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Abstract
Graphs are commonly used to represent and visualize causal relations. For a small number of
variables, this approach provides a succinct and clear view of the scenario at hand. As the number
of variables under study increases, the graphical approach may become impractical, and the clarity
of the representation is lost. Clustering of variables is a natural way to reduce the size of the
causal diagram, but it may erroneously change the essential properties of the causal relations
if implemented arbitrarily. We define a specific type of cluster, called transit cluster, that is
guaranteed to preserve the identifiability properties of causal effects under certain conditions.
We provide a sound and complete algorithm for finding all transit clusters in a given graph and
demonstrate how clustering can simplify the identification of causal effects. We also study the
inverse problem, where one starts with a clustered graph and looks for extended graphs where the
identifiability properties of causal effects remain unchanged. We show that this kind of structural
robustness is closely related to transit clusters.

Keywords: causal inference, graph theory, algorithm, identifiability, directed acyclic graph

1. Introduction

Directed acyclic graphs (DAGs) and their extensions are commonly used to describe causal relations
between variables in epidemiology and other fields (Pearl, 1995; Greenland et al., 1999; Tennant
et al., 2021). The power of graphs lies in their ability to visualize the assumed structure, and at the
same time, to serve as well-defined inputs for algorithms such as those that solve the nonparametric
identifiability of causal effects (Shpitser and Pearl, 2006; Lee et al., 2019; Lee and Shpitser, 2020;
Tikka et al., 2021). The graphical approach has been criticized by proponents of potential outcome
framework (Rubin, 1974) for its impracticality when a large number of variables is considered (Im-
bens, 2020). This criticism is partially justified: the visual clarity of a graph is easily lost when the
number of vertices is more than a few, especially in the case of several crossing edges (Purchase,
1997). Moreover, in some settings the identifiability of causal effects is an NP-hard problem (Tikka
et al., 2019), which makes it impractical to consider large graphs. A possible remedy for these diffi-
culties is to cluster the variables to reduce the size of the graph. A question then arises whether the
clustered graph and the original graph are equivalent with respect to the identifiability properties
of causal effects.

The idea of clustering is natural and has been used in causal inference explicitly and implic-
itly. The back-door criterion (Pearl, 1993), the front-door criterion (Pearl, 1995), and ignorability
assumptions in the potential outcome framework (Rosenbaum and Rubin, 1983) impose conditions
upon a set (i.e., a cluster) of variables and the structure inside the set is not important. Explicitly,
clusters have been constructed starting from structural equations (Skorstad, 1990) or multivariate
data (Entner and Hoyer, 2012; Parviainen and Kaski, 2017; Nisimov et al., 2021). Outside causal
inference, many clustering methods for directed graphs have been proposed under varying premises
(Malliaros and Vazirgiannis, 2013).
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Clustering can be also viewed from a different starting point as a way to construct causal models
where the causal relationships between clusters of variables are specified instead of the relationships
between the variables themselves. For instance, a recent review (Tennant et al., 2021) found that
many DAGs in applied health research included so-called ”super-nodes” (Kornaropoulos and Tollis,
2013) which represent multiple variables with the implicit assumption of strong connectivity of
the corresponding vertices. This viewpoint emphasizes the uncertainty of structural assumptions
and the fact that we may not possess sufficient knowledge about the domain under study to fully
specify individual relationships between variables. The goal in this type of clustering is structural
robustness; inferences made with the clustered graph can be safely applied in any graph that is
compatible with the clustering, but not necessarily vice versa. This approach was considered in a
formal setting by Anand et al. (2021).

Clustering is different from latent projection (Verma, 1993) that also can be used to simplify
the structure of DAG in causal inference (Tikka and Karvanen, 2018). Figure 1 demonstrates that
a cluster of vertices is not always equivalent to a latent projection in terms of identification. We
consider the identifiability of a query p(xb |do(xa)) from observations p(xa, xb, xc1 , xc2). In this
task, we may apply clustering C = {c1, c2} and obtain an identifying formula similar to the original
solution. However, if we use a latent projection to consider either c1 or c2 as unobserved in graph
G1, a bidirected edge between a and b appears, and the query is not identifiable anymore. In the
graph G2, the query is not identifiable if a latent projection is used to consider both c1 and c2 as
unobserved, although projecting only either c1 or c2 retains the identifiability. On the other hand,
arbitrary clustering of variables in a DAG does not necessarily retain the identifiability either.

a b

c1

c2

(a) Original graph G1.

a b

c2

(b) Graph obtained from G1 via la-
tent projection of c1.

a b

c

(c) Graph obtained from G1 by
clustering c1 and c2 as c.

a bc1

c2

(d) Original graph G2.

a b

(e) Graph obtained from G2 via la-
tent projection of c1 and c2.

a bc

(f) Graph obtained from G2 by
clustering c1 and c2 as c.

Figure 1: Two examples on clustering of vertices.

As the first contribution, we introduce a specific type of cluster, called transit cluster, and present
conditions for the equivalence of causal effect identifiability between the original and the clustered
graph. We consider clustering as an operation that transforms a DAG into a new DAG where the
cluster is represented by a single vertex. Our approach toward clustering builds on the intuitive
idea that information flows through a cluster and the detailed structure inside the cluster is often
irrelevant. We assume that the DAG being clustered is fully specified.

As the second contribution, we provide a sound and complete algorithm for finding all transit
clusters in a given graph and demonstrate how clustering can simplify the identification of causal
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effects. While polynomial-time algorithms exist for many important causal identification problems,
the resulting identifying functional can be complicated (Tikka and Karvanen, 2017b). Clustering
vertices in the graph can reduce the computational burden and lead to identifying functionals with
a simpler structure.

As the third contribution, we study the inverse problem, where one starts with a clustered
graph and looks for extended graphs where the identifiability properties of causal effects remain
unchanged. This problem is related to the top-down causal modeling where one starts by creating
the DAG with concepts, such as “work history”, “socio-economic background” or “genetic factors”,
and only later divides these concepts into actual variables. Here a transit cluster represents this
kind of concept. We present an iterative procedure that can be used to extend a single vertex to
an arbitrary transit cluster. We show that transit clusters are structurally robust in the sense that
under certain conditions the structure inside the cluster is irrelevant for identification. A schematic
illustration of contributions of the paper is presented in Figure 2.

Causal inference with large graphs

Large unclustered graph

Clustering
(Algorithms 1 and 2)

All transit clusters

Transit cluster Clustered graph

Transit cluster Clustered graph

...

Transit cluster Clustered graph

Top-down causal modeling

Clustered graph

Peripheral extension
(Definition 12,

Theorems 13 and 14)

Extended graph

Unclustered graph

Figure 2: A schematic illustration of the contributions of the paper. In causal inference with large
graphs (left), the application of the proposed clustering algorithm to a large graph results in a
collection of all transit clusters, each of which corresponds to a clustered graph. In top-down causal
modeling (right), we start with a clustered graph and iteratively apply peripheral extension to obtain
an unclustered graph that shares the key properties with the clustered graph.

The rest of the paper is organized as follows. In Section 2, we define the transit cluster and
prove its key properties. In Section 3, we present an algorithm for finding all transit clusters of a
DAG and prove that it is sound and complete. After considering clustering from a purely graphical
point of view in Sections 2 and 3, we then proceed to consider clustering in causal diagrams in
Section 4, where we provide results on the identifiability of causal effects for specific transit clusters.
In Section 5, we consider structural robustness and its connection to transit clusters. Illustrative
examples on the clustering and structural robustness are given Section 6. Section 7 concludes
the paper. Code for the clustering algorithms and examples are available in a GitHub repository:
https://github.com/santikka/transit_cluster.
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2. Clustering Vertices in DAGs

We begin by introducing the notation used for directed graphs. A DAG G = (V,E) is an ordered
pair of two sets where V is a set of indices (vertices), i.e., V = {1, . . . , n}, and E is a set of ordered
pairs (directed edges) E ⊆ {(i, j) | i, j ∈ V }. Vertices and edges are denoted with small letters.

In a DAG G = (V,E), PaG(A), ChG(A), AnG(A) and DeG(A) denote the parents, children,
ancestors and descendants of vertex set A ⊆ V including A, respectively. The neighbors of a vertex
set A including A is denoted by NeG(A) ≡ ChG(A)∪PaG(A). Vertices connected to A including A is
denoted by CoG(A). The corresponding sets of the previous that exclude A are denoted by Pa∗G(A),
Ch∗G(A), An∗G(A), De∗G(A), Ne∗G(A), and Co∗G(A). If there is only one relevant graph G in a given
context, we will sometimes omit the subscript from these sets for clarity, and simply write Pa(A) or
Pa∗(A), for example.

We use the notation G[W ] to denote an induced subgraph (W,F ) of G = (V,E), where W ⊆ V
and F contains those edges of E with both endpoints in W . Similarly, G[A,B] denotes an induced
edge subgraph obtained from G by removing incoming edges to A ⊆ V and outgoing edges of B ⊆ V .
The collection of vertex sets that induce the components of G is denoted by C(G).

By a cluster we mean a subset of vertices of a DAG. Note that there are different definitions of
“clustering” and “cluster graph” in other contexts. The motivation for the name “cluster” becomes
evident when we consider a graph that represents the cluster as a single vertex:

Definition 1 (Clustering) Clustering of a set of vertices T ⊂ V in a DAG G = (V,E) induces
a graph G′ = (V ′, E′) obtained from G by removing vertices T and adding a new vertex t that
has parents Pa∗G(T ) and children Ch∗G(T ). In addition, sets W ⊂ V and W ′ ⊂ V ′ are clustering
equivalent if W \ T = W ′ \ {t} and T ⊂W if and only if t ∈W ′.

Definition 1 captures the intuitive idea of clustering where the incoming and outgoing edges of
the cluster are the same as the incoming and outgoing edges of its representative in the induced
graph. However, without any constraints on the set T being clustered, this definition is too general
in the sense that the properties of the induced graph may be drastically different from the original
graph. For example, the induced graph is not necessarily a DAG or it may contain paths that were
not present in the original graph.

Next, we will present conditions for the clustered vertices T that guarantee the usefulness of the
clustering. Our approach is based on the intuitive notion that the effects flow through the cluster and
the edges between the clustered vertices do not matter. Only those edges that connect to vertices
outside the cluster are relevant. For this purpose, we define two special sets of vertices.

Definition 2 (Receiver) For a set of vertices T in a DAG G = (V,E), the set of receivers is the
set

ReG(T ) ≡ {v ∈ T | PaG(v) ∩ (V \ T ) ̸= ∅}.

The set of receivers for a set of vertices T ⊂ V are those members of T that have parents outside of
T in G. To complement the receivers, we also define the following.

Definition 3 (Emitter) For a set of vertices T in a DAG G = (V,E), the set of emitters is the
set

EmG(T ) ≡ {v ∈ T | ChG(v) ∩ (V \ T ) ̸= ∅}.

We will use shortcut notation G[T=] to denote a subgraph induced by T such that the incoming
edges to receivers of T and outgoing edges from emitters of T are removed. We are now ready to
define a cluster that preserves the fundamental structure of the graph.

Definition 4 (Transit cluster) A non-empty set T ⊂ V is a transit cluster in a connected DAG
G = (V,E) if the following conditions hold
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1. Pa(ri) \ T = Pa(rj) \ T for all pairs ri, rj ∈ Re(T ),

2. Ch(ei) \ T = Ch(ej) \ T for all pairs ei, ej ∈ Em(T ),

3. For all vertices ti ∈ T , there exists a receiver r or an emitter e such that ti and r or ti and e
are connected via an undirected path in G[T=].

