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Highlights
Digital twins (DTs) are rapidly gaining
popularity across industries as a digital
tool for continuousmonitoring of physical
phenomena, and the first DTs have now
been developed in various environmental
science disciplines.

DTs are becoming part of the political
sustainability agenda (e.g., in the
‘Destination Earth’ programme of the
European Commission), with the vi-
Digital twins (DTs) are an emerging phenomenon in the public and private sectors
as a new tool to monitor and understand systems and processes. DTs have the
potential to change the status quo in ecology as part of its digital transformation.
However, it is important to avoid misguided developments by managing expec-
tations about DTs. We stress that DTs are not just big models of everything, con-
taining big data and machine learning. Rather, the strength of DTs is in
combining data, models, and domain knowledge, and their continuous align-
ment with the real world. We suggest that researchers and stakeholders exercise
caution in DT development, keeping in mind that many of the strengths and chal-
lenges of computational modelling in ecology also apply to DTs.
sion of developing DTs for the climate,
the ocean, and biodiversity.

Digital transitions are happening across
domains (including ecology) and have
advanced the use of high-tech sensors
for automated data collection and
processing.

Technological developments in digital
infrastructure have made data storage,
automation, large-scale models, and in-
teractive applications cheaper by many
orders of magnitude.

These developments clear the way for
DT adoption in ecology, but proper
guidance is required.
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DTs of ecological systems
DTs have become a hot topic in many scientific domains [1–3]. They are described as digital
counterparts of a physical object or process that are linked to each other to continuously update
and improve realism and reduce uncertainty about the physical object/process [4]. Very recently,
also in ecology, references to DTs are being made, in particular triggered by the ‘Destination
Earth’ programme of the European Commission [5], which is based on the vision of developing
DTs for the climate [6], the ocean [7], and biodiversityi. The idea is to establish statistical and
mechanistic models that are continuously updated with data both on drivers and of variables of
interest (Box 1). These data streams can be used for continuous recalibration so that the DTs
can improve our understanding of ecosystems and support decision-making.

DTs have great potential for ecology. Technological advancements in methods and applications
have led to a rapid digitalisation of ecology in the past decades [8–10]. We therefore summarise
recent trends which make DTs a timely approach in ecology, but also discuss inherent limitations
to the DT concept in ecology to avoid expectations that might misguide stakeholders such as
modellers, ecological researchers, policy developers, and natural resource managers.

DTs: why now?
DTs were first implemented for the National Aeronautics and Space Administration (NASA)
spacecraft and are widely used in manufacturing, urban planning, healthcare, and the automotive
industry [2,3]. DTs have proved to be a useful tool for monitoring and decision-making in industry
and engineering because they allow accurate, precise, and real-timemonitoring and simulation of
processes that are hard to observe in the real world [11]. Moreover, they can be used for early
warning signal detection, experiments, and predictive and prescriptive analytics [12].

The increasing use of DTs is driven by advances in monitoring and automated retrievals from da-
tabases [13], as well as advances in making models realistic for their purposes. It has become a
lot easier and cheaper to collect data, create models and algorithms using tools, platforms, and
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libraries, run models on large-scale infrastructure, compose models and workflows for larger-
scale and more complex interactions, and create interactive applications that empower end-
users to better understand complex systems and make informed decisions. This transition is
happening across domains [3,14–16], including environmental sciences. Yet, the potential use
of DTs has only recently been explored in the environmental sciences [17].

Ecology in the digital era
Two important trends make the adoption of ecological DTs timely and relevant. These are global
digitalisation, and a call for more evidence-based decision-making in biodiversity conservation
[18–21].

