This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Riuttamäki, Saara; Bannykh, Anton; Pihko, Petri M.

Title: Carboxylate Catalysis: A Catalytic O-Silylative Aldol Reaction of Aldehydes and Ethyl Diazoacetate

Year: 2023

Version: Published version

Copyright: © The Authors. Published by American Chemical Society

Rights: CC BY 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Riuttamäki, S., Bannykh, A., \& Pihko, P. M. (2023). Carboxylate Catalysis : A Catalytic O-Silylative Aldol Reaction of Aldehydes and Ethyl Diazoacetate. Journal of Organic Chemistry, 88(20), 14396-14403. https://doi.org/10.1021/acs.joc.3c01304

Carboxylate Catalysis: A Catalytic O-Silylative Aldol Reaction of Aldehydes and Ethyl Diazoacetate

Saara Riuttamäki, ${ }^{\ddagger}$ Anton Bannykh, ${ }^{\ddagger}$ and Petri M. Pihko*

Cite This: https://doi.org/10.1021/acs.joc.3c01304

Read Online
ACCESS I Lull Metrics \& More I 国A Aricle Recommendations | © Supporing Information

Abstract

A mild catalytic variant of the aldol reaction between ethyl diazoacetate and aldehydes is described using a combination of N, O-bis(trimethylsilyl)acetamide and catalytic tetramethylammonium pivalate as catalyst. The reaction proceeds rapidly at ambient temperature to afford the O-silylated aldol products in good to excellent yield, and the acetamide byproducts can be removed by simple filtration.

- Mild conditions • In situ O-silylation • Suitable for enolizable aldehydes

- INTRODUCTION

Synthetic reactions involving catalytic bases are sometimes sensitive to water or unprotected hydroxy groups in the substrate, as they are rapidly deprotonated to potential nucleophiles by the catalyst. In addition, unprotected hydroxyl groups in the product could also present problems. For example, the aldol addition and related reactions give rise to unprotected aldolates, which may render the reaction reversible and result in incomplete conversions. ${ }^{1}$
To overcome these limitations, reactions involving catalytic bases are sometimes assisted by auxiliary hard acid reagents, such as magnesium ions or silylating agents. ${ }^{2}$ Herein we describe a particularly mild combination of a carboxylate salt and N, O-bis(trimethylsilyl)acetamide (BSA) $)^{3}$ as a catalyst/silyl reagent combination, as traces of reagent and catalyst can be removed by simple trituration, filtration, and concentration.

We have selected the aldol reaction between ethyl diazoacetate and aldehydes to illustrate the benefits of the catalytic system. The first published variant of the reaction, catalyzed by KOH in methanol, resulted in an equilibrium that favored the starting materials. ${ }^{4}$ To overcome this limitation, milder catalytic methods and other variants have been published. In 1976, Evans and co-workers described a mild O-silylative variant which required the use of TMS-activated diazoacetate and catalytic KCN/18-crown-6. ${ }^{5}$ Even milder methods employing, among others, DBU, ${ }^{6}$ quaternary ammonium hydroxide, ${ }^{7}$ mixed $\mathrm{La}_{2} \mathrm{O}_{3} / \mathrm{MgO},{ }^{8}$ or benzoic acid^{9} as catalysts have been disclosed. With metal phenolates or organometallic bases, the reaction has also been rendered enantioselective ${ }^{10}$ (Scheme 1).
Typically, the reactions have been restricted to simple aryl or alkyl aldehydes, and chromatographic purification has been required for the products. On the basis of our previous work on carboxylate catalysis in the enolization of thioesters with simple carboxylate catalysts such as tetramethylammonium pivalate (TMAP), ${ }^{11}$ we hypothesized that the diazoacetate aldol reaction should also be amenable to carboxylate catalysis.

Scheme 1. Examples of Aldol-Type Reactions between Ethyl Diazoacetates and Aldehydes

- Cyanide catalysed diazoaldol reaction (Evans, 1976):

- Metal-free catalysed diazoaldol reaction (Wang, 2002):

- Metal catalysed diazoaldol reaction (Trost, 2009):

- Mild conditions • In situ O-silylation•Suitable for enolizable substrate

A few examples of catalytic systems involving carboxylate catalysts have been published, demonstrating diverse applica-

[^0]Table 1. Optimization of the TMAP-Catalyzed Diazoaldol-Type Reaction

tions in $\mathrm{C}-\mathrm{C}$ bond formation as well as in proton-transfer reactions. ${ }^{12}$ Herein we describe a particularly mild, catalytic method for the one-pot silylative diazoacetate aldol using a mild silylating agent (N, O-bis(trimethylsilyl)acetamide, BSA) that gives the O-silylated aldol products in good yields even without any chromatographic purification.

- RESULTS AND DISCUSSION

Tetramethylammonium pivalate (TMAP, 3) was chosen as the carboxylate catalyst for our test reactions with benzaldehyde 1a and ethyl diazoacetate $\mathbf{2}$ since TMAP is soluble in acetonitrile. With a catalytic amount of TMAP (Table 1, entry 1), only traces alcohol 4a could be obtained. We hypothesized that the poor turnover in this experiment resulted from deactivation of the catalyst by proton transfer from $4 \mathbf{a}$. Indeed, with a stoichiometric amount (1.2 equiv) of TMAP, the reaction reached 41% conversion (Table 1, entry 2). To overcome this problem, a silylating agent, N, O-bis(trimethylsilyl)acetamide (BSA), was added to the reaction (entry 3), this resulted in full conversion to O-silylated product 5 a in less than 3 h . Encouraged by this success, we explored the conditions further on a preparative scale (Table 1, entries 4-8).
In dry acetonitrile, the reaction was generally over in 5-10 min after adding $1-10 \mathrm{~mol} \%$ of the catalyst (Table 1, entries $4-8$). Only with very low catalyst loading ($0.1 \mathrm{~mol} \%$, see entry 9), the reaction takes 24 h to reach completion. The reaction proved to be very high yielding, with over 90% yield in every optimization test (entries 4-9). The same theme continued in the substrate scope (Scheme 2). The reaction gives high yields with both aromatic ($\mathbf{5 a - g}$), aliphatic ($\mathbf{5 h} \mathbf{- m}$) and with heterocyclic aldehydes ($\mathbf{5 1 - n}$). In most cases, the products could be obtained without chromatographic purification, as the silylacetamide byproducts could be removed by simple trituration with hexanes and filtration (see Experimental Section for details). 4-Hydroxybenzaldehyde ($\mathbf{1 g}$) is also a viable substrate if it is first treated with excess of BSA to silylate the phenolic hydroxy group before adding the catalyst to the reaction mixture. The doubly O silylated product 5 g was obtained in high yield (98\%).

