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Nuclear parton distribution functions (nuclear PDFs), collinearly factorizable in perturbative QCD
(pQCD), are currently extracted most reliably from global analyses of experimental data. Recently,
the progress in this field has been driven mainly by the new data from LHC proton-lead collisions.
I will review the progress in using data from LHC Run 1 and 2 and also hint at some opportunities
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1. Introduction

The field of extracting collinearly factorisable nuclear parton distribution functions (nPDFs)
through global analyses of experimental data has been very active in the past years. Table 1
summarises the inputs and methodological choices in recent nPDF analyses [1–5]. Though the
impact of the new deep-inelastic scattering (DIS) data from JLab on large-𝑥 nPDFs has also been
recently studied [6, 7], and the role of neutrino-nucleus (𝜈A) DIS data in nuclear PDFs is still under
debate [8], the progress in this field has been driven mainly by the inclusion of new data from
LHC proton-lead (pPb) collisions, including the production of electroweak (EW) bosons, high-𝑝T
jets and heavy quarks (HQ). These processes and their impact on the extraction of nuclear gluon
distributions will be the main topic in this proceedings contribution.

2. EW bosons and high-𝑝T jets

Evident from Table 1, almost every recent nPDF analysis includes a set of data from EW boson
production in pPb collisions at the LHC. These observables are an important probe of the flavour
separation of nuclear modifications, but carry also sensitivity to nuclear gluons since small-𝑥, high-
𝑄2 quarks and gluons are correlated through DGLAP evolution. This includes the most precise
CMS measurement of𝑊± production at 8.16 TeV [9]. A possible complication in interpreting these
data arises from the fact that the published absolute cross sections are sensitive also to proton-PDF
uncertainties. For this reason, EPPS21 [3] constructs nuclear modification ratios of the data to get
more direct access to the nuclear modifications of the PDFs, whereas TUJU21 [2], nNNPDF3.0 [4]
and nCTEQ15HQ [5] choose to fit to the absolute cross sections. Of these analyses, EPPS21 and
nNNPDF3.0 also propagate the uncertainties from the free-proton PDFs in the fit. While this gives
a subleading effect when nuclear ratios are used [3], it is possible that with the increased data
precision at Run 3, the proton-PDF uncertainties can begin to have a larger impact in the nPDF
fits [10]. The new 8.16 TeV Drell-Yan (DY) data from CMS [11] have also been studied in some of
the most recent analyses, with the data in the lower mass bin showing first direct evidence for the
need to incorporate NNLO corrections in the nPDF analyses [2, 4], but also the higher mass bin
exhibiting large fluctuations that are causing some tension between the data and the nPDF fits [2–4].

The EPPS21 and nNNPDF3.0 analyses include also the double-differential dijet data from 5.02
TeV pPb [12] using the nuclear ratios of self-normalised spectra, where theoretical uncertainties
from hadronisation and free-proton baseline are expected to cancel, thus giving direct access to the
PDF nuclear modifications. While otherwise finding a good fit, both analyses report on a difficulty
in describing the most forward data points. Even though the scale uncertainties have been shown
to cancel very effectively in the nuclear ratios [13], it is not ruled out that NNLO corrections
could improve the description also here through changes in the parton evolution and sensitivities
to different channels and 𝑥 ranges. Also larger-than-expected non-perturbative corrections could in
principle modify the nuclear ratios. Repeating the measurement with Run 2 and 3 data could shed
more light on the issue.

3. Different approaches for fitting HQ data

As indicated in Table 1, the approaches in fitting the HQ data vary between analyses.
For example, EPPS21 uses the S-ACOT-𝑚T general-mass variable-flavour-number (GMVFN)
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Order in 𝛼𝑠
𝑙A NC DIS
𝜈A CC DIS

pA DY
𝜋A DY

RHIC dAu 𝜋0,𝜋±
LHC pPb 𝜋0,𝜋±,𝐾±
LHC pPb dijets
LHC pPb HQ
LHC pPb W,Z
LHC pPb dir.-𝛾

𝑄,𝑊 cut in DIS
𝑝T cut in HQ,𝜋,𝐾

Data points
Free parameters
Error analysis

Free-proton PDFs
HQ treatment
Indep. flavours

Reference

KSASG20
NLO & NNLO

X
X
X

1.3, 0.0 GeV
N/A
4353

9
Hessian
CT18

FONLL
3

[1]

TUJU21
NLO & NNLO

X
X

X

1.87, 3.5 GeV
N/A
2410
16

Hessian
own fit
FONLL

4

[2]

EPPS21
NLO
X
X
X
X
X

X
XGMVFN

X

1.3, 1.8 GeV
3.0 GeV

2077
24

Hessian
CT18A
S-ACOT

6

[3]

nNNPDF3.0
NLO
X
X
X

X
XFO+PS

X
X

1.87, 3.5 GeV
0.0 GeV, N/A

2188
256

Monte Carlo
∼NNPDF4.0

FONLL
6

[4]

nCTEQ15HQ†

NLO
X

X

X
X

XME fitting

X

2.0, 3.5 GeV
3.0 GeV

1484
19

Hessian
∼CTEQ6M
S-ACOT

5

[5]