New digitalisation technologies are rapidly being adopted in ecology, with drones, high-frequency
biologgers, automatic species identification (e.g., through DNA metabarcoding [22], camera-trap
sampling [23], or passive acoustic sampling [24]), digitisation of natural history and other scientific
collections [25,26], and citizen science [27] through apps [28] and social media platforms [29] as re-
cent examples. Also, many observational and monitoring networks utilising these new methods are
in place to provide data flows on biodiversity and ecosystems. This allows us to build DTs on existing
ecological research data infrastructures. They encompass, among other things, initiatives and re-
search infrastructures such as Geo-BONii, NEON [30], eLTERiii [31], SAEONiv, TERNv, GBIFvi, and
LifeWatchvii. Moreover, there is an increasing vision towards large-scale integration of ecological
datasets and generalised models [8,26,31–33], and developing highly accurate simulation models
of the earth’s systems that guide policy-makers though the 21st century challenges [1].

Second, there is an urgent call for better use of knowledge in biodiversity conservation [34–37],
that is, evidence-based conservation [38]. This means that decision-making is ideally based on
the latest scientific evidence, sound theoretical knowledge on species and ecosystem function-
ing, and field measurements that give an accurate real-time representation of a system’s state
and trends [18,39]. However, this is often not the case in practice [40], due to a lack of incentive,
Box 1. Examples of DTs and their main components

To illustratewhat DTs are, two examples are shown in Figure I. Figure IA concerns a DT used in weather forecasting, and Figure
IB showsan application in ecology: a DT onbirdmigrationviii. What they have in common is that they use a continuous streamof
sensor data to keep the DT synchronised with the real world, and models to process the data and make predictions.

Sensor data can come from a wide variety of sources, requiring significant data processing and assimilation as well as ad-
equate cyberinfrastructure (computational power, access to APIs, data storage facilities, etc.). Input data for the DTs can
come from direct observations of the phenomenon (such as temperature measurements in weather forecasts, and bird
observations in migration forecasts), as well as auxiliary data sources and connections with other DTs (such as wind fore-
casts affecting migration routes).

The requiredmodels can be data-driven statistical models, but ideally they are mechanistic models (e.g., physics-based) that
are compatible with real-world processes, in order to make DTs generalisable beyond the data on which they are trained.
Hence, domain knowledge is essential for DTs to reliably represent their real-world counterparts. Typically, data-driven
DTs are heavier in their data requirement and include more AI components, whereas mechanistic DTs require profound
mathematical specifications. Conversely, DTs can also provide fundamental new insights on the systems they represent,
which broadens our domain knowledge.

As a decision-support tool, DTs have a strong end-user component, forcing the modeller to think about how output is
visualised and interpreted by end-users. Users may also be allowed to interact with the DTs: for example, by providing
feedback on the model predictions, or by collecting input data as is the case in the bird migration DT.

Besides updating with real-time data, DTs can also be fed with historical data for calibration. The migration DT, for example,
uses historical GPS telemetry and weather data to calibrate the models that predict how cranes respond to wind conditions.

@Twitter:@Koendekoning (K. de Koning),
@dschigel and @GBIF (D. Schigel).

Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 917

https://twitter.com/Koendekoning
https://twitter.com/dschigel
https://twitter.com/GBIF
CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Examples of digital twins (DTs). Established physics-based mechanistic models are used for
weather forecasting (A), but due to their inherent nonlinearities, their predictions quickly become too uncertain
to be useful. Model predictions are therefore continuously updated with high-resolution sensory data.
(B) There is no mechanistic model for predicting crane (Grus grus) migration. Instead, in an empirical model
sensory data from migrating cranes are combined with environmental data such as wind directions. In
addition to such data, the output of environmental DTs could be used as well. Again, because predictions of
routes taken by cranes quickly become uncertain, citizen science sighting data are used to update the output
of the crane DT. In both examples, the design, model, and workflows underlying the DT are driven by user
demand for relevant and reliable predictions.
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resources, and skills to collect data in a proper way [39], the inability to properly process and interpret
data [10,41–43], and lack of time and resources to plough through a vast amount of complex litera-
ture [34,40], resulting in an increasing gap between scientific insights and conservation practices [36].

We see a need for more real-time, informative, and iterative ecological forecasting that would
make ecology more relevant for decision-making [18–21]. A major question is how we can
make conservation efforts more effective. This question operates on scales ranging from the
operational level (individual species protection and landscapemanagement [44]) to the global po-
litical level addressing global biodiversity decline [45]. DTs may provide the platform to address
this question by combining the science and the data, adding context and meaning to ecological
data to inform decision-making in biodiversity conservation.

