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Following the nonperturbative light-front Hamiltonian formalism developed in our preceding work
[Li. et al. Phys. Rev. D 104, 056014 (2021)], we investigate the momentum broadening of a quark jet inside
a SU(3) colored medium.We perform the numerical simulation of the real-time jet evolution in Fock spaces
of a single quark, a quark-gluon state, and coupled quark- and quark-gluon states at various jet momenta pþ

and medium densities. With the obtained jet light-front wave function, we extract the jet transverse
momentum distribution, the quenching parameter, and the gluon emission rate. We analyze the dependence
of momentum broadening on pþ, medium density, color configuration, spatial correlation, and medium-
induced gluon emission. For comparison, we also derive analytically the expectation value of the transverse
momentum of a quark-gluon state in any color configuration and in an arbitrary spatial distribution in the
eikonal limit. This work can help understand jet momentum broadening in the noneikonal regime.

DOI: 10.1103/PhysRevD.108.036016

I. INTRODUCTION

A central goal of ultrarelativistic heavy ion collisions,
such as those performed at the Relativistic Heavy-Ion
Collider and the LHC, is to recreate droplets of matter in
the early Universe, the quark-gluon plasma, and learn about
its properties [1]. In heavy-ion collisions, energetic quarks
and gluons are produced at early stages, propagating through
the dense and hot medium. The initial particle is transformed
into a cone-shaped beam of hadrons, a jet. In theoretical
studies, a jet initiated by a high energy quark(gluon) is often
referred to as the quark(gluon) jet. Experimentally, the
energy and motion of the original particle are estimated
by measuring the hadrons in the jet. The jets are suppressed
and modified compared to those in proton-proton collisions,
a phenomenon known as jet quenching, observed at the
Relativistic Heavy-Ion Collider [2–5] and the LHC [6–8].

Similar processes happen in deeply inelastic scattering,
where jets lose energy when traversing the cold nuclear
matter formed from the large nucleus.
Studies of jet quenching give us information on how

the medium responds when traversed by a high-energy
quark or gluon jet, and how the jet is modified by the
medium [9–15]. Several perturbative-QCD-based studies
have been carried out to calculate jet energy loss through
multiple scatterings and gluon radiations. In the Baier-
Dokshitzer-Mueller-Peigne-Schiff and Zakharov approach,
the medium is modeled as a collection of static scattering
centers and soft gluon radiations are induced through
multiple scatterings [16–18]. Gyulassy-Levai-Vitev and
Wiedemann [19–21] developed a systematic expansion
of the calculation in terms of the number of scatterings.
In the Arnold, Moore, and Yaffe [22,23] approach, the hard
thermal loop framework is employed and the medium is
treated as in a thermal equilibrium state. In the higher-twist
approach, the twist-expansion is used in a collinear
factorization formalism and the medium is characterized
by matrix elements of gauge field operators [24,25]. In the
SCETG formalism [26,27], the standard soft collinear
effective theory Lagrangian is modified to include
Glauber modes of gluon field for parton interactions.
In preceding works, we have developed a computa-

tional method of simulating the evolution of a quark
jet inside a classical color background field, first
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in the jqi Fock sector [28], then in the jqi þ jqgi Fock
sector [29]. This method is known as the time-dependent
basis light-front quantization (tBLFQ) [30], a light-front
Hamiltonian formalism. Unlike the aforementioned per-
turbative-QCD-based approaches, the evolution process is
calculated on the amplitude rather than the probability
level. This method enables us to relax approximations
usually made in high-energy collisions, such as the
eikonal and the collinear radiation approximations [15].
The tBLFQ method has also been applied to various

problems in quantum electrodynamics [31–34], and its
quantum mechanics counterpart—the time-dependent basis
function approach to nuclear structure and scattering [35,36].
The advantages of the light-front Hamiltonian formalism are
also used in a recent study in small-x physics to study spin-
related observables [37]. It is noteworthy that the tBLFQ
(and the related time-dependent basis function) approach is
well suited to be implemented as quantum simulations on a
quantum device. Recent developments can be found in
Refs. [38–41]. The calculation in this work, though per-
formed on classical computers, also provides a precursor for
the future implementation of quantum simulation, with the
anticipation of a quantum speedup [42,43].
In this work, we present a study on the momentum

broadening of in-medium jet evolution using tBLFQ. We
aim to enhance the understanding of the mechanism in jet
momentum broadening: the momentum exchange of the jet
constituents with the medium and the effects from gluon
radiation. The new development in this work answers the
following key questions:
(1) How do we extract and interpret the momentum

broadening from the jet’s wave function formulated
on a discrete momentum basis space? We have
shown that, in tBLFQ, the quark jet is described by
an evolving light-front wave function, a superposi-
tion of different momenta, color, and helicity modes
in the jqi þ jqgi space, and we examine various
observables and quantities from it [29]. To comple-
ment and further develop the study on the transverse
momentum space, we extract the time-dependent
transverse momentum square hp⃗2⊥ðxþÞi and the
quenching parameter q̂ (defined in the next section)
from the jet state. Importantly, one must understand
the dependence on the physical and the basis
parameters in simulations on a finite basis space,
especially the infrared and ultraviolet cutoffs, which
we will examine and elaborate on.

(2) What is the analytical expectation of the momentum
broadening of the quark-gluon state at finite Nc, in
the eikonal limit, given the state arbitrarily dis-
tributed in color and transverse space? The ana-
lytical expression of hp⃗2⊥ðxþÞi, in terms of medium
strength, momentum cutoffs, and evolution time,
is known for the single particle state (the quark
or gluon jet), derived with Wilson lines in the

McLerran-Venugopalan (MV) model [44–46]. But
the result for the quark-gluon state is absent. We fill
this gap by presenting the full derivation using the
four-point q̄ ḡ qgWilson line correlators. This result
can be useful to other studies on jet quenching
with quark-gluon components, for example, the
production of the quark-gluon dijet in high-energy
collisions, especially when one needs to look at
color-differential cross sections [47–50]. Here, it
also serves as a benchmark for checking the
numerical simulations in the eikonal limit.

(3) What is the effect from the medium at finite pþ and
finite Nη (number of uncorrelated medium layers,
defined in the next section)? The picture of jet
quenching becomes very complicated when the
eikonal approximation gets relaxed: at finite pþ,
there is a diffusion in transverse coordinate space
resulting from the kinetic energy part of the
Hamiltonian, and there exists a continuous gluon
emission/absorption throughout the evolution even
when only allowing one dynamical gluon at the same
time. In addition, to be more realistic, we also let the
number of uncorrelated medium layers in the MV
model, namely Nη, be finite. We will analyze those
effects using the evolved jet wave function obtained
from numerical simulations. We observe a suppres-
sion on q̂ at finite pþ and finite Nη. The medium
enhances the gluon emission compared to the vac-
uum, but slows down the total momentum broadening
of the quark jet state compared to a quark-gluon state.

We would like to clarify that in formulating the jet state
in the jqi þ jqgi Fock space, we use, as the initial state, a
single jqi state with definite momentum. This setup closely
resembles the scenario where the quark is produced inside
the medium from a hard scattering. It provides a simplified
picture in studying effects of in-medium jet momentum
broadening and favors the interpretation of physics in terms
of single particles. It is important to note that this setup
differs from the scenario where the quark originates from
far outside the medium and is described by the light-front
wave function of the QCD eigenstate in the truncated Fock
space. Despite this distinction, the investigation carried out
in this work is essential for future studies involving the
latter scenario.
The layout of this paper is as follows. We first introduce

the method in Sec. II. We then present and discuss the
analytical results in the eikonal limit in Sec. III and the
numerical results of the full nonperturbative calculation in
Sec. IV. We conclude with a discussion of future steps
beyond this work in Sec. V.

II. METHODOLOGY

In Ref. [29], we have developed the formalism of using
the tBLFQ approach to simulate the evolution of a quark jet
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inside a classical color background field in the jqi þ jqgi
Fock sector. Here, we briefly review the basics of this
formalism and reformulate the physical quantities in
dimensionless variables.

A. Jet evolution in tBLFQ

The light-front Hamiltonian consists of three parts,
P−ðxþÞ ¼ P−

KE þ Vqg þ VAðxþÞ, which are the kinetic
energy term, the gluon emission/absorption term, and the
interaction term with a background field (the medium),
respectively. The background field A describing the
medium is given by the MV model [44–46]. We refer to
Ref. [29] for the derivation and the full expression of P−.
The evolution of the state is treated by decomposing the
time-evolution operator into many small steps of the light-
front time xþ, then solved in the time sequence numerically,

jψ ; xþi ¼ T þ exp
�
−
i
2

Z
xþ

0

dzþP−ðzþÞ
�
jψ ; 0i;

¼ lim
n→∞

Yn
k¼1

T þ exp

�
−
i
2

Z
xþk

xþk−1

dzþP−ðzþÞ
�
jψ ; 0i;

ð1Þ

in which xþk ¼ kδxþðk ¼ 0; 1; 2;…; nÞ with δxþ ≡ xþ=n.
The numerical method for this specific problem is opti-
mized in Ref. [29]. That is, within each small time step, we
treat P−

KE and VA as time-constant operators and carry out
matrix exponentiation in the momentum and coordinate
space, respectively; the operation with Vqg uses the fourth-
order Runge-Kutta method in momentum space.
The formulated basis space consists of a square lattice

with periodic boundary conditions in the transverse dimen-
sions x⃗⊥, ranging in ½−L⊥; L⊥� with 2N⊥ sites, and a loop
with (anti)periodic boundary condition in the x− direction,
of length 2L, for the gluon (quark). The transverse lattice
introduces a pair of infrared (IR) and ultraviolet (UV)
cutoffs in the transverse momentum space p⃗⊥, λIR ¼ dp ¼
π=L⊥ and λUV ¼ π=a⊥, with a⊥ ¼ L⊥=N⊥ as the lattice
spacing. Therefore the simulations are performed at fixed
IR and UV cutoffs, which means setting upper and lower
bounds on the

R
p⊥ integral in the corresponding analytical

calculations. We will see later that the physical IR regulator
mg will play the role of the IR cutoff instead of λIR, but the
UV cutoff is still the lattice-dependent λUV. To relate to a
physical process, one needs to match such cutoffs to
realistic momentum scales. For example, the study in
Ref. [51] uses the Landau matching condition to choose
cutoff models that depend on the jet energy and plasma
temperature. In this work, we study the dependence of the
jet observables at a range of cutoffs.
The longitudinal momentum pþ is quantized in units of

2π=L, and the gluon(quark) is allowed to take a positive
(half-)integer number in this unit. For the total momentum

of the quark jet state, K is a half-integer (note that K ≥ 1.5
in order to accommodate multiple pþ configurations
for the jqgi sector), with pþ ¼ K2π=L and pþ ¼ pþ

Q ¼
pþ
q þ pþ

g .
1 Then the longitudinal momentum fraction of the

gluon, z≡ pþ
g =pþ, has a resolution of 1=K.