Table 1: Recent nPDF global fits.

scheme [14], while nNNPDF3.0 relies on fixed-order+parton-shower (FO+PS) predictions from
POWHEG+PYTHIA. The latter falls into the category of fixed-flavour-number scheme (supple-
mented with parton shower and hadronisation from a Monte-Carlo event generator), where the
heavy quarks are produced only at the matrix element level, whereas in the GMVFN scheme these
are produced also in the initial and final state radiation. Importantly, the GMVFN calculation
includes gluon-to-HQ fragmentation, which can have a large contribution to the cross section [14]
and thus alter the small-𝑥 sensitivity of the observable [15]. Interestingly, nNNPDF3.0, with their
POWHEG+PYTHIA approach, finds a large scale uncertainty in the D0-production nuclear ratios
and therefore choose to include only the more constraining forward data. In the GMVFN scheme,
these scale uncertainties instead very effectively cancel in the nuclear ratios for 𝑝T > 3 GeV [15].

The nCTEQ15HQ fit uses yet another approach by employing a matrix-element (ME) fitting
method in the spirit of Refs. [16–18], including also data on quarkonia production. This works in
two steps: first, they fit the open-heavy-flavour and quarkonia matrix elements to proton–proton data
(assuming 2 → 2 kinematics and neglecting contributions from initial-state quarks), and second,
use the fitted matrix elements to fit the nuclear PDFs with proton–lead data. Though useful in
its simplicity, this approach has an obvious downside: the solutions given by the matrix-element
fitting are not necessarily those supported by the QCD theory. In particular, the assumption of
𝑔 + 𝑔 channel dominance holds only up to a certain precision, and the simple 2 → 2 kinematics get
significantly modified by the QCD radiative corrections, as shown in Ref. [15]. This can, similarly
to the FO+PS case, bias the small-𝑥 gluon sensitivity of the data to be stronger in the ME-fitting
approach than what pQCD would give. These differences in the HQ treatment need to be taken into
account when comparing nPDF predictions to data. E.g. in Ref. [19], the new LHCb measurement

†See also Refs. [7, 8] for orthogonal developments in the large-𝑥 region.
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Figure 1: Nuclear modifications of the gluon PDFs in lead (left) and oxygen (right) nuclei. Results from the
EPPS21 [3], nNNPDF3.0 [4] and nCTEQ15WZSIH [20] analyses. See Ref. [5] for the impact of HQ data
on the last.

of D0 production in pPb at 8.16 TeV is compared only against results from ME fitting in the HELAC
formalism [16–18], and therefore still need to be scrutinised with the direct pQCD calculations.

4. Gluons in nuclei from heavy to light

Figure 1 (left) shows the nuclear modifications in lead nuclei from the EPPS21, nNNPDF3.0 and
nCTEQ15WZSIH [20] analyses, the last being the predecessor of nCTEQ15HQ. For EPPS21 and
nNNPDF3.0, the gluon constraints are driven by the dijet and D0 data, while in nCTEQ15WZSIH
these come largely from EW bosons, preferring smaller shadowing. Notably, the uncertainty bands
in EPPS21 and nNNPDF3.0 differ significantly at small 𝑥, which might be caused by the different
treatments of heavy-quark data. In addition, while EPPS21 and nCTEQ15HQ employ a 𝑝T cut at
3 GeV, nNNPDF3.0 includes these data all the way to 0 GeV, but also different ways of treating
the normalisation uncertainties, the direct fit with look-up tables in EPPS21 versus Monte Carlo
reweighting in nNNPDF3.0 and the error-tolerance value in Hessian method used in EPPS21 can
all play a role in the size of the small-𝑥 uncertainty bands. At large 𝑥, the gluon modifications in
nNNPDF3.0 differ from EPPS21 and nCTEQ15WZSIH, which could be related to the omission
of backward D0 and single-inclusive-hadron-production data from nNNPDF3.0. Large differences
in the obtained nuclear modifications appear also for lighter nuclei, such as oxygen shown in
Figure 1 (right), stemming from the lack of data to directly constrain them. This can cause a
major source of uncertainty in testing small-system energy loss with oxygen-oxygen collisions
at the LHC Run 3 [21, 22]. The need for lighter-than-lead collider-pA data has therefore been
recognised [23–26].

5. Closing remarks

The data from past LHC runs have been particularly useful in determining the gluon content
in lead nucleus, yielding significant new constraints on the nPDFs. Despite of these advancements,
the differences in the extracted gluon PDFs both at small and large 𝑥 call for new measurements
from LHC Run 3. As an example, the increased luminosities might enable the measurement of
triple-differential dijets [27], which could put the factorization and nPDFs under a stringent test, and
data from proton-oxygen collisions would help determining the gluon PDFs of lighter nuclei [26].
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