

Master Radiation and its Effects on MicroElectronics
and Photonics Technologies (RADMEP)

VAL_AI:
AN INTEGRATED DEBUGGER TOOL FOR POST-SILICON

VALIDATION
Master Thesis Report

Presented by
Cashmere Joy Dy Ramos

and defended at
University Jean Monnet

11-12 September 2023

Academic Supervisor: Prof. Frédéric Saigné, Université de Montpellier

Host Supervisor: Engr. Vishal Vishal, NXP Semiconductors

Engr. Eric Bourcier, NXP Semiconductors

Jury Committee: Prof. Sylvain Girard – Université Jean Monnet
 Dr. Arto Javanainen – Jyväskylän Yliopisto
 Prof. Paul Leroux – Katholieke Universiteit Leuven
 Prof. Frédéric Saigné – Université de Montpellier

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

i

Abstract

As demands for more complex SoCs becomes high due to several technological
advancements, the market for these chips is endless and companies are driven to keep
up with the changing times by streamlining their top-down process for a more efficient
flow. Post-silicon validation is one of the most important steps during System-on-Chip
production process as this happens after fabrication to test functionalities of chips in
both nominal conditions and varied process, voltage, and temperature conditions.
Post-silicon validation debugging is the last line of defense for all possible attacks and
bugs. The process involves rigorous amount of iterative and repeated process of
opening several files and comparing data from previous tests. Due to the complicated
nature of debugging, there is a need to effectively systematize it and automate the
current process of digital validation. Moreover, there are many software tools in the
development stages and there is also a need to integrate them altogether.

This work first starts with expounding on the current process and tools being used by
NXP Semiconductors during post-silicon digital validation. The focus is then driven to
automate merging files, visualization of data, and identification of possible causes of
failure through a three-step solution: data collection, candidate identification, and
problem analysis. The work begins with how the test runs are stored, queried, and
shown. Two clustering techniques: kmeans and agglomerative clustering are also
discussed. Some dimension reduction techniques like principal component analysis
and uniform manifold and approximation projection were also elaborated. These
techniques could help development and future work. Application integration is the last
step to unify all infant software tools currently in the works under NXP
Semiconductors.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

ii

Table of Contents

1 Introduction ... 1
1.1 NXP Semiconductors .. 1
1.2 Digital Validation Team (SCE) ... 2
1.3 Validation Flow ... 5
1.4 Tools Available for the Digital Validation Team .. 6

1.4.1 Validation Application ... 6
1.4.2 Cloud Validation ... 6
1.4.3 CV Controller .. 6
1.4.4 MongoDB Server .. 6

2 Scope and Goals ... 8
3 Methodology and Related Work .. 9

3.1 Post Silicon Validation .. 9
3.2 Post Silicon Validation Debugger Tools ... 9
3.3 Python flask ... 10

3.3.1 Django vs Flask .. 10
3.3.2 Target application structure .. 12

3.4 Parameter Classification ... 13
3.5 Data Collection .. 13
3.6 Candidate Identification ... 15

3.6.1 Data preparation and Euclidean distance ... 16
3.6.2 K-Means Clustering ... 16
3.6.3 Agglomerative Clustering .. 17

3.7 Problem Analysis .. 18
3.7.1 Kolmogorov-Smirnov test .. 18
3.7.2 Uniform Manifold and Approximation Projection (UMAP) 19
3.7.3 Principal Component Analysis (PCA) .. 19

3.8 Application Integration ... 20
3.8.1 Monolithic Architecture ... 20
3.8.2 Microservices Architecture .. 20

4 Results and Work ... 22
4.1 Data Collection .. 22
4.2 Candidate Identification ... 23
4.3 Problem Analysis .. 24
4.4 Application Integration ... 24

5 Conclusion .. 25
6 Future Work ... 26
7 References .. 27

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

iv

List of Figures

Figure 1.1.1 NXP Semiconductors Mougins Site (Sophia-Antipolis) 2
Figure 1.2.1 Physical Area Security Levels of NXP Semiconductors 3
Figure 1.2.2 Logical Security of NXP Semiconductors .. 3
Figure 1.2.3: Laboratory Nodes Configuration .. 4
Figure 1.3.1: Iterative Cycle of Digital Validation Flow .. 5
Figure 1.4.1: Validation Application Main Functions .. 6
Figure 1.4.2: MongoDB Schema ... 7
Figure 3.2.1: Iterative Stages of Suggested PSV Debugging .. 10
Figure 3.3.1: Model View Template (MVT) architecture .. 11
Figure 3.3.2: Model View Controller (MVC) architecture .. 11
Figure 3.3.3: Target application structure ... 13
Figure 3.5.1: MongoDB Database Structure ... 14
Figure 3.5.2: Flowchart of data collection .. 15
Figure 3.8.1 Monolithic vs Microservices Architecture ... 21
Figure 4.1.1 Application routes for data ... 22
Figure 4.1.2 Routing Depending on the Datfiles .. 23
Figure 4.2.1 Analysis Route .. 23
Figure 4.2.2 Clustering Route ... 24
Figure 4.4.1 Cloud Computing .. 26

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

v

List of Tables

Table 1.1 Logical vs Physical Security Levels Source: Adapted from NXP
Semiconductors .. 4
Table 3.1: Comparison between Flask and Django ... 12

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

1

1 Introduction

Nowadays, as the consumer demand for digital devices and services have increased due
to more technological advancements, the need for System-on-Chips (SoCs) is also
exponentially increasing. As described in [1], these chips are integrated blocks
containing several components for memory, timing, control, and interface among
others. The market for these is endless -- from mobiles, automotives, IoT to even simple
household machines. This further drives leading companies to develop more
competitive features like using cloud computing, AI, better GPUs, more reliable
security, and many others in a shorter amount of time to keep up with the dynamics of
the changing times.

Post-silicon validation (PSV) happens after the System-on-Chips (SoCs) have been
fabricated. Several tests are executed to check specification-recommended
functionalities under nominal conditions and evaluate hardening for unusual use and
fabrication under different process, voltage, and temperature dependent conditions.
PSV debugging is one of the most painstaking steps during SoC release as this is the last
line of defense for many attacks and bugs should be discovered at this stage. Usually,
during verification, most of the functional problems need to be tested, detected, and
corrected but some bugs and problems only arise after the silicon has been fabricated.

The process for PSV debugging involves a rigorous process of opening several files and
comparing the data the engineer has in previous tests. These are then analyzed for
further processing to determine the actual causes of failure. [2] discusses the typical
faults being looked out for during PSV like escaped functional errors and electrical
faults. Timing errors, speed (frequency), and delays are also tested to make sure the SoC
is within the standard specifications as suggested by [3].