The conditions are mild enough to preserve enantiomeric purity of sensitive aldehydes, as exemplified by the synthesis of 5n in 91:9 dr. After desilylation, the corresponding alcohol 6 shows excellent er =97:3 $(\mathrm{dr}=91: 9)($ see Scheme 3). Similar
results were obtained with a reaction carried out at $0^{\circ} \mathrm{C} .5 n$ can be readily converted to the acetonide 9 a , enabling the confirmation of the stereochemistry (Scheme 3). The observed anti stereochemistry is consistent with literature precedents ${ }^{9}$ and the polar Felkin-Anh model. ${ }^{13}$

Experiments to provide insight into the mechanism of the reaction are summarized in Scheme 4. In the absence of aldehyde 1a, $\mathbf{2}$ is C-silylated to give $\mathbf{1 0}$ but at a rate which is over 5 orders of magnitude slower than the aldol reaction (6.2 $\pm 0.6 \mathrm{nM} \mathrm{min}^{-1}$ vs $0.35 \pm 0.02 \mathrm{mM} \mathrm{min}{ }^{-1}$, Scheme 4a). The slow rate suggests that $\mathbf{1 0}$ is not an intermediate. The aldol reaction between $\mathbf{1 a}$ and 2 proceeds in the absence of TMAP, but the rate is negligible compared to the TMAP/BSA catalytic process $\left(0.62 \pm 0.11 \mathrm{nM} \mathrm{min}{ }^{-1}\right.$ vs $0.35 \pm 0.02 \mathrm{mM} \mathrm{min}^{-1}$, Scheme 4a). Interestingly, bis(trimethylsilyl)trifluoroacetamide (BSTFA) provides the aldol product at a rate which is comparable to the rate observed with BSA (Scheme 4a). These four control experiments suggest that the catalytic cycle likely involves an active species generated from BSA or BSTFA and TMAP.

The active, on-cycle species could be the desilylated anion derived from BSA/BSTFA and TMAP via silyl transfer to the carboxylate anion (a probase mechanism). ${ }^{14}$ A catalytic cycle consistent with this scenario presented in Scheme 5. We propose that the base deprotonates 2 (k_{1} in Scheme 5). However, the turnover rate is not determined by the deprotonation step, since this should lead to a measurable difference between the rates obtained with BSA and BSTFA.

The aldol reaction to give $\mathbf{5 a}$ must also involve $\mathrm{C}-\mathrm{C}$ bond formation and silylation steps, and these steps might be slower than the proton transfer steps. To explore substituent effects with different aldehyde electrophiles, we examined the relative rates of the formation of $\mathbf{5 a}, \mathbf{c}, \mathbf{d}, \mathbf{f}$ via competition experiments (Scheme $4 \mathbf{b}$, for details, see the Supporting Information). ${ }^{15}$ While a reliable ρ value could not be established from these experiments alone, the reaction was found to be accelerated by electron-withdrawing and decelerated by electron-donating groups ($p-\mathrm{OMe}, k_{\mathrm{rel}} \approx 0.11 ; p-\mathrm{Me}, k_{\mathrm{rel}} \approx 0.13$; and $p-\mathrm{Cl}, k_{\mathrm{rel}} \approx$ 4.3 compared to $\mathbf{5 a}$). These data are consistent with a turnover-limiting nucleophilic addition to the aldehyde carbonyl.

Finally, to examine to which extent the aldol process is reversible, we carried out two crossover experiments (Scheme

Scheme 2. Substrate Scope of the TMAP-Catalyzed OSilylative Aldol Reaction

4c). In the first experiment, we exposed the desilylated $4 \mathbf{a}$ and aldehyde $\mathbf{1 b}$ to the reaction conditions (Scheme 4c). The results show that there is initial crossover to give 1a and silylated $\mathbf{5 b}$, but the crossover process stops within minutes when the products are silylated, and no $4 \mathbf{a}$ could be detected after 5 min . This result suggests that the aldol step might be reversible (k_{-2} in Scheme 5), but the silylation step (k_{3}) is essentially irreversible. The second crossover experiment without BSA gave no crossover products (Scheme 4c), consistent with the probase mechanism.

Taken together, these experiments are consistent with a catalytic cycle (Scheme 5) where the desilylated BSA (I) acts as a base, generating the enolate (II) which then reacts with aldehyde in the turnover-determining step to form the aldolate (III).

Scheme 3. Stereochemical Assignment of $5 \mathrm{n}^{a}$

${ }^{a}$ Conditions: (a) $1 \% \mathrm{HCl}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 84 \%$; (b) $\mathrm{H}_{2}, \mathrm{PtO}_{2}(10 \mathrm{~mol}$ $\%$), AcOH (cat.), EtOAc, r., 73%; (c) $\mathrm{HF}-$ pyridine ($20 \mathrm{~mol} \%$), $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 81 \%$; (d) 2,2-dimethoxypropane, (+)-CSA (10 $\mathrm{mol} \%), \mathrm{Me}_{2} \mathrm{CO}, \mathrm{rt}$.

CONCLUSION

In conclusion, we have established a mild carboxylate-catalyzed silylative diazoaldol reaction that proceeds rapidly at rt with a range of substrates and provides the aldol products within minutes, generally without the need of any chromatographic purification. A probase mechanism where the carboxylate catalyst reacts with the silylating agent to generate an active base catalyst is suggested on the basis of reaction progress studies. Applications of the carboxylate-based probase catalysis in other reactions are ongoing.

EXPERIMENTAL SECTION

General Procedure for the Catalytic Aldol Reaction (GP). To a solution of aldehyde (limiting reagent, typically $0.98 \mathrm{mmol}, 1.0$ equiv), ethyl diazoacetate ($1.03 \mathrm{mmol}, 1.1$ equiv), and $N, O-$ bis(trimethylsilyl)acetamide ($1.96 \mathrm{mmol}, 2.0$ equiv) in dry MeCN was added a freshly prepared solution of tetramethylammonium pivalate (TMAP) (57.3 mM in $\mathrm{MeCN}, 0.001-0.10$ equiv). The reaction progress was monitored by taking small aliquots which were analyzed by ${ }^{1} \mathrm{H}$ NMR. After no aldehyde remained in the reaction mixture (typically after 5-25 min), the NMR sample solution was combined with the reaction mixture, EtOAc (10 mL) and water (15 mL) were added, and the layers were separated. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product as a tan/orange oil, and the side product N-trimethylsilylacetamide as white crystals. Repeated trituration with EtOAc/hexanes ($5: 95, \mathrm{ca} .25 \mathrm{~mL}$ total), and filtration provided the pure products (typically 2-3 times was sufficient).