4. If Em(T ) ̸= ∅ then for all r ∈ Re(T ) there exists e ∈ Em(T ) such that e ∈ De(r),

5. If Re(T ) ̸= ∅ then for all e ∈ Em(T ) there exists r ∈ Re(T ) such that r ∈ An(e).

In other words, a transit cluster is a set of vertices such that any member of its receivers has the
same parents outside of the set, and any member of its emitters has the same children outside of
the set. Additionally, we disallow those vertices from belonging to the cluster that are disconnected
from the receivers or emitters when incoming edges of receivers and outgoing edges of emitters have
been removed. Finally, for any receiver, there is always a directed path connecting that receiver to
an emitter, and conversely, for any emitter, there is always a directed path connecting a receiver
to that emitter. Together, these features endow the grouped set of vertices with several desirable
properties. The set of all transit clusters of G is denoted by ΥG .

The purpose behind the first two conditions in Definition 4 is to ensure that no new paths from
the parents of the receivers to the children of emitters are created by performing the clustering. The
third condition ensures that a transit cluster is characterized by its receivers and emitters, as we
will show later. The last two conditions enforce the idea of information flow through the cluster.
Examples of transit clusters are presented in Figure 3.

Definitions 1–4 allow us to characterize the graph induced by a transit cluster as follows:

Corollary 5 The induced graph G′ of transit cluster T is constructed from G by replacing T with a
single vertex t such that Pa∗G′(t) = Pa∗G(ReG(T )) \ T and Ch∗G′(t) = Ch∗G(EmG(T )) \ T .

We consider some desirable basic properties of transit clusters. We delegate the proofs of all
results to Appendix A. First, we must ensure that the graph induced by a transit cluster does not
contain cycles.

Lemma 6 Graph G′ induced by a transit cluster T in a DAG G is a DAG.

Next, we note that transit clusters are uniquely defined by their receivers and emitters.

Lemma 7 Let T and S be transit clusters in a DAG G = (V,E). If Re(T ) = Re(S) and Em(T ) =
Em(S), then T = S.

Intuitively, if clustering is carried out for multiple vertex sets in sequence, the order in which the
clustering is carried out should not matter in terms of the graph obtained after the last set has been
clustered. This notion is captured by the next two theorems. The first one states that a transit
cluster remains a transit cluster even if a disjoint transit cluster is clustered.

Theorem 8 (Invariance of transit clusters) Let T be a transit cluster in G = (V,E) and let G′
be the induced graph where T is replaced by a single vertex t. The set S ⊂ V \ T is a transit cluster
in G if and only if it is a transit cluster in G′.

A complementary result to the previous theorem guarantees that a transit cluster will still be a
transit cluster even if its subset is clustered.

Theorem 9 (Modularity of transit clusters) Let T be a transit cluster in graph G = (V,E) and
G′ the induced graph where T is replaced by a single vertex t. Let S ⊂ V \ T . The set {t} ∪ S is a
transit cluster in G′ if and only if T ∪ S is a transit cluster in G.
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x

r1

r2

r3

e1

e2 y

(a) Transit cluster {r1, r2, r3, e1, e2}.

x

r1

e1

r2

e2

rk−1

ek−1

rk

ek

y

. . .

(b) Transit cluster {r1, r2, . . . , rk, e1, e2, . . . , ek}.

x1 r1 z1 e1 y1

x2

z3 z4

z5

r2

z2

e2 y2

(c) Transit cluster {r1, r2, e1, e2, z1, z2, z3, z4, z5}.

Figure 3: Examples of transit clusters. In addition to presented transit clusters, there are other
transit clusters, for instance transit cluster {r1, e1} in panel (a).

Theorem 9 helps us to characterize the conditions for valid unions of transit clusters. The
following corollary plays a key role in the algorithmic approach to finding transit clusters in Section 3.

Corollary 10 (Union of transit clusters) Let disjoint sets S and T be transit clusters in G.
S ∪ T is a transit cluster in G if Pa∗(Re(S)) = Pa∗(Re(T )) and Ch∗(Em(S)) = Ch∗(Em(T )).

While other types of unions of transit clusters can result in valid transit clusters, it turns out
that the particular union specified by Corollary 10 is the only one we actually need.

In a practical setting, there may be vertices that we cannot or do not want to include in the
same cluster with other vertices. Thus the set of possible clusters may be restricted.

Definition 11 (Restricted transit cluster) Let G = (V,E) be a DAG and R ⊆ V . A restricted
transit cluster T ⊂ V with respect to R in G is a transit cluster in G such that T ⊆ R.

We denote the set of all restricted transit clusters with respect to R by ΥG|R ≡ {T | T ∈ ΥG , T ⊆ R}.
The next definition specifies the operations that can be applied to a DAG so that a transit cluster
remains a transit cluster.
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Definition 12 (Peripheral extension) Let T = {t1, . . . , tk} be a transit cluster in a DAG G. Let
G+ be a DAG obtained from G by one of the following operations:

1. Add an edge ti → tj where ti, tj ∈ T and the edge does not create a cycle,

2. Replace the edge ti → tj by the path ti → tk+1 → tj where tk+1 is a new vertex,

3. Divide vertex ti as follows: add a new vertex tk+1 such that Ch∗G+(tk+1) = Ch∗G(ti), remove all
outgoing edges of ti and add edge ti → tk+1.

4. Add a new vertex tk+1 and the edge tk+1 → ti and where ti ∈ T \ Re(T ),

5. Add a new vertex tk+1 and the edge ti → tk+1 where ti ∈ T \ Em(T ).

Adding a receiver or an emitter when Re(T ) ̸= ∅ and Em(T ) ̸= ∅ :

6. Add a new vertex tk+1 (a new receiver) such that Pa∗G+(tk+1) = Pa∗G(Re(T )), and add an edge
tk+1 → tj where tj ∈ T is on a path from a receiver to an emitter in G.

7. Add a new vertex tk+1 (a new emitter) such that Ch∗G+(tk+1) = Ch∗G(Em(T )), and add an edge
tj → tk+1 where tj ∈ T is on a path from a receiver to an emitter in G.

8. Add two new vertices tk+1 (a new receiver) and tk+2 (a new emitter) such that Pa∗G+(tk+1) =
Pa∗G(Re(T )) and Ch∗G+(tk+2) = Ch∗G(Em(T )), and add the edge tk+1 → tk+2.

Adding a receiver when Re(T ) ̸= ∅ and Em(T ) = ∅ :

9. Add a new vertex tk+1 (a new receiver) such that Pa∗G+(tk+1) = Pa∗G(Re(T )).

Adding an emitter when Re(T ) = ∅ and Em(T ) ̸= ∅ :

10. Add a new vertex tk+1 (a new emitter) such that Ch∗G+(tk+1) = Ch∗G(Em(T )).

Now define T+ = T if operation 1 was applied, T+ = T ∪{tk+1} if operation 2, 3, 4, 5, 6, 7, 9 or 10
was applied, and T+ = T ∪ {tk+1, tk+2} if operation 8 was applied. In all cases, T+ is a peripheral
extension of T , and G+ is the corresponding peripheral extension graph.

Operations 1–5 modify the internal structure of the transit cluster. New vertices and edges can
be added but new parents for receivers or new children for emitters cannot be added with these
operations. Operations 6–10 add new receivers and emitters. Here the allowed operations differ
for transit clusters that have only receivers, only emitters and both receivers and emitters. Special
conditions are needed to make sure that T+ fulfills the conditions of Definition 4. The following
theorem shows that a peripheral extension always results in a transit cluster.

Theorem 13 Let T+ be a peripheral extension of a transit cluster T in a DAG G = (V,E) and let
G′ be the induced graph where T is replaced by a single vertex. Then T+ is a transit cluster in the
corresponding peripheral extension graph G+ and G′ is the induced graph of T+.

A complementary result shows that any transit cluster can be constructed iteratively with oper-
ations of Definition 12.

Theorem 14 Let G′ be the induced graph of a transit cluster constructed from G by replacing set
T by a single vertex t. Then G and T can be constructed by iteratively applying operations of
Definition 12 to transit cluster {t} in G′.

So far, our focus has been on transit clusters in general. It turns out that transit clusters can al-
ways be constructed from smaller “building blocks” which we call transit components. Furthermore,
it is much easier to find transit components in a given DAG than transit clusters.
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Definition 15 (Transit component) A transit cluster T in a DAG G is a transit component if
T is connected in G[T ].

We extend the notion of restriction to transit components: the set of all restricted transit components
of a DAG G with respect to the set R is denoted by TG|R, and when R = V , i.e., when the
aforementioned set corresponds to components without restriction, we simply write TG . The intuitive
idea behind the purpose of transit components is encapsulated in the following theorem.

Theorem 16 (Transit cluster decomposition) Let T be a transit cluster in a DAG G = (V,E).
If T is not a transit component, then there exists a transit cluster S and a transit component R such
that T = S ∪R and S ∩R = ∅.

In simpler terms, any transit cluster can always be constructed iteratively from disjoint transit
components. The transit cluster decomposition plays a key role in finding transit clusters.

3. Clustering Algorithms

To find valid vertex clusters, we can always apply a naive approach and enumerate every vertex subset
of a DAG G and determine whether the conditions of Definition 4 hold. However, this approach
quickly becomes infeasible with larger graphs. In light of Theorem 16, we can instead start by
constructing the set of all transit components, and then obtain the set of all transit clusters by
applying Corollary 10 to the components. We begin by presenting a sound and complete algorithm
for finding transit components that exploit the structure of the graph by enumerating a set of
candidate receiver and emitter sets.

Algorithm 1 (FindTrComp) starts by constructing the candidate sets for potential receivers
and emitters, VCh and VPa, respectively on lines 3 and 4. Lemma 7 shows that we only need to
consider the receivers and emitters to uniquely specify a transit component. Next, we iterate over
all pairs of the candidates on lines 5 and 6. Lines 7–9 restrict the candidates into mutually ancestral
sets Z and W , and further exclude those candidates that cannot satisfy the properties of a transit
cluster. If at least one of the obtained candidate sets Z and W is nonempty on line 11, we move on
to construct a candidate transit component A on line 12. If A obeys the restriction defined by R
on line 13, we move on to the iteration over the components of A in the induced subgraph G[A] on
line 14. Lines 15 and 16 define those members of the current candidates Z and W that belong to the
current component Ak as Zk and Wk respectively. Finally, we determine whether the members of
Zk have the same parents, and whether members of Wk have the same children during lines 17–19.
If this is the case, a new transit component of G has been found, and it is added to the set A of
components found so far. Finally, this set is returned on line 21 after the outermost iterations have
been completed.

We proceed to show that FindTrComp always terminates.

Lemma 17 FindTrComp always terminates for valid inputs G and R.

Lemma 17 allows us to consider the output of FindTrComp. To show soundness of the algo-
rithm, me must show that the output set only contains restricted transit components.

Theorem 18 (Soundness of FindTrComp) Let G = (V,E) be a DAG, R ⊆ V and A = FindTrComp(G, R),
then A ⊆ TG|R.

Conversely for completeness of FindTrComp, we must show that any restricted transit compo-
nent of a DAG will be found by the algorithm.

Theorem 19 (Completeness of FindTrComp) Let G = (V,E) be a DAG, R ⊆ V , and A =
FindTrComp(G, R) then TG|R ⊆ A.

8
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Algorithm 1 An algorithm for finding all (restricted) transit components of a DAG. The inputs
are a DAG G = (V,E) and a restriction set R whose members are the only vertices in V that are
allowed to belong to any transit component. Returns the set of all restricted transit components in
G with respect to R.

1: function FindTrComp(G, R)
2: A ← ∅
3: VCh ← {Ch∗(v) ∩R | v ∈ V }
4: VPa ← {Pa∗(v) ∩R | v ∈ V }
5: for all Vi ∈ VCh do
6: for all Vj ∈ VPa do
7: if Vj ̸= ∅ then Z ← Vi ∩AnG(Vj) else Z ← Vi

8: if Vi ̸= ∅ then W ← Vj ∩DeG(Vi) else W ← Vj

9: if (∃zk ∈ Z s.t. Pa∗G(zk) = ∅) ∨ (∃wk ∈W s.t. Ch∗G(wk) = ∅) then
10: continue
11: if Z ̸= ∅ ∨W ̸= ∅ then
12: A← CoG[Z,W ](Z ∪W )
13: if A ⊆ R then
14: for all Ak ∈ C(G[A]) do
15: Zk ← Z ∩Ak

16: Wk ←W ∩Ak

17: ZPa ←
⋂

z∈Zk
Pa∗G(z) \Ak

18: WCh ←
⋂

w∈Wk
Ch∗G(w) \Ak

19: if ZPa = Pa∗(Zk) \Ak ∧WCh = Ch∗(Wk) \Ak then
20: A ← A ∪ {Ak}
21: return A

FindTrComp operates in polynomial time with respect to the size of the graph.