Due to the overly complicated iterative process of ensuring the chip is up to par and that
it functions as it is supposed to, there is a need to standardize the flow of debugging to
ease the constriction caused by more complex designs. This work focuses on providing
a systemic approach to post-silicon validation using a web-based application for
merging, viewing, filtering, and visualizing data and providing a possible causality of
test results. The thesis first discusses the working environment and the current tools
ready for use. This is then followed by the scope, purpose, and desired result. The
previous works are talked through, and the methods used are expounded on the next
part as well as the results followed by the conclusion and suggested future work.

1.1 NXP Semiconductors
NXP Semiconductors is a multi-national company headquartered in Austin, Texas and
Eindhoven, Netherlands. It is one of the leading semiconductors companies providing
silicon solutions for automotive, mobile, communication and infrastructure, and smart
cities and homes. The company has sites all over the world in Americas, Asia-Pacific,
and Europe/Middle East. The sites in France are in Caen, Paris-Saclay, Toulouse, and
Mougins. The site in Sophia-Antipolis, Mougins found in Figure 1.1.1 is mostly where
the research and development for the business line Secure Connected Edge is being
housed.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

2

Figure 1.1.1 NXP Semiconductors Mougins Site (Sophia-Antipolis)

Source: Adapted from NXP Semiconductors

The Secure Connected Edge is responsible for the complete top-down solution from
analog and digital design, verification, to validation of System-on-Chips (SoCs)
produced by the company. Verification is usually done to test the design capabilities and
nominal functions before silicon manufacturing and assembly. After this, the designs
are sent to fabrication laboratories for production. The validation team then tests the
fabricated chip samples that arrive as the last line of defense against bugs and design
problems. These are particularly important steps to make sure that the chip is
meticulously designed, configured, fabricated, and is functional according to
specifications and nominal values. This is also the step wherein the chips are being
tested for their extreme capacities.

The digital validation team of the Secure Connected Edge (SCE) is responsible for the
final line of post-silicon validation of secure elements, NFCs, and SoCs for distinguished
clients. The teams are based in Mougins (France), Hamburg (Germany) and San Diego
(US). The team has 25 engineers for all sites working together for final stage delivery.

1.2 Digital Validation Team (SCE)
In a fast-growing world of technology, many new interesting and complex features have
popped here and there, and competition arises from different mind-boggling ideas that
can automate and support a more efficient way of doing everything. However, with most
technologies going digital and autonomous, security is now a big threat and opportunity
for most companies and consumers. Nowadays, security plays a key element in
determining the business trends in microelectronics and semiconductor markets. It is
one of the main factors that most clients look for now in the industry. NXP
Semiconductors prides itself on the security, quality, and efficiency of its products.
Therefore, the company areas are finely divided into different color-coded physical areas
describing the levels of access people have depending on their project involvement. This
can also be briefly illustrated by Figure 1.2.1.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

3

Figure 1.2.1 Physical Area Security Levels of NXP Semiconductors

Source: Adapted from NXP Semiconductors

1. Blue Area – Anywhere outside NXP certified premises.
2. Green Area – General NXP premises inside or outside the fence covered by NXP

security.
3. Yellow Area – NXP Security Connected Edge area covered by intrusion

protection which serves as detection level.
4. Red Area – Usually, NXP laboratories are located here, and this is surrounded

by the yellow one. This serves as protection areas to both logical and physical
assets NXP Semiconductors has.

NXP has various levels of logical security depending on the project and device as seen
from Figure 1.2.2. Table 1.1 summarizes the different levels of logical security depending
on the physical location of the device being used.

Figure 1.2.2 Logical Security of NXP Semiconductors Source: Adapted from NXP Semiconductors

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

4

1. Normal Secure – This is for devices working under normal NXP confidentiality

and integrity criteria.
2. Restricted Secure – This is for devices working under normal NXP

confidentiality and strong integrity criteria. The users should be BSI certified to
use devices under restricted secure.

3. High Secure - This is for devices working under strong NXP confidentiality and
strong integrity criteria. The users should be BSI certified to use devices under
high secure. Usually, the lab machines can be found in these areas.

There are multiple labs located on each site. The labs are placed in red areas using RS
domains. The main server of this RS network that the team is using is in Hamburg. In
each laboratory for every site, there are RS devices configured to listen to the Cloud
Validation server which schedules and automates tasks for each node or device. The RS
devices are usually a client computer where the testbench hardware equipment is
connected to. The RS server seen in Figure 1.2.3 can be accessed remotely by validation
engineers using the personal RS computers to select and schedule tasks. This
mechanism makes the tests more efficient in terms of workflow because overnight and
weekend test runs can now be performed. Despite this, it is still a major advantage for
validation engineers to be physically present in the laboratory for hardware and
software debugging for a more effective process.

Table 1.1 Logical vs Physical Security Levels Source: Adapted from NXP Semiconductors

Figure 1.2.3: Laboratory Nodes Configuration

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

5

1.3 Validation Flow
The Digital Validation Team of the Secure Connected Edge of NXP semiconductors
mainly handles the products contracted to a client. Figure 1.3.1 shows an iterative cycle
which describes the flow of the digital validation team.

Figure 1.3.1: Iterative Cycle of Digital Validation Flow

The process starts during preparation wherein the chips have been designed but the
silicon is still being fabricated in an outsourced company. This is when the test engineers
prepare tests and testbenches using an FPGA to emulate them. At this stage, if the new
chip is an evolved daughter chip, the tests can also be based on previous chips that are
similar.

After preparation stage, the bring-up happens wherein the silicon arrives, and the initial
tests are performed. The samples are first registered to the Validation Application and
the default settings are loaded to make sure that any tests prior to this would not affect
the current state of the chips. After this, usually a short doing-nothing test (a test which
checks the most simplistic functionality whether the application is able to communicate
to the target DuT) is executed just to test if the DuT is alive or not.

During evaluation phase, the chip is now being tested by its different basic
functionalities without temperature dependence using nominal voltage conditions. The
number of samples really depends on the actual project, but it is usually around 10
samples for the batch. The team undergoes test and hardware debugging during this
stage.

Next is characterization wherein the chips are being subjected into different voltage and
temperature dependent tests. New samples usually arrive with different corners varying
the samples from S, N, and F for slow, typical, and fast corners, respectively.

Lastly in the figure, the hotspots are the phase wherein problems arise, and cross-
functional teams work together to debug and solve the problems that come up. These
hotspots can emerge anytime within the iterative cycle as the chip continues to be
validated. Each phase takes a varied amount of time depending on the number of
samples and the type of SoC that is being validated.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

6

1.4 Tools Available for the Digital Validation Team
Several tools are available for the digital validation team in NXP Sophia-Antipolis, NXP
Hamburg, and NXP San Diego. These tools help automate the validation flow for
engineers and give a good overview of pending and executed tasks for the manager.