Ethyl 2-Diazo-3-(trimethylsiloxy)-3-phenylpropanoate (5a). Prepared using the GP, with benzaldehyde ($104.0 \mathrm{mg}, 980 \mu \mathrm{~mol}, 0.1 \mathrm{~mL}$, 1.0 equiv) and TMAP solution ($0.45 \mathrm{~mL}, 9.8 \mu \mathrm{~mol}, 0.01$ equiv) to give, after 5 min reaction time, $276 \mathrm{mg}(93 \%)$ of 5 a as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.43-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.25$

Scheme 4. Experiments To Probe the Reaction Mechanism ${ }^{a}$

$k_{\text {obs }-1}=(0.06 \pm 0.51) * 10^{-6}(\mathrm{mM} / \mathrm{min}) \quad k_{\text {obs_-l }}=(0.62 \pm 0.11) * 10^{-5}(\mathrm{mM} / \mathrm{min})$ BSA or BSTFA

${ }^{2} k_{\text {BSA_III }}=0.35 \pm 0.02(\mathrm{mM} / \mathrm{min})$
$k_{\text {BSTFA_III }}=0.31 \pm 0.01$ ($\mathrm{mM} / \mathrm{min}$)
(b) Competition experiments: Substituent effects

C Cross-over experiments: Reversibility of the reaction

${ }^{a}$ Reaction conditions for control experiment: (a) (i) EDA (1 equiv, 0.08 M), BSA (2 equiv), TMAP ($1 \mathrm{~mol} \%$), $\mathrm{Bn}_{2} \mathrm{O}$ (1 equiv), $\mathrm{CD}_{3} \mathrm{CN}$ ($600 \mu \mathrm{~L}$), rt. (ii) la (1 equiv, 0.06 M), EDA (1 equiv), BSA (2 equiv), $\mathrm{Bn}_{2} \mathrm{O}$ (1 equiv), $\mathrm{CD}_{3} \mathrm{CN}(600 \mu \mathrm{~L})$, rt. (iii) $\mathbf{1 a}$ (1 equiv, 0.07 M), EDA (1 equiv), BSA or BSTFA (2 equiv), TMAP ($0.1 \mathrm{~mol} \%$), $\mathrm{Bn}_{2} \mathrm{O}$ (1 equiv), $\mathrm{CD}_{3} \mathrm{CN}(600 \mu \mathrm{~L}), 25^{\circ} \mathrm{C}$. (iv) 1a (1 equiv, 0.37 M), EDA (0.9 equiv), BSA (2 equiv), TMAP ($2 \mathrm{~mol} \%$), trichloroethylene (1.1 equiv), $\mathrm{CD}_{3} \mathrm{CN}(537 \mu \mathrm{~L}), 25^{\circ} \mathrm{C}$. (v) $\mathbf{1 b}$ (1 equiv, 0.07 M), $\mathbf{4 a}$ (1 equiv), BSA (2 equiv or none), TMAP ($0.1 \mathrm{~mol} \%$), $\mathrm{Bn}_{2} \mathrm{O}$ (1 equiv), $\mathrm{CD}_{3} \mathrm{CN}(600 \mu \mathrm{~L}), 25^{\circ} \mathrm{C}$.
(obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}\left|=10.7 \mathrm{~Hz},\left|J_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right.$), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz , CDCl_{3}) δ 165.7, 141.2, 128.6, 127.9, 125.6, 68.9, 61.0, 14.6, -0.1. Spectral data corresponds to previously published data. ${ }^{16}$
Ethyl 2-Diazo-3-(4-(trifluoromethyl)phenyl)-3-((trimethylsilyl)oxy)propanoate (5b). Prepared using the GP, with 4-trifluoromethylbenzaldehyde ($158.8 \mathrm{mg}, 912 \mu \mathrm{~mol}, 0.125 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.16 \mathrm{~mL}, 9.12 \mu \mathrm{~mol}, 0.01$ equiv) to give, after 5 min reaction time, 282 mg (86%) of $\mathbf{5 b}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.87(\mathrm{~s}, 1 \mathrm{H}), 4.27$ (obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=7.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}} \mathrm{I}=10.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}} \mathrm{I}$ $\left.=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,145.4(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 130.2(\mathrm{q}, J=$ $32.4 \mathrm{~Hz}), 126.0,125.7(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=272.0 \mathrm{~Hz}), 68.4$, 61.2, 14.6, -0.1.; IR (neat, ATR): $\nu_{\max } 2093,1688,1252 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$ 383.1010, observed 383.1010, $\Delta=0.0 \mathrm{ppm}$.

Ethyl 2-Diazo-3-(4-methoxyphenyl)-3-((trimethylsilyl)oxy)propanoate (5c). Prepared using the GP, with 4-methoxybenzaldehyde ($126.9 \mathrm{mg}, 905 \mu \mathrm{~mol}, 0.11 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 15 min reaction time, $280 \mathrm{mg}(96 \%)$ of 5 c as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.26$ (obsd
$\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=7.0 \mathrm{~Hz},\left|\mathrm{~J}_{\mathrm{AB}}\right|=10.7 \mathrm{~Hz}, \mathrm{I}_{\mathrm{AX}}\left|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,159.3,133.4,126.8,114.0,68.6,60.9,55.4,14.7$, -0.1. IR (neat, ATR): $\nu_{\text {max }} 2088,1687,1251 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} /$ $z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}^{+} 345.1242$, observed $345.1251, \Delta=-2.6 \mathrm{ppm}$.
Ethyl 2-Diazo-3-(p-tolyl)-3-((trimethylsilyl)oxy)propanoate (5d). Prepared using the GP, with 4-methylbenzaldehyde (112.0 mg , 933 $\mu \mathrm{mol}, 0.11 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.16 \mathrm{~mL}, 9.2 \mu \mathrm{~mol}$, 0.01 equiv) to give, after 15 min reaction time, $276 \mathrm{mg}(97 \%)$ of $\mathbf{5 d}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.26$ (obsd ABX$, 2 \mathrm{H}, \Delta v=6.8$ $\left.\mathrm{Hz},\left|J_{\mathrm{AB}}\right|=10.7 \mathrm{~Hz},\left|J_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.8, 138.3, 137.6, 129.3, 125.5, 68.8, 60.9, 21.2, 14.7, -0.1. IR (neat, ATR) $\nu_{\text {max }}$ 2090, 1688, $1250 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$329.1292, observed 329.1285, $\Delta=$ 2.1 ppm .