Theorem 20 FindTrComp outputs all restricted transit components of a DAG G = (V,E) with
respect to R ⊆ V in O(|V |4 + |V |3|E|) time.

Theorem 20 also gives an upper bound for the number of distinct transit components of a
DAG. To obtain a crude approximation, we note that there are |V |2 total candidate pairs (Z,W )
considered by FindTrComp, each of which can produce up to |V | distinct transit clusters (the
maximum amount of components in any induced subgraph), which leads to an upper bound of |V |3
transit components. However, we can find the smallest possible upper bound. First, we present a
utility lemma for counting transit components.

Lemma 21 Let T be a transit component of a DAG G = (V,E) and let G′ = (V ′, E′) be the induced
graph of the clustering with t representing the set T . If there does not exist a transit component S
of G such that T ∩ S ̸= ∅ and T \ S ̸= ∅, then |TG | = |TG′ |+ |TG[T ]|.

In other words, Lemma 21 states that if there exists a transit component T such that no other
transit component partially intersects it, then the number of transit components in the original
graph G is the sum of the number of transit components in the graph induced by clustering T and
the number of transit components in the subgraph induced by T .

Theorem 22 Let G = (V,E) be a DAG. Then |TG | ≤ |V |(|V |+1)
2 − 1.

In contrast, the upper bound for the number of transit clusters grows exponentially as the number
of vertices in the graph grows, hence ruling out an efficient algorithm for listing all transit clusters.
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Figure 3(b) shows an example where any combination of transit components {ri, ei}, i = 1, . . . , k is
a transit cluster and the number of non-singleton transit clusters is 2k − 1.

Fortunately, by carefully combining transit components, we can construct an algorithm that lists
all transit clusters with a polynomial delay. Algorithm 2 (FindTrClust) attempts to recursively
combine transit components into transit clusters using Corollary 10 to detect which unions are valid.
Theorem 16 guarantees that all transit clusters will be found by this approach.

Algorithm 2 An algorithm for finding all (restricted) transit clusters of a DAG. The inputs are a
DAG G = (V,E) and the set of all transit components TG|R with respect to R ⊂ V . Returns the set
of all restricted transit clusters in G with respect to R. The subroutine ExpandClust is used to
recursively construct the clusters.

1: function FindTrClust(G, TG|R)
2: A ← TG|R
3: B ← TG|R
4: for all T ∈ TG|R do
5: B ← B \ {T}
6: A ← A∪ExpandClust(T,A,B,G)
7: return A
1: function ExpandClust(T,A,B,G)
2: B′ ← B
3: for all S ∈ B do
4: B′ ← B′ \ {S}
5: if S ∪ T ̸∈ A and Corollary 10 holds for S and T then
6: A ← A∪ {S ∪ T} ∪ExpandClust(S ∪ T,A,B′,G)
7: return A

We begin by showing that FindTrClust always terminates.

Lemma 23 FindTrClust always terminates for valid inputs G and TG|R.

Lemma 23 guarantees that the output of FindTrClust is well-defined. Next, we show that the
output of the algorithm is a set of transit clusters.

Theorem 24 (Soundness of FindTrClust) Let G = (V,E) be a DAG, R ⊆ V , and A = FindTrClust(G, TG|R),
then A ⊆ ΥG|R.

For the inverse, we show that any transit cluster is found by FindTrClust.

Theorem 25 (Completeness of FindTrClust) Let G = (V,E) be a DAG, R ⊆ V , and A =
FindTrClust(G, TG|R) then ΥG|R ⊆ A.

Finally, we prove that all transit clusters of a DAG can be listed with a polynomial delay.

Theorem 26 FindTrClust outputs all restricted transit clusters of a DAG G = (V,E) with respect
to R ⊆ V with O

(
|V |5

)
polynomial delay and a O (|V |+ |E|) initialization delay.

If FindTrClust and FindTrComp are run in sequence for the same DAG, a dynamic pro-
gramming approach can be applied to further eliminate the preprocessing delay of FindTrComp
by caching the parent and child sets of the receivers and emitters of each transit component during
the operation of FindTrClust. We also note that in practice, the worst case performance only
occurs in the first iteration of the outermost recursion level, because the number of possible unions
of transit components always decreases in both the number of loop iterations and recursion depth.

Naturally, it is not necessary to obtain all transit components, and the iteration can be stopped
for example when a cluster with some desired properties is found. Alternatively, one can consider
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transit components directly, as they are valid transit clusters themselves, without attempting to find
larger transit clusters at all. Furthermore, we note that it is not necessary to consider restrictions
directly on the transit components in form of the set R. The same set of transit clusters can also
be obtained by first finding the unrestricted transit clusters and then simply discarding those that
violate the restrictions. This type of approach can be useful when the possible restrictions are not
known beforehand.

4. Transit Clusters and Causal Inference

So far, we have considered clustering from a purely graphical point of view. However, in the context
of causal inference and structural causal models of Pearl (2009), the causal model defines some
variables as unobserved background variables and others as observed, which has to be accounted for
when constructing transit clusters in causal diagrams.

Let W be a set of vertices. We denote by (Xw)w∈W a collection of random variables taking
values in measurable spaces (Xw)w∈W . We assume that the measurable spaces are finite-dimensional
vector spaces or finite discrete sets. For A ⊆W let XA ≡ ×a∈A(Xa) denote the product space, and
XA ≡ (Xa)a∈A the corresponding random vector. We will use p(·|·) to denote joint distribution,
marginal distributions, and conditional distributions of random variables.

To facilitate the concept where a single vertex represents the entire cluster in the induced graph
of the clustering, we adopt a definition of a causal model that explicitly makes it possible for a
single vertex of the causal diagram to correspond to a multivariate random variable. Assume that
a DAG G = (V,E) is clustered as G′ = (V ′, E′) and let W ′ ⊂ V ′ be the clustering equivalent set
of W ⊂ V resulting from a clustering of a transit cluster T . Suppose now that for each v ∈ V ,
there is a corresponding random variable Xv. We can now define clustering equivalent random
variables as follows: for any w′ ∈ W ′ \ {t}, Xw′ = Xw, and Xt = (Xw)w∈W∩T , i.e., the random
variables corresponding to the clustered vertices are combined into a new random variable and the
variables unrelated to the transit cluster remain unchanged. Thus, for any functional g of the joint
distribution it holds that g(p(xW )) = g(p(xW ′)).

We define structural causal models analogously to Pearl (2009) using our notation.

Definition 27 (Causal model) A causal modelM is a tuple (XV , XU ,F , p), where

• XV is an observed random vector indexed by the set V .

• XU is an unobserved random vector indexed by the set U .

• F is a collection of functions (fv)v∈V such that each fv is a mapping from XU∪(V \{v}) to Xv

and such that F forms a mapping from XU to XV . Symbolically, the set of equations F can
be represented by writing Xv = fv(XPa(v), XU(v)), where XPa(v) ⊆ XV is the unique minimal
set of observed variables sufficient for representing fv. Likewise, XU(v) ⊆ XU stands for the
unique minimal set of unobserved variables sufficient for representing fv.

• p is the joint probability distribution of XU .

Each causal model M can be associated with a directed graph G(M) where the vertices corre-
spond to the sets V and U and directed edges point from members of Pa(v) and U(v) to v. We refer
to this graph as the causal diagram. We consider recursive semi-Markovian causal models in this
paper, meaning that G(M) is a DAG and each u ∈ U has at most two children in G(M). For simplic-
ity, we assume that noise terms, i.e., vertices of unobserved variables with only one child, are always
clustered together with their children when clustering is carried out. This makes it unnecessary to
include such unobserved variables when drawing causal diagrams.

We make a distinction between vertices of a DAG and the random variables that they represent
in the causal model and equate them only when it is suitable to do so. In figures that depict DAGs
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that are causal diagrams, we draw vertices V that relate to observed variables as circles, and vertices
U that relate to unobserved variables as squares. The do(xA) operator denotes that the variables
XA are assigned fixed values xa irrespective of their parents in the causal diagram.

We define the identifiability of a causal effect as follows.

Definition 28 (Identifiability) An interventional distribution (causal effect) p(xA|do(xB)) is iden-
tifiable from p(xV ) in a causal diagram G = (V,E) if it is uniquely computable from p(xV ) in every
causal model that has the causal diagram G.

Causal effect identification is a well-known problem in causal inference, and a complete algo-
rithm exists for the problem of determining whether p(xA |do(xB)) is identifiable in a causal dia-
gram G from the observational distribution p(xV ) (Shpitser and Pearl, 2006; Tikka and Karvanen,
2017a). An important graphical structure related to identifiability is a confounded component, or a
c-component for short (sometimes also called a “district”). C-components are typically defined for
semi-Markovian causal models, that is, models where unobserved variables have exactly two children
and they are represented graphically by bidirected edges instead of including the corresponding vari-
ables explicitly in the graph. Because transit clusters can contain vertices that represent unobserved
variables, we provide an equivalent definition of c-components for causal diagrams where unobserved
variables are present.

Definition 29 (c-component) Let G = (V ∪ U,E) be a causal diagram of a causal model M. If
there exists a path between every pair of vertices i, j ∈ V such that every vertex on the path that is
a member of V is a collider with the exception of i and j, and the path contains at least one vertex
that is a member of U , then G is a c-component.

When c-components are defined as in Definition 29, we may define maximal c-components, c-
trees, c-forests and hedges analogously they are defined by Shpitser and Pearl (2006) (see Appendix B
for details). Any causal diagram that is not a c-component can be uniquely partitioned into a set of
its maximal c-components. A causal effect p(xA |do(xB)) is identifiable from p(xV ) in G = (V ∪U,E)
if and only if G does not contain a hedge for any p(xA′ |do(xB′)) in G, where A′ ⊆ A and B′ ⊆ B.
The existence of a hedge means that the graph has two c-components that fulfill specific graphical
conditions, and that can be used to construct two causal models that agree on p(xV ) but disagree
on p(xA |do(xB)).

Identifiability may not be preserved by arbitrary clusters of vertices in the causal diagram,
meaning that a causal effect may be identifiable in the original graph but not in the graph induced
by the cluster or vice versa. Fortunately, transit clusters can be proven to preserve identifiability
under specific conditions. The first condition requires that the emitters and the parents of receivers
are observed:

Definition 30 A transit cluster T in a DAG G = (V ∪ U,E) of a causal model M is plain if
Pa∗(Re(T )) ∪ Em(T ) ⊆ V .

In a plain transit cluster, any latent confounders will always be clustered together with their children.
The second condition requires that the entire transit cluster belongs to the same c-component:

Definition 31 A transit cluster T in a DAG G = (V ∪ U,E) of a causal model M is congested if
all members of T belong to the same c-component in G and Em(T ) ⊆ V .

In essence, plain and congested transit clusters do not change the c-components of the causal dia-
gram. Thus, identifiability is preserved for plain and congested transit clusters.