The total evolution time, which is also the thickness
of the medium, is xþ ¼ ½0; Lη�. The xþ dimension is
discretized into small time steps of δxþ for numerically
simulating the time evolution, as seen in Eq. (1).
Meanwhile, the medium along xþ is discretized into a
number of Nη uncorrelated layers such that each layer has a
duration of τ≡ Lη=Nη. This layer structure is to numeri-
cally simulate the stochastic feature of the sources along xþ
that generate the medium [52], characterized in continuum
by the correlation relation

hρaðx⃗⊥;xþÞρbðy⃗⊥;yþÞim¼ g2μ̃2δabδ2ðx⃗⊥− y⃗⊥Þδðxþ−yþÞ:
ð2Þ

This continuum relation corresponds to the limit Nη →
∞ðτ → 0Þ, but we can keep τ general and thus introduce a
finite longitudinal correlation length into our description
of the medium. The average over the medium configura-
tions is indicated by h…im. The medium color field A is
calculated from the sources by solving the reduced Yang-
Mills equation with an IR regulator mg,

ðm2
g −∇2⊥ÞA−

a ðx⃗⊥; xþÞ ¼ ρaðx⃗⊥; xþÞ: ð3Þ

The details on how to simulate the medium in the basis
space are discussed in Appendix A 2.
In this Hamiltonian formalism, the jet as a quantum state

is described by its light-front wave function at different
time instances. The wave function reads as a column vector
of coefficients in the above-formulated basis space. For a
given observable Ô, one can directly evaluate its expect-
ation value as hOðxþÞi ¼ hψ ; xþjÔjψ ; xþi, using the jet
wave function solved from a single simulation. Then, by
taking the average of hOðxþÞis from multiple simulations,
each with an independently sampled ρ, we arrive at the
configuration averaged hOðxþÞim.

B. Parameter dependence

To have a qualitative understanding of how the physical
process should depend on the parameters of the setup,
here we consider the integrated Hamiltonian, P− summed
over the spatial dimensions ðx⃗⊥; x−Þ and accumulated over
a time duration of Δxþ. Let us examine the three terms
individually.

1We use the subscripts “Q” and “q” to distinguish between the
quark in the jqi sector and that in the jqgi sector.
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First, for the kinetic energy term, P−
KE, its effect as in the

evolution operator mainly depends on three dimensionless
quantities,

e−
i
2
P−
KEΔx

þ ∼ f

�
2LΔxþ

ð2a⊥Þ2
;
mqa⊥
π

;
1

K

�
: ð4Þ

The dependence on the first quantity in the product form is
a result of the longitudinal boost invariance. In the view of
the full evolution process, viz., Δxþ → Lη, this action stays
the same by scaling the pþ momentum (via inversely
scaling L) of the incoming quark and its evolution time Lη

equally. The dependence on the second quantity reflects
the contribution from the quark mass as compared to the
largest transverse momentum mode λUV. The third quantity
reflects the resolution in probing the longitudinal momen-
tum fraction of the particle in the jqgi sector.
Second, the gluon emission/absorption term, Vqg, accu-

mulated over time, depends also on the previously intro-
duced quantities, and in addition, the coupling constant,

e−
i
2
VqgΔxþ ∼ f

�
g;
2LΔxþ

ð2a⊥Þ2
;
mqa⊥
π

;
1

K

�
: ð5Þ

The dependence on the third quantity reflects the ratio
between the quark-spin-flip and nonflip transition widths,
and we refer to Fig. 4 of Ref. [29] as an illustration.
The fourth quantity indicates the softest gluon being
emitted/absorbed.
Third, there is an effect from the medium interaction

term, VA. Here we consider a time duration Δxþ that is
multiples of the layer thickness τ, in order to be in the
situation where one is properly sensitive to several sources
that are uncorrelated in the xþ direction. The medium-
interaction action depends on two dimensionless variables,

e−
i
2
VAΔxþ ∼ f

�
g2μ̃a⊥ffiffiffi

τ
p Δxþ;

mga⊥
π

�
: ð6Þ

Here the combination g2μ̃a⊥=
ffiffiffi
τ

p
must appear together

in this way since g2, μ̃, and τ in fact only appear in the
calculation in this combination, see Eq. (A8). Taking
Δxþ → τ for one layer, and then adding together Nη layers
of squared color charge density (added at the level of
squares because the interaction is a diffusion-type process
in transverse momentum), the first argument leads to the
emergence of the saturation scale

Q2
s ¼ CFðg2μ̃Þ2Lη=ð2π2Þ ð7Þ

on the lattice, Qsa⊥. The second quantity is the ratio
between the smallest and the largest transverse momentum
that can be transferred by the medium.
In total, the full process combining all three terms would

depend on the above-introduced quantities. We summarize
those quantities and address potential constraints in setting
up simulation parameters:

(1) The coupling constant g, and g ¼ 1 in this work.
(2) The free action Sfree ≡ Lηλ

2
UV=p

þ. Since the largest
transverse momentum a particle can acquire is λUV,
we can interpret pþ=λ2UV as the coherence length of
quantum diffusion and gluon emission/absorption.
Thus Sfree characterizes the length scale in xþ at
which the jet becomes noneikonal, cf. the non-
eikonal parameter defined in Refs. [53–55].

(3) The quark mass in the unit of the lattice UV cutoff,
mqa⊥=π. When its value is small, mqa⊥=π ≈ 0, the
quark-spin-flip gluon emission/absorption would
be suppressed. If its value is too large, the kinetic
energy term cannot resolve different transverse
momentum modes.

(4) The saturation scale in the unit of the lattice UV
cutoff, Qsa⊥=π. It should be that Qsa⊥=π ≪ 1;
otherwise, the medium momentum transfer cannot
be appropriately accessed on the lattice.

(5) The medium IR regulator in the unit of the lattice
UV cutoff, mga⊥=π. This “gluon mass” mg is often
introduced as the infrared screening scale of the
medium, similar to the Debye mass in Gyulassy-
Wang and other model potentials [56–59]. Note the
mass of the dynamical gluon in the jqgi sector of the
Fock space is always zero. An eligible value of mg

should be covered by the momentum range on the
transverse lattice ½λIR; λUV�, at the same time smaller
than the saturation scale Qs. This constraint reads

1

N⊥
≪

mga⊥
π

≪
Qsa⊥
π

: ð8Þ

The continuum limit, a⊥ → 0, is taken by letting
N⊥ → ∞ so that Qsa⊥=π → 0 while QsL⊥=π re-
mains constant.

(6) The z resolution and cutoff, 1=K. In the continuum
limit, K → ∞.

In running the numerical simulation, choosing parameters
that satisfy the aforementioned conditions helps ensure
that the physics of interest is captured on the discrete basis
space. We refer to Appendix C of Ref. [39] for a more
detailed explanation of this topic.

III. q̂ IN THE EIKONAL LIMIT, USING
WILSON LINE CORRELATORS

In studying the phenomenon of jet momentum broad-
ening inside a medium, a characteristic quantity to examine
is the quenching parameter q̂ [9,60–63], defined as

q̂ ¼ Δhp2⊥ðxþÞi
Δxþ

: ð9Þ

It characterizes the mean square momentum transfer to the
jet per unit length in the medium.
In the eikonal limit, when one can express the propa-

gation of a parton through a medium in terms of Wilson
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lines, q̂ can be derived analytically using the Wilson line
correlators. In this section, we derive it first for a single
particle state, then for a quark-gluon state.
The derivation for the single particle state has already

been developed in the Wilson line formalism (e.g.,
Ref. [10]). The purpose of our revisiting this problem
is twofold. First, we perform the derivation in the context
of the formulated basis space in Sec. II, so that it could
help interpret and verify in the eikonal limit the results
obtained from the numerical simulations. Second, the
derivation for the single particle prepares the necessary
ingredients for the more complicated case of the quark-
gluon state.
The existing derivations for the quark-gluon state usually

use specific truncations and approximations. One considers
the quark-gluon state as initially split from a single quark
state. Thus the two-particle state resides in the triplet
subspace. One often also takes the large Nc limit, such
that some correlations can be neglected, e.g., Ref. [49].
Here, we carry out the calculation in its full color space and
keep Nc finite (Nc ¼ 3).

A. The single particle state

The expectation value of the transverse momentum
square can be calculated directly knowing the state vector,
hp2⊥ðxþÞi ¼ hψ ; xþjp̂2⊥jψ ; xþi. In the eikonal limit of
pþ ¼ ∞, only the VA term survives in the Hamiltonian,
and the evolution operator reduces to the Wilson line.
For a quark, the Wilson line in the fundamental repre-

sentation reads

UFð0; xþ; x⃗⊥Þ≡ T þ exp

�
−ig

Z
xþ

0

dzþA−
a ðx⃗⊥; zþÞTa

�
;

ð10Þ

in which Ta is the SU(3) generator in the fundamental
representation, i.e., the Gell-Mann matrices. Replacing Ta

by the generators in the adjoint representation, ta, one gets
the adjoint Wilson line for the gluon, UAð0; xþ; x⃗⊥Þ. The
Wilson line in the above expression is a matrix in the
corresponding color space.
Then, the color-β component of the evolved state that is

initially in color state α reads

jψ ; xþiEik ¼
Z
x
ϕ̃ðx⃗⊥ÞUFð0; xþ; x⃗⊥Þβαjx⃗⊥i; ð11Þ

in which the initial state is written as a wave function in the
coordinate basis, jψ ; 0i ¼ R

x ϕ̃ðx⃗⊥Þjx⃗⊥i with the normali-
zation

R
xhx⃗⊥jx⃗⊥i ¼ 1.2

In calculating hp2⊥ðxþÞi, the initial color space is
averaged over, and the final space is summed over,
therefore

hp2⊥ðxþÞiEik
¼

Z
p
p⃗2⊥

Z
x;y

ϕ̃�ðx⃗⊥Þϕ̃ðy⃗⊥Þe−ip⃗⊥·ðx⃗⊥−y⃗⊥Þ

×
XNc

β¼1

1

Nc

XNc

α¼1

hU†
Fð0; xþ; x⃗⊥ÞαβUFð0; xþ; y⃗⊥Þβαim:

ð12Þ
In the second line, the hermitian conjugate of the Wilson
line can be viewed as the S matrix of an antiquark.
Consequently, we recognize the second line of the equation
as the forward scattering amplitude of an effective quark-
antiquark dipole and write it as

SFð0; xþ; jx⃗⊥ − y⃗⊥jÞ

¼ 1

Nc
TrhU†

Fð0; xþ; x⃗⊥ÞUFð0; xþ; y⃗⊥Þim
¼ exp½−CFg4μ̃2xþ½Lð0Þ − Lðjx⃗⊥ − y⃗⊥jÞ��; ð13Þ

in which

Lðr¼ jx⃗⊥ − y⃗⊥jÞ ¼
Z
k

e−ik⃗⊥·ðx⃗⊥−y⃗⊥Þ

ðm2
g þ k⃗2⊥Þ2

¼mgrK1ðmgrÞ
4πm2

g
: ð14Þ

The summation over the color state of the quark amounts to
the effective q̄q state being in the color singlet state.
Then the momentum transfer in Eq. (12) can be

evaluated by taking the order derivative of the Wilson line
correlator at the zero separation limit,

hp2⊥ðxþÞiEik ¼ hp2⊥ð0Þi −∇2
rSFð0; xþ; r⃗⊥Þjr⃗⊥¼0⃗⊥ ;

¼ hp2⊥ð0Þi þ q̂Eikxþ: ð15Þ
An alternative way to perform the derivation is to keep the
momentum integral

R
p and carry out the coordinate integralR

r instead, which we discuss in more detail in Appendix B.
The quenching parameter q̂ as defined in Eq. (9) follows as

q̂Eik ¼ 4πq̂0G2; q̂0 ≡ CFg4μ̃2
1

4π
: ð16Þ

The “bare” quenching parameter q̂0 is the effective speed
for a quark reaching the saturation scale with half the
evolution time, i.e., q̂0 ¼ Q2

s=2Lη. The quantity G2 contains
a logarithmic divergence,

G2¼−∇2
rLðrÞjr¼0;

¼ 1

4π

�
log

�
1þ 1

ðmga⊥=πÞ2
�
−

1

1þðmga⊥=πÞ2
�
: ð17Þ2Here and throughout the paper we use the shorthand notationR

p ≡
R
d2p⊥=ð2πÞ2 and

R
r ≡

R
d2r⊥.
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In analogy, one gets the q̂ for a gluon state replacing
CF ¼ ðN2

c − 1Þ=ð2NcÞ by CA ¼ Nc in Eq. (16).
In the above derivation, we do not take into account the

effect from the momentum space lattice edges, allowing
transverse momentum square increase linearly over time
boundlessly. However, on the finite lattice, there is an
asymptotic value for hp2⊥i. This happens when the particles
are distributed uniformly in the whole momentum space,

hp2⊥iasy ¼
1

ð2N⊥Þ2
XN⊥−1

i¼−N⊥

XN⊥−1

j¼−N⊥
ði2 þ j2Þ

�
π

L⊥

�
2

≈
2

3

�
π

a⊥

�
2

;

ð18Þ

where the approximated value is obtained by taking the
continuum limit.3 Thus the linear growth of the momentum
broadening with xþ will saturate when approaching
this limit.