Ethyl 3-(3-Bromophenyl)-2-diazo-3-((trimethylsilyl)oxy)propanoate (5e). Prepared using the GP, with 3-bromobenzaldehyde (1.0 equiv, $175 \mathrm{mg}, 943 \mu \mathrm{~mol}, 0.11 \mathrm{~mL}$) and TMAP solution (0.8 mL , $45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 15 min reaction time, 350 mg (quant) of 5 e as a yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.67-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.22$ (obsd ABX ${ }_{3}$, $\left.2 \mathrm{H}, \Delta v=7.4 \mathrm{~Hz},\left|J_{\mathrm{AB}}\right|=10.8 \mathrm{~Hz},\left|J_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 165.8$, 144.9, 131.9, 131.5, 129.5, 125.6, 123.0, 69.0, 62.0, 14.8, -0.2.; IR (neat, ATR): 2090, 1688, $1250 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$393.0241, observed 393.0231, $\Delta=$ 2.5 ppm .

Ethyl 3-(4-Chlorophenyl)-2-diazo-3-((trimethylsilyl)oxy)propanoate ($5 f$). Prepared using the GP, with 4 -chlorobenzaldehyde (1.0 equiv, $131.7 \mathrm{mg}, 937 \mu \mathrm{~mol}$) and TMAP solution ($0.8 \mathrm{~mL}, 45.8$ μ mol, 0.05 equiv) to give, after 15 min reaction time, 306 mg (quant) of $5 \mathbf{f}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.41-7.36$ (m, $4 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.22\left(\right.$ obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=7.0 \mathrm{~Hz}, \mathrm{I}_{\mathrm{AB}} \mathrm{I}=10.8 \mathrm{~Hz}$, $\left.J_{\mathrm{AX}}\left|=J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 165.9,141.2,134.1,129.5,128.4,69.2$, 62.0, 14.8, -0.2; IR (neat, ATR); 2092, 1690, $1249 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right) m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$349.0746, observed $349.0736, \Delta=2.9 \mathrm{ppm}$.

Ethyl 2-Diazo-3-((trimethylsilyl)oxy)-3-(4-((trimethylsilyl)oxy)phenyl)propanoate (5g). Prepared using the GP, with 4 -hydroxybenzaldehyde (1.0 equiv, $112.5 \mathrm{mg}, 921 \mu \mathrm{~mol}$), BSA (2.7 equiv, 499 $\mathrm{mg}, 2450 \mu \mathrm{~mol}, 0.6 \mathrm{~mL}$) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}$, 0.05 equiv) to give, after 15 min reaction time, 346 mg (99%) of 5 g as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.33-7.21(\mathrm{~m}, 2 \mathrm{H})$, 6.91-6.80 (m, 2H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 4.22($ obsd ABX $3,2 \mathrm{H}, \Delta v=6.4 \mathrm{~Hz}$, $\left|J_{\mathrm{AB}}\right|=8.9 \mathrm{~Hz}, J_{\mathrm{AX}}\left|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.24(\mathrm{~s}$, 9 H), $0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 166.1,156.0$, 135.2, 127.9, 121.0, 69.4, 61.9, 14.9, 0.2, -0.1.; IR (neat, ATR); 2090, 1688, $1250 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}^{+} 403.1480$, observed 403.1476, $\Delta=1.0 \mathrm{ppm}$.

Ethyl 2-Diazo-5-phenyl-3-((trimethylsilyl)oxy)pentanoate (5h). Prepared using the GP, with hydrocinnamaldehyde ($127.4 \mathrm{mg}, 949$ $\mu \mathrm{mol}, 0.125 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}$, 0.05 equiv) to give, after 10 min reaction time, $233 \mathrm{mg}(77 \%)$ of 5 h as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.09(\mathrm{~m}, 7 \mathrm{H}), 4.66$ (ddd, $J=7.4,6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=5.1 \mathrm{~Hz}, \mathrm{I}$ $J_{A B}\left|=10.8 \mathrm{~Hz},\left|J_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 2.86-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,141.4,128.5,128.5,126.1,66.4,60.9,38.1$, 32.0, 14.6, -0.1.; IR (neat): 2089, 1688, $1251 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+} 343.1449$, observed 343.1447, $\Delta=0.6 \mathrm{ppm}$.

Ethyl 2-Diazo-3-((trimethylsilyl)oxy)dodecanoate (5i). Prepared using the GP, with n-decanal ($145.3 \mathrm{mg}, 949 \mu \mathrm{~mol}, 0.175 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 10 min reaction time, $277 \mathrm{mg}(87 \%)$ of $5 \mathbf{i}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.57(\mathrm{dd}, J=7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23 (obsd

Scheme 5. Proposed Catalytic Cycle of the Carboxylate-Catalyzed Silylative Aldol Reaction Involving a Probase Mechanism

$\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=6.1 \mathrm{~Hz}, \mathrm{I}_{\mathrm{AB}}\left|=10.8 \mathrm{~Hz},\left|J_{A X}\right|=\left|J_{B X}\right|=7.1 \mathrm{~Hz}\right), 1.39-$ $1.15(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,66.9,60.8,36.4,32.0,29.7,29.7,29.4$, 29.4, 25.7, 22.8, 14.7, 14.2, -0.1; IR (neat, ATR): 2088, 1692, 1251 cm^{-1}. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+} 365.2231$, observed $365.2238, \Delta=-1.9 \mathrm{ppm}$.
Ethyl 2-Diazo-5-methyl-3-((trimethylsilyl)oxy)hexanoate (5j). Prepared using the GP, with isovaleraldehyde ($80.3 \mathrm{mg}, 932 \mu \mathrm{~mol}$, $0.10 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 10 min reaction time, $218 \mathrm{mg}(86 \%)$ of $\mathbf{5 j}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{dd}, J=7.8,6.1 \mathrm{~Hz}$, 1 H), 4.22 (obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=7.8 \mathrm{~Hz},\left|\mathrm{~J}_{\mathrm{AB}}\right|=10.8 \mathrm{~Hz},\left|\mathrm{~J}_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=$ $7.1 \mathrm{~Hz}), 1.75-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 0.92 (obsd d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.91 (obsd d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,77.6,77.2$, $76.7,65.4,60.8,45.3,24.8,23.0,22.3,14.7,-0.1$; IR (neat, ATR): 2088, 1691, $1251 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$295.1449, observed 295.1437, $\Delta=4.1 \mathrm{ppm}$.

Ethyl 2-Diazo-4,4-dimethyl-3-((tfrimethylsilyl)oxy)pentanoate (5k). Prepared using the GP, with pivalaldehyde ($80 \mathrm{mg}, 921 \mu \mathrm{~mol}$, $0.1 \mathrm{~mL}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 10 min reaction time, $215 \mathrm{mg}(86 \%)$ of $5 \mathbf{k}$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.21$ (obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v$ $\left.=7.5 \mathrm{~Hz},\left|J_{\mathrm{AB}}\right|=10.8 \mathrm{~Hz},\left|J_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 4.18(\mathrm{~s}, 1 \mathrm{H} 1.26(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.5,73.4,60.7,38.8,25.7,14.7,-0.5$; IR (neat, ATR): 2087, 1691, $1252 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}^{+}$295.1449, observed 295.1445, $\Delta=1.4 \mathrm{ppm}$.

