω), a Radon
functional vT : Lipbs(Ω) → R as
[vT ](f) := T (vf) for every f ∈ Lipbs(Ω); (34)
20
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ii) Pushforward. Consider a proper metric space (Y, dY). Let T be a Radon functional over an open set
Ω ⊂ X and let Φ : Ω → Y be Lipschitz such that Φ(Ω) ⊂ Y is open. Then, we define the following
Radon functional over Φ(Ω) ⊂ Y

[Φ#T ](f) := T (f ◦ Φ) for every f ∈ Lipbs(Φ(Ω)). (35)

Secondly, we introduce the definition of distributional Laplacian, following [23] (see also [33, Def. 4.4]).

Definition 4.7 (Distributional Laplacian). Let (X, d,m) be infinitesimally Hilbertian and proper. Let Ω ⊂ X
e open and let u ∈ Lip(X). We say that u ∈ D(∆∆∆,Ω) if there exists a (unique) Radon functional T over Ω

uch that
T (f) = −

∫
X

⟨∇f,∇u⟩ dm ∀ f ∈ Lipbs(Ω). (36)

n this case, we set ∆∆∆u|Ω := T .

emark 4.8. Let u ∈ D(∆∆∆,Ω) ∩W 1,2(Ω) and consider its distributional Laplacian ∆∆∆u|Ω as defined above.
f there exists h ∈ L2(Ω ,m) such that

∆∆∆u|Ω (f) =
∫
Ω

hf dm, ∀ f ∈ Lipbs(Ω),

e have that u ∈ D(∆|Ω ) and ∆|Ωu = h, where ∆|Ω is the restricted Laplacian as in Definition 3.10.

Let Ω ⊂ X be open and consider the signed distance function from ∂Ω , defined as in (13), namely

δ : X → R; δ(x) = d(x, ∂Ω)χΩ (x) − d(x, ∂Ω)χX\Ω (x).

ince δ is 1-Lipschitz, we can apply Theorem 4.4 and obtain a disintegration of m, associated to δ. Note
hat, by construction, we have

δ(a(Xα)) ≥ 0 and δ(b(Xα)) ≤ 0, (37)

or any α ∈ Q, cf. [23, Rmk. 4.12]. Moreover, we have the following representation formula for the Laplacian
f δ, in the setting of RCD spaces.

roposition 4.9 ([23, Cor. 4.16]). Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞).
onsider δ as above and the associated disintegration

m|X\∂Ω
=
∫

Q

hα dH 1
|Xα

dq(α). (38)

hen δ ∈ D(∆∆∆,X \ ∂Ω) and1

∆∆∆δ = −(log hα)′m|X\∂Ω
−
∫

Q

hα[δa(Xα)∩Ω − δb(Xα)∩(X\Ω)] dq(α). (39)

e denote [∆∆∆δ]reg := −(log hα)′ m-a.e.. Moreover, the following comparison holds

∆∆∆δ ≤ (N − 1)
s′

K
N−1

(db(Xα))

s K
N−1

(db(Xα))
m|X\∂Ω

+
∫

Q

hαδb(Xα)∩(X\Ω) dq(α),

∆∆∆δ ≥ −(N − 1)
s′

K
N−1

(da(Xα))

s K
N−1

(da(Xα))
m|X\∂Ω

−
∫

Q

hαδa(Xα)∩Ω dq(α),

(40)

1 With a slight abuse of notation, in what follows, we always omit the restriction to X \ ∂Ω and write simply ∆∆∆δ.
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where dp(·) := d(p, ·) and, for κ ∈ R, sκ : [0, Jk] → R is defined as

sκ(θ) =

⎧⎪⎨⎪⎩
1√
κ

sin(θ
√
κ), if κ > 0,

θ, if κ = 0,
1√
−κ

sinh(θ
√

−κ), if κ < 0.

ere Jκ := π/
√
κ for κ > 0 and Jκ = +∞ otherwise.

emark 4.10. Note that X \ ∂Ω ⊂ Tδ, since for any x ∈ X \ ∂Ω , there exists y ∈ ∂Ω such that
|δ(x)| = d(x, y), meaning that (x, y) ∈ Rδ \{(x, x) | x ∈ X}. As a consequence, it makes sense to consider the
disintegration of m|X\∂Ω

as in (38). Moreover, we show in Proposition 4.14 that, under a further assumption
on ∂Ω , we do not lose information on m when we restrict to X \ ∂Ω , since m(Tδ △ (X \ ∂Ω)) = 0, where

△B = (A \B) ∪ (B \A).

emark 4.11. The result in [23] holds for essentially non-branching MCP(K,N) (for possibly not single-
alued distributional Laplacian). For our purposes, it is enough to consider the subclass of RCD(K,N)
paces.

.2. 1D localization and regularity of ∂Ω

We define here some regularity assumptions on the open set Ω and some consequences.

efinition 4.12 (Interior/exterior Ball Condition). Let (X, d) be a metric space and let Ω ⊂ X be open.
We say that x ∈ ∂Ω verifies the interior ball condition with respect to Ω if ∃ px ∈ Ω , rx ∈ R+ such that

Brx(px) ⊂ Ω and x ∈ ∂Brx(px).

imilarly, we say that x ∈ ∂Ω verifies the exterior ball condition if it verifies the interior ball condition with
espect to X \ Ω̄ .

Let ϵ > 0. We say that Ω verifies a ϵ-uniform interior ball condition if every x ∈ ∂Ω verifies the interior
all condition with respect to Ω and rx ≥ ϵ, for every x ∈ Ω .

emark 4.13. It is well-known that, in Rn, the uniform interior and exterior ball condition for an open
et Ω is equivalent to the C1,1 regularity of ∂Ω , meaning that, up to rotation of coordinates, for every

= (x′, xn) ∈ ∂Ω there exists a cylinder Cδ(x) := Bδ(x′) × (−δ, δ) such that Cδ(x) ∩ Ω can be written
s a subgraph of a C1,1-function f with |f − xn| ≤ δ. In particular, the L∞ bounds on f ′′ are comparable
o 1

ϵ , where ϵ is the uniformity of the ball condition (see [38, Prop. 2.7, Rem. 2.8] for more details). In the
on-smooth setting, given any open set Ω ⊂ X, the boundary of its 2ϵ-enlargement satisfies the ϵ-uniform

interior ball condition.

Proposition 4.14. Let (X, d,m) be a geodesic PI space. Let Ω ⊂ X be open with ∂Ω bounded. Assume that
verifies the interior (or exterior) ball condition. Then m(∂Ω) = 0.

roof. Fix 0 < r < R. Recall that a PI space is locally uniformly doubling (see (11)) and consider the
onstant CD = CD(4R) as defined therein. Let x ∈ ∂Ω , then, by the interior ball condition, there exists a
oint px ∈ Ω and a radius rx < r such that Brx(px) ⊂ Ω with x ∈ ∂Brx(px) (note that we can choose rx

uch that rx < r since (X, d) is geodesic). This, together with the triangle inequality, implies

B (p ) ⊂ B (x) ∩ Ω ⊂ B (p ). (41)
rx x 2rx 4rx x

22



E. Caputo and T. Rossi Nonlinear Analysis 238 (2024) 113385

R
T
{

h
d

w
T

R
r

a

m

D
ϵ

b

S
c

R
c

h

L

P
f

Therefore, combining the doubling condition and (41), we obtain the following:

m(B2rx(x) ∩ Ω) ≥ m(Brx(px)) ≥ C−2
D m(B4rx(px)) ≥ C−2

D m(B2rx(x)). (42)

epeating this procedure for any x ∈ ∂Ω , we obtain a covering of ∂Ω consisting of balls of radius 2rx < 2r.
hus, since X is also a separable metric space, we can apply Vitali covering Lemma, so there exists
xi}i∈N ⊂ ∂Ω such that

B2ri
(xi) ∩B2rj

(xj) = ∅ ∀ i ̸= j and ∂Ω ⊂
⋃

x∈∂Ω

B2rx(x) ⊂
⋃
i∈N

B10ri
(xi) (43)

aving denoted ri := rxi
, for every i ∈ N. We are in position to prove the statement, indeed using the

oubling property, together with (42) and (43), we have:

m(∂Ω) ≤ m

(⋃
i∈N

B16ri
(xi)

)
≤ C4

D

∞∑
i=1

m(B2ri
(xi)) ≤ C6

D

∞∑
i=1

m(B2ri
(xi) ∩ Ω)

≤ C6
Dm(B2r(∂Ω) ∩ Ω),

here the last term is finite thanks to boundedness of ∂Ω . Taking the limit as r → 0, we conclude the proof.
he argument for the case where Ω satisfies the exterior ball condition follows verbatim. □

emark 4.15. We point out that, under the assumptions of Proposition 4.14, also m({δ = r}) = 0 for every
> 0 outside of a countable set. This follows by monotonicity of the function r ↦→ m({δ > r}), which has

n at most countable set of discontinuities.

We now introduce a condition involving both the metric and the reference measure, which we call
easured interior geodesic condition, in short (mIGC)ϵ. To this aim, let us define the set

Oϵ := {x ∈ Ω | ∃ γ : [0, 1] → X such that x ∈ γ, γ0 ∈ ∂Ω , δ(γ1) = ℓ(γ) ≥ ϵ}.

efinition 4.16 ((mIGC)ϵ Condition). Let (X, d,m) be a metric measure space, let Ω ⊂ X be open and let
> 0. We say that ∂Ω satisfies the measure theoretic ϵ-interior geodesic condition, or (mIGC)ϵ condition for
revity, if

m({0 < δ < ϵ} \Oϵ) = 0

imilarly, we say that ∂Ω satisfies the measure theoretic ϵ-exterior geodesic condition, or simply (mEGC)ϵ

ondition, if the above definition holds with X \ Ω̄ in place of Ω .

emark 4.17. Note that for example a ball of radius ϵ satisfies the (mIGC)ϵ condition, if the radial geodesics
over the ball itself, up to negligible sets.