B. The quark-gluon state

For a quark-gluon state, the expectation value of its
total momentum squared can be evaluated from its wave
function, in analogy to that of a single particle state in
Eq. (12),

hp2⊥ðxþÞiqg;c;Eik¼
Z
pq

Z
pg

ðp⃗q;⊥þ p⃗g⊥Þ2

×
Z
xq

Z
yq

Z
xg

Z
yg

ϕ̃�ðx⃗q;⊥; x⃗g;⊥Þϕ̃ðy⃗q;⊥; y⃗g;⊥Þ

×e−ip⃗q;⊥·ðx⃗q;⊥−y⃗q;⊥Þe−ip⃗g⊥·ðx⃗g;⊥−y⃗g;⊥Þ

×Pqg;cð0;xþ; x⃗q;⊥; x⃗g;⊥; y⃗q;⊥; y⃗g;⊥Þ:
ð20Þ

Here the initial state is written in form of the wave function
in the coordinate basis, jψ ; 0i ¼ R

xq

R
xg
ϕ̃ðx⃗q;⊥; x⃗g;⊥Þ×

jx⃗q;⊥; x⃗g;⊥i.
In the discussion for the single quark (or gluon),

hp2⊥ðxþÞi is evaluated in the entirety of the corresponding
color space, which is irreducible by itself. For a quark-
gluon state, we examine the momentum broadening in each
of its invariant color subspaces as well as the full. The
invariant color space is indicated by the subscript “c” in the
expression. An extensive discussion on the quark-gluon
color space can be found in Appendix C. To calculate the

probability, one must square the wave function, keeping the
colors of the incoming particles the same in the amplitude
and the conjugate amplitude, and summing over the out-
going color in the full color space. The probability function
of a quark-gluon state in the color state c is written as Pqg;c,

Pqg;c ≡
XNc

i¼1

XdA
a¼1

hψ q̄ ḡ qg;fi;a;i;agjSq̄ ḡqgjψ q̄ ḡ qg;c̄ðq̄ ḡÞcðqgÞi; ð21Þ

in which

Sq̄gqgð0; xþ; x⃗q;⊥; x⃗g;⊥; y⃗q;⊥; y⃗g;⊥Þ
¼ hU†

Fðx⃗q;⊥Þ ⊗ U†
Aðx⃗g;⊥Þ ⊗ UFðy⃗q;⊥Þ ⊗ UAðy⃗g;⊥Þim

ð22Þ

is the q̄ ḡ qg four-point Wilson line correlator. Similarly to
the q state, the summation over the color states of the qg
state amounts to the effective q̄ ḡ qg state being color
singlets. We leave out the time argument in the Wilson
lines for simplicity in the above expression. The details
of Sq̄gqg and Pqg;c can be found in Appendix D, see also
Ref. [64] for a study and analysis of Sq̄gqg. Note that in spite
of the bracket notation in Eq. (22), for our purpose this
color structure is already at the probability level, with
the q̄ ḡ corresponding to a quark (gluon) in the conjugate
wave function.
The quark-gluon momentum squared in Eq. (20) can be

split into three terms:

hp2⊥ðxþÞiqg;c;Eik ¼ hp⃗2
q;⊥ðxþÞiEik þ hp⃗2

g;⊥ðxþÞiEik
þ 2hp⃗q;⊥ðxþÞ · p⃗g;⊥ðxþÞic;Eik: ð23Þ

The first two terms turn out to be the same as Eq. (15)
with the corresponding Casimir. For the third term, it is
more convenient to change to relative and center-of-mass
coordinates

v⃗⊥ ¼ x⃗q;⊥ − x⃗g;⊥; R⃗⊥ ¼ zx⃗q;⊥ þ ð1 − zÞy⃗g;⊥;
u⃗q;⊥ ¼ x⃗q;⊥ − y⃗q;⊥; u⃗g;⊥ ¼ x⃗g;⊥ − y⃗g;⊥; ð24Þ

which allows us to express the momentum correlation as

hp⃗q;⊥ðxþÞ · p⃗g;⊥ðxþÞic;Eik
¼
Z
v
fRelðv⃗⊥Þ∇!u;q ·∇!u;g

×Pqg;cð0;xþ; v⃗⊥þ u⃗q;⊥; u⃗q;⊥; v⃗⊥;u⃗q;⊥− u⃗g;⊥Þ
			
u⃗q;⊥;u⃗g;⊥¼0⃗⊥

:

ð25Þ

Note that we take advantage of the Wilson line correlator
being translationally invariant in the above expression;

3In the continuum limit, this asymptotic value is evaluated by
integration instead of summation,

hp2⊥iasy ¼
R λUV
−λUV dk

x
R λUV
−λUV dk

y½ðkxÞ2 þ ðkyÞ2�R λUV
−λUV dk

x
R λUV
−λUV dk

y
¼ 2

3
λ2UV; ð19Þ

then on the lattice λUV ¼ π=a⊥.
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see Eq. (D12) and discussions for detail. The quantity
fRelðv⃗⊥Þ is the distribution function of the quark-gluon
relative coordinate v⃗⊥, and it can be obtained by integrating
the wave function square over the center-of-mass coordi-
nate R⃗⊥,

fRelðv⃗⊥Þ≡
Z
R
jϕ̃ðx⃗q;⊥; x⃗g;⊥Þj2: ð26Þ

We find that the cross term depends on the initial color
configuration of the quark-gluon state and the separation
between the quark and the gluon,

hp⃗q;⊥ðxþÞ · p⃗g;⊥ðxþÞic;Eik ¼

8>>>>>><
>>>>>>:

0; c ¼ 3 ⊗ 8

− Nc

ffiffi
2

p
2

f12; c ¼ 3

−
ffiffi
2

p
2
f12; c ¼ 6̄ffiffi

2
p
2
f12; c ¼ 15

;

ð27Þ

in which f12 ¼ −
R
v fRelðv⃗⊥Þs12ðv⊥Þ and the explicit form

of the function s12 is given in Eq. (D29) in the Appendix.
We leave the details of the derivation to Appendix C 2.
From Eq. (27), one can see that if the quark and the gluon
are in a color-uncorrelated state, as is effectively the case if
one sums over the whole 3 ⊗ 8-dimensional color space of
the final state, then the cross term vanishes.4 For a color-
correlated quark-gluon state, the cross term is large if the
separation between the two particles, v is small, and
becomes negligible when the separation set by the wave
function ϕ̃ gets large, v > 1=mg. In particular, if the quark-
gluon state is a single momentum state, it is maximally
delocalized, and the relative coordinate distribution is
uniform, fRelðv⃗⊥Þ ¼ 1=ð2L⊥Þ2, leading to a very weak
correlation between the quark and gluon.

IV. q̂ IN THE NONEIKONAL REGIME, USING
NUMERICAL SIMULATIONS

A. The single quark state jqi
We first perform the simulations in the leading Fock

sector of jqi, and study the evolution of the quark’s
transverse momentum. In the eikonal limit of pþ ¼ ∞,
the quark’s transverse momentum square hp2⊥ðxþÞi is
expected to grow linearly over the evolution time xþ, as
we have obtained from Eq. (15) in Sec. III A. We verify our
numerical calculations in the eikonal limit by comparing
them to the analytical expectation and also go beyond this

limit by letting the quark have finite pþ. We then study the
dependence on the medium IR regulator mga⊥=π and the
saturation scale Qsa⊥=π. Note that though the quark mass
enters the kinetic energy term, as in Eq. (4), it acts as an
overall phase factor in calculating hp2⊥ðxþÞi and therefore
does not contribute.

1. Dependence on p+

The longitudinal momentum pþ signifies how fast the
quark jet travels through the medium, and its effect is
related to the structure of the medium along xþ. The
medium, according to the MV model, should be singularly
uncorrelated as hAðxþÞAðyþÞim ∝ δðxþ − yþÞ as in
Eq. (2). On the amplitude level, it means that AðxþÞ is
stochastic, which is realized numerically with a xþ reso-
lution of τ; this is in analogy to having an x⊥ resolution
of a⊥ in the transverse dimension, see also Eq. (A8).
Consequently, to match the analytical formulation, one
should take the continuous limit of a⊥ → 0 (N⊥ → ∞
while fixing L⊥) and τ → 0 (Nη → ∞ while fixing Lη).
However, in reality, the medium, as a composition of
quarks and gluons, is more likely to have a finite correlation
length. In the transverse dimension, the medium IR
regulator mg plays such a role of screening. Considering
the medium in its rest frame and assuming that it is
isotropic, this would imply that the duration of each layer
would be of the same magnitude, such that τ ∼ 1=mg. When
the medium is longitudinally boosted, e.g., in a frame with
its p− ≈∞, both τ and Lη get contracted, but Nη will
stay the same as in the medium rest frame. Thus, to study a
finite energy jet it is interesting to also perform simulations
with a finite τ.
To proceed, we first study the dependence of the

momentum broadening on Nη. In Fig. 1, we present
hp2⊥ðxþÞi and the extracted values of the quenching
parameter q̂ [calculated according to Eq. (9), with
Δxþ ¼ Lη] at various Nη while fixing Lη. The value at
each data point is averaged over 10 configurations, and the
band width is the standard deviation indicating the uncer-
tainties from the configuration fluctuation. Though in both
infinite and finite pþ cases, the simulation results converge
to the analytical expectation as Nη increases, the latter
happens at a slower pace. We have three key observations.
First, in the continuous limit of Nη → ∞, the kinetic energy
term does not affect the momentum broadening and the
value of q̂. Thus the analytical result derived in the eikonal
limit in Sec. III A also applies to finite pþ cases; see also
Ref. [65]. Second, the convergence to the eikonal analytical
result as Nη → ∞ is slower at a larger saturation scale, as
shown by the comparison between Figs. 1(a) and 1(b).
Third, at a finite Nη, in particular when τ ¼ 1=mg, a finite
pþ leads to a decrease in q̂.
It is also interesting to observe the momentum evolution

within a layer. The results at Nη ¼ 4 in Fig. 1 exemplify

4Note that if one sums the coefficients of the representations
3, 6̄, and 15 in Eq. (27) weighted by the dimension of the
representation, one gets zero; see Eq. (D19) and discussions
around it.
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that hp2⊥ðxþÞi grows quadratically within a layer while
linearly across layers. The analytical derivation in Sec. III A
inherits the treatment of hρðxþÞρðyþÞim ∝ δðxþ − yþÞ
from the MV model, therefore only accounts for the
behavior across layers. To understand the evolution within
a layer analytically, let us calculate the Wilson line in such a
scenario, there the xþ integral becomes