Ethyl 2-Diazo-3-(furan-2-yl)-3-((trimethylsilyl)oxy)propanoate (51). Prepared using the GP, with furfural ($87.0 \mathrm{mg}, 905 \mu \mathrm{~mol}$, 0.075 mL) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 25 min reaction time, 255 mg (quant) of 51 as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (dd, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.12$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,153.4,142.6$, 110.3, 107.0, 63.7, 61.1, 14.6, -0.2; IR (neat, ATR): 2095, 1690, 1252 cm^{-1}. HRMS HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}^{+}$305.0929, observed 305.0920, $\Delta=2.9 \mathrm{ppm}$.

Ethyl 2-Diazo-3-((trimethylsilyl)oxy)-3-(5-(((trimethylsilyl)oxy)-methyl)furan-2-yl)propanoate (5m). Prepared using the GP, with 5 -(hydroxymethyl)furan-2-carbaldehyde ($380 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv), BSA (3 equiv, $610 \mathrm{mg}, 3 \mathrm{mmol}, 0.733 \mathrm{~mL}$), and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 30 min reaction time, 380 mg (98%) of 51 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,154.1,153.0,108.4,107.8,63.8,61.1,57.6,14.7$, $-0.1,-0.3$. IR (neat, ATR): 2097, 1693, $1250 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}^{+}$407.1429, observed 407.1422, $\Delta=1.7 \mathrm{ppm}$.

Another batch of 5 m was prepared on a larger scale, using 630 mg (5.0 mmol) of 5-(hydroxymethyl)furan-2-carbaldehyde, 3.67 mL (3 equiv, 15 mmol) of BSA, and TMAP solution ($44 \mathrm{mg}, 230.0 \mu \mathrm{~mol}$, 0.05 equiv in 6 mL of MeCN) after 30 min to afford $5 \mathrm{~m}(1.76 \mathrm{~g}$, 92%) as a yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting 5 m fully matched the data obtained in the small scale batch.
tert-Butyl (R)-3-((R)-2-Diazo-3-ethoxy-3-oxo-1-((trimethylsilyl)-oxy)propyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate (5n). Prepared using the GP, with tert-butyl (R)-3-formyl-1-oxa-4-azaspiro-[4.5]decane-4-carboxylate ($248.9 \mathrm{mg}, 920 \mu \mathrm{~mol}, 1.0$ equiv) and TMAP solution ($0.8 \mathrm{~mL}, 45.8 \mu \mathrm{~mol}, 0.05$ equiv) to give, after 15 min reaction time, 397 mg (92% mass balance) of slightly impure 5 n as a yellow oil. The crude product was purified by CombiFlash chromatography (hexane:EtOAc $=100: 0$ to 80:20) to give 265 mg (63%) of 5 n as a thick yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, major isomer) $\delta 4.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\right.$ obsd $\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=$ $\left.5.4 \mathrm{~Hz},\left|J_{A B}\right|=10.9 \mathrm{~Hz},\left|J_{A X}\right|=\left|J_{B X}\right|=7.2 \mathrm{~Hz}\right), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H})$, 3.90 ($\mathrm{qd}, J=9.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37-2.11 (m, 2H), 1.70-1.48 (m, $8 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H})$. A diagnostic signal corresponding to minor (R, S)-isomer is observed at $\delta 4.98$ (d, J $=4.8 \mathrm{~Hz}, 0.09 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 328 \mathrm{~K}\right) \delta$ 166.5, 153.9, 96.5, 81.1, 68.3, 65.6, 61.8, 61.2, 36.8, 31.8, 28.8, 26.0, 24.48, 24,46, 15.1, -0.2. IR (neat, ATR): 2099, $1251 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right) m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SiNa}+478.2344$, observed 478.2345, $\Delta=-0.2 \mathrm{ppm}$. $[\alpha]_{\mathrm{D}}^{20}=-15.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Another batch of $\mathbf{5 n}$ was prepared using the GP, but the reaction was carried out at $0{ }^{\circ} \mathrm{C}(30 \mathrm{~min}$ reaction time) to give $5 \mathrm{n}(350 \mathrm{mg}$, 82%) with a similar 10:1 diastereomeric purity. The enantiomeric purity of 5 n was determined from the corresponding desilylated derivatives 6 (see below).
tert-Butyl (R)-3-((R)-2-Diazo-3-ethoxy-1-hydroxy-3-oxopropyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate (6).

To a cooled solution of $\mathbf{5 n}(30 \mathrm{mg}, 66 \mu \mathrm{~mol}, 1.0$ equiv) in THF (1 mL), aq $1 \% \mathrm{HCl}$ was added dropwise ($480 \mu \mathrm{~L}, 2$ equiv). The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC (hexane:EtOAc $=95: 5$ to 80:20). DCM (15 mL) was added, and the mixture was washed with water ($3 \times 15 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mixture was purified by CombiFlash chromatography (hexane:EtOAc $=95: 5$ to $80: 20)$ to give $6(21 \mathrm{mg}, 84 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}^{20}=+23.3\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, $323 \mathrm{~K}) \delta 4.51(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.05$ $(\mathrm{m}, 1 \mathrm{H}), 4.03-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.47(\mathrm{~m}$, $6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.09(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 328 \mathrm{~K}$) 167.0, 155.0, $97.0,81.8$, 68.4, 65.8, 61.7, 61.5 (low intensity), 36.5, 31.5, 28.8, 26.0, 24.5, 24.4, 15.0. IR (neat, ATR): bs $3432,2098 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) m / z : $[\mathrm{M}+$ $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}^{+}$406.1949, observed 406.1958, Δ $=-2.2 \mathrm{ppm}$. HPLC (CHIRALCEL OZ-H, $c=1 \mathrm{mg} / \mathrm{mL}, v=1 \mathrm{~mL} /$ $\left.\min , 22{ }^{\circ} \mathrm{C}\right): t_{\mathrm{R}}=46.5 \mathrm{~min}(R, S)$-isomer; $t_{\mathrm{R}}=52.5 \mathrm{~min}(R, R)$-isomer, $t_{\mathrm{R}}=36.3 \mathrm{~min}(S, S)$-isomer, er $=97: 3, \mathrm{dr}=91: 9$.
Note 1: The desilylation and purification protocol results may enrich the diastereomeric ratio of the compound from ca. 91:9 to ca. 97:3, depending on the rigorousness of the purification.

Note 2: The same procedure was applied to the batch of 6 obtained at $0^{\circ} \mathrm{C}$.
Stereochemical Assignments, Derivatization of 5 n , and Preparation of Racemic Samples. tert-Butyl (R)-3-((S)-3-Ethoxy-3-oxo-1-((trimethylsilyl)oxy)propyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate (7).