Theorem 32 Let G = (V ∪U,E) be a DAG of a causal modelM and let A and B be disjoint subsets
of V . Let T = {t1, . . . , tn} be a restricted transit cluster with respect to (V ∪U) \ (A∪B) in G, and
let G′ = (V ′ ∪ U ′, E′) be the induced graph of the cluster with vertex t′ ∈ V ′ as the representative of
T . If T is plain or congested, then p(xA | do(xB)) is identifiable from p(xV ) in G precisely when it
is identifiable from p(xV ′) in G′.
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Figure 4 demonstrates that in general identifiability may be lost in clustering even if the cluster
is a transit cluster. In these examples, receiver r and emitter e form a transit cluster that is neither
plain nor congested because r has unobserved variables as parents but r and e do not belong to the
same c-component. Consequently, Theorem 32 does not apply for these transit clusters.

aber

u1

u2

(a) Query p(xa | do(xb)) is identified
from p(xr, xe, xb, xa).

b1 r e a1

b2 w a2

u1 u2 u3 u4

(b) Query p(xa1 , xa2 | do(xb1 , xb2)) is identified from
p(xb1 , xb2 , xr, xe, xw, xa1 , xa2).

Figure 4: Two examples where identifiability is lost when transit cluster T = {r, e} is replaced by a
single vertex. The vertices of unobserved variables are denoted by squares.

5. Robustness of Structural Assumptions

Consider now the top-down causal modeling where a cluster T represents observed variables (Xt1 , . . . , Xtn)
and an unspecified number of unobserved background variables. The cluster is represented by a sin-
gle node t in a DAG G′ but the causal structure inside the cluster has not been specified. Assume
that a causal effect p(xA|do(xB)), where T ∩ (A ∪ B) = ∅, is identifiable from p(xV ′) under the
structural assumptions coded in a causal diagram G′ and g(p(xV ′)) is an identifying functional for
p(xA|do(xB)). We are interested in characterizing the internal structure of cluster T for which we
can guarantee that g(p(xV )) obtained from g(p(x′

V )) by explicitly replacing xt by its observed com-
ponents (xt1 , . . . , xtn), is an identifying functional for p(xA|do(xB)) in G. We will show that a plain
or congested transit cluster fulfills this requirement of structural robustness.

We start with DAG G′ where the single node transit cluster {t} represents the random variables
Xt1 , . . . , Xtn , Xu1

, . . . , Xum
, and the number of unobserved variables m has been chosen arbitrarily.

We apply the peripheral extension of Definition 12 until all variables Xt1 , . . . , Xtn , Xu1
, . . . , Xum

of
the cluster are explicitly presented as vertices {t1, . . . , tn, u1, . . . , um} of graph G. Finally, we state
conditions that the identifying functional remains valid.

Theorem 33 Let XV be a vector of observed random variables, XU a vector of unobserved random
variables, and G′ = (V ′ ∪ U ′, E′) the causal diagram of a causal model M′ where vertex t ∈ V ′

represents set T = {t1, . . . , tn, u1, . . . , um} in G′, t1, . . . , tn ∈ V , u1, . . . , um ∈ U , and v ∈ V ′ \ {t}
implies v ∈ V . Let G = (V ∪ U,E) be a DAG obtained from G′ by applying a series of peripheral
extensions to vertex t such a way that G is a causal diagram. If T is a plain or congested transit
cluster in G, the following holds for disjoint subsets A and B of V ′ such that T ∩ (A ∪B) = ∅.

1. Causal effect p(xA | do(xB)) is identifiable from p(xV ) in G exactly when it is identifiable from
p(xV ′) in G′.
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2. If g(p(xV ′)) is an identifying functional for p(xA | do(xB)) in G′, it is also an identifying
functional for p(xA | do(xB)) in G.

6. Use cases and illustrations

Transit clusters can be applied in various ways. Here we demonstrate their use in reducing the size
of a causal diagram, simplification of identifying functionals, speeding up identification algorithms,
and top-down causal modeling.

6.1 Reducing the size of a causal diagram

As an example of simplification of the causal diagrams and identifying functionals, as well as the
robustness of causal effect estimation, we consider a graph related to the Sangiovese grapes studied
earlier as a conditional linear Gaussian network by Magrini et al. (2017), where the interest was
in the effect of various treatments Xb on the mean weight of grapes Xa. In addition to a and
b, the graph contains vertices z1, . . . , z13 which are related to different characteristics of the soil,
grape plants and must (Magrini et al., 2017). Compared to the original graph, we added a latent
confounder Xu between the treatment variable Xb and the mean weight of grapes Xa for illustrative
purposes. We do not present the causal diagram graphically as its large number of vertices (16) and
edges (57) makes it difficult to visualize clearly.

Applying algorithm 2 gives us transit cluster T = {z1, . . . , z13}, with variables r = {z1, z2, z4, z10}
as receivers and e = {z1, z3, z4, z6, z7, z8, z10, z12, z13} as emitters (with variables z5, z9, and z11 being
neither). This leads to a simplified graph in Figure 5.

ab t

u

Figure 5: Induced graph of the Sangiovese graph where the transit cluster T = {z1, . . . , z13} is
replaced with single vertex t.

6.2 Simplification of identifying functionals

The application of the ID-algorithm (Shpitser and Pearl, 2006) to original graph related to the
Sangiovese grapes leads to long and complicated identifying functional:

p(xa |do(xb)) =
∑

xz1
,...,xz13

[
p(xz13 |xb, xz1 , . . . , xz12)p(xz12 |xb, xz1 , . . . , xz8 , xz10 , xz11)

× p(xz11 |xb, xz1 , . . . , xz8 , xz10)p(xz10 |xb, xz1 , . . . , xz8)p(xz9 |xb, xz1 , . . . , xz8)

× p(xz8 |xb, xz1 , . . . , xz7)p(xz7 |xb, xz1 , . . . , xz6)p(xz6 |xb, xz1 , xz2 , xz3 , xz5)

× p(xz5 |xb, xz1 , xz2 , xz3)p(xz4 |xb, xz1)p(xz3 |xb, xz1 , xz2)p(xz2 |xb, xz1)p(xz1 |xb)

×

∑
x′
b

p(xa|x′
b, xz1 , . . . , xz13)p(x

′
b)


(1)
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On the contrary, the application of the ID-algorithm to the clustered graph of Figure 5 leads to
identifying functional of form

p(xa |do(xb)) =
∑
xt

p(xt|xb)

∑
x′
b

p(xa|x′
b, xt)p(x

′
b)

 , (2)

i.e. front-door adjustment. This enables us to model p(xt|xb) in an arbitrary, but consistent manner
without making specific claims about the internal structure of T .

6.3 Speeding up identification algorithms

Identifying functionals obtained from the application of ID-algorithm or general do-calculus are of-
ten unnecessarily complex and could be further simplified (Tikka and Karvanen, 2017b). This can
allow easier interpretation of the identifying functional and more efficient estimation of the causal
effect. The R (R Core Team, 2022) package causaleffect (Tikka and Karvanen, 2017a) implements
an automatic simplification algorithm for this task, however, the algorithm can be slow in case of
large graphs. Alternatively if we can first simplify the graph by clustering, we can reduce the compu-
tational burden of both the identification algorithm as well as subsequent simplification algorithm.
For example, in case of the Sangiovese graph, the causaleffect package returns (1) in 0.1 seconds
with simplification option disabled and 132 seconds with simplification enabled (which in this case
does not lead to simpler equation) on a standard laptop. On the other hand, running the clustering
algorithm and subsequent identification (which returns (2)) takes only 0.5 seconds. Importantly, the
simplification algorithm of Tikka and Karvanen (2017b) is NP-hard, and thus it may be possible to
obtain simpler identifying functionals using transit clusters in scenarios where direct simplification
is infeasible. The code for this benchmark is also available in the GitHub repository.

6.4 Top-down causal modeling

As an example of peripheral extension and the robustness of the estimation strategies, consider a
causal graph shown in Figure 6, studied earlier by Helske et al. (2021), where the interest is in the
causal effect of the education level Xe on income Xi. Variable Xs measures general language skills on
Illinois Test of Psycholinguistic Abilities (ITPA), which is a composite of 12 subtests. Thus instead of
vertex s representing a single composite variable Xs in Figure 6, we can by the peripheral extension
(12) treat it as a transit cluster T = {s1, . . . , s12} (with si corresponding to the subtest i) without
affecting the identifiability of the causal effect p(xi |do(xe)). While the causal effect estimates can
depend on whether we use Xs or XT in the modelling, the obtained estimator is robust to these
changes in a sense that the methodology of Helske et al. (2021) can be used to estimate the effect
in both cases.

As another example of peripheral extension, we consider an epidemiological application studied
earlier by Karvanen et al. (2020). The question of interest is the causal effect of salt-adding behavior
on the salt intake. The high salt intake is one of the causes of hypertension (He et al., 2013).

The example is based on the National Health and Nutrition Examination Survey (NHANES,
https://wwwn.cdc.gov/nchs/nhanes/) 2015–2016 that is an observational study on the health
and nutritional status of adults and children in the United States. The NHANES variables are
already divided into categories by their content and the type of the data. In the top-down modeling,
these categories may correspond to transit clusters in the causal diagram. An example of a causal
diagram constructed by this approach is shown in Figure 7. The peripheral extension (Definition 12)
can be used to extend the clusters. For instance, the cluster represented by the vertex a, “Salt-adding
behavior”, may consists of the following variables measured in NHANES:

1. How often do you add ordinary salt to your food at the table? (Rarely 0, Occasionally 1, Very
often 2)
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Figure 6: Causal diagram representing the effect of education level Xe on income Xi. Other variables
represented in graph are gender Xg, score on Illinois Test of Psycholinguistic Abilities (ITPA) Xs,
socioeconomic status of the parents Xw, and the grade point average Xz at the end of primary
school. Variables Xu1

, Xu2
, Xu3

are unobserved.

2. Did you add any salt to your food at the table yesterday? (No 0, Yes 1), and

3. How often is ordinary salt or seasoned salt added in cooking or preparing foods in your house-
hold? (Never 0, Rarely 1, Occasionally 2, Very often 3).

and the variables of the cluster represented by vertex b, “Diet behavior”, may include

1. Are you on low salt/low sodium diet?

2. Are you on other special diet? (several options)

3. Number of meals not home prepared during the past 7 days

4. Number of meals from fast food or pizza place during the past 7 days

The use of transit clusters provides a formal justification for the top-down modeling. Especially,
Theorem 33 states sufficient conditions for the validity of conclusions made with the clustered graph.

7. Discussion

We have considered clustering from two starting points. First, we started with an unclustered DAG
that may have a large number of vertices and proposed algorithms for finding transit components and
transit clusters, allowing us to simplify the representation of the DAG and the obtained identifying
functional. Furthermore, we provided sufficient conditions for non-identifiability in a clustered DAG
to imply non-identifiability in the original DAG. Second, we started with a clustered DAG where
a single vertex represents a group of variables and presented the peripheral extension, a procedure
for constructing all transit clusters that are compatible with the clustered DAG. We showed that an
identifying functional for a causal effect in the clustered DAG remains valid in DAGs obtained via
peripheral extension.

A transit cluster was deliberately defined for a DAG without any reference to a causal model.
This allows us to cluster vertices even before it is known which data will be available. The division
into observed and unobserved variables is however hard-coded into the definition of a structural
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Figure 7: Causal model for the salt intake example. The vertices represent the following transit
clusters of variables: Salt-adding behavior Xa (represented by a single vertex a), salt intake Xs, diet
behavior Xb, demographic variables Xd, occupation Xo, and income Xi.

causal model where an unobserved variable cannot have parents. This restriction is taken into
account in Theorems 32 and 33.

The DAG-based definition of a transit cluster makes it possible to apply a workflow where
Algorithm 1 is first run for the whole graph in order to find all transit components. Restrictions may
then be applied to these transit components before transit clusters are constructed by Algorithm 2.
The same transit components can be re-used when the causal effect in the focus is changed to a new
one that implies different restrictions for the transit clusters.

The examples presented in Section 6 illustrate the use of transit clusters in reducing the size
of a causal diagram, simplifying identifying functionals, and speeding up identification algorithms.
The identifying functional defined using the representative vertex in place of transit cluster allows
a researcher to focus on the overall structure of the functional when choosing suitable estimation
methods for the causal effect. Transit clusters also provide a justification for the top-down causal
modeling.