Z
δxþ

0

dxþ
Z

δxþ

0

dyþhρaðxþ; x⃗⊥Þρbðyþ; y⃗⊥Þim

¼ δabδ
2ðx⃗⊥ − y⃗⊥Þg2μ̃2

(
δxþ; δxþ ≥ τ

ðδxþÞ2=τ; δxþ < τ
: ð28Þ

The resulting Wilson line within a layer, i.e., δxþ < τ, is
thus SFð0; δxþ; rÞ ¼ e−CFg4μ̃2ðδxþÞ2=τ½Lð0Þ−LðrÞ�, in compari-
son to Eq. (13) for the Wilson line across multiple layers.
The observation from the numerical simulation verifies this
quadratic/linear behavior of the squared momentum.
For a closer examination, we present the transverse

momentum distribution fðp⊥Þ at both infinite and finite

pþ in Fig. 2. Note that the phase space of states on the
discrete square lattice is different from that in the continu-
ous case, and their ratio is indicated by the dashed gray
line in the left panel. More information can be found in
Appendix A 1. We can see that the typical transverse
momentum is of order

ffiffiffiffiffiffiffiffi
q̂Lη

p
, but there is a long power

law tail up to higher p⊥. The difference between different
values of Nη is smooth as a function of p⊥, but the lower
typical p⊥ for finite Pþ at smallNη is caused by a depletion
of the highest p⊥ modes.
Next, we take the estimation of τ ¼ 1=mg such that

Nη ¼ 4 with Lη ¼ 50 GeV−1, and study the pþ depend-
ence. Note that both Nη and Lη=pþ are boost invariant, and
here we fix Lη and τ. One could alternatively fix pþ and Nη

but vary Lη (and thus τ) to obtain the same results. The
results are shown in Fig. 3(a), and the results with Nη ¼ 8

are in Fig. 3(b) for comparison. We find that with a finite
number of layers, a smaller pþ leads to a smaller q̂. Then
towards the eikonal limit of pþ ¼ ∞, the obtained q̂ gets
closer to the analytical result calculated with an infinite
number of layers. But even at τ=pþ ¼ 0, i.e., in the eikonal

FIG. 1. The dependence of the momentum broadening on the number of medium layers Nη, at (a) a smaller and (b) a
larger saturation scale Qs. Left panels: the transverse momentum square hp2⊥ðxþÞi as a function of xþ at various Nη with fixed
mga⊥=π ¼ 0.005 andQs [with the bareQ2

s=d2p given by Eq. (7) indicated by the horizontal dashed line]. Results at infinite(finite) pþ

are shown in solid (dashed) lines, and the band indicates the fluctuation from 10 configurations. Right panels: the quenching
parameter q̂ as a function of 1=Nη. The green vertical dashed line indicates the value of 1=Nη at which τ ¼ 1=mg. The eikonal
analytical results according to Eq. (15) are in the solid black line indicated as “analytical” in the left panels, and in the dashed gray
line indicated as “q̂Eik” in the right panels.
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case, the obtained q̂ does not always agree with the
analytical ones, especially at larger Qs. This difference
results from Nη being finite in the setup. As we have seen
earlier in Fig. 1, a larger Qs requires a larger value of Nη

to restore the analytical results. In addition, the results
obtained at different Lη overlap, showing that q̂ in the units
of d2pL−1

η only depends on the boost-invariant quantity of
τ=pþ, but not pþ or Lη separately.

2. Dependence on mga⊥=π
The quenching parameter q̂ is expected to have a

logarithmic dependence on mga⊥=π according to the
analysis in Sec. III A. In the numerical simulations, one
can separately change one or multiple of the three quan-
tities L⊥, N⊥, and mg, but the physical results should
remain the same if mga⊥=π are fixed. Yet there is a
prerequisite, the medium IR regulatormg should be covered
by the lattice resolution, i.e., mgdpð¼ mgL⊥=πÞ > 1; oth-
erwise, the lattice IR cutoff dp would effectively act as the
IR regulator instead.
As shown in Fig. 4, the results obtained at mgdp > 1

agree with the analytical results at each mga⊥=π, whereas
that atmgdp < 1 deviates below since the screening mass in
the medium is no longer sufficiently represented by mg.
One could also see that the quenching parameter relative to
its bare value, q̂=q̂0, depends logarithmically on mga⊥=π,
but not on Qs=dp.

3. Dependence on the saturation scale Qs

The quenching parameter q̂ is expected to have a
linear dependence on Qs defined by (7), according to
the analysis in Sec. III A. We show in Fig. 5 that the
transverse momentum squared hp2⊥ðxþÞi as a function of
xþ at various Qs=dp agrees with the analytical expectation.
Keeping mga⊥=π fixed, one could also see that q̂ grows
linearly with Q2

s=d2p.

B. The quark-gluon state jqgi
Having studied the momentum broadening of a single

particle state, we now proceed to the two-particle state jqgi.
When traversing through the medium, the quark and the
gluon each exchange color and transverse momentum with
the medium, in the manner of a single particle. Meanwhile,
the correlation between them introduces additional com-
plexity in examining their total and relative momenta. The
quark-gluon correlation is characterized by their separation

FIG. 3. The dependence of q̂ on the particle longitudinal
momentum pþ at various saturation scale Qs and at a fixed
mga⊥=π ¼ 0.04, with (a) Nη ¼ 4 and (b) Nη ¼ 8. The results at
different Lη overlap with each other. The horizontal lines are the
values of q̂Eik at τ=pþ ¼ 0 according to Eq. (15).

FIG. 2. The transverse momentum distribution p⊥fðp⊥Þdp in the left panel and p3⊥fðp⊥Þ=dp in the right panel, both as a function of
p⊥ at infinite and finite pþ. The light gray line indicates the relative size of the basis state phase space to the continuous case, according
to Rðp⊥Þ in Eq. (A6).
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in the transverse coordinate space and their color configu-
ration, as we have studied analytically in Sec. III B. The
effect of such a correlation throughout the evolution is of
our interest. To this purpose, we perform the simulations
with quark-gluon states in different color-correlated con-
figurations and separated by small and large distances.
Note that in a quantum formalism, as in this work, it is

impossible to assign a particle state with a specific
momentum and coordinate simultaneously, which one
could do easily in a classical picture. Instead, the wave
function in momentum space and that in coordinate space
are related by the Fourier transform. Specifically, a single
coordinate state is uniformly distributed in the momentum
space. Consequently, a quark-gluon state with both par-
ticles in the same coordinate mode, which one would
instinctively think of as the most correlated state, is not
helpful in observing momentum broadening since all p⊥
modes are already equally occupied before entering the
medium. A more realistic and appropriate setup is to have
the quark and the gluon as two Gaussian wave packets,
which we adopt in the following study. The quark (gluon) is

centered at s⃗q;⊥ (s⃗g;⊥) with a width of wq (wg), such that the
wave function reads

ϕ̃ðr⃗q;⊥; r⃗g;⊥Þ ¼ Ce
−1
2



r⃗q;⊥−s⃗q;⊥

wq

�
2

⊗ e
−1
2



r⃗g;⊥−s⃗g;⊥

wg

�
2

: ð29Þ

Here, C is a constant determined by the normalization
condition. In order to have the quark and the gluon each
localized in transverse coordinate space, their Gaussian
width wq and wg should be smaller than the inverse of their
respective transferred momentum,

wq; wg <
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

q̂EikLη

p : ð30Þ

We set the initial state as given in Eqs. (29) and (30)
in two cases: (a) s⃗q;⊥=a⊥ ¼ s⃗q;⊥=a⊥ ¼ f0; 0g, and
(b) s⃗q;⊥=a⊥ ¼ f0; 0g and s⃗q;⊥=a⊥ ¼ f0; 10g; for both
cases, wq ¼ wg ¼ a⊥. Figure 6 shows the distributions
of the quark and the gluon in the transverse coordinate
space in both cases. Note that the parameter in (b) is not
special but just one choice that guarantees a large quark-
gluon separation, where a separation of 10 lattice units is
considerably large on a periodic 32 by 32 lattice. The
distribution function of the relative transverse coordinate is

FIG. 5. The dependence on Qs=dp of the momentum broad-
ening. Top panel: the transverse momentum square hp2⊥ðxþÞi as a
function of xþ at various Qs=dp with a fixed mga⊥=π ¼ :04.
Bottom panel: the quenching parameter q̂ as a function of Q2

s=d2p
at various mga⊥=π. The analytical results in the solid lines are
given by Eq. (15).

FIG. 4. The dependence on mga⊥=π of the momentum broad-
ening. Top panel: the transverse momentum square hp2⊥ðxþÞi as a
function of xþ at various mga⊥=π and a fixed Qs [with the bare
Q2

s=d2p given by Eq. (7) indicated by the horizontal dashed line].
The data at the two larger mgdp > 1, in open circles and solid
triangles, overlap with each other, whereas that at the smaller
mgdp < 1, in the open triangle, deviates below the former.
Bottom panel: the quenching parameter q̂ as a function of
mga⊥=π at various Qs=dp with mgdp ¼ 1.27. The analytical
results in the solid lines are given by Eq. (15).
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defined as in Eq. (26), by integrating over the center-of-
mass part. The single particle distribution function could
also be calculated from the wave function, by integrating
over the dependence on the coordinate of the other particle,

fqðr⃗q;⊥Þ≡
Z
rg

jϕ̃ðr⃗q;⊥; r⃗g;⊥Þj2;

fgðr⃗g;⊥Þ≡
Z
rq

jϕ̃ðr⃗q;⊥; r⃗g;⊥Þj2: ð31Þ

1. Small-separation quark-gluon state

First, we study a scenario where the two particles are
extensively correlated in space. We set the initial state as

given in Eqs. (29) and (30) with s⃗q;⊥=a⊥ ¼ s⃗q;⊥=a⊥ ¼
f0; 0g and wq ¼ wg ¼ a⊥, i.e., case (a) in Fig. 6. We study
the correlation by examining the evolution of hp2⊥i for the
two-particle state.
In the eikonal limit of pþ ¼ ∞, the value of hp2⊥ðxþÞi

can be calculated exactly according to Eq. (27). The
results from numerical simulation agree with such
expectations, as shown in Fig. 7. To see the momentum
that gets broadened, we present the change Δhp2⊥i≡
hp2⊥ðxþ ¼ LηÞi − hp2⊥ðxþ ¼ 0Þi in these plots. The
momentum broadening of the quark (gluon) individually
is the same, regardless of the quark-gluon color configu-
rations. This is because the individual particle’s momen-
tum broadening in the jqgi state is the same as that of the

(a)

(b)

FIG. 6. Initial distributions of the quarks, the gluons, and their relative transverse coordinate for (a) a small-separation, and (b) a large-
separation quark-gluon state, with a⊥ ≈ 0.6 fm.