We now investigate the equivalence of the (mIGC)ϵ condition to the fact that almost all transport rays
ave length greater or equal than ϵ inside Ω . Let us define the set

Qϵ := {α ∈ Q | H 1(Xα ∩ Ω) ≥ ϵ}.

et us relate the sets Oϵ and Qϵ.

roposition 4.18. Let (X, d) be a geodesic non-branching metric space and let u : X → R be a 1-Lipschitz
unction. Let Ω ⊂ X be open and ϵ > 0. Then, with the notation above,

−1 nb
Ω ∩ Q (Qϵ) = Oϵ ∩ Tδ . (44)
23
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For the proof of the proposition, we need the following preliminary lemma.

Lemma 4.19. Let (X, d) be a geodesic non-branching metric space and let u : X → R be a 1-Lipschitz function.
hen,

A+ ⊂ a, and A− ⊂ b.

roof. We prove the first inclusion, the second one being analogous. Let x ∈ ac and assume by contradiction
hat x ∈ A+. In particular, this means that x ∈ Tu and, by definition of a, there exists a point y ∈ Tu such
hat x ̸= y and (y, x) ∈ Γu, while by definition of A+, there exist z, w ∈ Γu(x) with (z, w) /∈ Ru. We claim
hat x is an intermediate point along geodesics joining y, z and y, w. Indeed, by construction x ̸= y, x ̸= z,
nd also, since (y, x), (x, z) ∈ Γu, we have

u(y) − u(z) = u(y) − u(x) + u(x) − u(z) = d(y, x) + d(x, z) ≥ d(y, z), (45)

y triangle inequality. Now, recall that u is 1-Lipschitz, thus in (45) the equality holds, proving the claim
or the triple y, x, z. Analogously, the same holds for the triple y, x, w. Now let γ be a geodesic connecting y
nd x, η1 be a geodesic connecting x and z and η2 be a geodesic connecting x and w. By the claim above the
urves γ ∪ ηi for i = 1, 2 are geodesics, hence since z ̸= w, we obtain a contradiction with the non-branching
ssumption. □

roof of Proposition 4.18. Firstly, we show that Ω ∩ Q−1(Qϵ) ⊂ Oϵ ∩ Tnb
δ . Let z ∈ Ω ∩ Q−1(Qϵ). By

efinition of Q, Q−1(Qϵ) ⊂ Tnb
δ , hence z ∈ Xα for some α ∈ Qϵ. Now X̄α is a minimizing geodesic for δ

onnecting a(Xα) to ∂Ω (recall that by (37), X̄α ∩ ∂Ω ̸= ∅), in particular there exists yα ∈ ∂Ω such that

δ(a(Xα)) = d(a(Xα), yα) ≥ H 1(Xα ∩ Ω) ≥ ϵ,

iving that z ∈ Oϵ. Secondly, we prove the converse inclusion Oϵ ∩ Tnb
δ ⊂ Ω ∩ Q−1(Qϵ). Let x ∈ Oϵ ∩ Tnb

δ ;
hen, by definition of Oϵ, x ∈ Ω and there exists a geodesic γ : [0, 1] → X such that

x ∈ γ, γ0 ∈ ∂Ω , and δ(γ1) = ℓ(γ) ≥ ϵ.

ote that for any t, s ∈ (0, 1), (γt, γs) ∈ Rδ, hence γt ∈ (a ∪ b)c for any t ∈ (0, 1), being an interior point
f a geodesic. Therefore, Lemma 4.19 ensures that γt ∈ (A+ ∪ A−)c for every t ∈ (0, 1), meaning that
nt(γ) ⊂ Tnb

δ . As a consequence there exists α ∈ Q such that Int(γ) ⊂ Xα and, furthermore we have

H 1(Xα ∩ Ω) ≥ ℓ(γ) ≥ ϵ,

ence α ∈ Qϵ. We are left to show that x ∈ Xα. If x ∈ Int(γ), there is nothing to prove. If x = γ1, recall
hat x ∈ Tnb

δ and, by construction, (γt, x) ∈ Rδ for every t ∈ (0, 1). This implies that x belongs to the same
rbit of γt, namely x ∈ Xα, or equivalently x ∈ Q−1(Qϵ). This concludes the proof. □

roposition 4.20. Let (X, d,m) be an RCD(K,N) space with K ∈ R and N ∈ (1,∞). Let Ω ⊂ X be open and
et ϵ > 0. Set also Q′ := Q(Ω ∩ Tnb

δ ). Then, ∂Ω satisfies the (mIGC)ϵ condition if and only if q(Q′ \Qϵ) = 0.

roof. Since q ≪ Q#m|T nb
δ

≪ q, cf. Remark 4.5, it is enough to prove that ∂Ω verifies the (mIGC)ϵ

ondition if and only if (Q#m|T nb
δ

)(Q′ \ Qϵ) = 0, i.e. m(Tnb
δ ∩ Q−1(Q′ \ Qϵ)) = 0. First of all, observe that

′ = Q({0 < δ < ϵ} ∩ Tnb
δ ). Indeed, if x ∈ Ω \ {0 < δ < ϵ} ∩ Tnb

δ , then x ∈ Xα for some α ∈ Q′.
¯
owever, Xα is a minimizing geodesic for δ joining x and ∂Ω . Thus, Xα ∩ {0 < δ < ϵ} ̸= ∅, and therefore
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α ∈ Q({0 < δ < ϵ}∩Tnb
δ ), proving the claimed equality. Second of all, using Proposition 4.18 (which applies

ince RCD(K,N) spaces are non-branching by Theorem 2.13), we deduce that

m(Tnb
δ ∩ Q−1(Q′ \Qϵ)) = m(Tnb

δ ∩ {0 < δ < ϵ} \ Q−1(Qϵ))
(44)= m(Tnb

δ ∩ {0 < δ < ϵ} \Oϵ).

inally, applying Proposition 4.3, together with Remark 4.10, we have that m((Tnb
δ ∩ Ω) △Ω) = 0, hence,

m(Tnb
δ ∩ Q−1(Q′ \Qϵ)) = m({0 < δ < ϵ} \Oϵ).

ow the proof of the statement easily follows from the definition of (mIGC)ϵ condition. □

Thanks to Proposition 4.20, we can immediately deduce regularity properties for ∆∆∆δ in the interior of Ω .
ndeed, on the one hand, we have mild integrability of its regular part, on the other hand, its singular part
s separated from ∂Ω .

orollary 4.21. Let (X, d,m) be an RCD(K,N) space with K ∈ R and N ∈ (1,∞). Let Ω ⊂ X be open and
ssume that ∂Ω satisfies the (mIGC)ϵ condition. Then [∆∆∆δ]reg ∈ L1({0 < δ < ϵ}).

roof. By Proposition 4.20, the (mIGC)ϵ condition implies that for q-a.e. α ∈ Q′ we have

H 1(Xα ∩ Ω) ≥ ϵ,

here Q′ = Q(Ω ∩ Tnb
δ ). In particular, it holds that d(a(Xα), b(Xα)) ≥ ϵ, for q-a.e. α ∈ Q′. Then,

pplying [23, Lem. 2.16] for α ∈ Q′, we get that there exists a constant C = C(ϵ,K,N) such that

∥h′
α∥L1(0,ϵ) ≤ C

ϵ
, for q-a.e. α ∈ Q′. (46)

ote that Xα ∩ {0 < δ < ϵ} ≠ ∅ if and only if α ∈ Q′, thus we may compute∫
{0<δ<ϵ}

|[∆∆∆δ]reg| dm =
∫

Q′

∫ ϵ

0
|(log hα)′||hα| dtdq(α) =

∫
Q′

∫ ϵ

0
|h′

α| dtdq(α)
(46)
≤ q(Q′) C

ϵ
≤ C

ϵ
.

his concludes the proof. □

orollary 4.22. Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞) and let Ω ⊂ X be open.
ssume that ∂Ω verifies the (mIGC)ϵ. Then,

q({α ∈ Q | a(Xα) ∈ Bϵ(∂Ω) ∩ Ω}) = 0.

imilarly, if ∂Ω verifies the (mEGC)ϵ condition, then q({α ∈ Q | b(Xα) ∈ Bϵ(∂Ω) ∩ (X \ Ω̄)}) = 0.

emark 4.23. Under the (mIGC)ϵ condition for ∂Ω , ∆∆∆δ as a Radon functional on {0 < δ < ϵ} is equal to
δ = [∆∆∆δ]regm. Indeed, by Corollary 4.22, we have that, for every φ ∈ Lipbs({0 < δ < ϵ}), φ(a(Xα)) = 0

or q-a.e. α, hence ∫
φd[∆∆∆δ]sing = −

∫
hα(a(Xα))φ(a(Xα)) dq(α) = 0.

hus, the representation formula (39) has the form

⟨∆∆∆δ, φ⟩ =
∫

φ[∆∆∆δ]reg dm. (47)

Ω
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We consider the map πf : Tnb
δ → ∂Ω that projects a point x ∈ Tnb

δ on the foot of the unique geodesic
ealizing δ(x), namely πf(x) is the only y ∈ ∂Ω such that d(x, y) = δ(x). We stress that the definition is
ell-posed, indeed, if there exist y1, y2 ∈ ∂Ω , y1 ̸= y2 such that d(x, y1) = d(x, y2) = δ(x), then

(x, yi) ∈ Γδ, i = 1, 2 and (y1, y2) /∈ Rδ.

ence x ∈ A+ ∪A−, giving a contradiction since x ∈ Tnb
δ .

roposition 4.24. Let (X, d,m) be an RCD(K,N) space with K ∈ R and N ∈ (1,∞). Let Ω ⊂ X be open
nd assume ∂Ω satisfies the (mIGC)ϵ condition, for some ϵ > 0. Then πf |Oϵ∩{0<δ<ϵ}

is surjective.