In addition to the use cases considered, clustering could be beneficial also in causal discovery
(Spirtes et al., 2000, 2001). If a set of variables can be assumed to form a transit cluster, we may,
at least theoretically, use any single variable of the set as representative of the whole cluster when
considering whether the cluster and a variable outside the cluster are d-separated. In general, causal
discovery methods can construct the underlying DAG only up to an equivalence class and additional
challenges with finite samples may occur due to a variety of reasons, such as measurement error
(Zhang et al., 2017), selection bias (Zhang et al., 2016), or missing data (Tu et al., 2019). The
assumption on a transit cluster could in some cases provide the information needed to reduce these
ambiguities.

In future work, we would like to extend the results of Sections 4 and 5 to more general identifi-
ability problems with multiple data sources consisting of a mix of observational and interventional
distributions. We hypothesize, that at least plain transit clusters can be used to retain identifiabil-
ity in more complex settings. It may also be possible to extend the definition of transit clusters to
graphs where the direction of some edges is unknown.
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Appendix A. Proofs

We restate and prove all results of the paper.

Lemma 6 Graph G′ induced by a transit cluster T in a DAG G is a DAG.

Proof Let t be the single vertex in G′ that corresponds to T in G. We show that if there exists a
directed path from v1 to v2 in G′, there cannot also exist a directed path from v2 to v1. Assume
first that both directed paths exist and neither of them contains t. This is a contradiction because
then both paths would exist in a DAG G as well. Next, assume without loss of generality that the
directed path from v1 to v2 contains t. It follows that G has a directed path v1 → . . . → r →
. . .→ e→ . . .→ v2, where the existence of vertices r ∈ Re(T ) and e ∈ Em(T ) is guaranteed by the
definition of transit cluster. Similarly, if the directed path from v2 to v1 contains t, there would a
directed path from v2 to v1, which together with directed path from v1 to v2 would create a cycle
in G. If the directed path from v2 to v1 does not contain t, it will exist also in G and form a cycle
in G. We conclude that G′ cannot have cycles and is thus a DAG.

Lemma 7 Let T and S be transit clusters in a DAG G = (V,E). If Re(T ) = Re(S) and Em(T ) =
Em(S), then T = S.

Proof Suppose instead that there exists t ∈ T such that t ̸∈ S and that t ̸∈ Re(T ) ∪ Em(T ). By
condition 3, t is connected to a receiver or an emitter in G[T=]. Assume first that t is connected
to receiver r in G[T=]. As Re(T ) = Re(S), r is also a receiver for S. Follow the path from r to
t and let s be the last vertex that belongs S and q the next vertex that does not belong to S. If
there is an edge s → q, s is an emitter for S and if there is an edge q → s, s is a receiver for S.
As Re(T ) = Re(S) and Em(T ) = Em(S), s is also a receiver or an emitter for T . This leads to a
contradiction because by definition the edges incoming to receivers and outgoing from emitters are
cut in G[T=] and the path between t and r cannot exist. The case where t is connected to an emitter
in G[T=] proceeds analogously.

Theorem 8 (Invariance of transit clusters) Let T be a transit cluster in G = (V,E) and let G′
be the induced graph where T is replaced by a single vertex t. The set S ⊂ V \ T is a transit cluster
in G if and only if it is a transit cluster in G′.

Proof As S and T are disjoint, the vertices of S as well as the edges between vertices of S are
unaffected by the clustering of T . It follows that S′ = S, where S′ is the clustering equivalent set
of S. We will show that ReG′(S′) = ReG(S), EmG′(S′) = EmG(S), and S′ fulfills the conditions
of Definition 4 both in G and G′. As the edges between S and V \ (S ∪ T ) are unaffected by the
clustering, it suffices to consider only edges between S and T . If a parent of ReG(S) belongs to T ,
condition 1 applied to S in G guarantees that vertex t will be a parent of all vertices in ReG(S) in
G′. If t is a parent of ReG′(S′), condition 1 applied to S′ in G′ guarantees that any member of T
that is a parent of a receiver in G will be a parent of all vertices in ReG(S) in G. Similarly, if a child
of EmG(S) belongs to T , vertex t will be a children of all vertices in EmG(S) in G′ and if t is a child
of EmG′(S′), any member of T that is a child of an emitter in G will be a child of all vertices in
EmG(S) in G. It follows that ReG′(S′) = ReG(S), EmG′(S′) = EmG(S) and conditions 1 and 2 are
fulfilled for S′ = S both in G and G′. Conditions 3, 4 and 5 are fulfilled as well as they consider only
paths inside S′.
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Theorem 9 (Modularity of transit clusters) Let T be a transit cluster in graph G = (V,E) and
G′ the induced graph where T is replaced by a single vertex t. Let S ⊂ V \ T . The set {t} ∪ S is a
transit cluster in G′ if and only if T ∪ S is a transit cluster in G.

Proof Denote Q = T ∪ S and Q′ = {t} ∪ S.
First, we assume that {t} ∪ S is transit cluster in G′ and show that T ∪ S is transit cluster in G.
Condition 1: We will show for all r ∈ ReG(Q) that PaG(r) \ Q = PaG′(ReG′(Q′)) \ Q′. First

let v /∈ Q to be a parent of receiver r in G. It follows that in G′, vertex v is a parent of r if
r ∈ S or a parent of t if r ∈ T because v /∈ Q in G. It follows that r or t is a receiver in G′ and
v ∈ PaG′(ReG′(Q′)) \Q′.

Now let v ∈ PaG′(ReG′(Q′)) \Q′ and consider two cases: a) If v is a parent of t in G′ then t is a
receiver in G′. Further, v is a parent of some ti ∈ T in G because t is a single vertex corresponding to
transit cluster T in G. It holds ti ∈ ReG(Q) because v /∈ Q. Condition 1 of transit cluster guarantees
that v is also a parent of r. b) If v is a parent of si ∈ S in G′ then v is a parent of si ∈ S also in G
because v /∈ Q′ in G′. Thus si is a receiver in G and v ∈ Pa(Re(Q)G)G \Q.

Condition 2: The proof is analogous to condition 1.
Condition 3: Consider qi ∈ Q. Assume first that qi ∈ T . There exist in G′ vertex v that is a

receiver for Q′ or an emitter for Q′ and is connected to t. Applying conditions 1, 2, 4 and 5 for
transit cluster T guarantees that there a path between qi and v in G. If v ∈ S, it is the required
receiver or emitter for Q. If v = t, applying conditions 1, 2, 4 and 5 to transit cluster T guarantees
that set T has the required receiver or emitter.

Assume next that qi ∈ S. There exist in G′ vertex v that is a receiver for Q′ or an emitter for
Q′ and is connected to qi. If v ∈ S, it satisfies the condition 3 for Q because applying conditions 4
and 5 to transit cluster T guarantees that t can be replaced by a path consisting of vertices in T . If
v = t, applying conditions 1, 2, 4 and 5 for transit cluster T guarantees that set T has the required
receiver or emitter.

Condition 4: Assume EmG(Q) ̸= ∅ and let r ∈ ReG(Q). a) If r ∈ T then t is a receiver in G′ by
the proof of condition 1. It follows that there exists e′ ∈ EmG′(Q′) such that e′ ∈ DeG′(t). If e′ ̸= t,
it directly fulfills condition 4. If e′ = t, there exists e ∈ EmG(T ) such that e ∈ DeG(r), which fulfills
condition 4. b) If r ∈ S then r ∈ ReG′(Q′) and there exists e ∈ EmG′(Q′) such that e ∈ DeG′(r). If
e ∈ S, it fulfills condition 4 because Q′ is a transit cluster. If e = t, there exists an emitter in T that
fulfills condition 4 because T is a transit cluster.

Condition 5: The proof is analogous to condition 4.
Next, we assume that T ∪ S is transit cluster in G and show that {t} ∪ S is transit cluster

in G′. Conditions 1 and 2 are already covered above when we showed that Pa(Re(Q)G)G \ Q =
PaG′(ReG′(Q′)) \Q′ and Ch(Em(Q)G)G \Q = ChG′(EmG′(Q′)) \Q′.

Condition 3: Consider qi ∈ Q′. Assume first that qi = t. For any ti ∈ T there exist some vertex
v that is the required receiver or emitter in G. By the definition of clustering, t and v are connected
in G′. Assume next that qi ∈ S. There exist in G vertex v that is a receiver for Q or an emitter for
Q and is connected to qi. If v ∈ S, it satisfies the condition 3. If v ∈ T , vertex t is the required
receiver or emitter for qi in G′.

Condition 4: Assume EmG′(Q) ̸= ∅ and let r ∈ ReG′(Q′). a) If r = t, set ReG(Q)∩T is non-empty
and all members of this set fulfill condition 4 in G. Let there be a path from ri ∈ ReG(Q) ∩ T to
e ∈ EmG(Q) in G. It follows that either e ∈ T and t is the requested emitter in G′ or e ∈ S and
there is a path from t to e in G′ and e is the requested emitter.

Condition 5: The proof is analogous to condition 4.

Corollary 10 (Union of transit clusters) Let disjoint sets S and T be transit clusters in G.
S ∪ T is a transit cluster in G if Pa∗(Re(S)) = Pa∗(Re(T )) and Ch∗(Em(S)) = Ch∗(Em(T )).
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Proof Consider graph G′ where the transit cluster S is replaced by vertex s and graph G′′ where
transit clusters S and T are replaced by vertices s and t, respectively. It is easy to check that set {s, t}
is a transit cluster in G′′ under the assumption that Pa∗(Re(S)) = Pa∗(Re(T )) and Ch∗(Em(S)) =
Ch∗(Em(T )). By applying Theorem 9 to G′′ we conclude that {s} ∪ T is a transit cluster in G′. By
applying Theorem 9 then to G′, we conclude that S ∪ T is a transit cluster in G.

Theorem 13 Let T+ be a peripheral extension of a transit cluster T in a DAG G = (V,E) and let
G′ be the induced graph where T is replaced by a single vertex. Then T+ is a transit cluster in the
corresponding peripheral extension graph G+ and G′ is the induced graph of T+.

Proof Let G+ be the peripheral extension graph of T+. A new receiver is created by operations 6,
8 and 9. A new emitter is created by operations 7, 8 and 10. A new emitter can be created also by
operation 3. Operations 6, 7, 8, 9 and 10 explicitly copy parents and children so that the conditions 1
and 2 of transit cluster hold for T+. If ti is an emitter in operation 3, it will not be an emitter in
G+. Copying the children to new vertex tk+1 ensures that condition 2 is fulfilled for tk+1.

Before an operation, condition 3 hold for all existing vertices in T . Condition 3 holds also in
G+ for all existing vertices because the operations do not change the existence of the current paths.
Condition 3 holds for the new vertex tk+1 added by operations 3, 4 and 5 because condition 3 holds
for ti, and tk+1 is connected to ti. Condition 3 directly holds for a receiver or an emitter added by
operation 6, 7, 8, 9 or 10.

We also conclude that if there exist a path in G from r ∈ ReG(T ) to e ∈ EmG(T ), there also exist
a path from r to e in G+ because operation 1 does not remove edges or vertices, operations 2 and 3
preserve directed paths, operations 4 and 5 do not affect receivers and emitters, operations 6, 7 and 8
explicitly add an edge to create the required directed path, and operations 9 and 10 do not apply to
cases where T has both receivers and emitters. It follows that the conditions 4 and 5 of transit cluster
hold for T+. Graph G′ is the induced graph of G+ because PaG∗(ReG∗(T ∗)) \T ∗ = PaG(ReG(T )) \T
and ChG+(EmG+(T+)) \ T+ = ChG(EmG(T )) \ T .

Theorem 14 Let G′ be the induced graph of a transit cluster constructed from G by replacing set
T by a single vertex t. Then G and T can be constructed by iteratively applying operations of
Definition 12 to transit cluster {t} in G′.