Opportunities for ecology
DTs will likely increase in popularity over the next decades, which is why attention should focus on
how to capitalise on the strengths of digital twinning for ecology. We list here a few characteristics
of DTs that could benefit the field: (i) DTs could help measure the state of nature with minimal lags
or even in real-time [4], thereby adding a dynamic component to commonly static modelling
practices such as species distribution maps, vegetation maps and habitat suitability maps, (ii)
real-time data flows and continuous updating of models allow conservationists to detect trends
and the need for intervention measures at an early stage; environmental drivers are changing
so fast that near real-time feedbacks are critical when managing ecosystems [18], (iii) ecosystem
trends can be linked with environmental conditions and anthropogenic pressures that are inher-
ently part of the DT inputs; (iv) DTs can help demonstrate the effectiveness of intervention mea-
sures, either reactively by keeping track of trends before and after interventions, or proactively
by providing a safe virtual environment for simulations and scenario development in which inter-
ventions can be tested before they are implemented in the real world, and (v) DTs can help identify
uncertainties, information gaps, and knowledge gaps in real ecosystems [46–48], and provide
feedback to maximise information uptake in data collection. This is not just relevant for
decision-making in global change mitigation, but it also sheds light on scientific knowledge
gaps that are still unaddressed [49]. Highlighting information gaps gives insight into where to al-
locate resources for data collection or fundamental research in ecology.

While most of these aspects are already common practice in ecology, the current methods
typically do not address all these aspects simultaneously as do DTs (Figure 1). The strength of
DTs is in the combination of domain knowledge and much more diverse data. DTs are based
on mechanistic models of a system, rather than just data, machine learning, and high-tech sen-
sors [50]. Their success depends in a large part on the modellers’ ability to combine data with
sound ecological theories and expert knowledge [10,51–53].

Inherent challenges of DTs in ecology
While the opportunities of DTs are plentiful, there are obviously many challenges and misconcep-
tions in their implementation (Box 2). Some of those challenges are comparable with DTs in
engineering and manufacturing, and others are unique to ecology.

First, there are no common methods, standards, or norms about how to build the software and
workflows for DTs [54]. A lack of standards and protocols means that researchers need to deter-
mine how to build DTs from scratch on their own, which slows down progress and causes frus-
trations amongmodellers and stakeholders. Nonetheless, with DTs rapidly gaining popularity, it is
likely that those standards will be developed in the near future [55], as is currently the case in other
domains such as the ISO 23247 framework for digital twins in manufacturing.
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 919
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Figure 1. Comparison between ecological research in the status quo (top) and with digital twins (DTs) (bottom). (A) Changes in the state of (part of) an
ecosystem (e.g., an elephant population over time), caused by (B) ecological processes such as mortality and birth rate. The blue arrows illustrate the collection and storage
of (C) observation data such as aerial surveys, camera traps, or citizen science observations. Typically, these data are processed and analysed a single time on a case-study
basis. Common steps in ecological analysis (D) include statistical analysis, models, and validation to understand system dynamics, drivers, and extrapolations, as well as sim-
ulations to project desired and undesired future states. Inevitably, representations of ecological processes are simplified in our models, leading to imperfect model predictions.
Furthermore, inherent to the sampling strategy, there are observation processes at play (E) that cause biases in the data, such as imperfect sampling, detection errors, and
observer-specific biases [58]; these need to be controlled for. The DT (A′) functions as a live model that exists parallel to its real-world counterpart. Ideally, DTs aim to integrate
all elements (B,C,D,E) to mimic the behaviour of (A) as much as possible by continuously updating models and input data, while at the same time highlighting the uncertainties
that are produced through model simplifications, incomplete data and knowledge, and observational biases.
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OPEN ACCESS
Second, a related challenge concerns the protocols of data collection and storage. Different data
collection, harmonisation, and storage protocols lead to different types of sensors, different data,
and different formats [54]. Challenges remain to integrate data streams from different research
data infrastructures [56], with standards based on demonstrating successes and potential [26].
Furthermore, the required input data are often spread among different owners, with consequen-
tial restrictions to data accessibility and use [32].