1.4.1 Validation Application
The validation application is a centralized tool for all validation engineers and
engineering managers for various functions. The application written in Java
covers eight main things as seen in Figure 1.4.1. This includes NFC
Configuration, Test Automation, Equipment, eSE Trimming Control, Register
View, eSE Control, and MIO Control. This acts as the main controller of all
validation done remotely. While all of these are very useful, some examples of
the software capabilities are as follows: Test Automation is used to schedule and
execute tests; Equipment View is for making sure that the hardware
configuration of the testbench is properly installed; Register View is an interface
to dump and view all register values; etc. In general, the validation application
is the central tool for validation engineers to begin their tests.

Figure 1.4.1: Validation Application Main Functions

Source: Adapted from NXP Semiconductors

1.4.2 Cloud Validation
This is integrated with the validation application to help schedule tests and
tasks remotely using testbench equipment preconfigured and setup in the
laboratories. This allows the engineers to preload the test beforehand and run
everything from wherever they are.

1.4.3 CV Controller
This tool ensures all software versions of each CV (Cloud Validation) nodes are
aligned. This improves the efficiency of the validation engineers by not having
to manually log in to every single CV node and check each version one-by-one
preventing setup errors.

1.4.4 MongoDB Server
This is the main repository for all of the data gathered after each and every test.
It is a non-SQL server database which takes all testruns available for each
database and correctly classifies them according to the testset collection they
belong. Figure 1.4.2 shows the server schema and how the data is being
organized per database. In this study, all data is extracted from the MongoDB
server after the test has been executed. The entries are stores as JSON files and
the test results for every chip follow a standard architecture for easier storage
and access.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

7

Figure 1.4.2: MongoDB Schema

Source: Adapted from NXP Semiconductors

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

8

2 Scope and Goals

NXP Semiconductors has many tools to increase the efficiency and productivity of
validation engineers to streamline the process of closing in on SoCs. There are currently
a lot of tools as discussed above to automate and schedule the tests remotely or on-site
and store the data gathered. There is currently a limited number of tools to help
validation engineers view the data to debug parameters more systematically. This work
provides a systemic flow in viewing and debugging the SoC’s validation results as its first
functionality.

There are also a lot of tools currently being developed as other projects using machine
learning to increase efficiency. These help the engineers automatically classify if the
parameter is essential or not during validation. This work also includes integration
using front-end of different microservices currently also being developed within the
team. These tools are still undergoing changes and debugging but they are currently
being integrated into the software application.

The long-term intent of this project is as follows:

1. To be able to streamline the efficiency of post silicon validation in terms of
workflow;

2. To be able to integrate the tools for data analysis that validation team is
currently developing

As post-silicon validation becomes more rigorous, engineers usually open and view
multiple files at one time to compare data and analyze results. Multiple datfiles stored
as excel files from different test runs collated are checked against the log files to better
understand the bugs present. For context, one test set could contain several datfiles
which contain every test run and one datfile could contain thousands of rows and
numerous columns. The specific goals of the project involve the following:

1. To merge and view data from different datfiles in the same test set and database;
2. To properly filter data according to what the user needs and visualize them;
3. To systematically provide context on the possible causalities of failure;
4. To integrate the application with other existing tools and provide the correct

inputs and routes to the other microservices that are being constructed;
5. To provide possible ways to further identify the problem which could be

implemented in the future;
6. To be code flexible for future development

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

9

3 Methodology and Related Work

3.1 Post Silicon Validation
 Post-silicon validation is the last step before a System-on-Chip (SoC) goes out
for consumer-use in the market. This is highly one of the most important steps in
making sure that all of the chips are ready for integration into mobiles, automotives, etc.
In this step, several tests are being made to make sure that the product is within the
specifications and to quantify the capacity of the chip. [4] discusses the different types
of post silicon validation. Functional bug hunting is about testing an SoC in its nominal
conditions and checking the functionality of the chip to recover from different attacks.
Random instruction testing is usually executed when time is heavily constrained, and
few tests could be performed therefore only selecting a specific set of tests to be done.
The process of making sure that the memory storage is at good health is called memory
subsystem validation, and the input/output synchronism tests are called i/o
concurrency.

3.2 Post Silicon Validation Debugger Tools
Many debugging techniques have been suggested to mitigate the bottleneck

caused by PSV. [5] mentions the usual approach to PSV and the challenges that may be
faced by engineers during this phase. The general process starts by detecting the
problem through a series of tests and localizing them. The problem is then analyzed
further to identify the root cause. Finally, steps are taken to fix and bypass the bugs and
to rectify problems detected. [6] suggested a technique called Symbolic Quick Error
Detection (QED) that talks more about short error detection latencies with high
coverage and formal analysis to localize the problem area, however, this only focuses on
logical bugs.

 Several research papers tried to focus on debugger tools that could be useful for
post-silicon validation. One of the references this paper was based on was [7] which
focuses more visual representation of available data to debug chips during this phase.
Several engineers and visual researchers concluded that slicing the study into four
distinct stages would provide engineers with insightful data analysis. The study was
divided into four parts: Data Collection, Candidate Identification, Problem
Identification, and Problem Analysis. They started with making sure to query only the
data needed to be selected. The user is also provided with options to filter and only take
the specific attributes and values the user needs. For candidate identification, the
application attempts to use clustering as a method to determine the correlation of each
test case scenario there is and provide visual support to the validation engineers. For
problem refinement, there is a user-defined set of inputs, outputs, and targets of which
the computation begins but still uses clustering as a method for visual representation.
The fourth stage now determines if the input affects the symptoms, so the data
classification is now promoted to a target. This way, the debugging becomes more
systematic, objective, and visually represented.

As discussed in previous sections, the goal of the tool is to aid in post silicon validation.
[5] suggested that it could be more efficient to divide this kind of tool into distinct phases
for better efficiency and to create a boundary for each stage of the project by detection,
localization, identification, and rectification. For this purpose, the main project is
divided into four parts: data collection and merging, candidate identification, problem
analysis, and integration. This is seen in Figure 3.2.1.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

10

Figure 3.2.1: Iterative Stages of Suggested PSV Debugging

3.3 Python flask
The application is using a web-based application for easier implementation. The
application is written in Python for better optimization and computational capabilities.
Of the frameworks available: Django, Flask, Pyramid, and Tornado. Flask was chosen
because of the wide range of documentation available and ease of use as seen in [8].
HTML and Javascript were used for the front-end part of the code for more convenient
handling. The idea is to be able to display and run the entire application using the web
browser and handle all computations at the backend Python side whether it is handled
on the server or client side. The overall application would be called val_ai as this act as
the central front-end tool to all microservices integrated within the application.