The reduction reaction was carried out using the following modified literature procedure. ${ }^{17}$ To a degassed solution of $\mathbf{5 n}(160 \mathrm{mg}, 0.35$ $\mathrm{mmol}, 1$ equiv) in EtOAc (3 mL) were added platinum dioxide (8 $\mathrm{mg}, 0.035 \mathrm{mmol}, 0.1$ equiv) and a catalytic amount (a drop) of acetic acid at room temperature. The flask was purged with argon and then with hydrogen gas, and the heterogeneous reaction mixture was stirred under hydrogen atmosphere (balloon) for 4 h . The reaction was monitored by TLC (hexanes:EtOAc $=95: 5$, anisaldehyde stain). The reaction vessel was purged with argon, and the mixture was filtered through neutral Celite, concentrated in vacuo, and purified by silica gel chromatography (hexane:EtOAc $=95: 5$, anisaldehyde stain) to afford $7105 \mathrm{mg}(73 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2 \mathrm{H})$, $1.57(\mathrm{~m}, 8 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 172.2,153.7,96.3,80.8,70.1$, 63.9, 62.2, 61.3, 41.6, 36.1, 28.7, 25.8, 24.2, 14.5, 0.5. IR (neat, ATR): 1736, 1692, $1250 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{SiNa}^{+} 452.2439$, observed $452.2439, \Delta=0.0 \mathrm{ppm}$. $[\alpha]_{\mathrm{D}}^{20}=$ $+13.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
tert-Butyl 3-((S)-3-Ethoxy-1-hydroxy-3-oxopropyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate (8).

To a cooled solution of $7(45 \mathrm{mg}, 0.104 \mathrm{mmol}, 1$ equiv) in MeCN$\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL}, 95: 5 \mathrm{vol})$ was added HF -pyridine solution ($1.9 \mu \mathrm{~L}, 0.2$ equiv) by one portion at $0^{\circ} \mathrm{C}$ and stirred for 30 min at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC (hexanes:EtOAc $=95: 5, \mathrm{KMnO}_{4}$ stain). $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the resulting mixture was extracted with DCM (10 mL). The organic layer was washed by satd $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under high vacuum to give crude $8(30 \mathrm{mg}, 81 \%)$ as a colorless oil, which used further without purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 4.17-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.78(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{dd}$, $J=15.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.16(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.78-$ $1.38(\mathrm{~m}, 15 \mathrm{H}), 1.34-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 172.8,154.7,96.3,81.2,70.3,64.9,62.1$, 61.2, 40.0, 36.2, 28.6, 25.7, 24.3, 14.5. HRMS (ESI ${ }^{+}$) $m / z:[\mathrm{M}+\mathrm{K}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~K}^{+}$396.1783, observed 396.1784, $\Delta=-0.3$ ppm.

Ethyl 2-((4S,5R)-5-((tert-Butoxycarbonyl)amino)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (9a) and Ethyl 2-((2S,3R)-3-((tert-Butoxycarbonyl)amino)-1,5-dioxaspiro[5.5]undecan-2-yl)acetate (9b).

To a solution of 8 ($31 \mathrm{mg}, 0.08 \mathrm{mmol}, 1$ equiv) and $2,2-$ dimethoxypropane ($106 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 10$ equiv) in acetone (2 mL) was added (+)-camphorsulfonic acid ($4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv) in one portion. The reaction mixture was stirred for 48 h at rt . The reaction was monitored by TLC (hexane:EtOAc $=90: 10$, anisaldehyde stain). The mixture was diluted with EtOAc (10 mL), and the organic layer was washed with NaHCO_{3}, water and brine (10 mL each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a residue which was purified by silica gel chromatography (hexane:EtOAc $=$ from 90:10 to 80:20) to afford 9 a ($20 \mathrm{mg}, 73 \%$ yield) and $9 \mathbf{b}$ ($4 \mathrm{mg}, 13 \%$ yield).

9a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.44$ (bs, 1H), 4.15 (app. qd, J $=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06 (ddd, $J=9.7,8.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.99-3.85$ (m, 1H), 3.66-3.46 (m, 2H), 2.67 (dd, $J=16.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ ($\mathrm{dd}, J=16.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5$, 155.3, 99.2, 80.1, 70.0, 63.6, 60.8, 49.4, 38.8, 28.5, 19.7, 14.3. IR (CHCl_{3} soln, ATR): $3345,1713 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~K}^{+} 356.1470$, observed 356.1467, $\Delta=0.8$ ppm. $[\alpha]_{\mathrm{D}}^{20}=-11.6\left(c=1.6, \mathrm{CHCl}_{3}\right)$.

9b: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.40$ (bs, 1 H), 4.14 (obsd $\left.\mathrm{ABX}_{3}, 2 \mathrm{H}, \Delta v=14.8 \mathrm{~Hz},\left|\mathrm{~J}_{\mathrm{AB}}\right|=11.7 \mathrm{~Hz},\left|\mathrm{~J}_{\mathrm{AX}}\right|=\left|J_{\mathrm{BX}}\right|=7.1 \mathrm{~Hz}\right), 4.06$ (td, $J=9.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 2 \mathrm{H})$, 2.66 (dd, J = 15.8, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$) 2.51 (dd, $J=15.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-$ $1.37(\mathrm{~m}, 19 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.7,155.2,99.2,80.1,69.5,62.8,60.8,49.3,38.9,37.3$, 28.5, 25.7, 22.8, 22.5, 14.4. IR (CHCl_{3} soln, ATR): $1710,1214 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}\right) m / z:[\mathrm{M}+\mathrm{K}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~K}^{+}$396.1783, observed 396.1788, $\Delta=-1.3 \mathrm{ppm}$. $[\alpha]_{\mathrm{D}}^{20}=-13.8\left(c=0.4, \mathrm{CHCl}_{3}\right)$.
(\pm)-tert-Butyl 3-(2-diazo-3-ethoxy-3-oxo-1-((trimethylsilyl)oxy)-propyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate ((\pm)-5n).