Proof At the beginning, all vertices in T are unmarked, i.e., they are not yet included in the graph
to be constructed. Assume first Re(T ) ̸= ∅ and Em(T ) ̸= ∅. Apply operation 3 to t to create set A0

that has exactly one receiver r and one emitter e. Choose r to be an arbitrary member of Re(T ) to
r and choose e to be an arbitrary member of Em(T ) that is a descendant of r. Apply operation 2
iteratively to construct a path corresponding to the path from r to e in T . Now all vertices of T
that belong to this path are marked.

Form a set A2 of such receiver-emitter pairs in T that there is a directed path from the receiver
to the emitter. While there are unprocessed pairs in A2, do the following operations: If both the
receiver and the emitter are unmarked, apply operation 8 to create the receiver-emitter pair and
apply operation 2 to create the directed path between them. If the receiver is unmarked and the
emitter is marked, apply operation 6 to connect the receiver to a vertex that is on the receiver-emitter
path and is an ancestor of all marked vertices on this path. Then apply operation 2 iteratively to
create all vertices of the receiver-emitter path. If the receiver is marked and the emitter is unmarked,
apply operation 7 to connect the emitter to a vertex that is on the receiver-emitter path and is a
descendant of all marked vertices on this path. Then apply operation 2 iteratively to create all
vertices of the receiver-emitter path. If both the receiver and the emitter are marked, apply first
operation 1 and then iteratively operation 2 to create the directed path between them.
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Next process all vertices of T that have not been marked yet. Apply operations 4 and 5 to
connect them to a vertex that is their child or parent. Repeat this until there are no vertices left.
Finally, process all edges of T and use operation 1 to add the missing edges.

Next assume Re(T ) = ∅ and Em(T ) ̸= ∅. Apply operation 9 to add all receivers. Then process
all vertices of T that have not been marked yet similar way as above. Finally process all edges of
T and use operation 1 to add the missing edges. The case Re(T ) = ∅ and Em(T ) ̸= ∅ proceed
analogously.

Theorem 16 (Transit cluster decomposition) Let T be a transit cluster in a DAG G = (V,E).
If T is not a transit component, then there exists a transit cluster S and a transit component R such
that T = S ∪R and S ∩R = ∅.

Proof Because T is not a transit component, there exists a set R ⊂ T such that G[R] is connected
and such that R is not connected to S = T \ R in G[T ]. Note that such a set necessarily exists,
because at least one vertex t in T is not connected to T \ {t} in G[T ] due to T not being a transit
component. Next, we show that S and R are transit clusters. If T has receivers, then the receivers
of S and R must have the same parents as the receivers of T because S and R are disconnected in
G[T ], and because T is a transit cluster, thus satisfying condition 1. Analogously, if T has emitters
then the children of the emitters of S and R must be the same, satisfying condition 2. Conditions 3
through 5 are satisfied for S and R because any path from an emitter to a receiver in T exists either
entirely in S or R because S or R are disconnected in G[T ]. Thus S and R are disjoint transit
clusters such that T = S ∪R and R is a transit component because it is connected in G[R].

Lemma 17 FindTrComp always terminates for valid inputs G and R.

Proof The sets VCh and VPa are finite, and for any set A constructed on line 12, there is only a finite
number of possible components C(G[A]) in the innermost for-loop. Thus, there is finite number of
iterations in total across all for-loops, and all other operations are well-defined and nonrecursive.

Theorem 18 (Soundness of FindTrComp) Let G = (V,E) be a DAG, R ⊆ V and A = FindTrComp(G, R),
then A ⊆ TG|R.

Proof We show that if FindTrComp(G, R) reaches line 20, then the set being added to A is a
transit component in G. Because TG|R ⊆ TG for all R ⊂ V , we can assume that R = V . Let Vi, Vj

be a pair defined on lines 5 and 6 such that line 20 is triggered in the same iteration. Let Z and W
be defined as dictated by lines 7 and 8, respectively. The condition on line 9 must not have been
fulfilled, which means that if Z is non-empty, all of its members have parents, and if W is non-empty,
all of its members have children. Because the condition on line 11 is fulfilled, we know that at least
one of the sets Z and W is non-empty.

We summarize the construction of A on line 12. The set contains all vertices connected to Z∪W
when incoming edges of Z and outgoing edges of W have been removed in G. The intuition is to
construct a set A such that Z would be equal to Re(A) and W would be equal to emi(A). The
construction together with lines 7 and 8 ensures that there will be a path from any member of Z to
some member of W and vice versa, which is required to satisfy conditions 4 and 5 of Definition 4.
The line 12 directly enforces condition 3. However, this construction alone does not guarantee that
Z and W will be the set of receivers and emitters of A, respectively, because Z might not have the
same parents outside of A, or W might not have the same children outside of A. It might also be
the case that A is not connected in G[A].
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Next, we break A into its components in G[A] and iterate over them on line 14. Conditions 3,
4 and 5 remain valid for each component. Because line 20 is reached, there must be at least one
component Ak for which line 19 evaluates to true. This means that for such a set Ak, the sets Zk and
Wk have the same set of parents and children outside of Ak as any of their members, respectively.
This means that the remaining conditions 1 and 2 of Definition 4 are satisfied by Ak, making Ak a
transit component.

Theorem 19 (Completeness of FindTrComp) Let G = (V,E) be a DAG, R ⊆ V , and A =
FindTrComp(G, R) then TG|R ⊆ A.

Proof We show that if T ⊂ V is a transit component in G, then it will be a member of the set
A returned by FindTrComp. Because TG|R ⊆ TG for all R ⊂ V , we can assume that R = V .
Definition 4 implies that there exists a pair of vertices vi, vj ∈ V such that Re(T ) ⊆ Ch∗(vi) and
Em(T ) ⊆ Pa∗(vj) by conditions 1 and 2. Denote Vi = Ch∗(vi) and Vj = Pa∗(vj) with respect to the
definitions on lines 5 and 6, respectively. Conditions 4 and 5 further imply that Re(T ) ⊆ An(Em(T ))
and Em(T ) ⊆ De(Re(T )). Therefore Re(T ) ⊆ Vi ∩An(Vj) and Em(T ) ⊆ Vj ∩De(Vi). At this point,
we make an important choice; if there exist multiple vi, vj pairs that satisfy these conditions, we
choose one that minimizes the corresponding intersections Vi ∩ An(Vj) and Vj ∩ De(Vi). More
precisely, we assume that for our choice vi, vj there does not exist v′i, v

′
j such that V ′

i ∩ An(V ′
j ) ⊂

Vi ∩ An(Vj) and V ′
j ∩ De(V ′

i ) ⊂ Vj ∩ De(Vi). We call this the minimal representative choice in the
context of this proof and illustrate the meaning of this choice with an example.

It is easy to verify that B = {r1, e1} is a transit cluster in the graph of Figure 3(a). Suppose
that we had chosen vi = x and vj = y resulting in Vi = Ch∗(x) = {r1, r2, r3} and Vj = Pa∗(y) =
{e1, e2}. This is a valid choice because Re(B) ⊆ Vi, Em(B) ⊆ Vj , and for the intersections we
have that Vi ∩ An(Vj) = Vi, Vj ∩ De(Vi) = Vj . However, x, y is not the pair that minimizes these
intersections. Choosing instead V ′

i = Ch∗(r2) = {r1} and V ′
j = Pa∗(e2) = {e1} we have that

Re(B) = V ′
i , Em(B) = Vj and for the intersections it holds V ′

i ∩ An(V ′
j ) = V ′

i , V
′
j ∩ De(V ′

i ) = V ′
j .

Now V ′
i ⊂ Vi and V ′

j ⊂ Vj which shows that our initial choice x, y was not minimal, and r2, e2 is
actually the minimizing pair.

Let Z = Vi ∩An(Vj) and W = Vj ∩De(Vi) as defined on lines 7 and 8, respectively. Because T is
a transit component, it must have either receivers or emitters, which by definition have parents and
children outside of T . This means that at least one of the sets Z and W is non-empty and Z has
parents in G or W has children in G. Thus, the for-loop does not continue on line 9, and we move
on to line 11, which is satisfied for the same reason.

Next, we construct the set A on line 12. Importantly, we must show that T ⊆ A. Suppose
instead that there exists t ∈ T such that t ̸∈ A and t is not a receiver or emitter of T . Because
T is a transit component, then t must be connected to Re(T ) ∪ Em(T ) when incoming edges of
Re(T ) and outgoing edges of Em(T ) have been removed. Due to the construction of A, this leaves
the only option that t is connected to Re(T ) ∪ Em(T ) only via paths that intersect Z \ Re(T ) or
W \ Em(T ) and is no longer connected to Re(T ) ∪ Em(T ) when incoming edges of Z and outgoing
edges of W are removed. Let Z ′ and W ′ denote those subsets of Z and W that only contain vertices
that intersect such paths, respectively. This means that it must also be the case that Z ′ ⊂ T and
W ′ ⊂ T because T is connected in G[T ] and thus entire connecting path is in T . Suppose that the
path has an incoming edge to Z ′ \Re(T ) and let tz ∈ Z ′ \Re(T ) be a vertex on this path. Because
tz ∈ T also, we have a contradiction, because tz is not a receiver of T but Z ′ is not empty which
means that tz must have parents that are not members of T . The case for the path intersecting
W ′ \ Re(T ) is analogous. Thus we affirm that T ⊆ A.

Next, we must show that T is a component of G[A]. Because T ⊆ A, there must be a component
Ak of G[A] such that T ⊆ Ak. Let Zk and Wk be defined according to lines 15 and 16, and suppose
instead that there exists a ∈ Ak \ T such that a is connected to T in G[Ak]. Let a′ be a vertex
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in Ak \ T on the path from a to T in G[Ak] such that it is either parent or a child of T . As T
and Ak are both connected, it follows from the construction of A that if a′ is a parent of T , then
a′ ∈ Zk \Re(T ) or if a′ is a child of T , then a′ ∈Wk \ Em(T ). Suppose that a′ ∈ Zk \Re(T ). Now,
because a′ is a parent of T , it must a parent of all of its receivers. Furthermore, ChG[A](a

′) ⊂ Zk,
i.e., a′ necessarily has at least one fewer child than the representative vi (mainly, a′ itself). Then
ChG[A](a

′)∩AnG[A](Vj) ⊂ Vi∩AnG[A](Vj), which contradicts the minimal representative choice. The
case for a′ ∈Wk \ Em(T ) is analogous. Hence, T is a component of G[A].

We can now deduce that Zk ∩ T = ReG(T ) and Wk ∩ T = EmG(T ). If there existed z ∈ Zk ∩ T
that is not a receiver of T , we would have a contradiction, because T is a transit component, and
zk ∈ Ch∗G(vi) meaning that T would be connected to Pa∗(T ) via a vertex that is not its receiver.
The case for Wk is once again analogous. The sets ZPa and WCh constructed on lines 17 and 18 are
simply the common parents of ReG(T ) and common children EmG(T ), and because T is a transit
component, the check of line 19 evaluates to true as all receivers have the same parents and all
emitters have the same children in G. Finally, FindTrComp adds T to the set A on line 20.

Theorem 20 FindTrComp outputs all restricted transit components of a DAG G = (V,E) with
respect to R ⊆ V in O(|V |4 + |V |3|E|) time.

Proof Let n = |V | and m = |E|. Any restrictions on the vertices that are allowed to be members
of transit clusters will only lead to a decrease in runtime, so we assume that R = V . Because the
algorithm repeatedly accesses sets of parents, children, ancestors, and descendants of the vertex sets
in the input graph G, we assume that these are derived as a preprocessing step, which evaluates each
vertex and edge once in the worst case, thus taking O(n+m) time to construct the sets (for example,
via a depth-first search). Thus any future access to these sets can be carried out in constant time.

The maximum number of unique parent and child sets in the collections VPa and VPa occurs
when the parents and children of each vertex are unique. Thus there are at most n iterations in
both of the two outermost for-loops on lines 5 and 6, leading to n2 iterations in total. Each of
the constructions and verifications on lines 7–11 can be evaluated in O(n) time with help of the
preprocessing step.