roof. We firstly show that πf(Oϵ ∩ {0 < δ < ϵ}) is closed in ∂Ω . Let {zn}n∈N ⊂ πf(Oϵ ∩ {0 < δ < ϵ}) be
uch that zn → z, for some z ∈ ∂Ω . For any n ∈ N, there exists xn ∈ Oϵ ∩ {0 < δ < ϵ} ∩ Tnb

δ such that
f(xn) = zn and, by definition of Oϵ, there exists γn : [0, 1] → X such that (up to reparameterization and
uitable restriction of γn)

xn ∈ γn, γn
0 = zn and δ(γn

1 ) = ℓ(γn) = ϵ.

hus, applying Ascoli–Arzelá theorem, up to a (not relabeled) subsequence, the sequence of curves {γn}n∈N
niformly converges to a geodesic γ : [0, 1] → X such that

γ0 = z and δ(γ1) = ℓ(γ) = ϵ.

e claim that γt ∈ Tnb
δ for any t ∈ (0, 1). Indeed, passing to the limit the following relation

δ(γn
t ) = δ(γn

t ) − δ(zn) = d(γn
t , zn),

e deduce that (γt, z) ∈ Γδ, and so γt ∈ Tδ. Since, for t ∈ (0, 1), γt ∈ (a∪ b)c, Lemma 4.19 implies the claim.
inally, this shows that γt ∈ Oϵ ∩ {0 < δ < ϵ} ∩ Tnb

δ and πf(γt) = z.
To conclude, we argue by contradiction, assuming there exists z ∈ ∂Ω \πf(Oϵ ∩ {0 < δ < ϵ}). Then, since

f(Oϵ ∩ {0 < δ < ϵ}) is closed, there exists r > 0 such that Br(z) ∩ ∂Ω ⊂ πf(Oϵ ∩ {0 < δ < ϵ})c. However,
y assumption m({0 < δ < ϵ} \ Oϵ) = 0, thus there exists y ∈ Br/2(z) ∩ Oϵ ∩ {0 < δ < ϵ} ∩ Tnb

δ , and this
eans that

δ(y) ≤ d(y, z) < r

2 and πf(y) ∈ Br(z) ∩ ∂Ω .

his gives a contradiction since Br(z) had empty intersection with the image of πf . □

We relate the (mIGC)ϵ with the uniform interior ball condition.

roposition 4.25. Let (X, d,m) be an RCD(K,N) space with K ∈ R and N ∈ (1,∞). Let Ω ⊂ X be open.
he following hold:

(1) If ∂Ω satisfies the ϵ-uniform interior ball condition and every point of ∂Ω satisfies the exterior ball
condition. Then it satisfies the (mIGC)ϵ condition;

(2) if ∂Ω satisfies (mIGC)ϵ-condition, then it satisfies the ϵ-uniform interior ball condition.

roof. We prove (1) and, to do so, we show that

Oϵ ∩ {0 < δ < ϵ} = {0 < δ < ϵ}.

et x ∈ {0 < δ < ϵ}, then there exists a geodesic γ : [0, 1] → X such that γ0 ∈ ∂Ω , γ1 = x and δ(γ1) = ℓ(γ).
y assumptions, there exists p ∈ Ω such that B (p) verifies the interior ball condition at the point γ ,
ϵ 0
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and there exist q ∈ X \ Ω̄ , r > 0 such that Br(q) verifies the exterior ball condition at the point γ0. Let
: [0, 1] → X and η̃ : [0, 1] → X denote the geodesics such that η0 = γ0, η1 = p and η̃0 = γ0, η̃1 = q,
espectively. By construction, we have

δ(p) = ℓ(η) = ϵ and − δ(q) = ℓ(η̃) = r, (48)

hus, d(p, q) ≤ d(p, η0) + d(q, η̃0) = r + ϵ. We claim that equality holds. Assume by contradiction that this
s not the case and consider γ̃ : [0, 1] → X geodesic joining p and q. Then, there exists t ∈ (0, 1) such that
˜t ∈ ∂Ω and, in addition

δ(p) ≤ d(p, γ̃t) < ϵ or − δ(q) ≤ d(q, γ̃t) < r.

his implies that the equalities in (48) cannot hold at the same time, giving a contradiction. Hence, if we
onsider the arc-length reparameterizations of η and η̃ (without relabeling), the curve η ∪ η̃ : [0, r + ϵ] → X
efined as

(η ∪ η̃)t :=
{
ηr−t on [0, r],
η̃t−r on [r, r + ϵ].

s a geodesic between p and q. In an analogous way, the concatenation γ∪ η̃ of γ and η̃ is a geodesic between
and q. Therefore, since RCD(K,N) spaces are non-branching (see Theorem 2.13), we must have γ ⊂ η.

ince (48) holds, x ∈ Oϵ. This concludes the proof of (1).
We prove (2). Let us consider z ∈ ∂Ω . Hence, by an application of Proposition 4.24, we know that there

xists x ∈ Oϵ ∩ {0 < δ < ϵ} ∩ Tnb
δ being such that πf(x) = z. Let us consider the geodesic γ such that

0 ∈ ∂Ω , x ∈ γ and ℓ(γ) = ϵ. It can be readily checked that Bϵ(γ1) ⊂ Ω , thus proving the ball condition of
adius ϵ at z. By arbitrariness of the point z, we conclude. □

xample 4.26. The following two examples show that Proposition 4.25 is sharp in the sense that the
onverse to (1) and (2) does not hold.

For item (1), consider (R2, | · |,L2) and the open set Ω := (R2 \ [0, 1]2) ∩ B, where B is a large ball
nclosing [0, 1]2. We claim that, for ϵ ≪ 1, we have Oϵ ∩ {0 < δ < ϵ} = {0 < δ < ϵ}. Indeed, for every
∈ {0 < δ < ϵ}, we consider the segment connecting x to the closest point in ∂Ω . This segment can be

xtended to a segment of length ϵ which can be chosen to be the geodesic in the definition of Oϵ at the point
. Hence, in particular, ∂Ω satisfies the (mIGC)ϵ condition. However, this set does not satisfy the exterior
all condition at the point 0 (see Fig. 1(a)).

For item (2), consider (R3, | · |,L3) and the open set Ω := B1(0)\S, where the closed set S ⊂ R3 is defined
s follows: let ϵ > 0 sufficiently small, then

S := B̄1−4ϵ(0) ∩ ({x = z = 0} ∪ {y = z = 0}).

bserve that Ω satisfies the ϵ-uniform interior ball condition, yet it does not satisfy the (mIGC)ϵ condition.
ndeed, to check this, consider the ball Bρ(0) with ρ ≪ ϵ and notice that L3(Bρ(0)∩ (Oϵ \{0 < δ < ϵ})) > 0.
he crucial remark is that, for a point x ∈ S close to the origin, a tangent ball of radius ϵ can be chosen
nly tangent to the plan {z = 0} (see Fig. 1(b)). Thus, the ball condition on the set S does not give any
ontrol on the geodesics on all Bρ(0).

. A mean value lemma in RCD(K, N) spaces

Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞) and let Ω ⊂ X be open and bounded.
et δ : X → R be the signed distance function from ∂Ω as in (13), and for a fixed v ∈ D

(
∆|Ω

)
, define:

F (r) :=
∫

v dm, r ≥ 0. (49)

{δ>r}
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Fig. 1. Counterexamples regarding strict implications in Proposition 4.25.

he goal of this section is to compute the second distributional derivative of the function F , to deduce a
ean value lemma in RCD setting. First of all, we recall the following version of the coarea formula: this is
consequence of [43, Prop. 4.2] and of the following identity for the total variation of f :

|Df | = |∇f |m, ∀ f ∈ Liploc(X) ∩BV (X),

hich holds for proper RCD(K,∞) spaces, see [35].

roposition 5.1 (Coarea Formula). Let (X, d,m) be an RCD(K,N) space. Let u ∈ Liploc(X) ∩ BV (X).
Then {u > r} has finite perimeter for a.e. r ∈ (0,∞) and for every f ∈ L1(|∇u|m) it holds that∫

φ(u)f |∇u| dm =
∫ ∞

0
φ(r)

∫
f dPer({u > r}, ·) dr (50)

or every φ : (0,∞) → R Borel and bounded.

emark 5.2 (Coarea Formula for the Signed Distance). Let Ω ⊂ X be open and bounded and define the
igned distance δ as in (13). We wish to apply Proposition 5.1 to δ. In this case, take η ∈ Lipbs(X) such that
≡ 1 on Ω , then ηδ ∈ Lipbs(X) ∩BV (X), therefore the set

{δ > r} = {δ > r} ∩ Ω = {ηδ > r},

as finite perimeter for a.e. r ∈ (0,∞). Moreover, for f ∈ L1(Ω ,m), denote by f̃ ∈ L1(m) its extension by 0
utside of Ω , thus, we apply (50) as follows:∫

Ω

φ(δ)f |∇δ| dm =
∫
φ(ηδ)f̃ |∇(ηδ)| dm =

∫ ∞

0
φ(r)

∫
f̃ dPer({ηδ > r}, ·) dr

=
∫ ∞

0
φ(r)

∫
Ω

f dPer({δ > r}, ·) dr.
(51)

The one-dimensional localization and the coarea formula are two possible ways of parameterizing the
ubular neighborhood of ∂Ω and their relation is shown in the following proposition.

roposition 5.3. Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞). Let Ω ⊂ X be open.
onsider the disintegration of m as in (38). Then, for every Borel function f : X → R,∫

f dPer({δ > s}, ·) =
∫

Q

f(γα(s))hα(s)χ{α̃|s∈Iα̃}(α) dq(α), for a.e. s ∈ R,

here γα : Īα → X̄α is an arc-length parameterization of Xα such that 0 ∈ Īα and γα(0) ∈ ∂Ω for every

∈ Q.
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Proof. For any α ∈ Q, since γα has metric speed equal to 1 and γα(0) ∈ ∂Ω , we have that, for every
≤ s ∈ Īα,

δ(γα(s)) = δ(γα(s)) − δ(γα(0)) = d(γα(s), γα(0)) = s

nd similarly for 0 ≥ s ∈ Īα, we get δ(γα(s)) = s for every s ∈ Iα. For any s ∈ R, set

F (s) :=
∫

Q

f(γα(s))hα(s)χ{α̃|s∈Iα̃}(α) dq(α) and G(s) :=
∫

Q

f dPer({δ > s}, ·).

hen, letting s1 < s2 ∈ R, we compute:∫ s2

s1

F (s) ds =
∫

Q

∫
Iα

χ(s1,s2)(δ(γα(s))) f(γα(s))hα(s) dsdq(α)

=
∫ ∫

Iα

(
χ{s1<δ<s2}f

)
(γα(s))hα(s) dsdq(α) =

∫∫
χ{s1<δ<s2}f dmα dq(α)

=
∫

{s1<δ<s2}
f dm,

ince by definition, (γα)# (hα ds) = mα. Finally, using coarea formula, we obtain∫ s2

s1

F (s) ds =
∫

{s1<δ<s2}
f dm (51)=

∫ s2

s1

G(s) ds.