Flask is a web framework designed to provide features and tools to create applications
using Python [9]. This allows programmers to split the parts into different directories
and routes to arrange the code more systematically and efficiently. To use Python flask
in this project, the groundwork has been laid on the following prerequisites:

• Python 3 programming environment;
• Understanding of routes, functions, and templates;
• Understanding of HTML concepts with CSS and JavaScript included

3.3.1 Django vs Flask
In this project, two main web frameworks were considered: Flask and Django. Flask
uses Model View Controller (MVC) architecture while Django uses Model View
Template (MVT) [10]. Figures 3.3.1 and 3.3.2 show the difference between their
architectures.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

11

Figure 3.3.1: Model View Template (MVT) architecture

Source: Adapted from [11]

Figure 3.3.2: Model View Controller (MVC) architecture

Source: Adapted from [11]

The MVT architecture used by Django has three components according to [11]:

• Model – This is where the data is stored and logic is executed. This is also
connected to the database.

• View – This accepts and sends request depending on what is needed.
• Template – This is where the data is shown.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

12

The MVC architecture used by Flask has a different way of structuring requests and data
handling. The three components used are:

• Model – This is also where the data is being stored and logic is executed and
performed.

• View – This is where the requested data are being shown and presented.
• Controller – This is the main handler of all flows from and to the model and the

view and is responsible for accepting and sending requests and responses.

Python flask was used instead of Django because of its capabilities to distribute the code
into different parts for better understanding and further developments. Since building
the application is currently in its premature stages, it would be more ideal to use a
framework that could further be developed and understood by several people. This web
framework also has minimalistic approach that would be better for beginners in
building a web application. Table 3.1 summarizes the differences in the implementation
of both frameworks.

 Flask Django

Architecture Model View Controller Model View Template

Framework WSGI Framework Full-stack web framework

Flexibility Full flexibility Feature-packed

ORM Usage SQLAlchemy Built-in ORM

Design Minimalistic Batteries-included

Working Style Diversified Monolithic

Table 3.1: Comparison between Flask and Django

3.3.2 Target application structure

The target application structure can be seen in Figure 3.3.3 The app starts with the main
app called val_ai.py containing all possible routes. The Templates folder contain all
relevant pages that would be used to present the data requested. The modules folder is
a collection of all functions made to be used in each route. The static folder has all the
layout information for all of the pages. The downloads and files folders are the
repositories for all the cache information and logs downloaded from the server or
MongoDB.

.

└── flask_app

 ├── app

 ├──main

 ├──val_ai.py

 ├──Templates

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

13

 ├──databases.html

 ├──datfiles.html

 ├──graph.html

 ├──target_analysis.html

 ├──targets.html

 ├──testsets.html

 ├──view.html

 ├──reduced.html

 ├──modules

 ├──clusterthis.py

 ├──getdata.py

 ├──homepage.py

 ├──initiate.py

 ├──showgraph.py

 ├──showreduced.py

 ├──static

 ├──css

 ├──js

 ├──files

 ├──.gitignore

 ├──downloads
Figure 3.3.3: Target application structure

3.4 Parameter Classification
For easier identification throughout this work, the attributes and parameters are
classified into three distinct kinds: input, symptom, and target, as taken from [7].

1. Input Attributes: These are defined as the parameter values being modified by
the engineer to check the effect on the SoCs. These are also called shmoo
parameters. Common things to vary (but are not limited to) are voltage,
temperature, and input pulse widths.

2. Symptom Attributes: These are parameters that are affected as the input
changes. Since the goal is to find the exact parameter to look out for and ignore
all values that does not have a direct effect on the result of the test and the
functionality of the SoC, the symptoms attributes are being considered as an act
to localize the problem before finding its root cause.

3. Target Attributes: The parameters responsible for displaying the functionality
and the effect of the change in input are classified to this.

3.5 Data Collection
During post-silicon validation, as discussed in other parts, all test results are stored in
the MongoDB server. From here, the data is being accessed using a server certificate
request and a connection port to the MongoDB server using a general client ID. The data
are stored as JSON/BSON, but they are being collected as pandas DataFrames.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

14

The server works by having a different database for each project and project version. In
every database, there is a set of TestSets within that project. Contained within each
TestSet collection are all of the test runs of that category. These test runs are the swept
shmoo parameters for each sample. Figure 3.5.1 shows a diagram of how the database
is structured for better querying. Each database has a “TestRuns” folder which contains
all of the tests performed within that project with different varied parameters and
results. This also contains details for each test that includes the test set name it belongs
to. Another folder in the database is “dat_chunks” which contains all of the excel files
stored in every run. The “log chunks” folder works the same way but contains all of the
text files on which the logs are being stored. Each test set folder now contains all of the
information from the runs under that test set.

Figure 3.5.1: MongoDB Database Structure

Users are provided with several forms of access to the data depending on which would
be the most convenient at any given time. First, all the database collection is shown on
the first page with the corresponding list of test sets available per database. Once a
particular test set has been chosen by the user, the datfiles available in that test set would
be displayed, allowing the user to open which datfiles he or she would need. The users
can also choose to filter the exact values for each attribute he would need. The datfiles
of which these values can be found are then automatically merged in one window for
easier viewing, as integrated from another microservice. The last form of access is when
the link of the datfile to be viewed is accessed, if the database, test set, and the datfile
name are known.

After defining the datfiles needed by the user, the program automatically downloads the
corresponding log files and saves them in a /files folder located in the same repository.
This is then called and shown whenever a specific test run or a row from the table is
clicked. The program also immediately allows the user to skip to the actual part of the
log wherein the test run can be found.

More features were added at this stage for better usage like saving the current table with
its current settings. The user can define which rows or columns he or she would only
like to see depending on the parameter value and the bin result for each testrun. Here,
the user can also find the information regarding the testset and testruns he or she has
selected. Figure 3.5.2 shows a flowchart that describes how the algorithm is being
implemented.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

15

Figure 3.5.2: Flowchart of data collection

3.6 Candidate Identification

During this phase, the data needed had already been collected and merged into one
callable variable which was already cached for easier access. The tool takes the user to
another page where the test results are displayed as bar graphs representing each
attribute against their bin result. This stage aims to create a better visual for engineers
to process their data. This is also the stage when the trends for each attribute are being
shown and the ones that do not change are not initially considered and are greyed out.
The users, however, can still select these attributes if they would like to include them in
further reports and analysis. These attributes that could affect the outcome of the tests
are input attributes. The ones included in the list of parameters affected by the change
in the input are the symptoms. Being included in the list of attributes selected means
that the parameter is a symptom attribute. These attributes selected are returned as
JSON data back to python for further computation. Figure 3.6.1 shows a rough summary
of how the data is being analyzed step-by-step.

Several methods have been used to compute the relational relevance of each test and
display them as clusters. There are multiple techniques used for data clustering to
provide the user with several ways of choosing which test runs are significant.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

16

Figure 3.6.1 Candidate Identification Step-by-Step

3.6.1 Data preparation and Euclidean distance

For data preparation, the data points are prepared by getting only the numeric
part of each entry. At this stage, only the numerical values are considered to
ease the testing for easier computation and data handling. Only the input and
symptom attributes are selected to be part of the analysis and all the non-
numerical fields are dropped from the table. The goal is to be able to perform
quantitative analysis on each test run.