FIG. 7. The transverse momentum evolution of a small-separation quark-gluon state [distribution as shown in Fig. 6(a)] in the eikonal
limit of pþ ¼ ∞, at Qsa⊥=π ¼ 0.12. Simulation parameters: N⊥ ¼ 16, L⊥ ¼ 50 GeV−1, and τ ¼ 10 GeV−1. From left to right, it
shows the hp2⊥i of the quark, the gluon, the total, and the cross terms 2hðp⃗q;⊥ · p⃗g;⊥Þ2i. The legends of open markers indicate the initial
color configurations of the quark-gluon state, “X” as uncorrelated, “3” as in the triplet, “6̄” as in the antisextet, and “15” as in the
deciquintuplet. The numerical values are averaged over 64 configurations, and the uncertainty bars indicate the standard deviation. The
lines are analytical expectations at pþ ¼ ∞ evaluated according to Eqs. (23) and (27).
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single particle. On the contrary, the total momentum
differs for different color configurations. This can be
understood in an intuitive way. Let us first think of the
quark and the gluon coinciding in the transverse coor-
dinate space. Then its momentum broadening would
behave as a single particle state, and depends on its color
configuration. Though in the simulated state, the quark
and the gluon do not coincide exactly, their separation is
small relative to the reaction scale of the medium; one
could, therefore, still observe the difference.
Things are more complicated at a finite pþ. First, we

know from the previous section that the single particle
momentum broadening would be different from the
eikonal case given a finite Nη. Second, the transverse
coordinate distribution would no longer stay the same
as it is initially. The quark-gluon state would spread

out, and so does its relative distribution fRelðv⃗⊥Þ. This
means that the spatial correlation between the quark
and the gluon would decrease over time. The transverse
coordinate distribution of the evolved state can be
found in Fig. 9(a). As a result, the cross term,
hp⃗q;⊥ðxþÞ · p⃗g;⊥ðxþÞi would get smaller than the eikonal
expectation. Figure 8 shows the results, which agree with
this expectation. The differences of the total momenta
among different color configurations decrease over time,
as compared to the eikonal case.
Figure 10 presents the transverse momentum distribution

p⊥fðp⊥Þdp of the quark-gluon state in both the infinite and
finite pþ cases. The total (relative) transverse momentum is
defined as p⃗q;⊥ � p⃗g;⊥. There is a difference between the
total and the relative p⊥ distributions, which, while small,
implies a nonzero quark-gluon correlation.

FIG. 8. The transverse momentum evolution of a small-separation quark-gluon state [distribution as shown in Fig. 6(a)] at
pþ ¼ 1.5 GeV (pþ

q ¼ 0.5 GeV and pþ
g ¼ 1.0 GeV) with mq ¼ 0.15 GeV. See simulation parameters and explanation of legends and

data points in the caption of Fig. 7. The lines are analytical expectations at pþ ¼ ∞ evaluated according to Eqs. (23) and (27).

(a)

(b)

FIG. 9. Distributions of the quark’s, the gluon’s, and their relative transverse coordinate at a later time with pþ ¼ 1.5 GeV. The initial
state distribution of (a) is shown in Fig. 6(a), and that of (b) in Fig. 6(b).
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2. Large-separation quark-gluon state

We then move to a scenario where the two particles are
not much correlated in space. We set the initial state as
given in Eqs. (29) and (30) with s⃗q;⊥=a⊥ ¼ f0; 0g and
s⃗q;⊥=a⊥ ¼ f0; 10g, wq ¼ wg ¼ a⊥, i.e., case (b) in Fig. 6.
We again study the correlation by examining the evolution
of hp2⊥i for the two-particle state.
In the eikonal limit of pþ ¼ ∞, the value of hp2⊥ðxþÞi

can be calculated exactly according to Eq. (27).
The results from numerical simulation agree with
such expectations, as shown in Fig. 11. In contrast to
the small-separation quark-gluon state, which is shown in
Fig. 7, the difference in the total momentum for different
color configurations is negligible. This is because the
quark and the gluon are too far away from each other,
such that they are hardly correlated. Then, as shown in
Fig. 12, at a finite pþ the quark-gluon correlation is still
negligible.
Figure 13 presents the transverse momentum distribu-

tion p⊥fðp⊥Þdp of the quark-gluon state in both the
infinite and finite pþ cases. From here, we can see that
there is no sizable difference between the total and the
relative momenta, implying a vanishing quark-gluon
correlation.

C. The dressed quark state jqi+ jqgi
We have studied the respective behaviors of a single

quark state and a quark-gluon state in the preceding
sections. In both cases, we find our numerics agree with
the analytical expectation in the eikonal limit with a
sufficiently large number of layers Nη. We now proceed
to a more realistic and interesting scenario by allowing
the quark to emit and absorb a gluon throughout the
quenching process. We initialize the simulation with a
single quark state of p⃗⊥ ¼ 0⃗⊥ in the jqi þ jqgi space.
Specifically, by comparing the momentum broadening

of the jqi sector and the total, we could study the
contribution from gluon emission to q̂. For a dressed
quark state, the momenta of each sector can be evaluated
as the following

hp2⊥ijqi ¼ hqjp2⊥jqi=Pq;

hp2⊥ijqgi ¼
XK−1=2
kþg ¼1

hqg; kþg jp2⊥jqg; kþg i=Pqg;kþg ; ð32Þ

in which Pq is the probability of the state to be in the jqi,
and Pqg;kþg to be in the jqgi sector, with the gluon

FIG. 10. The transverse momentum distribution p⊥fðp⊥Þdp of the small-separation color-triplet quark-gluon state at infinite and
finite pþ, after the evolution through the medium, at xþ ¼ 50 GeV−1. The legends “q,” “g,” “tot,” and “rel” indicate the distribution
function for the quark, the gluon, their total, and their relative transverse momentum, respectively. The light gray line indicates the
relative size of the basis state phase space to the continuous case, according to Rðp⊥Þ in Eq. (A6).

FIG. 11. The transverse momentum evolution of a large-separated quark-gluon state [distribution as shown in Fig. 6(b)] in the eikonal
limit of pþ ¼ ∞. See simulation parameters and explanation of legends and data points in the caption of Fig. 7. The lines are analytical
expectations at pþ ¼ ∞ evaluated according to Eqs. (23) and (27).

MOMENTUM BROADENING OF AN IN-MEDIUM JET EVOLUTION … PHYS. REV. D 108, 036016 (2023)

036016-13



longitudinal momentum fraction z ¼ kþg =K. The total
momentum is, therefore,

hp2⊥itotal ¼ Pqhp2⊥ijqi þ Pjqgihp2⊥ijqgi; ð33Þ

with

Pjqgi ≡
XK−1=2
kþg ¼1

Pqg;kþg ; Pq þ Pjqgi ¼ 1: ð34Þ

In order to understand the interplay of the medium
scattering and the gluon emission, we run the simulation at
various medium intensities (quantified by Qsa⊥=π) and jet
energies (quantified by pþ).
Recall that the longitudinal (xþ) structure of the medium,

quantified by the boost invariance τ=pþ, also has an effect
on the jet momentum broadening, as we have discussed
extensively in Sec. IVA 1. Here we explore the τ=pþ < 1
regime, or in other words, the large-Nη regime. This
corresponds to the physics that the medium has infinite
uncorrelated color charges along its longitudinal direction,
allowing us to have analytically tractable limits to com-
pare with.

Figure 14 shows the evolution of the a quark jet in the
jqi þ jqgi space in four different scenarios: Fig. 14(a) in
vacuum with pþ ¼ 17.0 GeV, Fig. 14(b) at Qsa⊥=π ¼
0.117 and pþ ¼ 17.0 GeV, Fig. 14(c) at Qsa⊥=π ¼ 0.234
and pþ ¼ 17.0 GeV, and Fig. 14(d) at Qsa⊥=π ¼ 0.117
and pþ ¼ 8.5 GeV. We take τ ¼ 3.125 GeV−1, such that
there are a number of Nη ¼ 16 layers of independent
sources for the medium at xþ¼½0;Lη¼50GeV−1�. The
initial state is a single quark with p⃗⊥ ¼ 0⃗⊥ and pþ

Q ¼ pþ.
For all configurations we plot the total p2⊥ of the jet, and
the probability to be in the original momentum mode in
the jqi sector, another jqi mode or the jqgi sector, and the
probabilities for the different color states. We have the
following key observations.
First, the inclusion of the jqgi sector substantially

enhances the jet momentum broadening. In all the three
cases with medium shown in Fig. 14, the transverse
momentum of the jet, hp2⊥itotal, increases at a larger rate
than that of the single quark, hp2⊥ijqi. The former, by its
definition, is a weighted sum of hp2⊥ijqi and hp2⊥ijqgi. We see
that hp2⊥ijqi agreeswith the analytical result calculated in the
eikonal case of pþ ¼ ∞, Eq. (15), just as one would expect
in the τ=pþ < 1 regime. The momentum broadening of the
jqgi component resembles that of the jqi initially and

FIG. 12. The transverse momentum evolution of a large-separated quark-gluon state [distribution as shown in Fig. 6(b)] at
pþ ¼ 1.5 GeV (pþ

q ¼ 0.5 GeV and pþ
g ¼ 1.0 GeV) with mq ¼ 0.15 GeV. See simulation parameters and explanation of legends and

data points in the caption of Fig. 7. The lines are analytical expectations at pþ ¼ ∞ evaluated according to Eqs. (23) and (27).

FIG. 13. The transverse momentum distribution p⊥fðp⊥Þdp of the long-separated color-triplet quark-gluon state at infinite and finite
pþ, after the evolution through the medium, at xþ ¼ 50 GeV−1. See simulation parameters and explanation of legends in the caption
of Fig. 10.
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FIG. 14. The transverse momentum evolution of a quark jet in the jqi þ jqgi space in vacuum and at different media and pþ (values
indicated in each subfigure). The middle and the rightmost panels are the probability functions in the Fock and color phase space,
respectively. The initial state is a single quark with p⃗⊥ ¼ 0⃗⊥ and pþ

Q ¼ pþ. Simulation parameters: N⊥ ¼ 16, L⊥ ¼ 50 GeV−1,
τ ¼ 3.125 GeV−1, and K ¼ 8.5. The analytical results at pþ ¼ ∞ in the solid and dashed black lines are calculated according
to Eq. (15).
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gradually migrates to a much larger rate. The initial
quarklike broadening is due to the fact that the jqgi
components appear by transiting from the jqi sector, a
process that conserves momentum. Later, when the occu-
pation of the jqgi components stabilizes, its momentum
value reveals the effect of the direct medium interaction.
Since the quark-gluon state has a larger color phase space,
its momentum broadens at a larger rate than that of the
single quark, due to the Casimir effect. The dashed black
line shows themomentum broadening of a single jqgi state,
with a zero initial total transverse momentum, according to
Eq. (23). Note that in this case, the quark and the gluon are
spatially decorrelated; thus, the cross term is negligible, as
we have seen in Sec. IV B.Overall, one can think that the jet
momentum broadening in the jqi þ jqgi Fock space is
larger compared to that in jqi due to the larger phase space.
Second, the medium interaction interferes with the

gluon emission process. The medium is absent, relatively
weak and strong in Figs. 14(a)–14(c), respectively. In the
vacuum case, the jqgi probability stabilizes at about
xþ ¼ 20 GeV−1, and similarly in the case with a weaker
medium. Consequently, in a weak medium, hp2⊥ijqgi
increases almost at a constant rate, which is seen as the
line almost in parallel with the dashed analytical line.
Differently, in the stronger-medium case, the jqgi proba-
bility is still increasing till the end of the evolution. As a
result, hp2⊥ijqgi increases at a slower rate than the dashed
analytical line because at each intermediate time instant, the
newly generated jqgi component broadens as a quark.
The rightmost panels show the evolution in color space.
The color configuration is dominated by the triplet states
initially in all cases. The medium interaction results in the
color transitions, as can be seen by comparing Figs. 14(b)
and 14(c) to Fig. 14(a). The color transition is faster in a
stronger medium by comparing Fig. 14(c) to Fig. 14(b).
We summarize this effect as the following: the medium
interaction enhances gluon emission by promoting the jqgi
occupation, which in return in fact slows down jet
momentum broadening as compared to a pure jqgi state.
Third, jet longitudinal momentum drags down the process

of gluon emission. From Figs. 14(b) to 14(d), the jet pþ is
halved, and the jqgi probability stabilizes twice faster, at
about xþ ¼ 10 GeV−1. Accordingly, hp2⊥ijqgi increases at
the rate of a pure quark-gluon state much earlier, which is
seen as its line in Fig. 14(d) is closer to the dashed analytical
line than that in Fig. 14(b). Therefore, a smaller pþ leads to a
larger jet momentum broadening.
To further examine the effect of gluon emission in the

medium, we plot the probabilities of the jqgi sector after
evolution in the relatively weak and strong media in
Fig. 15. Here, we also show the dependence on 1=K, with
K ¼ 2.5, 4.5, 6.5, 7.5, 8.5. The leftmost data points are
the same as those in Figs. 14(b) and 14(c). As we have
observed in Fig. 14, now at each K, the jqgi probability is
higher in the stronger medium. On the other hand, as K

increases, the jqgi probability also increases. This can be
understood in the sense that as K increases, the resolution
on longitudinal momentum fractions increases, and the
available phase space for the jqgi sector gets larger. In
addition, the smallest value of zg ¼ 1=K also gets smaller
as well, and the jqi → jqgi process is largest around
zg ¼ 0.5 However, the total momentum square does not
increase substantially when K increases from 2.5 to 8.5.
The reason is that the different pþ segments of the jqgi
sector have approximately the same broadening effect
caused by the medium, a process independent of pþ.
Thus hp2⊥iqg is not sensitive to K. The contribution of K
into hp2⊥i mainly comes from the probability Pjqgi through
Eq. (32). Our calculation is different from the study of
keeping track of only one daughter particle (in our setup,
this means counting the quark’s instead of the total
momentum of the jqgi state), in which the recoil effects
from other daughter particles can be large compared to the
eikonal term [50,66]. Though in each time step, the
splitting jqi → jqgi favors the quark-gluon state with large
relative transverse momentum (more discussions can be
found in our previous work Ref. [29]), the total transverse
momentum is conserved, and the recoil effect is not
counted into hp2⊥iqg.
To quantify the medium-induced gluon emission, we

define δPjqgi as the difference of the probability of the
quark jet in the jqgi sector in the medium and that in the
vacuum,