The construction of the candidate set A and its components C(G[A])) on lines 12 and 14 takes
O(n+m) time in the worst case, when the entire graph has to be traversed (again, for example by a
single depth-first search for both tasks simultaneously, when the search reaches a vertex v through
an incoming edge to Z or an outgoing edge from W , it simply immediately returns to the previous
vertex without discovering v.). There are at most n components of G[A], which leads to at most n
iterations in the innermost for-loop on line 14. During lines 15–20, each operation can be carried
out in O(n) time, once again taking advantage of the preprocessing step.

Combining all of the previous observations gives us

O
(
(n+m) + n2(n+ (n+m) + n2)

)
= O(n4 + n3m) = O(|V |4 + |V |3|E|).

Lemma 21 Let T be a transit component of a DAG G = (V,E) and let G′ = (V ′, E′) be the induced
graph of the clustering with t representing the set T . If there does not exist a transit component S
of G such that T ∩ S ̸= ∅ and T \ S ̸= ∅, then |TG | = |TG′ |+ |TG[T ]|.

Proof From the assumptions it follows that for any transit component S of G, we have that either
T ⊂ S or T ∩ S = ∅. Thus, by Theorem 8, there must be an equal number of transit components
that do not contain T in G and those that do not contain t in G′. Similarly by Theorem 9 there must
be an equal number of transit components that contain T for G and those contain t for G′. In this
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case we apply the theorem to S′ = S \ T and T to make the previous observation. This means that
the only difference in the number of transit components of G and G′ is that in G, the set T induces
|TG[T ]| transit components, whereas in G′ the set {t} induces a single transit component. However,
the difference is offset by one because T is not a transit component in G[T ].

Theorem 22 Let G = (V,E) be a DAG. Then |TG | ≤ |V |(|V |+1)
2 − 1.

Proof Because FindTrComp is sound and complete, we take advantage of the algorithm, and
consider pairs of sets Vi and Vj defined on lines 6 and 5, and the corresponding sets Z and W .
We consider cases: 1) each pair (Vi, Vj) produces at most one transit component, 2) at least one
pair (Vi, Vj) produces more than one transit component, and in addition 3) show that the equality
|TG | = |V |(|V |+ 1)/2− 1 is attainable.

1. In the first case, the maximum number of pairs (Vi, Vj) such that Vi ∩ An(Vj) ̸= ∅ and Vj ∩
De(Vi) ̸= ∅ is clearly |V |(|V |+1)

2 −1, because G is a DAG. Assuming that each pair where at least
one of the aforementioned intersections is nonempty produces a distinct transit component,
the claim follows.

2. In the second case, we must consider the repercussions of multiple transit components being
induced by the same pair (Vi, Vj). Also, we will associate each transit component T with a
unique representative pair (Vi, Vj) as follows: if it occurs that a transit component T is induced
by two distinct pairs (Vi, Vj) and (V ′

i , V
′
j ), we choose the pair that induces the smallest number

of transit components. In the case that there are still multiple such pairs, the choice is arbitrary.
Next, we must consider two separate scenarios: a) the sets Z and W corresponding to the pair
(Vi, Vj) defined on lines 7 and 8 are both nonempty, and b) one of the sets Z and W is empty.

a) Suppose that the pair (Z,W ) induces k transit components, A1, . . . , Ak, defined according
to line 4 which are the components of A, defined according to line 12. Let n = |V |, ni = |Ai|
for each i = 1, . . . , k, and n0 = |V | − |A|. Suppose that for some Aj , there exists a transit
component T of G such that Aj ∩ T ̸= ∅ and Aj \ T ̸= ∅. Because T is a transit component
and thus connected, it must contain at least one child of an emitter of Aj or a parent of
a receiver of Aj . Without loss of generality, assume that a child c of an emitter of Aj is
a member of T . However, this also makes c a child of an emitter e of at least one other
transit component Ai, i ̸= j. It cannot be the case that there would exist a child of an
emitter of Aj such that it is not a child of an emitter of Ai ̸= Aj because we have assumed
that the current pair (Vi, Vj) produces the smallest number of transit components. Now,
if e ̸∈ T , we have a contradiction, because Aj \ T ̸= ∅, there must a path from Aj to a
receiver of T , but there cannot be a path from e to the same receiver, because Ai and Aj

are not connected in G[A]. If e ∈ T , it follows that Ai ⊂ T using the same argument with
nodes along any path from a receiver of Ai to e that always exists due to the definition
of a transit cluster. Now, because Z is not empty, there is a parent p of a receiver of Aj

that is also a parent of a receiver of Ai. If p ̸∈ T we have a contradiction, because there
is a receiver of T in Ai which has different parents than a receiver of T in Aj . If p ∈ T ,
this makes p an emitter of T and we have again a contradiction, because there would be a
cycle in the induced graph of T , as there is a directed path from an emitter to a receiver in
T . We conclude that no such transit component T can exist. The case where T contains
instead a parent of a receiver of Aj is analogous.

We can now apply Lemma 21 repeatedly to each set A1, . . . , Ak. Let G′ denote the graph
obtained after clustering each Ai, k = 1, . . . , k. We have that

|TG | = |TG′ |+
k∑

i=1

|TG[Ai]|.
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We now apply induction to the original claim in terms of the number of vertices. The base
case clearly holds, and the induction assumption is that for all DAGs with m < n vertices,

the number of transit components is less or equal to m(m+1)
2 − 1. For the induction step,

applying the induction assumption to the above equation yields the following inequality:

|TG | ≤
(n0 + k)(n0 + k + 1)

2
− 1 +

k∑
i=1

(
ni(ni + 1)

2
− 1

)

=
(n0 + k)(n0 + k + 1)

2
− k − 1 +

k∑
i=1

ni(ni + 1)

2
.

Note that in the case that ni = 1 for all i = 1, . . . , n we have
∑k

i=1 ni = k, n0 + k = n and
we obtain:

(n0 + k)(n0 + k + 1)

2
− k − 1 +

k∑
i=1

ni(ni + 1)

2
=

n(n+ 1)

2
− k − 1 +

k∑
i=1

1 · 2
2

=
n(n+ 1)

2
− k − 1 + k

=
n(n+ 1)

2
− 1.

In the case that at least one ni > 1 we obtain instead (by multiplying both sides by 2 for
convenience):

2|TG | ≤ (n0 + k)(n0 + k + 1)− 2k − 2 +

k∑
i=1

ni(ni + 1)

= n2
0 + 2kn0 + k2 + n0 − k − 2 +

k∑
i=1

ni(ni + 1)

= n2
0 + 2kn0 + k2 + n0 − k − 2 +

k∑
i=1

n2
i +

k∑
i=1

ni

=

k∑
i=0

n2
i + 2kn0 + k2 − k − 2 +

k∑
i=0

ni

<

k∑
i=0

n2
i + 2n0

k∑
i=1

ni + k(k − 1)− 2 +

k∑
i=0

ni

<

k∑
i=0

n2
i + 2n0

k∑
i=1

ni +
∑

i ̸=j,0<i,j≤k

ninj +

k∑
i=0

ni − 2

=

k∑
i=0

n2
i +

∑
i̸=j,0≤i,j≤k

ninj +

k∑
i=0

ni − 2

=

(
k∑

i=0

ni

)(
k∑

i=0

ni + 1

)
− 2

= n(n+ 1)− 2.
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The first inequality in (2a) is due to k <
∑k

i=1 ni and the last inequality follows from the
fact that there are k(k−1) pairs i, j such that i ̸= j and 0 < i, j ≤ k. The second and third
terms after the second inequality can be combined by changing the summation indices,
and the second to last line is just a further refactoring of the terms. Thus we have that

|TG | ≤ n(n+1)
2 − 1 for all 1 ≤ k ≤ n and partitions n0, n1, . . . , nk such that

∑k
i=0 ni = |V |.

b) Without loss of generality, assume that Z = ∅. This means that each of the k components
have the same set of receivers, mainly, the empty set. Now consider the possible number
of candidate pairs (Vi, Vj), the amount of unique receivers has decreased by k− 1, because
we know the empty set to be the candidate receiver set of at least k pairs (Vi, Vj). Now,
we have found k transit components, but the potential number of remaining (Vi, Vj) pairs
has decreased by at least k as well.

Assuming that all remaining pairs (Vi, Vj) fall into the first or the previous case, the claim
immediately follows. If not, we can repeat the above argument until this is the case, because
the amount of new transit components found each time cannot exceed the amount that the
number of undiscovered transit components decreases by. The case for W = ∅ is identical.

3. Let G = (V,E) consists of single directed path v1 → · · · → vn. It is easy to see that any transit
component of G also takes the form of a directed path va → · · · → vb, va, vb ∈ V . There are
n − 1 possible ways to choose the length k of such a path (the path of full length n is not a
transit component), and for each length k, there are n − k + 1 ways to choose the starting
vertex of the path. Thus we obtain the following:

|TG | =
n−1∑
i=1

(n− i+ 1)

= −1 +
n∑

i=1

(n− i+ 1)

= n2 + n− 1−
n∑

i=1

i

= n(n+ 1)− 1− n(n+ 1)

2

=
n(n+ 1)

2
− 1.

Lemma 23 FindTrClust always terminates for valid inputs G and TG|R.

Proof Because there is a finite number of restricted transit components considered in the loop on
line 4 of FindTrComp, it remains to show that ExpandClust always terminates for valid inputs
T , A, B, and G. First, we note that in all following recursive calls to ExpandClust, the number
of elements in the set B′ decreases, and eventually the set becomes empty. Thus any single branch
of the recursion will eventually reach the returning line 7. Further, because there are only a finite
number of elements considered in the loop on line 3 of ExpandClust, there can only be a finite
number of branches in the recursion. Thus ExpandClust always terminates.

Theorem 24 (Soundness of FindTrClust) Let G = (V,E) be a DAG, R ⊆ V , and A = FindTrClust(G, TG|R),
then A ⊆ ΥG|R.
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Proof New members to the output set A are added from the output of the subroutine Expand-
Clust. This subroutine performs recursive unions of transit clusters and transit components while
ensuring that the conditions of Corollary 10 hold, which guarantee that the union is a transit cluster.
Thus, only transit clusters are ever added to the set A.

Theorem 25 (Completeness of FindTrClust) Let G = (V,E) be a DAG, R ⊆ V , and A =
FindTrClust(G, TG|R) then ΥG|R ⊆ A.

Proof By Theorem 16, any transit cluster can be constructed iteratively from transit components.
It is easy to see that Corollary 10 specifies the only valid union for a transit component and a transit
cluster that are disjoint and not connected in the subgraph induced by their union. It follows that all
possible distinct unions of transit components are considered in the recursive calls to ExpandClust
launched by FindTrClust on line 6. Following this, if a union S∪T of transit components S and T
is valid according to Corollary 10 on line 5 of ExpandClust, a new recursive call to ExpandClust
is launched on line 6, which will now consider all possible unions of the transit cluster S ∪ T , and
the remaining transit components of TG|R. Eventually, all possible unions are considered, and thus
by Theorem 16, all transit clusters are included in the set A that is returned by FindTrClust on
line 7.

Theorem 26 FindTrClust outputs all restricted transit clusters of a DAG G = (V,E) with respect
to R ⊆ V with O

(
|V |5

)
polynomial delay and a O (|V |+ |E|) initialization delay.

Proof Recalling Theorem 22, we note that the number of transit components grows as O(|V |2). We
must consider four cases: 1) the initial preprocessing step that enables the application of Corollary 10
in O(|V |) time, 2) finding the initial cluster, 3) finding any following cluster, and 4) termination

after finding the last cluster. Let k = |V |(|V |+1)
2 −1 denote the maximum potential number of transit

components of G.