The Euclidean distance is then taken for all remaining attributes for each data
point. This acts like data preparation for further clustering methods. The
equation below describes how the Euclidean distance was taken for each data
point. This would be the main distance metric to determine the similarity and
dissimilarity of two data points for further processing. [12] used the same
equation below to compute for the Euclidean distance for various data points
with multiple components. This is also the equation used in this work using
python NumPy library.

Euclidean distance(p, q) = !(𝑝! − 𝑞!)"+(𝑝" − 𝑞")" +⋯+ (𝑝# − 𝑞#)"
Equation 3.6.1 Euclidean distance Source: Adapted from [12]

3.6.2 K-Means Clustering

After considering the only the relevant input and symptom attributes and
getting the euclidean distance between each test run, clustering is now
performed to further visualize how similar and dissimilar each test run is to
another.

At this stage, a clustering is considered due to the capability to allow fast
computations given that the post-silicon validation team has an immense
amount of test runs to process. This is usually used when the data needs to be
processed fast. [13] described the process below:

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

17

1. Initialization: This type of clustering starts by randomly selecting centroids
depending on the set number of clusters.

2. Assignment: Using these centroids, the test runs are assigned to a centroid
whose Euclidean distance is the nearest to them.

3. Update: These are then computed iteratively to find the best centroids for
all the clusters formed as optimization by calculation for the mean for each
data entry assigned to one cluster.

The algorithm only stops when either (1) the maximum number of iterations
has been reached or (2) the centroids are not changing no matter how many
times the iterative computations are being executed, whichever comes first [14].

The main problem with this is that not all datasets are suited for this kind of
clustering as the data must be spherical or equally sized, as discussed in [15].
Since the test runs in post-silicon validation do not promise results being
instantly ready for kmeans clustering, another clustering method is introduced
in the next section. For the purpose of testing and the software currently in its
premature stages, this clustering method was still implemented side-by-side
with the next one.

3.6.3 Agglomerative Clustering

Another type of popular clustering method provides the user the ability to
perform clustering without having to initially define the number of clusters
needed. This was chosen as the next clustering method because [15] describes
this method as more computationally complex than that of kmeans but it
requires less inputs from the user and is better in data handling of most
datasets especially ones for further analysis. The idea of this method is to
initialize each data point as its own cluster and actively iterate them such that
they gradually form larger ones. The step-by-step can be seen below as
described in [16]:

1. Initialization: The Euclidean distance or the pairwise distance is computed

for each test run and each of them is initialized as its own cluster.
2. Choice of linkage: This defines how the distance is being measured from

cluster to cluster. The options are as follows:
a. Single linkage – This defines the distance between the closest

points of two clusters. This is the type of linkage used in this work
to simplify relational computations and improve latency since
there are a lot of data being processed.

b. Complete linkage – This defines the distance between the farthest
points of two clusters.

c. Average linkage – This defines the average distance between two
points in two clusters.

d. Ward’s linkage – This method makes sure that the variance is
minimum during merging.

3. Merging: This stage merges the clusters depending on their distances and
the choice of linkage. In this stage, the matrix containing the distances is
also updated.

4. Dendrogram Construction: This is a tree-like structure of which height
defines the similarity and dissimilarity of two data points. The iterative
process only stops when either of the two conditions have been met: (1)
the pre-defined number of clusters or height of dendrogram have been
reached; and (2) when all of the data points are in one single cluster.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

18

The data are then visualized using these two methods of clustering. This way, the
validation engineer would have a better relational understanding of the tests executed
and results. Both were implemented using the Python sci-kit learn package.

3.7 Problem Analysis

During this stage, the different methods of clustering have already been presented for
all test runs. The user should now select which of the clusters are more relevant for
further analysis. This cluster number is sent back for further analysis. The software
checks which of the symptoms contribute the most to the test result on it having a pass
or fail. Several tests have been considered to detect the target parameter that resulted
to a failure and the most relevant input parameter that could cause it. These are
discussed further below. The user can go back and forth to the main page to make sure
that the selected parameters are the most probable. The user can opt to not choose
anything and let the default settings detect and predict the problem area.

The Kolmogorov-Smirnov test was first considered as suggested by [7] but this was not
implemented anymore due to the capability selecting a particular cluster. This could
further be added into future work if during the developmental stage, it would be more
beneficial to compare clusters. This section is still added for related work.

Two dimension-reduction techniques are discussed below to process the data points,
the use of Uniform Manifold and Approximation Projection (UMAP) and Principal
Component Analysis (PCA). These techniques further process the given set of data so
that the attributes could be localized into determining if they are the parameter that
could be held accountable for the failure. Both still preserve the original structure that
the data points have. In this case, PCA was chosen because of its availability in terms
of libraries and packages. This method is also more efficient in computing, and it
preserves the variance between test run executions. UMAPs would first be discussed
followed by PCA.

3.7.1 Kolmogorov-Smirnov test

In [7], the Kolmogorov-Smirnov test was used to detect the correlation
between two clusters. This test is a non-parametric statistical test that defines
if two samples come from one distribution or if one sample comes from a
specific known distribution. This is usually used to define intra-cluster
relations and analysis. The empirical cumulative distribution function (ECDF)
of the sample data is compared to the cumulative distribution function (CDF)
of the function being considered to check the goodness-of-fit [17]. The test
works using the basic steps below:
1. Hypothesis synthesis: The sample either follows the reference distribution

or not.
2. Test statistic computation: The vertical distance between the ECDF of the

sample data and the CDF of the known distribution is calculated.
3. Calculation of critical value and decision making: The p-value is

computed, which represents the probability of observing the test statistic
when the null hypothesis is true. Depending on the chosen critical value,
the test either passes or fails.

In this work, this was not implemented anymore because the user can choose a specific
cluster that could be sent for further analysis.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

19

3.7.2 Uniform Manifold and Approximation Projection (UMAP)

Uniform Manifold and Approximation Projection for dimension reduction is
 a reduction algorithm used by [7] to perform localization of the detected bug.
 Since the test runs have multiple attributes linking to the result of the test
 (pass/fail), one workable solution to make everything easier to visualize and
 process is reducing the dimensions or the number of dependencies the
 results have to the parameters.

According to [18], this technique can be used to reduce the dimensions if the
data has three properties: (1) distribution is uniform in Riemannian manifold,
(2) Riemannian metric is constant at least in a specific local area, and (3) the
whole manifold is connected locally. This technique was considered because of
its effectiveness in dealing with complex and nonlinear structures. It is designed
to keep the manifold structure of datasets with high dimensionality. A manifold
is a lower-dimensional space that could essentially capture the properties of its
high-dimensional counterpart while still preserving the local distances each
point has from each other. To implement dimension reduction using UMAPs,
the following process is usually followed [19, 20]:

1. Preparation: The test runs are prepared beforehand by eliminating all non-

numeric entries for easier computations. The values are also normalized
when using UMAPs.