δPjqgiðQs; xþÞ≡ PjqgiðQs; xþÞ − PjqgiðQs ¼ 0; xþÞ: ð35Þ

FIG. 15. The probabilities of the jqgi sector after the evolution at
various K and two different saturation scales, at xþ ¼ 50 GeV−1.

5At each small time step, it is true that the jqi → jqgi process
also favors the large zgð≈1Þ modes, e.g., Vqg ∝ 1=z3=2g =ð1 − zgÞ
in the spin-non-flip case. But over a longer time span, the
transition to those large zg modes gets suppressed by the large
fluctuation of the energy ΔP−

KE ∝ 1=zg=ð1 − zgÞ whereas the
small zg modes survive. We refer to our preceding work [29] and
its Fig. 17 for illustration.
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We present one set of results in Fig. 16, from simulations
with the same parameters taken in Fig. 14, at pþ ¼
17 GeV. On the left panel, we see that the δPjqgi s at
various saturation scale Qs have a similar behavior: each
curve forms a very small dip in the early time region, then
after around the point xþ ¼ 12 GeV−1, grows linearly in
time. Comparing the curves at differentQs, one can see that
the denser the medium, the more the jqgi component
develops. This is also shown on the right panel, where the
δPjqgi of the final state (xþ ¼ Lη ¼ 50 GeV−1) is approx-
imately proportional to Q2

s . A similar observation has been
made in Ref. [67], using the high-twist approach and
agreeing with the Gyulassy-Levai-Vitev result in the
first-order opacity expansion. There, the induced gluon
radiation spectrum, counterpart to δPjqgi here, is propor-
tional to the transverse-momentum gluon distribution
density. Then the integration of such distribution’s hp⃗2⊥i
over the evolution time is the saturation scale Q2

s .
It is also interesting to analyze the noneikonal and

radiative correction to the quenching parameter q̂.
We define δq̂ as the difference of the q̂ that is calculated
from the total momentum of the quark jet in the jqi þ jqgi
space, and the eikonal q̂ of a bare quark [as in Eq. (16)],

δq̂≡ q̂ − q̂Eik: ð36Þ

We present the results in Fig. 17, from the same set of
simulations presented in Fig. 16. The left panel shows that
δhp2⊥ið≡hp2⊥i − hp2⊥iEikÞ increases over the evolution time
at various Qs. In the right panel, the δq̂ extracted from the
final state δhp2⊥i is plotted, and it increases nontrivially
when Qs increases.
In summary, the momentum broadening of the quark jet

in the jqi þ jqgi Fock space is larger compared to that of
the bare quark state jqi, due to gluon emission. The
difference between the two leads to a correction to q̂.

V. CONCLUSIONS

We present in this paper an extensive study on the
momentum broadening of in-medium jet evolution using
the tBLFQ approach. We perform the numerical simulation
of the real-time jet evolution in the Fock space of jqi, jqgi,
and jqi þ jqgi, at various jet energies pþ and medium
densities. We obtain jet light-front wave function and we
extract the jet transverse momentum distribution, the
quenching parameter, and the gluon emission rate. We
analyze the dependence of momentum broadening on pþ,
medium density, color configuration, spatial correlation, and
medium-induced gluon emission. For comparison, we also
derive analytically in the eikonal limit the expectation value
of the transverse momentum of a quark-gluon state for any
color configuration and in an arbitrary spatial distribution.

FIG. 17. The noneikonal correction to q̂ as defined in Eq. (36), as a function of evolution time xþ and saturation scale Qs.

FIG. 16. The difference of the probability of the quark jet in the jqgi sector in the medium and that in the vacuum, as defined in
Eq. (35), as a function of evolution time xþ and saturation scale Qs.
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This work provides an enhanced understanding of jet
quenching beyond the eikonal limit. We have set up the
initial quark projectile as a bare quark on its mass shell for
the simplicity of the study. This setup is close to the scenario
of a quark produced inside the medium from a hard
scattering. This means that even in the vacuum, it will
radiate gluons. In the language of our formalism, the
bare quark is not an eigenstate of the full interacting
Hamiltonian P−

KE þ Vqg. It only has a partial overlap with
a dressed quark state, with the difference corresponding to
vacuum radiation. This is possible because p− need not be
conserved at an interaction vertex, a convention known in the
“old-fashioned perturbation theory” [68,69]. In a covariant
formalism our initial quark should be thought of as an off-
shell one, as required in order to have final state radiation and
opposed to a quark on its mass shell that cannot emit gluons
in the vacuum [10]. In this case, the four-momentum,
including p−, must be conserved at any interaction vertex,
and the tradeoff is the initial quark being off shell.
A different and physically equally interesting scenario is

the quark coming from outside the medium, described by
the fully developed wave function that contains a gluon
cloud [60]. We leave this task for our next work, where we
will treat the initial quark as the eigenstate of the light-front
QCDHamiltonian in the jqi þ jqgi space. Furthermore, the
comparison of the two scenarios, with or without gluon-
dressing initially, will also help reveal the relevance of
intrinsic gluons in the initial state.
In our study, we consider the medium to be described by

the MV model and keep the dominant field component at
high energy A− in our calculation. This choice aligns with
the approximation usually made in the eikonal picture of
high-energy scattering. The inclusion of the transverse
components of the background field is important to under-
stand a class of subeikonal effects [70], which will
introduce additional contributions to jet momentum broad-
ening and transitions between helicity states. We intend to
incorporate the transverse components to provide a more
comprehensive analysis on jet evolution in future works.
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APPENDIX A: DISCRETIZATION

The conventions and notations in this paper follow
Ref. [29]. We adopt the following shorthand notation for
transverse integrals in position and momentum space,
respectively,

Z
r
≡
Z

d2r⊥;
Z
p
≡
Z

d2p⊥
ð2πÞ2 ; ðA1Þ

in which r⊥ ¼ jr⃗⊥j and p⊥ ¼ jp⃗⊥j. On the discrete basis
space, the integrations become summations over the corre-
sponding transverse quantum numbers (r⃗⊥ ¼ fn1; n2ga⊥
and p⃗⊥ ¼ fk1; k2gdp),

X
r

≡ a2⊥
XN⊥−1

n1;n2¼−N⊥
;

X
p

≡ 1

ð2L⊥Þ2
XN⊥−1

k1;k2¼−N⊥
: ðA2Þ

1. The transverse distribution function

In studying the angularly integrated transverse distribu-
tion function fðp⊥Þ (recall that p⊥ ¼ jp⃗⊥j ¼ jpj) and
similarly its Fourier transform f̃ðr⊥Þ (r⊥ ¼ jr⃗⊥j ¼ jrj),
one needs to be aware that the phase space of states on
the discrete square lattice is different from that in the
continuous case. As p⊥ increases, the number of momen-
tum modes within the range p⊥ ∼ p⊥ þ δp (with δp a small
positive value) first increases up till the edge of the lattice
ΛUV and then drop down, whereas the continuous phase
space would keep increasing as 2πp⊥δp.
The 2D transverse distribution function fðp⃗⊥Þ can be

obtained directly by squaring the wave function jψðp⃗⊥Þj2.
The normalization is therefore

P
p fðp⃗⊥Þ ¼ 1 and
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R
p fðp⃗⊥Þ ¼ 1 in the discrete and continuous case, respec-
tively. By integrating/summing over the azimuthal angle,
fðp⃗⊥Þ becomes the 1D distribution function fðp⊥Þ, the
average value of fðp⃗⊥Þ over momenta with the same p⊥. In
the continuous space, the normalization reads

R
p fðp⃗⊥Þ ¼R

p⊥dp⊥fðp⊥Þ=ð2πÞ ¼ 1. To obtain fðp⊥Þ from a distri-
bution on the square lattice, we first group fðp⃗⊥Þ into
adjacent bins with equal span on p⊥, then take the average
value of the data in each bin as fðp⊥Þ.
To be specific, choosingNb as the total number of bins in

the radial direction, then the dimensionless width of each
bin is ωb ¼

ffiffiffi
2

p
N⊥=Nb. The dimensional bin width is ωbdp

and ωba⊥ for the momentum and coordinate space,
respectively. The ibth bin would contain all the states with
p⊥=dpðr⊥=a⊥Þ ∈ ½ib − 1; ib�ωb; note that states on the
bin boundary should be counted only into one bin. Next,
count the number of states in each bin, hðibÞ, and they
should sum up as

XNb

ib¼1

hðibÞ ¼ ð2N⊥Þ2: ðA3Þ

The normalization in terms of the summation reads

X
p

fðp⃗⊥Þ ¼
1

ð2L⊥Þ2
XNb

ib¼1

hðibÞfðp⊥Þ ¼ 1: ðA4Þ

Here, p⊥ðibÞ ¼ ði − 1=2Þωbdp inside the summation over
bins, the center point of the ibth bin. Similarly in the
conjugate r⃗⊥ space, with hðibÞ the number of states in the
ibth bin along r⊥,

X
r

f̃ðr⃗⊥Þ ¼ a2⊥
XNb

ib¼1

hðibÞf̃ðr⊥Þ ¼ 1; ðA5Þ

where r⊥ðibÞ ¼ ði − 1=2Þωba⊥.
With hðibÞ, we can quantify the ratio between the

discrete and the continuous space size at each bin, that
is, hðibÞd2p=ð2πp⊥dpÞ [hðibÞa2⊥=ð2πr⊥a⊥Þ] in the momen-
tum (coordinate) space. With a simplification, it reads

RðibÞ≡ hðibÞ
2πði − 1=2Þωb

: ðA6Þ

This ratio function depends on the lattice size N⊥ and the
number of bins Nb. Since ib corresponds to a specific range
of p⊥ or r⊥, one can also write R in terms of p⊥ or r⊥.
Figure 18 exemplifies the behavior of Rðp⊥Þ=ωb at
N⊥ ¼ 16 and at various Nb. The horizontal error bar
indicates the range covered by each bin. The ratio function
is overall flat when the momentum mode is below N⊥, and
decreases when going above. This is expected from the
above discussion on hðibÞ. In addition, as Nb increases,
the ratio function admits more “zigzag” patterns. With R,
the normalization of the probability function is written as