We showed that, for every open interval I,
∫

I
F ds =

∫
I
Gds. Therefore, since the last property is stable

under limits of increasing sequence of sets, we are in position to apply monotone class theorem and get that,
for every Borel set B ⊂ R,

∫
B
F ds =

∫
B
Gds. Thus, F = G for a.e. s, as claimed. □

We apply coarea formula to compute the first derivative of the function F defined in (49).

Proposition 5.4 (First Derivative of F ). Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞),
let Ω ⊂ X be open and bounded and consider v ∈ L1(Ω ,m). Then, {δ > r} is a set of finite perimeter for a.e.
r, F ∈ AC((0,+∞),R) and

F ′(r) = −
∫
Ω

v dPer({δ > r}, ·), for a.e. r ∈ (0,+∞) (52)

Proof. In view of Remark 5.2, we have that for a.e. r > 0 the set {δ > r} is of finite perimeter. We prove
the second part of the statement. We notice that |∇δ| = 1, m-a.e. on Ω from Proposition 2.9. Moreover, we
compute for r, h > 0,

|F (r + h) − F (r)| = F (r) − F (r + h) =
∫

{δ>r}
v dm −

∫
{δ>r+h}

v dm =
∫

{r<δ<r+h}
v dm

=
∫
Ω

χ(r,r+h)(δ)v|∇δ| dm (51)=
∫ ∞

0
χ(r,r+h)(s)

∫
Ω

v dPer({δ > s}, ·) ds

=
∫ r+h

r

∫
Ω

v dPer({δ > s}, ·) ds.

Since v ∈ L1(Ω ,m), the function s ↦→
∫
v dPer({δ > s}, ·) is integrable on (0,∞), we deduce that

F ∈ AC((0,+∞),R) and (52) holds. □

Proposition 5.5 (Second Derivative of F ). Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞),
let Ω ⊂ X be open and bounded and let v ∈ D(∆|Ω ) ∩ Lip(Ω). Then

F ′′ =
∫

∆|Ωv dm − δ#(v∆∆∆δ) (53)

{δ>·}
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holds in the sense of distributions on (0,∞), where, according to (34) and (35), δ#(v∆∆∆δ) is the Radon
unctional over (0,∞) defined by

δ#(v∆∆∆δ)(φ) = −
∫

⟨∇[v(φ ◦ δ)],∇δ⟩ dm, ∀φ ∈ C∞
c (0,∞).

roof. Let us compute the second derivative of the function F in the sense of distributions. Fix φ ∈
∞
c (0,∞), then, applying Proposition 5.4, we have:

⟨F ′′, φ⟩ =
∫ ∞

0
φ′(r)

∫
v dPer({δ > r}, ·) dr (51)=

∫
Ω

(φ′ ◦ δ)v|∇δ| dm (14)=
∫
Ω

(φ′ ◦ δ)v|∇δ|2 dm

=
∫
Ω

v⟨∇(φ ◦ δ),∇δ⟩ dm Prop. A.4= −
∫
Ω

(φ ◦ δ)⟨∇v,∇δ⟩ dm  
(A)

+
∫
Ω

⟨∇[v(φ ◦ δ)],∇δ⟩ dm (54)

or the term (A) in (54), we would like to apply the definition of restricted Laplacian, since v ∈ D(∆|Ω ).
o do so, define:

ψ(r) =
∫ r

0
φ(s) ds, ∀ r > 0.

Notice that ψ ∈ C∞(0,∞) but it does not have compact support. Nonetheless, its support is separated from
0, therefore ψ ◦ δ ∈ Lipbs(Ω) and, by chain rule, the following identity holds

∇(ψ ◦ δ) = (ψ′ ◦ δ)∇δ = (φ ◦ δ)∇δ.

herefore, we may discuss the term (A) in (54) as follows:∫
Ω

(φ ◦ δ)⟨∇v,∇δ⟩ dm =
∫
Ω

⟨∇v,∇(ψ ◦ δ)⟩ dm

= −
∫
Ω

(ψ ◦ δ)∆|Ωv dm = −
∫
Ω

∫ ∞

0
χ(0,δ(x))(r)φ(r) dr∆|Ωv(x) dm(x)

= −
∫ ∞

0
φ(r)

∫
{δ>r}

∆|Ωv dm dr.

Therefore, the following holds

⟨F ′′, φ⟩ =
∫ ∞

0
φ(r)

∫
{δ>r}

∆|Ωv dmdr +
∫
Ω

⟨∇[v(φ ◦ δ)],∇δ⟩ dm, ∀φ ∈ C∞
c (0,∞). (55)

Regarding the last term in (55), notice that v, δ ∈ Lip(Ω), thus, according to (34) and (35), it corresponds
to the Radon functional −δ#(v∆∆∆δ). Indeed we have

δ#(v∆∆∆δ)(φ) (35)= (v∆∆∆δ)(φ ◦ δ) (34)= ∆∆∆δ(v(φ ◦ δ)) = −
∫
Ω

⟨∇[v(φ ◦ δ)],∇δ⟩ dm, (56)

by definition of distributional Laplacian (36), since v(φ ◦ δ) ∈ Lipbs(Ω). This concludes the proof. □

Remark 5.6. Let (M, g) be a complete Riemannian manifold and let Ω ⊂ M be open and bounded,
equipped with a smooth measure m. We assume that ∂Ω is smooth, thus δ is a smooth function in a tubular
neighborhood U = {0 ≤ δ < ϵ} of ∂Ω . Therefore, the term δ#(v∆∆∆δ) can be rewritten in a simpler form.
Indeed, first of all, for every ϕ ∈ Lipbs(U), we have that

∆∆∆δ(ϕ) =
∫

ϕ∆δ dm, (57)

U
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and thus, for φ ∈ C∞
c ((0, ϵ)), we deduce that

δ#(v∆∆∆δ)(φ) =
∫
Ω

(φ ◦ δ)v∆δ dm Prop. 5.1=
∫ ∞

0
φ(r)

∫
v∆δdPer({δ > r}, ·)dr

=
∫ ∞

0
φ(r)

∫
{δ=r}

v∆δdσrdr,

here σr is the Riemannian perimeter measure on the level sets of δ. In our setting, it is still possible to
rescribe regularity on Ω to obtain an analogue to (57).

The next goal is to prove (53) dropping the assumption of the Lipschitz regularity of v. To do so, we need
he following approximation lemma.

emma 5.7. Let (X, d,m) be an RCD(K,N) space and let ϵ > 0. Let Ω ⊂ X be an open and bounded set and
∈ L∞(Ω ,m) ∩ W 1,2(Ω) with supp(v) ⊂ {0 < δ < ϵ}. Then, there exists a sequence {vn} ⊂ Lip(Ω) with

upp(vn) ⊂ {0 < δ < ϵ} and ∥vn∥L∞(Ω,m) ≤ ∥v∥L∞(Ω,m) such that vn → v in W 1,2(Ω).

roof. We can assume, without loss of generality, that v ≥ 0 (otherwise it is enough to write v = v+−v− and
se linearity). Let η ∈ Lipbs(Ω) such that η = 1 on supp(v) and supp(η) ⊂ {0 < δ < ϵ}. Since v ∈ W 1,2(Ω),
y definition ηv ∈ W 1,2(X). Thus, there exists a sequence {un} ⊂ Lip(X) ∩ W 1,2(X) such that un → ηv in

1,2(X). Define ũn := ηun, we show that ũn → v in W 1,2(Ω). Indeed, ũn − v = ηun − η2v = η(un − ηv),
hus ∥ũn − v∥L2(Ω,m) ≤ ∥un − ηv∥L2(m) ∥η∥L∞(m) → 0 as n → ∞ and

∥|∇(ũn − v)|∥L2(Ω,m) ≤ ∥|∇(un − ηv)|∥L2(m) ∥η∥L∞(m) + ∥un − ηv∥L2(m) ∥|∇η|∥L∞(m) → 0,

s n → ∞. To conclude, define vn := ũn ∧ v: since v ≥ 0, we have that supp vn ⊂ supp ũn and
vn∥L∞(Ω,m) ≤ ∥v∥L∞(Ω,m) by construction. Thus, it is only left to prove that ∥vn − v∥W 1,2(Ω) → 0.
herefore, we rewrite

vn − v = ũn ∧ v − v = ũn + v − |ũn − v|
2 − v = ũn − v

2 − |ũn − v|
2 ,

hus easily proving that vn → v in L2(Ω ,m). Using the locality property of the gradient of elements of
1,2(Ω), we get ∥|∇(ũn ∧ v − v)|∥L2(Ω,m) = ∥|∇(ũn − v)|χ{ũn<v}∥L2(Ω,m) → 0 as n → ∞, concluding the

roof. □

orollary 5.8. Let (X, d,m) be an RCD(K,N) space. Let Ω ⊂ X be an open and bounded. Assume ∂Ω

atisfies the (mIGC)ϵ condition. Then, for every v ∈ D(∆|Ω ) ∩ L∞(Ω ,m) such that supp v ⊂ {0 ≤ δ < ϵ},

F ′′ =
∫

{δ>·}
∆|Ωv dm − δ#(v[∆∆∆δ]reg m)

n the sense of distributions in (0,∞).

roof. Given v ∈ L∞(Ω ,m) ∩ D(∆|Ω ), we can repeat verbatim the proof of Proposition 5.5 up to the
dentity (55). To conclude, it is enough to show that, for every v ∈ L∞(Ω ,m) ∩D(∆|Ω ),∫

⟨∇[v(φ ◦ δ)],∇δ⟩ dm = −δ#(v[∆∆∆δ]regm)(φ).

ndeed, since supp (v(φ ◦ δ)) ⊂ {0 < δ < ϵ}, up to multiplying for a suitable cut-off function, we may assume
hat supp v ⊂ {0 < δ < ϵ}. We consider the approximation given by Lemma 5.7 obtaining a sequence
vn} ⊂ Lipbs(Ω) such that

supp vn ⊂ {0 < δ < ϵ}, ∥vn∥L∞(Ω,m) ≤ ∥v∥L∞(Ω,m) and vn −−−−−−→ v as n → ∞.