2. Hyperparameter setting: Some of the include the following:
a. n_neighbors – the number of neighbors considered
b. min_dist – the minimum distance of points in the lower dimension

so that crowding is controlled
c. n_components – target number of dimensions

3. Nearest neighbor and optimization: Based on the parameter of
n_neighbors, a graph is created which captures the local structure of the
high dimensions of the data. During optimization, UMAPs keep a cost
function that generates the deviation of the pairwise distance between
points from higher dimension and lower dimensions.

4. Visualization or Analysis: Depending on the need for using UMAPs, this
stage can either be used for further machine learning analysis or to plot the
reduced data.

5. Iterations: The entire process can be iterative if the desired embedding has
not yet been achieved yet. This also applies if some of the data points are
changed throughout the course of using the dimension-reduction
technique.

Since UMAPs can be computationally expensive due to computing for the nearest
neighbor and creating the cost function, another dimension-reduction technique is
discussed in the next section. Other factors considered are also discussed.

3.7.3 Principal Component Analysis (PCA)
The Principal Component Analysis (PCA) is another dimension-reduction
technique used to make sure that the maximum variance is attained in the
orthogonal axes to create a lower-dimension set of data points that have the
same information. This technique is usually used for visualization and feature
selection. The process for PCA can be seen below [21]:

1. Preparation: The data points are standardized and made sure that only the

numerical values are considered.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

20

2. Mean computation: The mean of all data points is computed to find the
center data point.

3. Centering the data: This part subtracts the feature values from the mean
so the center data point is at the origin.

4. Covariance matrix: The covariance matrix is computed using the equation
below:

Equation 3.7.1 Covariance Matrix Source: Adapted from [22]

5. Compute and sort eigenvalues and eigenvectors: The eigenvalues
represent the variance there is for each eigenvector. These are then sorted
in a decreasing order.

6. Principal components and projection: The dot product of the selected

eigenvalues and new data matrix is computed and is projected as a lower
dimension set of data points.

Overall, PCA was chosen instead of UMAPs because of its computational efficiency.
The data being processed by the validation team are standardized and do not require
that much power in nonlinear computations. PCA also has a more straightforward
approach that would be suitable for early developmental stages. Aside from these,
accessibility was also considered since PCA can be implemented using sci-kit learn
Python package and UMAPs would require more installation.

The test runs are iteratively processed, and the reduced data would be able to show the
possible causes of failure the test runs have in common. The similarities and
dissimilarities of the data points are taken into consideration when suggesting a
possible attribute to check. In the same way, the cause of success or setup fails could
also be checked.

3.8 Application Integration
The program was also integrated into other ongoing tools developed using machine
learning techniques to serve as the front-end side of all of the applications being created.
The goal is to be the main user interface for all the tools. These are the scope shot
analyzer, log summarizer, and log analyzer. All of these are planned to be integrated
with val_ai as the intended central node.

3.8.1 Monolithic Architecture
One traditional model to consider is the use of monolithic architecture. Here, the
software application is treated as one big service which is independent and self-
contained [23]. The idea is to access and deploy the whole tool as one big release. This
is beneficial during the development phase as it releases the application from being
dependent on other repositories with different ongoing developments. This makes
debugging and testing more convenient for the programmers as well as users. The
problem with using this architecture in the development of val_ai is that it lacks
scalability and flexibility. One change could refresh the whole stack of code already
pushed and could affect other services present in the tool. Once the application becomes
more functional and complex, this architecture would be inferior in terms of reliability.

3.8.2 Microservices Architecture

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

21

In simple terms, this architecture works by coupling the different tools together to make
it more seamless. Rather than putting all the tools into one deployable unit, the services
are just accessed on one node, but they keep several repositories. Figure X shows the
differences of both. [24] describes the services are treated as a collection wherein they
are independent of each other even on the database level and the way they communicate
with the general API (Application Programming Interface). The benefits of this include
continuous deployment and development for each service, highly maintainable and
testable, flexible with new technology, and reliability [25]. However, some factors
should also be considered like organizational overhead, standardization, and
infrastructure costs.

Figure 3.8.1 Monolithic vs Microservices Architecture

Source: Adapted from [26]

Since these application tools are developed by different engineers on its early stages, it
has been decided to use microservices architecture for parallel deployment and testing.
The standardization and infrastructure costs should not impose a problem early in the
timeline as these services offered by the application are still in their infancy stages.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

22

4 Results and Work

The overall application was implemented as planned. In this section, the code snippets
will be shown and the functions in these routes will be defined. Some screenshots would
be shown to present the data query and presentation.

The application starts off by connecting to the MongoDB server using the code in Annex
A. Here, a specific set of username and password is used to log in and access the data of
the test results from different projects stored in different database. A randomly-
generated secret key is also used to hold sessions using the framework.

4.1 Data Collection

The application starts off with the homepage selector that would display all available
databases through get_databases(). Once a specific database is chosen, the
corresponding testsets would show using get_test_sets(). The user should choose a
specific test set to evaluate and the and the datfiles contained in that test set would be
presented in a checklist in get_dat_files(). These are defined by the following
application routes as displayed in Figure 4.1.1:

@app.route('/')
def get_databases():
 database_details = displaydata()
 return render_template('databases.html',
databases=database_details)

@app.route('/testsets/<database_name>')
def get_test_sets(database_name):
 mongo = MongoDBBaseConnector()
 mongo.set_db(database_name)
 testsets = mongo.test_set_names
 return render_template('testsets.html',
database=database_name, test_sets=testsets)

@app.route("/datfiles/<database>/<test_set>", methods=['GET'])
def get_dat_files(database, test_set):
 session['current_test_set'] = test_set
 session['database'] = database
 dat_files = displaydat(database, test_set)

 return render_template('datfiles.html', database=database,
test_set=test_set, dat_files=dat_files)
Figure 4.1.1 Application routes for data

If the user opts to use the URL using the format database/testsetname/datfilename
format, the next part would be the first application route.

The next page would then take the user to a table containing the merged testruns of all
selected datfiles using these app routes. For this part, two app routes have been created
depending on how many datfiles are currently being handled. The URL changes also
depending on the specific route selected. The merged testruns being passed from python
to the HTML side are dataframes.