1

2π

X
p⊥

Rðp⊥Þp⊥fðp⊥Þdp ¼ 1;

2π
X
r⊥

Rðr⊥Þr⊥f̃ðr⊥Þa⊥ ¼ 1: ðA7Þ

2. Numerical simulation of the medium

In the discrete basis space, the correlation relation of the
color charge in Eq. (2) takes the form,

hρaðnx;ny;nτÞρbðn0x; n0y; n0τÞim ¼ g2μ̃2δab
δnx;n0xδny;n0y

a2⊥
δnτ;n0τ
τ

;

ðA8Þ

as we have implemented in Refs. [28,29]. The sources
generating the medium are stochastic random variables
with a Gaussian distribution on each site, with the trans-
verse indices nx; ny ¼ −N⊥;−N⊥ þ 1;…; N⊥ − 1, and the
layer indices nτ ¼ 1; 2;…; Nη.
Then A, the field of the medium is solved from

Eq. (3), a Poisson’s equation in the two dimensions
for each xþ layer. Numerically, it is efficient to solve
in the momentum space, accompanied by a Fourier
transform,

A−
a ðnx; ny; xþÞ ¼

1

ð2N⊥Þ2
XN⊥−1

n̄x;n̄y¼−N⊥
ρaðn̄x; n̄y; nτðxþÞÞ

×
XN⊥−1

kx;ky¼−N⊥

e−i½ðnx−n̄xÞkxþðny−n̄yÞky�π=N⊥

m2
ga2⊥=π2=N2⊥ þ k2x þ k2y

:

ðA9Þ

Wewrite nτðxþÞ to indicate that the larger indices nτ can be
determined by the position of xþ in the entire duration of
½0; Lη�. For each layer, ρ is sampled independently, so the
resulting A− is also independent.

FIG. 18. The ratio function Rðp⊥Þ [as in Eq. (A6)] divided by
bin width ωb, at N⊥ ¼ 16 and at various Nb.
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APPENDIX B: AN ALTERNATIVE
DERIVATION OF q̂

Here we demonstrate an alternative derivation of the
single particle quenching parameter in Eq. (16). Starting
from Eqs. (12) and (13), we have

hp2⊥ðxþÞiEik ¼
Z
p
p⃗2⊥

Z
y;r
ϕ̃�ðr⃗⊥ þ y⃗⊥Þϕ̃ðy⃗⊥Þe−ip⃗⊥·r⃗⊥

× SFð0; xþ; rÞ; ðB1Þ

with a change of variables r⃗⊥ ¼ x⃗⊥ − y⃗⊥ and r ¼ jr⃗⊥j.
We first expand the Wilson line correlator,

SFð0; xþ;rÞ ¼
X∞
n¼0

1

n!
ð−CFg4μ̃2Lð0ÞxþÞn

�
1−

LðrÞ
Lð0Þ

�
n

¼
X∞
n¼0

1

n!

�
−
CFg4μ̃2

4πm2
g
xþ

�
nXn
k¼0

�
n
k

��
−
LðrÞ
Lð0Þ

�
k
:

ðB2Þ

Next, we evaluate the integral for the power terms
of LðrÞ,

Z
p
p⃗2⊥

Z
r;y
ϕ̃�ðr⃗⊥ þ y⃗⊥Þϕ̃ðy⃗⊥Þe−ip⃗⊥·r⃗⊥LðrÞm

¼
Z
p
p⃗2⊥

Z
l1

Z
l2

� � �
Z
lm

Z
r;y
ϕ̃�ðr⃗⊥ þ y⃗⊥Þϕ̃ðy⃗⊥Þe−iðp⃗⊥þ

P
m
i¼1

⃗l⊥;iÞ·r⃗⊥
"Ym
j¼1

1

ðm2
g þ ⃗l2⊥;jÞ2

#
;

¼
Z
p
p⃗2⊥

Z
l1

Z
l2

� � �
Z
lm

ϕ�
�
p⃗⊥ þ

Xm
i¼1

⃗l⊥;i

�
ϕ

�
p⃗⊥ þ

Xm
i¼1

⃗l⊥;i

�"Ym
j¼1

1

ðm2
g þ ⃗l2⊥;jÞ2

#
;

¼
Z
q

Z
l1

Z
l2

� � �
Z
lm

�
q⃗⊥ −

Xm
i¼1

⃗l⊥;i

�
2

ϕ�ðq⃗⊥Þϕðq⃗⊥Þ
"Ym
j¼1

1

ðm2
g þ ⃗l2⊥;jÞ2

#
: ðB3Þ

In the third line, the integral over r and y apply a Fourier
transform to the wave functions, bringing them to the
momentum space. In the last line, we made a change of
variable q⃗⊥ ≡ p⃗⊥ þP

m
i¼1

⃗l⊥;i. There are three terms
coming from the square ð…Þ2. The first term containing
q⃗2⊥, gives the transverse momentum squared of the
initial state,

I0ðmÞ≡
Z
q
q⃗2⊥ϕ�ðq⃗⊥Þϕðq⃗⊥Þ

�Ym
i¼1

Z
li

1

ðm2
g þ ⃗l2⊥;iÞ2

�
;

¼ hp2⊥ð0ÞiLð0Þm; ðB4Þ

in which the l⊥;i integral gives Lð0Þ ¼ 1=ð4πm2
gÞ, accord-

ing to Eq. (14).
The second term, containing q⃗⊥ ·

P
i
⃗l⊥;i, vanishes after

integrating over the angle of ⃗l⊥;i,

Z
2π

0

dθi
li cosðθi − θqÞ
ðm2

g þ ⃗l2⊥;iÞ2
¼ 0; ðB5Þ

where θi (θq) is the angle of the vector ⃗l⊥;i (q⃗⊥).

The last term, containing ðPi
⃗l⊥;iÞ2, reads

I1ðmÞ≡
Z
q
ϕ�ðq⃗⊥Þϕðq⃗⊥Þ

Z
l1

Z
l2

� � �
Z
lm

�Xm
i¼1

⃗l⊥;i

�
2

×

�Ym
j¼1

1

ðm2
g þ ⃗l2⊥;jÞ2

�
;

¼
Z
l1

Z
l2

� � �
Z
lm

Xm
i¼1

⃗l2⊥;i

�Ym
j¼1

1

ðm2
g þ ⃗l2⊥;jÞ2

�
;

¼
Xm
i¼1

Z
li

⃗l2⊥;i

ðm2
g þ ⃗l2⊥;iÞ2

�Ym
j≠i

Z
lj

1

ðm2
g þ ⃗l2⊥;jÞ2

�
;

¼ mG2Lð0Þm−1: ðB6Þ

The q integral is the normalization of the initial state wave
function, thus giving unity. The cross term ⃗l⊥;i · ⃗l⊥;k

vanishes after the angular integral, as in Eq. (B5). The
l⊥;i integral is logarithmically divergent, introducing a pair
of IR and UV cutoffs,
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G2 ≡
Z
p

p⃗2⊥
ðm2

g þ p⃗2⊥Þ2
¼
Z

λUV

λIR

dp
2π

p3

ðm2
g þp2Þ2 ;

¼ 1

4π

�
log

�
λ2UV þm2

g

λ2IR þm2
g

�
−m2

g

�
1

λ2IR þm2
g
−

1

λ2UV þm2
g

��
:

ðB7Þ

In the numerical calculation, one should always let
λIR ≪ mg, such that the result does not depend on the
numerical cutoff λIR, and mg plays the role of the IR
regulator,

G2jλIR¼0 ¼
1

4π

�
log

�
λ2UV þm2

g

m2
g

�
−

λ2UV
λ2UV þm2

g

�
: ðB8Þ

We thereby obtain Eq. (17).
Back to Eq, (B1), we have

hp2⊥ðxþÞiEik ¼
X∞
n¼0

1

n!

�
−
CFg4μ̃2

4πm2
g
xþ

�
n Xn
k¼0

�
n
k

�
ð−1Þk

×

�
hp2⊥ð0Þi þ kG2

1

Lð0Þ
�
;

¼ hp2⊥ð0Þi þ G2CFg4μ̃2xþ: ðB9Þ

We have used the following relations in the above equation,

Xn
k¼0

�
n
k

�
ð−1Þk¼δn;0;

Xn
k¼0

�
n
k

�
ð−1Þkk¼−δn;1: ðB10Þ

From here, we see that only the linear term survives in the
acquired momentum, and we arrive at the result of q̂
in Eq. (16).

APPENDIX C: THE COLOR DIMENSION
OF THE QUARK-GLUON STATE

In this appendix, we first present two sets of the basis
for the quark-gluon color space and the transformation
between the two. Then, we write out the antiquark-gluon-
quark-gluon color singlet states. This transformation is
helpful in deriving the four-point Wilson line correlators.

1. The quark-gluon color states

The color space of the quark-gluon state is the tensor
product of the color spaces of a single quark and a single
gluon. This 24-dimensional space, built up as a product of a
triplet and an octet, reduces into a direct sum of three
irreducible representations,

3 ⊗ 8 ¼ 3 ⊕ 6̄ ⊕ 15: ðC1Þ

This is a Clebsch-Gordan (CG) series of SU(3), and can be
obtained from the Young tableaux method, e.g., see
Chapter 12 of Ref. [71]. For the generalization to SUðNCÞ,
we still take 3, 8, 6̄, and 15, as the names of the corresponding
representations, for convenience. We use dimðRÞ to denote
the dimension of the R representation, such that dimð3Þ ¼
Nc, dimð8Þ ¼ N2

c − 1, dimð6̄Þ ¼ NcðNc þ 1ÞðNc − 2Þ=2,
and dimð15Þ ¼ NcðNc − 1ÞðNc þ 2Þ=2.
The two representations, given on the left- and right-

hand sides of Eq. (C1), provide us with two bases for the
quark-gluon color state. The uncoupled color basis is
indexed by iterating the quark and gluon color, in the
tuple form as ½cq; cg� (cq ¼ 1; 2; 3; cg ¼ 1; 2;…; 8), or in
the number form as cqg ¼ ðcq − 1Þ × 8þ cg in which cg is
iterated over first. This uncoupled basis is convenient for
simulating the interaction between an individual particle
and the background field, as we have adopted in for-
mulating the numerical calculations [29]. The coupled
color basis is indexed by enumerating the representations
in the right-hand side fhqgg.
The basis expansion of a jqgi color state on the two bases

are, respectively,

jψi ¼
X3
cq¼1

X8
cg¼1

hcq; cgjψijcq; cgi ¼
X24
i¼1

αijcqg ¼ ii;

jψi ¼
X24
hqg¼1

hhqgjψijhqgi ¼
X24
j¼1

βjjhqg ¼ ji: ðC2Þ

In the above equation, αi is the coefficient of the wave
function in the uncoupled basis, and βj in the coupled basis.
Their column vector forms are α and β, respectively. The
transformations between the two bases are specified by the
SU(3) CG coefficients, Cðhqg; cq; cgÞ,

jhqgi ¼
X3
cq¼1

X8
cg¼1

Cðhqg; cq; cgÞjcq; cgi;

jcq; cgi ¼
X24
hqg¼1

C−1ðhqg; cq; cgÞjhqgi: ðC3Þ

Writing the CG coefficients Cðhqg; cq; cgÞ in the matrix
form C with row index hqg and column index cqgðcq; cgÞ,
we see that α ¼ Cβ. The transformation matrix is unitary,
C−1 ¼ C†. For convenience, we partition C into blocks
C ¼ fCQ;Ch6;Ch15g⊺ such that the three operators extract
the 3, the 6̄, and the 15 components of a state, respectively.
There are multiple ways of computing C, and here we

proceed with the tensor method as illustrated in Ref. [71].
The generic quark-gluon state is described by a tensor,
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uivjk ¼
1