W 1,2(Ω)
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Since vn ∈ Lipbs(Ω), recalling (56), we obtain∫
⟨∇[vn(φ ◦ δ)],∇δ⟩ dm = −δ#(vn∆∆∆δ)(φ) = −

∫
vn (φ ◦ δ) [∆∆∆δ]reg dm

here in the second equality, we used (47), which holds since vn(φ ◦ δ) ∈ Lipbs({0 < δ < ϵ}) and the
mIGC)ϵ condition holds on ∂Ω . Then, we take the limit as n → ∞, using dominated convergence theorem
n the right hand side, concluding the claim and therefore the proof, using that

∫
v (φ ◦ δ) [∆∆∆δ]reg dm =

#(v[∆∆∆δ]regm)(φ). □

. First-order asymptotics

This section is devoted to the proof of Theorem 1.1. We start by providing a few technical tools that are
sed in the proof.

heorem 6.1 (Weak Gauss–Green Formula). Let (X, d,m) be an RCD(K,N) space and let Ω ⊂ X be open
nd bounded. Then, for every w ∈ D(div), it holds∫

{δ>r}
div(w) dm = −

∫
⟨w,∇δ⟩ dPer({δ > r}, ·), for a.e. r > 0. (58)

roof. Let φ ∈ C∞
c (0,∞), then, by coarea formula, we have∫ ∞

0
φ(s)

∫
{δ>s}

div(w)dmds =
∫ ∫ δ(x)

0
φ(s) dsdiv(w)dm(x) =

∫
(ψ ◦ δ) div(w) dm, (59)

here ψ(t) =
∫ t

0 φ(s)ds. Since, w ∈ D(div), we may integrate by parts the last integral in (59), obtaining:∫
(ψ ◦ δ) div(w) dm = −

∫
⟨∇(ψ ◦ δ), w⟩ dm = −

∫
(φ ◦ δ)⟨∇δ, w⟩ dm.

n application of the coarea formula, cf. Proposition 5.1, together with Proposition 2.9, finally yields:∫ ∞

0
φ(s)

∫
{δ>s}

div(w) dmds = −
∫ ∞

0
φ(s)

∫
⟨∇δ, w⟩ dPer({δ > r}, ·) ds.

ince φ is arbitrary, we conclude. □

emark 6.2. This result can be regarded as a weaker form of the Gauss–Green formula of [9, Prop. 2.30],
ince it is formulated for almost every level set of δ. The advantage is that we do not need neither the notion
f Sobolev vector field, nor the one of its trace. Moreover, in the smooth setting, formula (58) identifies the
outward-pointing) unit normal to {δ > s} as −∇δ.

Under the regularity assumption (mIGC)ϵ for ∂Ω , we deduce a second variation formula for the measure
f the super level set of the distance function, as a corollary of Theorem 6.1.

orollary 6.3. Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞) and let Ω ⊂ X be open and
ounded. Assume ∂Ω satisfies the (mIGC)ϵ condition. Then, the function r ↦→ Per({δ > r}) is W 1,1(0, ϵ) and
ts distributional derivative is

d

dr
Per({δ > r}) =

∫
[∆∆∆δ]reg dPer({δ > r}, ·), for a.e. r ∈ (0, ϵ). (60)

n particular, (0,∞) ∋ r ↦→ Per({δ > r}) has a representative which is continuous at the point r = 0 and Ω

as finite perimeter in X.
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Proof. We first show that (0, ϵ) ∋ r ↦→ Per({δ > r}) ∈ R belongs to W 1,1
loc (0, ϵ).2 Fix J = (s̄, r̄) ⋐ (0, ϵ).

onsider a good cut-off ϕ ∈ Lipbs(Ω) ∩D(∆) (as in Proposition 2.12), identically equal to 1 on δ−1(J) and
ith compact support in {s̄/2 < δ < (ϵ+ r̄)/2}. We claim that

ϕδ ∈ D(∆) and ∆(ϕδ) = δ∆ϕ+ 2⟨∇ϕ,∇δ⟩ + ϕ[∆∆∆δ]reg. (61)

ndeed ϕδ ∈ Lipbs(Ω) and, for any g ∈ Lipbs(X),∫
X

⟨∇(ϕδ),∇g⟩ dm =
∫

X
⟨ϕ∇δ,∇g⟩ dm +

∫
X

⟨δ∇ϕ,∇g⟩ dm

=
∫

X
⟨∇δ,∇(ϕg)⟩ dm +

∫
X

⟨∇ϕ,∇(δg)⟩ dm − 2
∫

X
g⟨∇ϕ,∇δ⟩ dm

= −⟨∆∆∆δ, gϕ⟩ −
∫

X
δg∆ϕ dm − 2

∫
X
g⟨∇ϕ,∇δ⟩ dm.

We discuss the term involving the Radon functional ∆∆∆δ. By our choice of ϕ, it follows that, for any
g ∈ Lipbs(X), suppϕg ⊂ suppϕ ∩ Ω ⊂ Bϵ(∂Ω) ∩ Ω . Therefore, using (47) we get

⟨∆∆∆δ, gϕ⟩ =
∫
Ω

gϕ[∆∆∆δ]reg dm.

In addition, recalling that Q′ = Q(Ω ∩ Tnb
δ ), on the one hand, for q-a.e. α ∈ Q′, d(a(Xα), x) > (ϵ − r̄)/2

for any x ∈ suppϕ by Proposition 4.20, on the other hand, recalling that δ(b(Xα)) ≤ 0, we have that,
for q-a.e. α ∈ Q′, d(b(Xα), x) > s̄/2 for any x ∈ suppϕ. As a consequence, using the bounds (40) on the
regular part of ∆∆∆δ (note that the disintegration of m|T nb

δ

in Ω involves only transport rays in Q′), we obtain
ϕ[∆∆∆δ]reg ∈ L∞(Ω ,m), proving the claim (61). Since ϕδ ∈ D(∆), we can apply (58) with w = ∇(ϕδ). We fix
a representative of ⟨∇(ϕδ),∇δ⟩; then, there exists N0 ⊂ J with L1(N0) = 0 such that∫

{δ>r}
div(w) dm =

∫
⟨∇(ϕδ),∇δ⟩ dPer({δ > r}, ·), for every r ∈ J \N0.

Furthermore, by Remark 4.15, there exists N1 ⊂ (0, ϵ) with L1(N1) = 0 such that m({δ = r}) = 0, for every
r ∈ (0, ϵ) \N1. Set N := N1 ∪N0; then, for every s, r ∈ J \N with s < r, we obtain:∫

{s<δ<r}
[∆∆∆δ]reg dm =

∫
{s<δ<r}

div(w) dm = −
∫

{δ>r}
div(w) dm +

∫
{δ>s}

div(w) dm

=
∫

⟨∇(ϕδ),∇δ⟩ dPer({δ > r}, ·) −
∫

⟨∇(ϕδ),∇δ⟩ dPer({δ > s}, ·)

= Per({δ > r}) − Per({δ > s}).

From this identity, applying coarea formula (51), we finally obtain, for every s, r ∈ J \N with s < r,

Per({δ > r}) − Per({δ > s}) =
∫ r

s

∫
[∆∆∆δ]reg dPer({δ > t}, ·) dt.

Exchanging the roles of r, s, we deduce an analogue formula for every s, r ∈ J \N with r < s. Hence, for a
fixed s ∈ J \N , we have that, for every r ∈ J \N ,

Per({δ > r}) = Per({δ > s}) +
∫ r

s

∫
[∆∆∆δ]reg dPer({δ > t}, ·) dt. (62)

Since ∥[∆∆∆δ]reg∥L1({0<δ<ϵ}) < ∞ by Corollary 4.21, the right hand side of (62) extends to an absolutely
continuous function on all J , being the integral of a function in L1(J), plus a constant. Therefore, also

2 Given an open interval I ⊂ R, we recall that f ∈ W 1,1(I) if, for any J ⋐ I open interval, f ∈ W 1,1(J).

loc
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recalling that Per({δ > ·}) ∈ L1(0, ϵ) by coarea formula, it belongs to W 1,1(J). In addition, (62) is an
bsolutely continuous representative of r ↦→ Per({δ > r}), thus its distributional derivative on J is given by
ormula (60). Since the distributional derivative in (60) is actually in L1(0, ϵ) by Corollary 4.21, we deduce
hat Per({δ > ·}) ∈ W 1,1(0, ϵ), as claimed. Finally, the lower semicontinuity of the perimeter implies that
er({δ > 0}) = Per(Ω) < ∞. □

Recall the definition of e(t, r, s), the Neumann heat kernel on the half-line, that is

e(t, r, s) = 1√
4πt

(
e− (r−s)2

4t + e− (r+s)2
4t

)
for (t, r, s) ∈ (0,∞) × [0,∞) × [0,∞).