Third, there is the question of what to include and what not to include in the DT [54], a question
that needs to be addressed in all models. DTs can be made on, for example, species
920 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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Box 2. Four major misunderstandings about DTs

We summarise four likely misunderstandings about what DTs are, in an attempt to manage expectations and avoid
misconceptions.

A DT is not just …

... artificial intelligence (AI)/machine learning (Figure I). DTs often contain elements of machine learning and AI to process a
continuous stream of data, but they are also based on a mechanistic understanding of the systems they represent. Above
all, DTs require a substantial amount of domain knowledge in order for the representations to be meaningful.

… a large database of integrated or connected datasets (Figure II). DTs contain a lot of empirical data, but the key is that
DTs add context to data and give data meaning within that context by combining data with modelling and simulations. This
trait gives DTs their unique ability to integrate heterogeneous data sources [62,63].

... another word for model (Figure III). Many different types of model exist (static/dynamic/explanatory/descriptive/statisti-
cal, etc.), and DTs might include several modelling approaches/techniques addressing different system entities and pur-
poses. What all DTs have in common is that they are by definition dynamic, and they are unique from other forms of
modelling in that they are continuously updated with data, thereby representing the state of something in current time. Fur-
thermore, DTs allow users to interactively explore system dynamics and scenarios, and not just tie to the input of data, but
also to their use in decision-making.

… a big model of everything (Figure IV). Although in some cases it may be desirable to make DTs interoperable and to de-
velop very large-scale DTs of global systems [64,65], it is not a necessity in order for DTs to be useful for their purpose. As
with any other type of model, DTs are simplified representations of a specific part of reality (entity, system, or process) with
predefined boundaries depending on their aim and scope.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. A digital twin is not just artificial intelligence (AI)/machine learning. Image source: wikimedia commons.
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Figure II. A digital twin is not just a large database of integrated or connected datasets. Image source:
wikimedia commons.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure III. A digital twin is not just another word for model.
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Figure IV. A digital twin is not just a big model of everything.
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distributions, specific behaviours or traits, genetic diversity, ecosystems, communities, and
habitats, depending on the underlying research purpose. A temporal resolution has to be chosen
that fits with the process being modelled, which again must be done in any dynamic model. The
‘real-time’ representation needs to reflect the speed of the system under scrutiny. Many engineer-
ing DTs are synchronised in the order of milliseconds, whereas many ecological processes are
considerably slower. Time intervals are also limited by data collection frequency (including labori-
ous field work and time to digitise data) and uncertainties about processes at finer spatiotemporal
scales. The real-time definition of DTs for ecology is more along the lines of ‘synchronised at a
specific rate suitable for the purpose’. Previous publications may have raised expectations that
DTs could create a single ‘supermodel’ capable of replicating the Earth's entire natural system
in great detail [1,50]. This contradicts the basic philosophy of models being a representation of
reality with regard to a concrete problem and selecting the degree of complexity and detail on
the basis of this problem. Knowing all the details about the functioning of entities across scales
is not necessary, and impossible anyway. Hence, as with any model, modellers should consider
which level of abstraction, scale, and spatiotemporal resolution fits best with the process of inter-
est and the intended purpose of the DT.

Fourth, the entities of which DTs are made in engineering are human-made, and therefore
modellers have by definition a good understanding of these entities (or systems). Modellers
know how engineering entities work and, in principle, should be able to predict how the systems
will respond to certain environmental conditions and disturbances. By contrast, in ecology we
lack such comprehensive understanding. The bigger and more complex the systems get, the
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 923
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Outstanding questions
Which software architectures, protocols,
and workflows could be useful in
building DTs for ecology? We expect
that standards will soon be developed
for DTs in other fields, which can be
used as guidelines for building DTs in
ecology. Testing these standards
against the unique challenges for
ecology may lead to new protocols
specifically for ecology.