@app.route("/<database>/<current_test_set>/<datfilename>", methods=['GET',
'POST'])

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

23

def single(database, current_test_set, datfilename):

 global mongoitems
 mongoitems, file_contents, binresult = showtable(database, datfilename)
 print(mongoitems.columns)
 session['binresult'] = binresult

 return render_template('view.html',
row_data=list(mongoitems.values.tolist()), datfilename=datfilename,
items=enumerate(mongoitems.columns),
 file_cont=file_contents,
 column_names=mongoitems.columns.values,
stringnames=current_test_set, zip=zip)

@app.route("/<database>/<current_test_set>", methods=['GET', 'POST'])
def multiple(database, current_test_set):

 datfilename = session.get('datfilename')
 query, txtfilename, binresult = getparam(database, datfilename,
current_test_set)
 stringname = current_test_set
 global mongoitems
 mongoitems, file_contents = mergetable(database, txtfilename, stringname,
query)
 session['binresult'] = binresult
 session['current_test_set'] = stringname
 session['database'] = database

 return render_template('view.html',
row_data=list(mongoitems.values.tolist()), datfilename=datfilename,
items=enumerate(mongoitems.columns), file_cont=file_contents,
 column_names=mongoitems.columns.values,
stringnames=current_test_set, zip=zip)
Figure 4.1.2 Routing Depending on the Datfiles

The functions showtable() and getparam() are used to access the MongoDB server and
get all necessary data to be able to show the testruns. In addition to that, the function
mergetable() appends all selected datfiles and logfiles into a variable for easier merging.

4.2 Candidate Identification

The next page would lead to the candidate identification wherein the attributes are
shown as bar graphs and histograms to show trends and bins. The selected attributes
are now sent back to the next app route for further processing.

@app.route("/<database>/<current_test_set>/<datfilename>/analyze",
methods=['GET', 'POST'])
def analyze(database, current_test_set, datfilename):

 binresult = session.get('binresult')
 image_data = showtotalbin(binresult)
 global mongoitems
 histograms, merged, data_combined, min_values, max_values, std_values =
showinputbin(mongoitems)
 data_img, data_img_e, columns, unique_values_dict = showhist(merged,
data_combined)

 return render_template('graph.html', image_data=image_data,
columns=columns, data_img=data_img,
histograms=enumerate(histograms),data_img_e=data_img_e, min_values=min_values,
max_values=max_values, std_values=std_values,
unique_values_dict=unique_values_dict)

Figure 4.2.1 Analysis Route

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

24

This app route shows several clusters of data depending on the chosen attributes of the
user. The clusters are shown in agglomerative, kmeans, and pca.

@app.route("/target_clustered", methods=['GET', 'POST'])
def clustering():
 clusters_dict = session.get('clusters')
 clusters = pd.DataFrame(clusters_dict['data'],
columns=clusters_dict['columns'])
 clustered = showeuclidean(clusters)
 kmeans_clusters = showkmeans(clusters)
 agg_clusters = showagglo(clusters)
 pca_clusters = showpca(clusters)

 return render_template('target_analysis.html', clustered=clustered,
kmeans_clusters=kmeans_clusters, agg_clusters=agg_clusters,
pca_clusters=pca_clusters)
Figure 4.2.2 Clustering Route

4.3 Problem Analysis

During this part, the cluster selected by the user would be sent back to Python. The
user would be able to go back and forth to change this parameter. The function is used
as a dimension reduction technique to further process test runs and data points. This
is shown in Figure 4.3.1

@app.route("/reduced_dimension", methods=['POST'])
def selected_cluster_data():
 clusters_dict = session.get('clusters')
 clusters = pd.DataFrame(clusters_dict['data'],
columns=clusters_dict['columns'])
 cluster_label = int(request.json['cluster_label'])
 reduced = showreduced(clusters, cluster_label)

 return render_template('reduced.html', reduced=reduced)

Figure 4.3.1 Problem analysis route

4.4 Application Integration

The val_ai application was integrated with the validation analyzer tool currently being
developed under NXP Semiconductors. Microservices was used as architecture during
integration as discussed in previous sections. The machine learning services integrated
to the application are: log analyzer, scope shot analyzer, and many more services
currently being developed.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

25

5 Conclusion

The val_ai application was implemented according to the specifications within the
defined goals. The data can be collected and merged with the filtering option for
engineers to take advantage of. The visuals of the data are also improved with more
interactive features that will allow users to select only the tests. The application also
checks the parameters which could most likely affect the SoCs.

The frameworks and algorithms chosen and used supported the necessary
functionalities of the application. The libraries which were initially chosen were
carefully considered depending on the use of the actual processing, documentation
available, and accessibility.

The goals and specifications were achieved within a brief period. Val_ai was successfully
integrated into the validation analyzer application and acts as a general interface for all
microservices currently being developed. The application has several routes that would
point to various machine learning programs.

Although the application testing was cut short due to the limited time and other
microservices are still in the works of being developed and integrated to achieve full
serviceability, the debugger tool was able to help systematize and automate some
repetitive tasks to ease process flow.

Some minor areas for improvement include caching of data for ease of access and server-
side computing to improve delay time and latency. The data handling and uniformity of
all entries are also one of the few things that could make the processing better for both
client and server sides.

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

26

6 Future Work

The tool developed is currently being integrated into the validation-analyzer
application. The val_ai application would be helpful in providing a front-end solution
for the software services using machine learning during debugging. This also would
provide more visualization and ease of access. The possibilities for further
development include other tools that could provide a one-stop-shop for all available
tools within the digital validation team.

Since the whole integrated application is still in its infancy and development stages,
the next steps would be to reproduce the data from previous tests and find out if the
same failures and causes would be realized. This step is vital to future tests to ensure
the application is useful in succeeding projects and tests.

Since machine learning models are currently being constructed to process the results
and data from several sources like log files, datfiles, and scopeshots, it would also be
interesting to invest in cloud computing to make everything -- from storage, tools,
server, etc. -- faster and more accessible as seen in Figure 4.4.1.

Further front-end improvements could also be very helpful in making the application
easier to use and learn for even new engineers joining the validation industry. More
features could also be added to automate the tasks from the tests itself to the result
requiring minimal effort from the engineers. The SoCs could then be checked by the
engineers only as a precaution and as a last line of defense, but the software could
handle more computing power and automation.

The future is endless for machine control especially now that remote work is available
and widespread. Nothing can ever replace in-person debugging but implementing
these things could ease up the ever-changing and fast-growing industry of System-on-
Chips especially with the market constantly getting more demand for seamless
integration of device parts.