Following the GP, a mixture of (R)-tert-butyl 3-formyl-1-oxa-4azaspiro[4.5] decane-4-carboxylate ($124.5 \mathrm{mg}, 460 \mu \mathrm{~mol}, 0.5$ equiv) and (S)-tert-butyl 3 -formyl-1-oxa-4-azaspiro[4.5] decane-4-carboxylate ($124.5 \mathrm{mg}, 460 \mu \mathrm{~mol}, 0.5$ equiv) was subjected to the diazoaldol reaction to give, after 15 min reaction time and purification (CombiFlash chromatography, hexane:EtOAc $=$ 100:0 to 95:5), a racemic mixture of $(\pm)-5 \mathrm{n}, 368 \mathrm{mg}(87 \%)$ as a yellow crystals. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 323 \mathrm{~K}$, major diastereomer) $\delta 4.54$ (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.05(\mathrm{~m}, 8 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.21$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, 323 K , major diastereomer) $\delta 166.5,153.8,96.5,81.1,68.2,65.6,61.8$, 61.2, 36.7, 31.8, 28.8, 26.0, 24.4(8), 24.4(7) 15.1, -0.2. IR (neat, ATR): 2110, $1251 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SiNa}^{+} 478.2344$, observed 478.2338, $\Delta=1.3 \mathrm{ppm}$.
Another batch of $(\pm)-5 \mathbf{n}$ was prepared following the GP with the exception that the reaction temperature was $0^{\circ} \mathrm{C}(30 \mathrm{~min}$ reaction time). NMR spectra of this batch correspond to those obtained for the batch obtained at rt .
(\pm)-tert-Butyl 3-(2-Diazo-3-ethoxy-1-hydroxy-3-oxopropyl)-1-oxa-4-azaspiro[4.5]decane-4-carboxylate (\pm)-6).

Following the deprotection procedure for $\mathbf{5 n}$ using $(\pm)-5 n(100 \mathrm{mg}$, 0.22 mmol), compound (\pm)-6 $73 \mathrm{mg}(87 \%)$ was obtained as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 323 \mathrm{~K}$, major diastereomer) $\delta 4.48$ $(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.03(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.33-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 323 \mathrm{~K}$, major diastereomer) $\delta 167.0,154.9,96.9,81.8,68.4,65.8,61.7(9), 61.6(6), 36.4,31.5$, 28.8, 25.9, 24.5, 24.4, 15.0. IR (neat, ATR): bs $3430,2098 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}^{+}$ 406.1949, observed 406.1944, $\Delta=1.2 \mathrm{ppm}$. HPLC (CHIRALCEL OZ-H, $\left.c=1 \mathrm{mg} / \mathrm{mL}, v=1 \mathrm{~mL} / \mathrm{min}, 22{ }^{\circ} \mathrm{C}\right) t_{\mathrm{R}}=25.6 \min (S, R)-$ isomer, $t_{\mathrm{R}}=39.5 \mathrm{~min}(R, S)$-isomer, $t_{\mathrm{R}}=45.8 \mathrm{~min}(R, R)$-isomer, $t_{\mathrm{R}}=$ $31.1 \mathrm{~min}(S, S)$-isomer. er $=1: 1, \mathrm{dr}=91: 9$.

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.3c01304.

Copies of NMR spectra, HPLC chromatograms, and details of control and competition experiments (PDF) FAIR data, including the primary NMR FID files, for compounds 5a-n, 6-8, 9a, 9b, (\pm)-5n, (\pm)-6 (ZIP)

- AUTHOR INFORMATION

Corresponding Author

Petri M. Pihko - Department of Chemistry and NanoScience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland; © orcid.org/0000-0003-0126-0974; Email: Petri.Pihko@ jyu.fi

Authors

Saara Riuttamäki - Department of Chemistry and NanoScience Center, University of Jyväskylä, Jyväskylä FI40014, Finland
Anton Bannykh - Department of Chemistry and NanoScience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.joc.3c01304

Author Contributions

Study design: P.M.P., S.R., and A.B. Experimental work: S.R. and A.B. Analysis of results: S.R., A.B., and P.M.P. The manuscript was drafted by S.R., P.M.P., and A.B.
Author Contributions
${ }^{\ddagger}$ Equal contribution.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge financial support from the Department of Chemistry, University of Jyväskylä, and the Academy of Finland (projects 297874, 307624, and 339892). We thank Dr. Elina Kalenius and Mr. Esa Haapaniemi for assistance with mass spectrometry and NMR spectroscopy, respectively.