With a slight abuse of notation, we denote the space L∞
t

(
(0,∞), L1

r(0,∞)
)

as L∞
t L

1
r.

Lemma 6.4 (Duhamel’s Principle). Let ς(t, r) ∈ L∞
t L

1
r and v0, v1 ∈ C∞(0,∞) ∩ L∞(0,∞). Then, there

exists a unique weak solution v ∈ L∞
t,locL

∞
r to the non-homogeneous heat equation on the half-line:⎧⎪⎨⎪⎩

(∂t − ∂2
r )v(t, r) = ς(t, r) in D ′((0,∞) × (0,∞)),

v(0, r) = v0(r) for r > 0,
∂rv(t, 0) = v1(t) for t > 0.

(63)

n particular, v ∈ C∞((0,∞) × [0,∞)) and we have

v(t, r) =
∫ ∞

0
e(t, r, s) v0(s) ds+

∫ t

0

∫ ∞

0
e(t− τ, r, s)ς(τ, s) dsdτ −

∫ t

0
e(t− τ, r, 0) v1(τ) dτ. (64)

Proof. If ς is smooth, then a classical solution v to (63) exists and is unique. In particular, v is given by
(64) and v ∈ C∞((0,∞) × [0,∞)). We refer to [32] for further details. Thus, by linearity, it is enough to
study the case where v0 = v1 = 0: we wish to prove that

v(t, r) =
∫ t

0

∫ ∞

0
e(t− τ, r, s)ς(τ, s) dsdτ (65)

is the unique solution to (63) in this situation. We begin by proving existence in L∞
t,locL

∞
r . Consider a family

of mollifiers {ηϵ} such that ηϵ ≥ 0, ∥ηϵ∥L1(R) = 1 and supp ηϵ ⊂ (−ϵ, ϵ), and define

Tϵ(f)(t, r) :=
∫∫

f(τ, s) ηϵ(t− τ) ηϵ(r − s) dτ ds ∀ f ∈ L1
loc((0,∞) × (0,∞)),

with the convention that f(t, ·) = 0 for t < 0. Set ςϵ := Tϵ(ς), then, by standard properties of the convolution,
ςϵ ∈ L∞

t L
1
r with

∥ςϵ∥L∞
t L1

r
≤ ∥ς∥L∞

t L1
r

and ςϵ
ϵ→0−−−→ ς in L1

loc,tL
1
r.

For any ϵ > 0, denote by vϵ the unique solution to (63) with ςϵ as source term and v0 = v1 = 0, that is
vϵ(t, r) =

∫ t

0
∫∞

0 e(t− τ, r, s)ςϵ(τ, s) dsdτ . For a fixed T > 0, we estimate for t ≤ T

|vϵ(t, r)| ≤
∫ t

0
∥e(t− τ, ·, ·)∥L∞ dτ ∥ςϵ∥L∞

t L1
r

≤
∫ t

0

1√
π(t− τ)

dτ ∥ς∥L∞
t L1

r
≤ C(T ) ∥ς∥L∞

t L1
r
,

herefore {vϵ} is equibounded in L∞((0, T ) × (0,∞)), hence there exists ṽ ∈ L∞((0, T ) × (0,∞)) such
hat vϵ

∗−⇀ ṽ in L∞((0, T ) × (0,∞)), which together with the convergence of ςϵ gives that ṽ(t, r) = v(t, r),
here v is defined in (65). Moreover, by passing in the limit in the distributional formulation for vϵ,
e have that v solves (63), giving existence of a weak solution. We prove uniqueness in L∞

t,locL
∞
r . Let

, ṽ ∈ L∞((0,∞) × (0,∞)) be two solutions to (63) and set w := v − ṽ. Then, by linearity, w solves (63)
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with v0 = v1 = 0 and ς = 0. We consider the family {ηϵ} as above and define wϵ := Tϵ(w) which belongs to
∞((0,∞) × (0,∞)) and solves (63). On the one hand, by uniqueness of classical solutions, wϵ = 0, on the

ther hand wϵ
∗−⇀ w in L∞((0, T )×(0,∞)). Therefore, w = 0. To conclude, notice that by the explicit formula

64) and the regularity properties of the Neumann heat kernel e, we get that v ∈ C∞((0,∞) × [0,∞)). □

Regarding the notation in the next theorem, we refer the reader to Definitions 3.6 and 3.7.

Theorem 6.5. Let (X, d,m) be an RCD(K,N) space for K ∈ R and N ∈ (1,∞) and let Ω ⊂ X be open and
bounded. Assume ∂Ω satisfies the (mIGC)ϵ condition. Moreover, assume that there exists ρ > 0 such that

[∆∆∆δ]reg ∈ L1+ρ({0 < δ < ϵ}). (66)

Then, the heat content associated with Ω admits the following asymptotic expansion

QΩ (t) = m(Ω) −
√

4t
π

Per(Ω) +O

(
t

2(1+ρ)−1
2(1+ρ)

)
as t → 0+. (67)

emark 6.6. Let E ⊂ Ω be a closed set with Cap(E) = 0, if (67) holds for Ω , then the same expansion
olds for the set Ω ⊂ E with the same reminder term. Indeed, on the one hand, due to Remark 3.8,
Ω (t) = QΩ\E(t) for every t > 0. On the other hand,

m(Ω) = m(Ω \ E) and Per(Ω) = Per(Ω \ E)

ince m(Ω △ (Ω \ E)) = 0. As a consequence of this remark, the expansion in (67) holds when considering
s Ω the set in the second picture in Fig. 1(b).

roof of Theorem 6.5. Consider the compact set E := {δ > ϵ/2} ⊂ Ω and let φ be a good cut-off function
in the sense of Proposition 2.12) such that φ = 1 on E and suppφ ⊂ Ω . We define ϕ := 1 − φ and, since
∈ Lipbs(Ω)∩D(∆), ∆φ ∈ L∞(m), we have that ϕ ∈ D(∆|Ω ) with ∆|Ωϕ ∈ L∞(Ω ,m). Letting ut := hΩt χΩ ,

we compute ∫
Ω

(1 − ut) dm =
∫
Ω

(1 − ut)ϕdm +
∫
Ω

(1 − ut)φdm = (A) + (B).

As a consequence of Corollary 3.17, (B) = o(t), as t → 0+. We focus on (A). Defining the auxiliary function
F (t, r) :=

∫
{δ>r}(1 − ut)ϕdm, we can rewrite (A) = F (t, 0). Therefore, in order to conclude, it is enough to

show that
F (t, 0) =

√
4t
π

Per(Ω) +O

(
t

2(1+ρ)−1
2(1+ρ)

)
, as t → 0+. (68)

o deduce such an equality, we apply the Duhamel’s principle, cf. Lemma 6.4, to the function F (t, r), then
valuate at r = 0. First of all, the initial datum is given by F (0, r) = 0. Second of all, for the boundary
ondition, Proposition 5.4 gives that ∂rF (t, 0) = −

∫
ϕ (1−ut) dPer(Ω , ·). In addition, since ut ∈ W 1,2

0 (Ω), we
an apply Proposition 3.2 and obtain ut = 0, Per(Ω , ·)-a.e., thus, recalling that ϕ ≡ 1 on ∂Ω , (1 −ut)ϕ = 1,
er(Ω , ·)-a.e.. Therefore, ∂rF (t, 0) = −Per(Ω) for every t > 0. Third of all, for what concerns the source
erm, note that we may apply Corollary 5.8 to F , since (1−ut)ϕ ∈ D(∆|Ω )∩L∞(Ω ,m) (see Propositions 3.9
nd 3.11), obtaining that

∂2
rF (t, ·) =

∫
{δ>·}

∆|Ω [ϕ(1 − ut)] dm − δ#(ϕ(1 − ut)[∆∆∆δ]regm) (69)

olds in the sense of distribution. Moreover, since ut solves (22), we get that

∂tF (t, r) = −
∫

ϕ∆|Ωut dm, (70)

{δ>r}
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where ∆|Ωut = ∆Ωut as a consequence of (24). Using (69) and (70), we obtain

∂tF (t, r) − ∂2
rF (t, r) = −

∫
{δ>r}

ϕ∆|Ωut dm −
∫

{δ>r}
∆|Ω [ϕ(1 − ut)] dm + δ#(ϕ(1 − ut)[∆∆∆δ]regm)

(25)=
∫

{δ>r}
(2⟨∇ut,∇ϕ⟩ − (1 − ut)∆|Ωϕ) dm + δ#(ϕ(1 − ut)[∆∆∆δ]regm) =: µt(r).