What scales, resolutions, and scopes
are appropriate for DTs in ecology?
Future research on DTs should cover
to what extent the real-time aspect is
feasible or even necessary to address
in ecology. The same accounts for the
level of detail and complexity of the
system elements that are included in
the DTs.

How to control for biases in DT input
data, such as sampling biases and ob-
servation biases? DTs rely heavily on
automated streams of input data for
synchronisation, which means that
biases need to be controlled for before
data are processed by the DTs. Con-
trolling for biases ex-ante adds a new
challenge that needs further research;
as common in ecological modelling,
this can be done ex-post.

How to communicate model outputs in
order to give adequate up-to-date
insights for conservation decision-
making? Complex model outputs and
uncertainties need to be visualised un-
derstandably in order tomake DTs use-
ful as a decision-support tool, which
rarely receives the attention it deserves
in ecological modelling. Involving end-
users is extra-important in DT develop-
ment, given that many DTs operate on
the applied domain by empowering
end-users to better understand and
monitor complex systems.
harder it is to comprehend the system’s structure and functioning. Furthermore, there are issues
of heterogeneity and variability in ecological systems that are nontrivial compared to engineering.
When you do not knowwhat behaviour to expect, or what drives the behaviour of a system/entity,
it is a problem if you want to build a twin that mimics the behaviour of its real-world counterpart.
However, trying to capture the system/entity in DTs opens up new avenues for ecological re-
search by shedding light on the gaps in our knowledge about the systems we model.

Fifth, DTs rely on a continuous stream of data for synchronisation with their real-world twin, which
inevitably requires collecting data either by automated sensors and classification algorithms or by
large numbers of volunteers. Hence, data quality is inherently limited by the capacity of volunteers
or sensors and the underlying artificial intelligence (AI) to correctly identify species and taxa and
other features of interest, and is dependent on people following the expected data collection pro-
tocols [57]. Readily available data (e.g., GBIFvi) are frequently biased in space, time, and taxonom-
ical scope in terms of what is measured when and where [58–60]. There is some danger that the
existing bias of human field observations towards a few preferred taxa or already well-sampled
regions will be further enhanced by the fact that underlying AI can only identify taxa which are al-
ready well represented in the reference libraries.

The first two challenges are similar to those in engineering DTs. How these challenges are ad-
dressed here can serve as inspiration for ecology. The latter three challenges are familiar in ecol-
ogy. We would like to stress that addressing those challenges for DTs requires work in the
coming years when more DTs will be developed for ecology. And to facilitate a smooth start, it
is important to manage false expectations, misunderstandings, and misinterpretations of DTs
(Box 2) [61].

Concluding remarks: start building DTs for ecology
There never was a stronger need for DTs in ecology, and we never had better state-of-the-art in
monitoring, data science, and modelling to exploit DTs. Unfortunately, we do not yet have any
conclusive answers to all the abovementioned challenges. It requires more research and,
above all, more experience with building DTs in ecology (see Outstanding questions). We there-
fore urge modellers and ecologists to start developing DT prototypes for ecology in order to learn
from those experiences: have first demos, summarise experiences into recommendations, get
realistic estimates of the effort and resources needed to establish DTs, and identify bottlenecks.

Modellers: take your static ecological models and start exploring how to make these models
more dynamic; feed them with continuous data flows accessible through application program-
ming interfaces (APIs), or connect with other DTs of the natural environment. Empiricists: join
modellers and software engineers and discover the possibilities of DTs to improve ecological
monitoring, system understanding, and timely decision-making. End-users: (e.g., policymakers
and conservationists) express your support needs for decision-making in terms of what an eco-
logical DT could in the ideal case provide. Ecologists, modellers, and end-users: develop your
DTs explicitly with the application in mind and in close consultation with each other. This will
allow developers and end-users to interact with DT outputs, provide up-to-date insights on
states, trends, and drivers, information gaps, and relevant scenarios that support decision-
making [17], thereby engaging stakeholders more closely with science-driven insights in nature,
biodiversity, and ecosystems.
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