REFERENCES

(1) (a) Mukaiyama, T. The Directed Aldol Reaction. In Organic Reactions; Dauben, W. G. et al. Eds.; Wiley, 2005; Vol. 28, pp 203331. DOI: DOI: 10.1002/0471264180.or028.03; . (b) Guthrie, J. P. Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions. Can. J. Chem. 1978, 56 (7), 962-973. (c) Guthrie, J. P.; Wang, X.-P. The aldol condensation of acetophenone with acetone. Can. J. Chem. 1991, 69 (2), 339-344.
(2) (a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. Diastereoselective Magnesium Halide-Catalyzed anti-Aldol Reactions of Chiral N-Acyloxazolidinones. J. Am. Chem. Soc. 2002, 124 (3), 392-393. (b) Chini, M.; Crotti, P.; Gardelli, C.; Minutolo, F.; Pineschi, M. Metal Salt-Promoted Aldol Reaction of Silyl Enol Ethers with Aldehydes. Gazz. Chim. Ital. 1993, 123, 673-676. (c) Kiyooka, S.-I.; Tsutsui, T.; Maeda, H.; Kaneko, Y.; Isobe, K. A Novel Nitroaldol Reaction Catalyzed by Rhodium Complex in the Presence of a Silyl Ketene Acetal. Tetrahedron Lett. 1995, 36, 6531-6534. (d) Li, C.-T.; Liu, H.; Xu, Y.-J.; Lu, C.-D. Aldol Reaction of N-tert-Butanesulfinyl Imidates under Basic Conditions for Diastereoselective Synthesis of anti-Aldols. J. Org. Chem. 2017, 82 (20), 11253-11261. (e) Huang, G.; Shrestha, R.; Jia, K.; Geisbrecht, B. V.; Li, P. Enantioselective Synthesis of Dilignol Model Compounds and Their Stereodiscrimination Study with a Dye-Decolorizing Peroxidase. Org. Lett. 2017, 19 (7), 1820-1823. (f) Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S. Magnesium Halide-Catalyzed Anti-Aldol Reactions of Chiral N-Acylthiazolidinethiones. Org. Lett. 2002, 4 (7), 1127-1130.
(3) Heaney, H.; Cui, J. N,O-Bis(trimethylsilyl)acetamide. In Encyclopedia of Reagents for Organic Synthesis; Wiley, 2007. DOI: 10.1002/047084289X.rb208.pub2.
(4) Wenkert, E.; McPherson, C. A. Condensations of Acyldiazomethanes with Aldehydes, Ketones, and Their Derivatives. J. Am. Chem. Soc. 1972, 94 (23), 8084-8090.
(5) Evans, D. A.; Truesdale, L. K.; Grimm, K. G. Carbonyl Insertion Reactions of Ethyl α-Trimethylsilyldiazoacetate. An Improved Route to Diazoacetate Aldol Products. J. Org. Chem. 1976, 41 (20), 33353336.
(6) (a) Jiang, N.; Wang, J. DBU-Promoted Condensation of Acyldiazomethanes to Aldehydes and Imines under Catalytic Conditions. Tetrahedron Lett. 2002, 43 (7), 1285-1287. (b) Xiao, F.; Liu, Y.; Wang, J. DBU-Catalyzed Condensation of Acyldiazomethanes to Aldehydes in Water and a New Approach to Ethyl β Hydroxy α-Arylacrylates. Tetrahedron Lett. 2007, 48 (7), 1147-1149.
(7) (a) Arai, S.; Hasegawa, K.; Nishida, A. One-pot synthesis of α -diazo- β-hydroxyesters under phase-transfer catalysis and application to the catalytic asymmetric aldol reaction. Tetrahedron Lett. 2004, 45 (5), 1023-1026. (b) Hasegawa, K.; Arai, S.; Nishida, A. Synthesis of α-diazo- β-hydroxyesters through a one-pot protocol by phase-transfer catalysis: application to enantioselective aldol-type reaction and
diastereoselective synthesis of α-amino- β-hydroxyester derivatives. Tetrahedron Lett. 2006, 62 (7), 1390-1401. (c) Varala, R.; Enugala, R.; Nuvula, S.; Adapa, S. R. Catalytic aldol-type reaction of aldehydes with ethyl diazoacetate using quarternary ammonium hydroxide as the base. Tetrahedron Lett. 2006, 47 (6), 877-880.
(8) Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. B. S.; Venkanna, G. T.; Figueras, F. Catalysis in Water: Aldol-Type Reaction of Aldehydes and Imines with Ethyl Diazoacetate Catalyzed by Highly Basic Magnesium/Lanthanum Mixed Oxide. Adv. Synth. Catal. 2007, 349, 1887-1890.
(9) Krishna, P. R.; Prapurna, Y. L.; Alivelu, M. Benzoic Acid Catalyzed Aldol-Type Condensation of Aldehydes with Ethyl Diazoacetate: Highly Diastereoselective Products with Chiral Aldehydes. Eur. J. Org. Chem. 2011, 2011 (26), 5089-5095.
(10) Trost, B. M.; Malhotra, S.; Fried, B. A. Magnesium-Catalyzed Asymmetric Direct Aldol Addition of Ethyl Diazoacetate to Aromatic, Aliphatic, and α, β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2009, 131 (5), 1674-1675.
(11) Riuttamäki, S.; Laczkó, G.; Madarász, Á.; Földes, T.; Pápai, I.; Bannykh, A.; Pihko, P. M. Carboxylate Catalyzed Isomerization of β, γ Unsaturated N-Acetylcysteamine Thioesters. Chem.-Eur. J. 2022, 28, No. e202201030.
(12) (a) Uraguchi, D.; Ueki, Y.; Ooi, T. Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-type Reaction. J. Am. Chem. Soc. 2008, 130, 14088-14089. (b) Takahashi, E.; Fujisawa, H.; Yanai, T.; Mukaiyama, T. Lewis Base-catalyzed Diastereoselective Mannich-type Reaction between Ketene Silyl Acetals and Chiral Sulfinimines. Chem. Lett. 2005, 34 (4), 468469. (c) Poisson, T.; Oudeyer, S.; Dalla, V.; Marsais, F.; Levacher, V. Straightforward Organocatalytic Enantioselective Protonation of Silyl Enolates by Means of Cinchona Alkaloids and Carboxylic Acids. Synlett 2008, 16, 2447-2450. (d) Singh, R. P.; Foxman, B. M.; Deng, L. Asymmetric Vinylogous Aldol Reaction of Silyloxy Furans with a Chiral Organic Salt. J. Am. Chem. Soc. 2010, 132 (28), 9558-9560.
(13) Cee, V. J.; Cramer, C. J.; Evans, D. A. Theoretical Investigation of Enolborane Addition to α-Heteroatom-Substituted Aldehydes. Relevance of the Cornforth and Polar Felkin-Anh Models for Asymmetric Induction. J. Am. Chem. Soc. 2006, 128 (9), 2920-2930. (14) (a) Claraz, A.; Oudeyer, S.; Levacher, V. Chiral Quaternary Ammonium Aryloxide/N,O-Bis(trimethyl-silyl)acetamide Combination as Efficient Organocatalytic System for the Direct Vinylogous Aldol Reaction of $(5 H)$-Furan-2-one Derivatives. Adv. Synth. Catal. 2013, 355, 841-846. (b) Fujisawa, H.; Nakagawa, T.; Mukaiyama, T. Product-Catalyzed Aldol Reaction between Trimethylsilyl Enolates and Aldehydes. Adv. Synth. Catal. 2004, 346, 1241-1246. (c) Bourgeois, D.; Craig, D.; King, N. P.; Mountford, D. M. Synthesis of Homoallylic Sulfones through a Decarboxylative Claisen Rearrangement Reaction. Angew. Chem., Int. Ed. 2005, 44, 618621. (d) Teng, B.; Chen, W.; Dong, S.; Kee, C. W.; Gandamana, D. A.; Zong, L.; Tan, C. H. Pentanidium- and Bisguanidinium-Catalyzed Enantioselective Alkylations Using Silylamide as Brønsted Probase. J. Am. Chem. Soc. 2016, 138 (31), 9935-9940. (e) Tanaka, J.; Suzuki, S.; Tokunaga, E.; Haufe, G.; Shibata, N. Asymmetric Desymmetrization via Metal-Free C-F Bond Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-ones with Quaternary Carbon Centers. Angew. Chem., Int. Ed. 2016, 55 (32), 9432-9436. (f) Shigeno, M.; Nakaji, K.; Nozawa-Kumada, K.; Kondo, Y. Catalytic Amide-Base System of TMAF and $\mathrm{N}(\text { TMS })_{3}$ for Deprotonative Coupling of Benzylic C(sp3)-H Bonds with Carbonyls. Org. Lett. 2019, 21 (8), 2588-2592.
(15) McDaniel, D. H.; Brown, H. C. An Extended Table of Hammett Substituent Constants Based on the Ionization of Substituted Benzoic Acids. J. Org. Chem. 1958, 23 (3), 420-427.
(16) Xiao, F.; Wang, J. 1,2-Migration in Rhodium(II) Carbene Transfer Reaction: Remarkable Steric Effect on Migratory Aptitude. J. Org. Chem. 2006, 71 (15), 5789-5791.
(17) Benfatti, F.; Yilmaz, S.; Cozzi, P. G. The First Catalytic Enantioselective Aldol-Type Reaction of Ethyl Diazoacetate to Ketones. Adv. Synth. Catal. 2009, 351, 1763-1767.

[^0]: Received: June 12, 2023