We now show that µt satisfies the hypotheses of Lemma 6.4. We write µt = µ1
t + µ2

t , where µ1
t := gtL1 =(∫

{δ>·}(2⟨∇ut,∇ϕ⟩ − (1 − ut)∆|Ωϕ) dm
)

L1 and µ2
t := δ#(ϕ(1 − ut)[∆∆∆δ]regm). We claim that the total

variation of µt is uniformly bounded, namely

sup
t>0

|µt|(0,∞) < ∞. (71)

We compute the total variation of µ1
t : notice that, up to a cut-off argument with a good cut-off function

which is 1 on Ω , we have ϕ ∈ D(∆) ∩ L∞(m), so by definition one has ∇ϕ ∈ D(div) and ∆ϕ = div(∇ϕ),
m-a.e. in Ω . Analogously, we can extend 1 −ut to a function in W 1,2(X)∩L∞(m). Thus, by Proposition 2.5,
(1 − uτ )∇ϕ ∈ D(div) and we can apply the weak Gauss–Green formula, cf. Theorem 6.1, obtaining

gt(r) =
∫

{δ>r}
(2⟨∇ut,∇ϕ⟩ − (1 − ut)∆|Ωϕ) dm =

∫
{δ>r}

(
(1 − ut)∆|Ωϕ− 2div((1 − ut)∇ϕ)

)
dm

=
∫

{δ>r}
(1 − ut)∆|Ωϕ dm −

∫
2(1 − ut)⟨∇ϕ,∇δ⟩ dPer({δ > r}, ·)

(72)

for a.e. r > 0. Hence, using the weak maximum principle, cf. Proposition 3.9, and coarea formula (51), we
have

∥gt∥L1(0,∞) ≤
∫ ∞

0

∫
2|1 − ut| |∇ϕ| dPer({δ > s}, ·) ds+

∫ ∞

0

∫
{δ>s}

|1 − ut ∥ ∆|Ωϕ| dmds

≤ 2Lip(ϕ)m(Ω) + ∥∆|Ωϕ∥L∞(Ω,m) m(Ω) diam(Ω),

and this bound is uniform as t > 0. This proves that gt(r) ∈ L∞
t L

1
r. It remains to treat the term µ2

t . Recall
that, given two metric spaces (Y, dY), (Z, dZ), a signed measure µ on Y and a Borel map f : Y → Z, then
|f#µ| ≤ f#|µ|. Hence, using once again the weak maximum principle, we get:

|µ2
t |(0,∞) ≤ δ#(|ϕ(1 − ut)[∆∆∆δ]reg|m)(0,∞) =

∫
Ω

|ϕ(1 − ut)[∆∆∆δ]reg| dm ≤ ∥ϕ∥L∞∥[∆∆∆δ]reg∥L1({0<δ<ϵ}).

This implies that supt |µ2
t |(0,∞) < ∞, proving (71).

We claim that µt ≪ L1: µ1
t is already absolutely continuous. The same is true for µ2

t , for every t > 0.
Indeed, let N ∈ B(R) such that L1(N) = 0. If t /∈ N , then Per({δ > t}, δ−1(N)) = 0, being Per({δ > t}, ·)
concentrated on the set {δ = t}. Therefore, by coarea formula, we have

m(δ−1(N)) =
∫ ∞

0
Per({δ > t}, δ−1(N)) dt =

∫
N

Per({δ > t}, δ−1(N)) dt = 0.

As a consequence, δ−1(N) is m-negligible, hence we finally deduce

δ#(ϕ(1 − ut)[∆∆∆δ]regm)(N) =
∫

δ−1(N)
ϕ(1 − ut)[∆∆∆δ]reg dm = 0,

proving that µ2
t ≪ L1, and so µt ≪ L1. Finally, combining this property and (71), we get that

1 ∞ 1
µt = ςL and ς(t, r) ∈ Lt Lr.
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We are in position to apply Lemma 6.4 with µt as above, v0(r) := F (0, r) = 0 and v1(t) := ∂rF (t, 0) =
Per(Ω), and we have

F (t, 0) =

(R1)  ∫ t

0

∫ ∞

0
e(t− τ, 0, s)gτ (s) dsdτ

+
∫ t

0

∫ ∞

0
e(t− τ, 0, s) dδ#[(1 − uτ )ϕ[∆∆∆δ]regm](s) dτ  

(R2)

+
∫ t

0
e(t− τ, 0, 0) Per(Ω) dτ  

(P)

.

The principal term (P) is explicitly given by:

(P) =
∫ t

0

1√
π(t− τ)

dτ Per(Ω) =
√

4t
π

Per(Ω).

n order to conclude, it is enough to prove that |(R1)| + |(R2)| = O
(
t

2(1+ρ)−1
2(1+ρ)

)
. We start with (R1): by (72),

e can rewrite this term as follows

(R1) =
∫ t

0

∫ ϵ

0
e(t− τ, 0, s)

(∫
{δ>s}

(1 − uτ )∆|Ωϕdm −
∫

2(1 − uτ )⟨∇ϕ,∇δ⟩ dPer({δ > s}, ·)
)

dsdτ

herefore, after the change of variable τ = tθ, we have that

(R1)
t

=
∫ 1

0

∫ ϵ

0
e(t(1 − θ), 0, s)

∫
{δ>s}

(1 − utθ)∆|Ωϕdmdsdθ  
(R11)

−
∫ 1

0

∫ ϵ

0
e(t(1 − θ), 0, s)

∫
2(1 − utθ)⟨∇ϕ,∇δ⟩ dPer({δ > s}, ·) dsdθ  

(R12)

.

e first consider the term (R11). For simplicity of notations, we define G̃t(s) :=
∫

{δ>s}(1 −ut)∆|Ωϕdm and
t(s) := χ(0,ϵ)(s) G̃t(s) + χ(−ϵ,0)(s) G̃t(−s) and

∫ 1

0

[∫ ϵ

0

1√
πt(1 − θ)

e
− s2

4t(1−θ) G̃tθ(s) ds
]

dθ =
∫ 1

0

(
Pt(1−θ)Gtθ

)
(0) dθ, (73)

where Pt denotes the heat flow on R. Fix θ ∈ (0, 1). We check that ∥Gtθ∥L∞ → 0 as t → 0, indeed for s ∈ R,

|Gtθ(s)| ≤
∫

{ϵ/2<δ<ϵ}
|1 − ut| |∆|Ωϕ| dm ≤

∫
{ϵ/2<δ<ϵ}

|1 − ut| dm ∥∆|Ωϕ∥L∞({ϵ/2<δ<ϵ})
(32)= o(t).

Moreover, by the maximum principle, we have that ∥Pt(1−θ)Gtθ∥L∞ ≤ ∥Gtθ∥L∞ for every t > 0, thus
|Pt(1−θ)Gtθ(0)| → 0, as t → 0+. Therefore, since

|Pt(1−θ)Gtθ(0)| ≤ ∥Pt(1−θ)Gtθ∥L∞ ≤ ∥Gtθ∥L∞ ≤
∫

{ϵ/2<δ<ϵ}
|1 − ut| dm ∥∆|Ωϕ∥L∞({ϵ/2<δ<ϵ})

≤ m({ϵ/2 < δ < ϵ}) ∥∆ ϕ∥ ∞
|Ω L ({ϵ/2<δ<ϵ})
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we can apply dominated convergence theorem in (73) and we get that |(R11)| = o(1). We study the term
(R12). We compute, for t sufficiently small,

|(R12)| =
⏐⏐⏐⏐∫ 1

0

∫ ϵ

0
e(t(1 − θ), 0, s)

∫
2(1 − utθ)⟨∇ϕ,∇δ⟩ dPer({δ > s}, ·) dsdθ

⏐⏐⏐⏐
(51)=

⏐⏐⏐⏐∫ 1

0

∫
Ω

2e(t(1 − θ), 0, δ)(1 − utθ)⟨∇ϕ,∇δ⟩ dmdθ
⏐⏐⏐⏐

≤ Lipϕ
∫ 1

0

∫
{ ϵ

2 <δ<ϵ}
e

− δ2
4t(1−θ)

2√
πt(1 − θ)

(1 − utθ) dm dθ

≤ 2Lipϕ√
πt

∫ 1

0

1√
1 − θ

∥1 − utθ∥L1({ϵ/2<δ<ϵ}) dθ
(32)
≤ C

√
t

∫ 1

0

θ√
1 − θ

dθ = C
√
t,

here C > 0 is constant independent of t. This shows that |(R1)| = o(t) as t → 0+.
We study the term (R2). Since ∂Ω verifies (mIGC)ϵ condition, by Corollary 6.3, we have that

∥Per({δ > s})∥L∞(0,ϵ) < ∞. (74)

ence, for t small, we compute

|(R2)| =
⏐⏐⏐⏐⏐
∫ t

0

1√
π(t− τ)

∫
{0<δ<ϵ}

e
− δ2

4(t−τ) [∆∆∆δ]reg dm dτ
⏐⏐⏐⏐⏐

≤
∫ t

0

1√
π(t− τ)

(∫
{0<δ<ϵ}

e
− δ2

4(t−τ)
1+ρ

ρ dm
) ρ

1+ρ
(∫

{0<δ<ϵ}
|[∆∆∆δ]reg|1+ρ dm

) 1
1+ρ

dτ

(66)
≤ C

∫ t

0

1√
π(t− τ)

(∫ ϵ

0
e

− s2
4(t−τ)

1+ρ
ρ Per({δ > s}) ds

) ρ
1+ρ

dτ

(74)
≤ C

∫ t

0

1√
t− τ

(∫ ϵ

0
e

− s2
4(t−τ)

1+ρ
ρ ds

) ρ
1+ρ

dτ

≤ C

∫ t

0

1√
t− τ

(∫ ∞

0
e−s2

ds
) ρ

1+ρ

(√
ρ(t− τ)

1 + ρ

) ρ
1+ρ

dτ

≤ C

∫ t

0
(t− τ)− 1

2(1+ρ) dτ ≤ C

∫ t

0
τ

− 1
2(1+ρ) dτ ≤ C

t
1− 1

2(1+ρ)

1 − 1
2(1+ρ)

= Ct
2(1+ρ)−1

2(1+ρ) ,

here the constant C > 0 changes line by line and is independent of t. This proves that |(R2)| =(
t

2(1+ρ)−1
2(1+ρ)

)
as t → 0+, and thus the same holds for |(R1)| + |(R2)|. Finally, this implies that (68) is

erified, concluding the proof. □
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Appendix. On the definitions of local Sobolev spaces

For the sake of completeness, we compare the relevant definitions of local Sobolev spaces present in
literature and we prove they are equivalent. The following definition can be found in [7, Def. 2.14].

Definition A.1. Let X be a metric measure space and let Ω ⊂ X be open. We say that f ∈ L2(Ω ,m)
elongs to H1,2(Ω) if the following conditions hold:

(i) φf ∈ W 1,2(X), for any φ ∈ Lipbs(Ω);
ii) |Df | ∈ L2(Ω ,m).

e equip this space with the following norm

∥f∥2
H1,2(Ω) = ∥f∥2

L2(Ω,m) +
∫
Ω

|Df |2 dm.

