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Abstract: 

While the previous fMRI studies suggest that the 
contents of the visual working memory (VWM) are 
represented in a spatially widely distributed brain 
network and the previous EEG studies have revealed 
some temporal properties of the memory processes, the 
exact spatio-temporal dynamics of working memory 
processes are not yet understood. Here we used 
multivariate EEG-fMRI fusion analysis to combine 
spatially (fMRI) and temporally (EEG) precise 
information, separately measured (n = 29) during a cued 
and delayed orientation change detection. 
Representational dissimilarity matrices (RDMs) from 
EEG responses in 10 ms time bins and fMRI responses 
from 360 different brain regions were correlated with 
each other as well as with model RDMs. Both EEG and 
fMRI response patterns were almost fully explained by 
attention (left/right cue) and only minimally by memory 
(set size and change magnitude). EEG-fMRI fusion 
showed distinct temporal profiles in different regions 
containing sustained information and transient peaks. 
The results highlight the role of attentional processes 
during working memory tasks.  
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Introduction 

Working memory is one the fundamental components 
of our cognition, and it is used for maintaining and 
manipulating information in a time scale of seconds or 
a few tens of seconds. The research in the past 15 
years has shown that visual working memory (VWM) 
contains dynamic and flexible processes, and VWM 
representations can vary in precision (Ma, Husain, & 
Bays, 2014). Functional magnetic resonance imaging 
(fMRI) studies have shown that the contents of VWM 
can be decoded from the pattern activity in several 
different brain areas (Christophel, Klink, Spitzer, 
Roelfsema, & Haynes, 2017), suggesting a wide-

spread brain network controlling encoding, 
maintenance, and retrieval of memory representations. 
Electroencephalogram (EEG) measured during 
memory tasks has provided information on the temporal 
aspects of working memory processes (Adam, Vogel, & 
Awh, 2020). However, the precise spatio-temporal 
dynamics of VWM are not yet known. Here we used 
multivariate EEG-fMRI fusion analysis (Cichy & Oliva, 
2020) to study information flow during a delayed change 
detection task. 

Methods 

Participants The sample included 29 participants (18–
25 years; 20 females), recruited from the participant 
pool of Sichuan Normal University. The experiments 
were reviewed and approved by the ethical committee 
of Sichuan Normal University (SCNU-221114). 

Stimuli Stimuli were white line segments presented on 
a mid-gray background, arranged on a circle (not visible 
to participants; Figure 1).  

 
Figure 1: Experimental setup. Example trial: left cue, 

two different orientations on each side, 30 deg change. 
 

Procedure The structure of each trial (Figure 1) was as 
follows: 1) left/right arrow cue (200 ms), 2) 100 ms 
fixation cross, 3) memory array of 8 lines (four lines on 
each side of the display), 4) 1000 ms memory interval, 
5) one probe line on both sides for 1500 ms or until 
response, 6) 5000 ms inter-trial-interval. The 
participants’ task was to report with an appropriate 
button press whether the orientation of the probe on the 
cued side of the display was changed or not. The cue 

678
This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



(left/right), set size (1, 2, 4 orientations on each side), 
and the amount of change (15, 30, or 60 deg) were 
varied. In all conditions 4 + 4 lines were shown and only 
the number of different orientations was varied.  

EEG and Acquisition and Processing Standard EEG 
preprocessing was conducted (e.g., band-pass filtering 
(.1-50 Hz), removing ICA-based artefacts). Event 
related potentials (ERPs) were extracted from 200 ms 
before to 3300 ms after cue onset.   

fMRI Acquisition and Processing EPI sequences with 
simultaneous multislice was measured with isotropic 2 
mm voxels and 2.0 second TR. The fMRI data was 
preprocessd with fMRIprep (version 21.1.1.) standard 
preprocessing pipeline (Esteban et al., 2019). Each 
experimental condition was modelled with a separate 
regressor in GLM analysis. 

EEG/fMRI Analysis Representational dissimilarity 
matrices (RDMs) were calculated from EEG in 10 ms 
time bins (correlation across all conditions across 
channels; 350 RDMs in total) and from fMRI in 360 brain 
regions (HCP parcellation (Glasser et al., 2016); across 
all conditions across voxels; 360 RDMs in total). Then, 
EEG and fMRI RDMs were correlated with each other 
and with model RDMs. 

Results 

Behavioral Performance As expected, participants’ 
performance accuracy (d’) varied from 0.4 to 3.2 
depending on the condition, d’ values  gradually 
decreasing with increasing set size (F(2,56) = 308.5, p 
< .001, η2

p = .92) and decreasing change magnitude 
(F(2,56) = 144.7, p < .001, η2

p = .84).  

 

Figure 2: Partial correlation of EEG RDM and attention 
model RDM (left middle) reached noise ceiling, while 

memory model RDM (left bottom) did not correlate with 
EEG data (RDM example, left top).  

EEG/fMRI Results Correlation of EEG RDM and 
attention model RDM (left/right cue) reached noise 
ceiling and thus explained almost all of the variability in 
the data (Figure 2). In incorrect trials, these correlations 

were attenuated and delayed compared to correct trials. 
The correlation with memory model RDM was low. In 
fMRI, correlation of the data and attention model RDM 
reached noise ceiling in visual and parietal areas. 
Correlation of the fMRI and memory RDMs was weaker, 
but slightly elevated in a few parietal and frontal regions. 
The EEG-fMRI fusion showed gradual progress of 
information from early visual areas to higher visual, 
temporal and parietal regions with different temporal 
profiles (Figure 3). 

 

Figure 3: A few example temporal profiles obtained 
with EEG-fMRI fusion in visual (V1, V4, LO2), parietal 

(PIT, IP0), and temporal (TPOJ3) areas. 

Discussion 

In EEG and fMRI data measured during cued and 
delayed change detection task, attention related 
processes explained most of the variance in the data. 
While the behavioral performance varied according to 
set size and the magnitude of change, as expected, not 
much systematic information related to these were 
found in EEG or fMRI. In contrast to previous EEG 
studies using similar experimental setup, our results 
indicate that attention effects mask memory related 
effects during the change detection task. Interestingly, 
during incorrect trials the correlations were delayed, 
suggesting that memory failures were due to lapses of 
attention. In the EEG-fMRI fusion, different response 
profiles were found in different regions: sustained 
information and several transient peaks, presumably 
related to maintaining and switching of attention during 
the memory task.   
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