1. To apply Corollary 10 in linear time, we must first determine the parents and children of each
vertex, thus requiring the traversal of the entire graph, which takes O(|V | + |E|) time. We
assume that the input |TG|R| is encoded in such a way, that the sets Re(T ) and Em(T ) can
be obtained in constant time for any transit component (i.e., the transit components “know”
their own sets of receivers and emitters). Once sets of parents and children for each vertex
are obtained, it is easy to see that we can construct any parent set Pa∗(Re(T )) or child set
Ch∗(Em(T )) in O(|V |) time. Test for equality between sets is also an O(|V |) operation.

2. Before the first valid union is found, only unions of transit components are considered. There
are at most k possible options for the set T and k− 1 options for the set S. In the worst case,
none of the possible pairs produces a valid union on line 5, leading to k(k − 1)/2 operations,
because only distinct unions are considered. With the preprocessing step, Corollary 10 can be
applied in O(|V |) time (assuming a dynamic programming approach that keeps track of the
emitters, receivers and their parents and children for valid unions S ∪ T ).

3. Suppose that the sets S and T have produced a valid transit cluster in a recursive call to
ExpandClust. In the worst case, this cluster was found in the first iteration of every recursive
call that preceded it, it is at the greatest depth of the recursion, i.e., the set B′ would be
empty in the next call, and the next cluster is not found until the recursion exists back
to the very top level and reaches its final iteration. Because the number of iterations is
reduced by one at each step of the recursion, the total number of remaining iterations is
(k − 1) + (k − 2) + ...+ 1 = (k − 1)k/2. Applying Corollary 10 is the same as in the previous
case.
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4. This scenario is almost identical to the previous. Here, the worst case is different only in the
aspect that instead of finding the next cluster, the algorithm terminates, leading to the same
number of remaining iterations (k − 1)k/2.

In summary, the initialization of case (1) can be carried out in O(|V |+ |E|) time. In cases (2), (3),
and (4) there are at most (k − 1)k/2 operations, each of which can be carried out in O(|V |) time,
which gives us

O(|V |(k − 1)k/2) = O

(
|V |
[
|V |(|V | − 1)

2
− 1

]
|V |(|V | − 1)

2

)
= O(|V |5).

Theorem 32 Let G = (V ∪U,E) be a DAG of a causal modelM and let A and B be disjoint subsets
of V . Let T = {t1, . . . , tn} be a restricted transit cluster with respect to (V ∪U) \ (A∪B) in G, and
let G′ = (V ′ ∪ U ′, E′) be the induced graph of the cluster with vertex t′ ∈ V ′ as the representative of
T . If T is plain or congested, then p(xA | do(xB)) is identifiable from p(xV ) in G precisely when it
is identifiable from p(xV ′) in G′.

Proof

Plain transit cluster: We show that neither T in G nor t in G′ can be a part of a hedge for
p(xA |do(xB)) and that clustering cannot affect hedges outside T . A hedge consists two c-
components that fulfill certain conditions. Importantly, one of these c-components shares
some vertices with set B. Condition Pa∗(Re(T )) ∪ Em(T ) ⊆ V in Definition 30 guarantees
that there is no variable in U with children both in T and V \ T . Consequently, there cannot
be a c-component that contains members from both T and B. Similarly in G′, there is no
variable in U ′ with children both in {t} and V \ {t}.
It remains to show that clustering does not change existing c-components. Assume that
vi, vj ∈ V \ T belong to same c-component and are therefore connected by a path speci-
fied in Definition 29. Condition Pa∗(Re(T ))∪Em(T ) ⊆ V guarantees that such a path cannot
contain members T and cannot be affected by clustering of T . We conclude that clustering a
plain transit cluster does not change the identifiability properties of p(xA |do(xB)).

Congested transit cluster: We need to show that there exists a hedge in G if and only if there
exists a hedge in G′. More precisely, we have to prove that c-components and their root sets
fulfill the requirements of hedges in G and G′

We first show T is a subset of the vertex set C of a c-component in G if and only if {t} is
a subset of the vertex set C ′ of a c-component in G′. If C = T or C ′ = {t} we may use
similar reasoning as in the first part of the proof to conclude that neither T in G nor t in G′
can be a part of a hedge for p(xA |do(xB)). Assume next C \ T ̸= ∅. As Em(T ) ⊆ V by
Definition 31, there must exist ui ∈ U \ T such ui has one child in T and one child in V \ T .
Consequently, in G′, there is an edge ui → t and t ∈ C ′. The vertices outside T are unaffected
and C \ T = C ′ \ {t}. Similarly, if we assume C ′ \ {t} ≠ ∅, there is an edge ui → t and t ∈ C ′.
By Definition 31, all vertices of T belong to the same c-component whose vertex set must be
C.

We have to also show that clustering cannot change the properties that a c-component is
required to have in order to be a hedge. Consider a hedge in G and let Q denote its root set
(sink). Suppose that there exists ti ∈ T ∩Q. If there exists in G a directed path from B to ti
in the larger c-forest of the hedge then such a path will also exists in G′ from B to t because ti
must be on a path from Re(T ) to Em(T ). Any path from B to Q\T remain unchanged by the
clustering, thus a corresponding hedge can be constructed in G′ with the root set (Q\T )∪{t}).
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Consider next a hedge in G′ that contains t. It follows that vertex t must have at least one
parent in G. If t is in the root set Q, we may construct a corresponding hedge in G by choosing a
receiver as the root set. If t is not in the root set Q, the hedge must have a path vi → t→ vj .
This path can be replaced in G by a path vi → r → . . . → e → vj , where r ∈ Re(T ) and
e ∈ Em(T ). Combining the conclusions above, it follows that set T is a part of a hedge in G
if and only if vertex t is a part of a hedge in G′.
It remains to show that clustering cannot affect hedges outside T . Assume that vi, vj ∈ V \ T
belong to same c-component and are therefore connected by a path specified in Definition 29.
Condition Em(T ) ⊆ V together with the fact that members of Re(T ) must be observed by
Definition 27 guarantees that such a path cannot contain members T and cannot be affected
by clustering of T . We conclude that clustering a congested transit cluster does not change
the identifiability properties of p(xA |do(xB)).

Theorem 33 Let XV be a vector of observed random variables, XU a vector of unobserved random
variables, and G′ = (V ′ ∪ U ′, E′) the causal diagram of a causal model M′ where vertex t ∈ V ′

represents set T = {t1, . . . , tn, u1, . . . , um} in G′, t1, . . . , tn ∈ V , u1, . . . , um ∈ U , and v ∈ V ′ \ {t}
implies v ∈ V . Let G = (V ∪ U,E) be a DAG obtained from G′ by applying a series of peripheral
extensions to vertex t such a way that G is a causal diagram. If T is a plain or congested transit
cluster in G, the following holds for disjoint subsets A and B of V ′ such that T ∩ (A ∪B) = ∅.

1. Causal effect p(xA | do(xB)) is identifiable from p(xV ) in G exactly when it is identifiable from
p(xV ′) in G′.

2. If g(p(xV ′)) is an identifying functional for p(xA | do(xB)) in G′, it is also an identifying
functional for p(xA | do(xB)) in G.

Proof First we note that peripheral extension is guaranteed to produce a causal diagram if all vertices
t1, . . . , tn corresponding observed variables are added first and vertices u1, . . . , un corresponding
unobserved background variables are then added using only operations 1 and 4 with the restriction
that vertices u1, . . . , um cannot not have parents.

The first claim follows directly from Theorem 32.
For the second claim, we show the do-calculus derivation for obtaining g(p(xV ′)) in G′ is valid in

G when the relevant sets are replaced by clustering equivalent sets.
We show that the d-separation V ′

1 ⊥⊥ V ′
2 |V ′

3 in G′ implies V1 ⊥⊥ V2 |V3 in G where V ′
1 , V

′
2 , V

′
3 are

the clustering equivalent sets of V1, V2, V3 ⊂ V , respectively. Consider a path from V ′
1 to V ′

2 in G′
that is blocked on the condition of V ′

3 . Now there are four options that arise from the definition
of d-separation: 1) The path does not contain t. 2) The path contains t but t does not block the
path. 3) The path contains a chain or a fork where the middle vertex t belongs to V ′

3 . 4) The path
contains a collider t and DeG′(t) ∩ V ′

3 = ∅.
1) The same path exists also in G and is blocked. 2) The definition of a transit cluster guarantees

that the corresponding path exists in G. The path is blocked by the same vertex in both G and G′.
3) In the case of a chain v1 → t → v2, vertex v1 is a parent of a receiver and v2 is a child of an
emitter. In G, we have a corresponding directed path v1 → r → . . . → e → v2 where r ∈ T is a
receiver and e ∈ T is an emitter. In the case of a fork v1 ← t → v2, both v1 and v2 are children of
an emitter. In G, we have a corresponding fork v1 ← e → v2 where e ∈ T is an emitter. In both
cases, the path is blocked because T ⊆ V3. 4) Collider v1 → t ← v2 implies that t is a receiver in
G′. In G, we have a corresponding collider v1 → r ← v2 where r ∈ T is receiver. Assumption t /∈ V ′

3

implies T ∩ V3 = ∅. For the descendants it holds DeG′(t) = DeG(r) \ T . We conclude that the path
is blocked in G.
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The rules of do-calculus operate in graphs obtained from G′ by removing some edges. There are
three possibilities when each edge removed is considered: i) the edge does not involve t, ii) the edge
(v, t) is an incoming edge of t, and iii) the edge (t, v) is an outgoing edge of t. In case i) the removed
edge exists also in G and can be removed there as well. In case ii), all edges from v to Re(T ) are
removed in G. This breaks all undirected paths that correspond a path containing edge (v, t) in
G′. In case iii), all edges from Em(T ) to v are removed in G. This breaks all undirected paths that
correspond a path containing edge (t, v) in G′. Together with the d-separation properties proved
above, this guarantees that the do-calculus derivation applicable in G′ is also applicable in G and
g(p(x′

V )) is an identifying functional for p(xA |do(xB)) in G.

Appendix B. Hedges and Causal Effect Identifiability

We introduce c-trees, c-forests and hedges as defined by Shpitser and Pearl (2006) using our notation.
We begin by defining maximal c-components.

Definition 34 (Maximal c-component) Let G = (V ∪ U,E) be a causal diagram. Then a sub-
graph G′ = (V ′, E′) of G is a maximal c-component if it is a c-component and if G∗ ⊆ G′ for all
c-components G∗ = (V ∗ ∪ U∗, E∗) such that V ′ ∩ V ∗ = ∅.

Next, we define c-trees which characterize direct effects.

Definition 35 (c-tree) Let G be a causal diagram such that it has only one maximal c-component,
and such that every observed node has most one child. If there exists a node y such that G[An(y)] = G
then G is a y-rooted c-tree.

C-forest is the generalization of a c-tree where the root y is extended to a root set, i.e., the set of
nodes {v ∈ V | De∗(v)G = ∅} for a causal diagram G = (V ∪ U,E).

Definition 36 (c-forest) Let G = (V ∪U,E) be a causal diagram and let Y be its root set. If G is
c-component and every observed node has at most one child, then G is a Y -rooted c-forest.

A special pair of c-forests can be used to characterize general causal effects of the form p(xA |do(xB)).

Definition 37 (Hedge) Let G = (V ∪ U,E) be a causal diagram, and let A,B ⊂ V be disjoint
subsets. If there exists two R-rooted c-forests F = (VF ∪ UF , EF ) and F ′ = (VF ′ ∪ UF ′ , EF ′) such
that VF ∩ B ̸= ∅, VF ′ ∩ B = ∅, F ′ ⊆ F and R ⊂ AnG[B](A), then F and F ′ form a hedge for

p(xA | do(xB)) in G.

Hedges completely characterize the identifiability of causal effects from the joint distribution over
the observed variables of the causal model.

Theorem 38 (Hedge criterion, Corollary 3 of (Shpitser and Pearl, 2006)) p(xA | do(xB)) is
identifiable from p(xV ) in G if and only if there does not exist a hedge for p(xA′ | do(xB′)) in G, for
any A′ ⊆ A and B′ ⊆ B.
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