For f ∈ L2(Ω ,m) verifying item (1) of Definition A.1, the local minimal weak upper gradient |Df | can
be defined as follows: choose a sequence {χn} ⊂ Lipbs(Ω) such that {χn = 1} ↗ Ω , and set

|Df | = |D(fχn)|, m-a.e. on {χn = 1} \ {χn−1 = 1}, (75)

here fχn ∈ W 1,2(X) by item (1) of Definition A.1. It can be easily checked that (75) is independent on
he choice of the sequence {χn}.

heorem A.2. Let (X, d,m) be a metric measure space and let Ω ⊂ X be open. Then W 1,2(Ω) = H1,2(Ω)
nd it holds that

1
2

∫
Ω

|Df |2 dm = ChΩ (f). (76)

Proof. First of all, we prove the inclusion W 1,2(Ω) ⊂ H1,2(Ω). Let f ∈ W 1,2(Ω), then, by definition, there
xists an optimal sequence {fk} ⊂ Liploc(Ω) such that

fk −−−−−→
L2(Ω,m)

f and 2ChΩ (f) = lim
k→∞

∫
Ω

(lip fk)2 dm.

As a consequence, for any φ ∈ Lipbs(Ω), the sequence {φfk} ⊂ Lipbs(X)3 approximates φf in L2(X,m),
and also

Ch(φf) ≤ lim
k→∞

Ch(φfk) ≤ lim
k→∞

∫
Ω

[
φ2(lip fk)2 + f2

k (lipφ)2] dm < +∞.

Thus, item (1) of Definition A.1 is verified. Now consider a sequence {χn} as in (75), then, denoting by
Ωn = {χn = 1} \ {χn−1 = 1}, we have∫

Ω

|Df |2 dm =
∞∑

n=1

∫
Ωn

|D(fχn)|2 dm ≤
∞∑

n=1
lim

k→∞

∫
Ωn

(lip(fkχn))2 dm

≤ 2
∞∑

n=1
lim

k→∞

∫
Ωn

[
χ2

n(lipfk)2 + f2
k (lipχn)2] dm

= 2
∞∑

n=1
lim

k→∞

∫
Ωn

(lipfk)2 dm ≤ 2 lim
k→∞

∫
Ω

(lipfk)2 dm < +∞.

3 Here Lip (X) denotes the set of Lipschitz functions on X with bounded support.
bs
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This settles also item (2) of Definition A.1, proving that f ∈ H1,2(Ω) and ≤ in (76) holds. For the converse
inclusion, let f ∈ H1,2(Ω); using a Meyers-Serrin type-strategy, we find a sequence {fm} ⊂ Lipbs(Ω) such
hat fm → f in H1,2(Ω). Using the L2(Ω ,m)-lower semicontinuity of ChΩ we have that:

ChΩ (f) ≤ lim
m→∞

ChΩ (fm) = lim
m→∞

1
2

∫
Ω

|Dfm|2 dm = 1
2

∫
Ω

|Df |2 dm < ∞,

here the second to last equality holds since fm ∈ W 1,2(X), with bounded support in Ω . This implies that
∈ W 1,2(Ω) and ≥ in (76) holds. □

Assume (X, d,m) is infinitesimally Hilbertian. We can define the gradient operator restricted to Ω ,
:H1,2(Ω) → L2(TX)|Ω as follows: let f ∈ H1,2(Ω) and pick a sequence {χn} as above, then set

∇f :=
∞∑

n=1
∇(fχn)χ{χn=1}\{χn−1=1}. (77)

n the one hand, the series (77) converges in L2(TX); indeed,⏐⏐⏐⏐⏐
k∑

n=m

∇(fχn)χΩn

⏐⏐⏐⏐⏐ ≤
k∑

n=m

|∇(fχn)|χΩn = |Df |
k∑

n=m

χΩn , (78)

here Ωn = {χn = 1} \ {χn−1 = 1}. Therefore, by dominated convergence theorem and using |Df | ∈
2(Ω ,m), we conclude that the sequence (78) is Cauchy, thus proving the claim. On the other hand, by

ocality of the global gradient in L2(TX), (77) does not depend on the choice of the sequence {χn}. We also
oint out that, whenever f ∈ W 1,2(X), its restriction in Ω belongs to H1,2(Ω); in this case, (77) is consistent
ith the gradient of f ∈ W 1,2(X) multiplied by χΩ .

emark A.3. It is convenient to introduce Definition A.1, since if X is infinitesimally Hilbertian, meaning
hat W 1,2(X) is a Hilbert space, the same property is inherited by H1,2(Ω). Indeed, it can be readily checked
hat

|Df |2 = ⟨∇f,∇f⟩ m-a.e. in Ω , if f ∈ H1,2(Ω). (79)

n particular, this implies that H1,2(Ω) is a Hilbert space, since f ↦→ ∥|Df |∥2
L2(Ω,m) defines a quadratic form.

hus, by Theorem A.2, we immediately deduce that W 1,2(Ω) is a Hilbert space.

roposition A.4. Let (X, d,m) be an infinitesimally Hilbertian metric measure space and let Ω ⊂ X be open.
et u, v ∈ H1,2(Ω) ∩ L∞(Ω ,m), then uv ∈ H1,2(Ω) and

∇(uv) = v∇u+ u∇v. (80)

roof. For a given φ ∈ Lipbs(Ω), choose ψ ∈ Lipbs(Ω) such that ψ ≡ 1 on supp(φ). Then,

φuv = φψuv = (φu)(ψv) ∈ W 1,2(X),

y basic properties of W 1,2(X). Then, item (1) of Definition A.1 is verified. On the other hand, by locality
f the minimal weak upper gradient, it follows that |D(uv)| ∈ L1(Ω ,m) and also item (2) of Definition A.1
s satisfied. It is left to prove (80). We consider {χn} as above, with χn ≥ 0, and

uvχ2 = (uχ )(vχ ).
n n n
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Then, using the definition (77) of gradient restricted to Ω , we compute

∇(uv) =
∞∑

n=1
∇(uvχ2

n)χ{χ2
n=1}\{χ2

n−1=1} =
∞∑

n=1
(∇(uχn)vχn + uχn∇(vχn))χ{χn=1}\{χn−1=1}

=
( ∞∑

n=1
∇(uχn)χ{χn=1}\{χn−1=1}

)
v + u

( ∞∑
n=1

∇(vχn)χ{χn=1}\{χn−1=1}

)
= v∇u+ u∇v.

This concludes the proof. □

We introduce here a useful calculus rule for W 1,2
0 (Ω). We refer to Section 3 for the precise definition.

Proposition A.5. Let (X, d,m) be a metric measure space and let Ω ⊂ X be open. Let ψ ∈ C1(R) with
ψ(0) = 0 and bounded derivative. Then, for every f ∈ W 1,2

0 (Ω) we have ψ ◦ f ∈ W 1,2
0 (Ω).

Proof. Since f ∈ W 1,2
0 (Ω), there exists a sequence {fn} ∈ Lipbs(Ω) such that fn → f in W 1,2(X). Then

ψ ◦ fn ∈ Lipbs(Ω) and, in addition supp (ψ ◦ fn) ⊂ supp fn ⋐ Ω , using that ψ(0) = 0. To conclude, it is
enough to check that ψ ◦ fn → ψ ◦ f in W 1,2(X). First of all, we have

∥ψ ◦ fn − ψ ◦ f∥2
L2(Ω,m) ≤ Lip(ψ) ∥fn − f∥2

L2(Ω,m)
n→∞−−−−→ 0.

econd of all, by the chain rule d(ψ ◦ fn) = (ψ′ ◦ fn)dfn, m-a.e. in X, therefore we have∫
Ω

|d(ψ ◦ fn−ψ ◦ f)|2∗ dm =
∫
Ω

|(ψ′ ◦ fn)dfn − (ψ′ ◦ f)df |2∗ dm

≤ 2
∫
Ω

|ψ′ ◦ fn − ψ′ ◦ f |2|df |2∗ dm + 2
∫
Ω

|ψ′ ◦ fn|2|d(fn − f)|2∗ dm

≤ 2
∫
Ω

|ψ′ ◦ fn − ψ′ ◦ f |2|df |2∗ dm + 2Lip(ψ)2 ∥|dfn − df |∗∥2
L2(Ω,m). (81)

Taking the limit as n → ∞, the second term converges to 0, since fn → f in W 1,2
0 (Ω). For the first term,

notice that ψ′ ∈ C(R), thus ψ′ ◦ fn → ψ′ ◦ f m-a.e. up to a subsequence, and

|ψ′ ◦ fn − ψ′ ◦ f |2|df |2∗ ≤ 4Lip(ψ)|df |2∗ ∈ L1(Ω ,m),

hence we conclude by dominated convergence theorem. Notice that, this same argument proves that, for any
subsequence, there exists a further subsequence converging to ψ ◦ f in W 1,2(X). As a consequence, the full
sequence converges in W 1,2(X). □

Remark A.6. Adapting the proof of Proposition A.5, one can prove that, for any v ∈ W 1,2
0 (Ω) such that

v ≥ 0, m-a.e., there exists an approximating sequence {vn} ⊂ Lipbs(Ω) consisting of non-negative functions.
Indeed, let {un} ⊂ Lipbs(Ω) such that un → u in W 1,2

0 (Ω) and consider ψ(t) = max{0, t} ∈ Lip(R). Then,
vn := u+

n = ψ ◦un ∈ Lipbs(Ω). To prove vn → v in W 1,2
0 (Ω), we follow the same strategy of Proposition A.5:

the only problem may arise at the discontinuity point of ψ′. However, since by locality dv = 0, m-a.e. in
{v = 0}, in (81), we have∫

Ω

|ψ′ ◦ vn − ψ′ ◦ v|2|dv|2∗ =
∫

{v>0}
|ψ′ ◦ vn − ψ′ ◦ v|2|dv|2∗,
and, up to a subsequence, we have dominated convergence as before.
41
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