Figure 4.4.1 Cloud Computing

Source: Adapted from [18]

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

27

7 References

[1] “System on Chip Market: Global Industry Analysis and Forecast (2023-2029),”
MAXIMIZE MARKET RESEARCH. Available:
https://www.maximizemarketresearch.com/market-report/global-system-on-chip-
soc-market/52751/?fbclid=IwAR111WwZwvL6hZa3cKBxOHiU-kAgTy8_0_N3R-hG-
DUxdEdeJ5xnoP-tafE. [Accessed: Aug. 21, 2023]

[2] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-Silicon Validation in the SoC Era: A
Tutorial Introduction,” IEEE Design & Test, vol. 34, no. 3, pp. 68–92, Jun. 2017, doi:
https://doi.org/10.1109/mdat.2017.2691348

[3] S. Ray and A. Sinha, “Synergies Between Delay Test and Post-silicon Speed Path
Validation: A Tutorial Introduction.” Available:
http://sandip.ece.ufl.edu/publications/ets21.pdf. [Accessed: May 21, 2023]

[4] Electronic Specifier, “5 types of post-silicon validation and why they matter,”
www.electronicspecifier.com. Available:
https://www.electronicspecifier.com/products/test-and-measurement/5-types-of-
post-silicon-validation-and-why-they-matter. [Accessed: Jul. 21, 2023]

[5] S. Mitra, S. Seshia, and N. Nicolici, “Post-Silicon Validation Opportunities,
Challenges and Recent Advances.” Available:
https://people.eecs.berkeley.edu/~sseshia/pubdir/postSi-dac10.pdf. [Accessed: Jun.
18, 2023]

[6] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A Structured Approach to Post-Silicon
Validation and Debug Using Symbolic Quick Error Detection.” Available:
http://theory.stanford.edu/~barrett/pubs/LSB+.pdf. [Accessed: Jun. 08, 2023]

[7] A. Lalama et al., “Interactive Analysis of Post-Silicon Validation Data,” IEEE
Xplore, Oct. 01, 2022. doi: https://doi.org/10.1109/TestVis57757.2022.00007.
Available: https://ieeexplore.ieee.org/document/9978548. [Accessed: Apr. 12, 2023]

[8] Flask, “Welcome to Flask — Flask Documentation (2.3.x),”
flask.palletsprojects.com. Available: https://flask.palletsprojects.com/en/2.3.x/.
[Accessed: Apr. 03, 2023]

[9] “How To Structure a Large Flask Application with Flask Blueprints and Flask-
SQLAlchemy | DigitalOcean,” www.digitalocean.com. Available:
https://www.digitalocean.com/community/tutorials/how-to-structure-a-large-flask-
application-with-flask-blueprints-and-flask-sqlalchemy. [Accessed: Apr. 15, 2023]

[10] DataFlair Team, “Flask vs Django- The Hot Debate of Python Development
Section - DataFlair,” DataFlair, Sep. 07, 2019. Available: https://data-
flair.training/blogs/flask-vs-django/. [Accessed: May 08, 2023]

[11] T. Chaudhari, “MVC vs MVT Architectural Pattern,” GDSC UMIT, Sep. 28, 2021.
Available: https://medium.com/dsc-umit/mvc-vs-mvt-architectural-pattern-
d306a56dce55. [Accessed: Jun. 27, 2023]

[12] Cloudflare, “Computing Euclidean distance on 144 dimensions,” The Cloudflare
Blog, Dec. 18, 2020. Available: https://blog.cloudflare.com/computing-euclidean-
distance-on-144-dimensions/. [Accessed: Jul. 23, 2023]

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

28

[13] A. Jhunjhunwala, “A continuously updating k-means algorithm,” Medium, Feb.
28, 2019. Available: https://towardsdatascience.com/a-continuously-updating-k-
means-algorithm-89584ca7ee63. [Accessed: Jun. 18, 2023]

[14] P. Sharma, “The Ultimate Guide to K-Means Clustering: Definition, Methods and
Applications,” Analytics Vidhya, Aug. 19, 2019. Available:
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-
clustering/#:~:text=We%20can%20stop%20the%20algorithm. [Accessed: Jun. 28,
2023]

[15] “A Comparison of KMeans and Agglomerative Clustering Algorithms for Data
Analysis and Pattern Recognition,” www.linkedin.com. Available:
https://www.linkedin.com/pulse/comparison-kmeans-agglomerative-clustering-
algorithms-jagarlapoodi/. [Accessed: Apr. 30, 2023]

[16] C. Y. Wijaya, “Breaking down the agglomerative clustering process,” Medium, Feb.
14, 2021. Available: https://towardsdatascience.com/breaking-down-the-
agglomerative-clustering-process-1c367f74c7c2. [Accessed: Jul. 01, 2023]

[17] V. Trevisan, “Comparing sample distributions with the Kolmogorov-Smirnov (KS)
test,” Medium, Mar. 24, 2022. Available: https://towardsdatascience.com/comparing-
sample-distributions-with-the-kolmogorov-smirnov-ks-test-a2292ad6fee5. [Accessed:
Jul. 01, 2023]

[18] “UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction — umap 0.5 documentation,” umap-learn.readthedocs.io. Available:
https://umap-learn.readthedocs.io/en/latest/. [Accessed: Jul. 02, 2023]

[19] T. Sainburg, L. McInnes, and T. Q. Gentner, “Parametric UMAP Embeddings for
Representation and Semisupervised Learning,” Neural Computation, pp. 1–27, Aug.
2021, doi: https://doi.org/10.1162/neco_a_01434

[20] “How UMAP Works — umap 0.5 documentation,” umap-learn.readthedocs.io.
Available: https://umap-learn.readthedocs.io/en/latest/how_umap_works.html.
[Accessed: Jul. 01, 2023]

[21] A. Dutt, “A Step By Step Implementation of Principal Component Analysis,”
Medium, Oct. 18, 2021. Available: https://towardsdatascience.com/a-step-by-step-
implementation-of-principal-component-analysis-5520cc6cd598. [Accessed: Jun. 28,
2023]

[22] “Ph 21.5: Covariance and Principal Component Analysis (PCA),” Aug. 2023.
Available:
http://pmaweb.caltech.edu/~physlab/lab_21_current/Ph21_5_Covariance_PCA.pdf

[23] Atlassian, “Microservices vs. monolithic architecture,” Atlassian. Available:
https://www.atlassian.com/microservices/microservices-architecture/microservices-
vs-monolith#:~:text=A%20monolithic%20architecture%20is%20a. [Accessed: Aug.
01, 2023]

[24] Google Cloud, “What Is Microservices Architecture?,” Google Cloud. Available:
https://cloud.google.com/learn/what-is-microservices-architecture#section-1.
[Accessed: Jul. 24, 2023]

[25] F. Omar, “Microservices vs Monolith: A Detailed Comparison (Prime Video as an
example),” Medium, May 13, 2023. Available:

VAL_AI: An Integrated Debugger Tool for Post-Silicon Validation

29

https://medium.com/@fariss.omar.ensi/microservices-vs-monolith-a-detailed-
comparison-prime-video-as-an-example-acf58ad30aa6. [Accessed: Jun. 25, 2023]

[26] A. Davis, “The Pros and Cons of a Monolithic Application Vs. Microservices,”
www.openlegacy.com, Oct. 05, 2022. Available:
https://www.openlegacy.com/blog/monolithic-application. [Accessed: Aug. 17, 2023]

[27] A. Narayan, “Know about Cloud Computing Architecture,” Knoldus Blogs, Jul. 05,
2021. Available: https://blog.knoldus.com/know-about-cloud-computing-
architecture/. [Accessed: Aug. 10, 2023]