8
ð3δikulvjl − δjku

lvjlÞ

þ 1

4
ϵijkðϵlmnumvnk þ ϵkmnumvnl Þ

þ 1

2

�
uivjk þ ujvik −

1

4
δiku

lvjl −
1

4
δjku

lvjl

�
; ðC4Þ

which acts in the tensor product space jiijkji. It relates to the
uncoupled quark-gluon basis by the Gell-Mann matrices
jcq ¼ i; cg ¼ ai ¼ Ta

kjjiijkji. The right-hand side is the CG
decomposition, and the three terms correspond to the
quark-gluon in the 3, the 6̄, and the 15 state, respectively.
We thereby find the transformation between the uncoupled
and the coupled states. However, the transformation matrix
is expressed in the tensor representation. The transforma-
tions to the states in the triplet, hqg ¼ cQ ¼ 1, 2, 3, are
given by the Gell-Mann matrices,

CQðhqg ¼ cQ; cg; cqÞ ¼
ffiffiffi
3

p

2
T
cg
cq;cQ : ðC5Þ

The coefficient is determined by state normalization. The
transformations to the states in the antisextet are specified
by two symmetric indices m, n ¼ 1, 2, 3,

C̃h6ðm; n; i; aÞ ¼ 1

2

X3
j

ðTa
njϵijm þ Ta

mjϵijnÞ: ðC6Þ

The fm; ng states must be related to the coupled
states hqg ¼ 4;…; 9 by some linear combination, thus
Ch6ðhqg; cq; cgÞ ¼

P
3
m;n¼1 hqgðm; nÞC̃h6ðm; n; cq; cgÞ. The

transformations to the 15-plet states are specified by three
indices ī; j̄; k̄ ¼ 1, 2, 3,

C̃h15ðī; j̄; k̄; i; aÞ

¼
ffiffiffi
2

p

2

�
Ta
k̄ j̄
δīi þ Ta

k̄ ī
δj̄i −

1

4
Ta
ij̄δ

ī
k̄
−
1

4
Ta
iīδ

j̄
k̄

�
: ðC7Þ

The fī; j̄; k̄g states must be related to the coupled states
hqg ¼ 10;…; 24 by some linear combination, thus
Ch15ðhqg; cq; cgÞ ¼

P
3
ī;j̄;k̄¼1

hqgðī; j̄; k̄ÞC̃h15ðī; j̄; k̄; cq; cgÞ.
The specific form of hqgðm; nÞ and hqgðī; j̄; k̄Þ depends on
the choice of the coupled basis states. We provide here
one set of C in Fig. 19. We construct it by an online
CG coefficients generator [72] based on the numerical
algorithm proposed in Ref. [73].6

It is also useful to define the projectors, using the
transformation matrix C, or equivalently C̃ in the tensor
product basis,

PQ ¼ C−1
Q CQ;

Ph6 ¼ C−1
h6Ch6 ¼ C̃−1

h6 C̃h6;

Ph15 ¼ C−1
h15Ch15 ¼ C̃−1

h15C̃h15: ðC8Þ

The expectation value of each projector operator hψ jPjψi
gives the probability of the state in the corresponding
color subspace. In the component form, Pjj;b;i;a ¼P

fsg C−1ðj; b; fsgÞCðfsg; I; aÞ, in which the summation
is over the full basis space indexed by fsg. One can find the

FIG. 19. The CG coefficients Cðhqg; cq; cgÞ as defined in Eq. (C3). The white cross indicates negative values in the corresponding
grids.

6Note, however, the CG coefficients obtained directly from
Ref. [72] are in the Gelfand-Tsetlin basis (cf. the Cartan-Weyl
basis, see Ref. [73] for more details), not on the Gell-Mann basis
that one usually adopts in high-energy physics, this work as well.
An easy way to find the transformation from the Gelfand-Tsetlin
to the Gell-Mann basis is by comparing the CG coefficients for
the known decomposition 3 ⊗ 3̄ ¼ 1 ⊕ 8.
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projectors using Eqs. (C5)–(C7). Here, we write out the
expressions for SU(Nc) [74,75],

PQjj;b;i;a ¼
2Nc

N2
c − 1

ðTaTbÞij; ðC9aÞ

Ph6jj;b;i;a ¼
1

2
δabδij − ðTbTaÞij −

1

Nc − 1
ðTaTbÞij; ðC9bÞ

Ph15jj;b;i;a¼
1

2
δabδijþðTbTaÞij−

1

Ncþ1
ðTaTbÞij: ðC9cÞ

The summation of those projectors is identity, as should
be, INF×NA

¼ PQ þ Ph6 þ Ph15.

2. The antiquark-gluon-quark-gluon
color singlet states

In the full color space of q̄ ⊗ ḡ ⊗ q ⊗ g, there are three
singlets, 3̄ ⊗ 8 ⊗ 3 ⊗ 8 ¼ 1 ⊕ 1 ⊕ 1 ⊕ 8 ⊕ …. We con-
sider two sets of basis in this singlet subspace, namely, the s
basis, and the v basis, as illustrated in Fig. 20. The s basis as
an expansion in the uncoupled basis space reads

js1i ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
1

NcdA

s XNc

i;j¼1

XdA
a;b¼1

δi;jδa;bji; a; j; bi;

js2i ¼
1

i

ffiffiffiffiffiffiffiffiffiffiffi
2

NcdA

s XNc

i;j¼1

XdA
a;b¼1

fabcTc
jiji; a; j; bi;

js3i ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

CddA

s XNc

i;j¼1

XdA
a;b¼1

dabcTc
jiji; a; j; bi; ðC10Þ

in which dA ¼ N2
c − 1 ¼ 8, Cd ¼ ðN2

c − 4Þ=Nc ¼ 5=3,
dabc ¼ 2Tr½fTa; TbgTc�, and fabc ¼ −2iTr½½Ta; Tb�Tc�.
The convention in defining the s basis is the same as those
in Ref. [64], by replacing two q̄q dipoles by two gluons,
viz., jcgi ¼

ffiffiffi
2

p P
c̄q;cq T

cg
cq;c̄q jc̄q; cqi.

The v basis as an expansion in the uncoupled basis space
can be written in terms of the qg projectors defined in
Eq. (C8),

jv1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð3Þp XNc

i;j¼1

XdA
a;b¼1

PQji;a;j;bji; a; j; bi;

jv2i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð6̄Þ
p XNc

i;j¼1

XdA
a;b¼1

Ph6ji;a;j;bji; a; j; bi;

jv3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð15Þp X15
l¼1

XdA
a;b¼1

Ph15ji;a;j;bji; a; j; bi: ðC11Þ

The transformation between the two bases is

jvIi ¼
X3
J¼1

jsJihsJjvIi; jsIi ¼
X3
J¼1

jvJihvJjsIi; ðC12Þ

for which we write out the transformation matrix V with
element VJI ¼ hsJjvIi ¼ hvIjsJi,

V ¼

0
BBBBBB@

− 1ffiffiffiffiffiffiffiffi
N2

c−1
p − 1ffiffi

2
p

ffiffiffiffiffiffiffiffi
Nc−2
Nc−1

q
− 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffi
Ncþ2
Ncþ1

q
1ffiffi
2

p Ncffiffiffiffiffiffiffiffi
N2

c−1
p 1

2

ffiffiffiffiffiffiffiffi
Nc−2
Nc−1

q
− 1

2

ffiffiffiffiffiffiffiffiffi
Ncþ2
Ncþ1

q
1ffiffi
2

p
ffiffiffiffiffiffiffiffi
N2

c−4
N2

c−1

q
− 1

2

ffiffiffiffiffiffiffiffiffi
Ncþ2
Nc−1

q
1
2

ffiffiffiffiffiffiffiffiffi
Nc−2
Ncþ1

q

1
CCCCCCA
;

¼

0
BBB@

− 1

2
ffiffi
2

p − 1
2

−
ffiffi
5

p
2
ffiffi
2

p

3
4

1

2
ffiffi
2

p −
ffiffi
5

p
4ffiffi

5
p
4

−
ffiffi
5

p
2
ffiffi
2

p 1
4

1
CCCA: ðC13Þ

APPENDIX D: THE FOUR-POINT WILSON
LINE CORRELATOR

The quark-gluon Wilson line is built as the tensor
product of a quark and a gluon Wilson line,

Uqgð0; Lη; x⃗⊥; y⃗⊥Þ≡UFð0; Lη; x⃗⊥Þ ⊗ UAð0; Lη; y⃗⊥Þ:
ðD1Þ

The dimension of the qg Wilson line is NcdA ¼ 24. In the
component form,

Uqgð0; Lη; x⃗⊥; y⃗⊥Þc̄qg;cqg
¼ UFð0; Lη; x⃗⊥Þc̄q;cqUAð0; Lη; y⃗⊥Þc̄g;cg : ðD2Þ

The single qgWilson line gives the amplitude of a quark-
gluon state propagating through the color medium and can
be related to its total cross section through the optical
theorem, for which, see Ref. [29]. Here, we would like to
understand the probability distribution of a quark-gluon
state, so what we are interested in is the correlation function
of two qg Wilson lines, i.e., the four-point function,

FIG. 20. An illustration of constructing the color singlet sub-
space of the q̄ ⊗ ḡ ⊗ q ⊗ g state into (a) the s basis as in
Eq. (C10) and (b) the v basis as in Eq. (C11).
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Sq̄ ḡ qgð0; xþ; x⃗q;⊥; x⃗g;⊥; y⃗q;⊥; y⃗g;⊥Þβ1β2β3β4;α1α2α3α4
¼ hU†

Fð0; xþ; x⃗q;⊥Þα1;β1U†
Að0; xþ; x⃗g;⊥Þα2;β2UFð0; xþ; y⃗q;⊥Þβ3;α3UAð0; xþ; y⃗g;⊥Þβ4;α4iρ;

¼ e−ðCFþCAÞξLð0ÞeξMq̄ ḡ qg jβ1β2β3β4;α1α2α3α4 ; ðD3Þ

in which ξ≡ g4μ̃2xþ and

−Mq̄ ḡ qg ≡ ð−Ta�Þ ⊗ IA ⊗ Ta ⊗ IALðjx⃗q;⊥ − y⃗q;⊥jÞ þ IF ⊗ ð−ta�Þ ⊗ IF ⊗ taLðjx⃗g;⊥ − y⃗g;⊥jÞ
þ ð−Ta�Þ ⊗ ð−ta�Þ ⊗ IF ⊗ IALðjx⃗q;⊥ − x⃗g;⊥jÞ þ IF ⊗ IA ⊗ Ta ⊗ taLðjy⃗q;⊥ − y⃗g;⊥jÞ
þ ð−Ta�Þ ⊗ IA ⊗ IF ⊗ taLðjx⃗q;⊥ − y⃗g;⊥jÞ þ IF ⊗ ð−ta�Þ ⊗ Ta ⊗ IALðjx⃗g;⊥ − y⃗q;⊥jÞ: ðD4Þ

The above expression gives the amplitude of a q̄gqg
quadruple going from color configuration fc̄q¼α1;c̄g¼α2;
cq¼α3;cg¼α4g to fc̄q¼β1; c̄g¼β2;cq¼β3;cg¼β4g. This
function Sq̄ ḡ qg is 576 × 576 in the full color space of the
q̄ ⊗ ḡ ⊗ q ⊗ g state. But since we are interested in the
probability of the qg state transferring from some color
state fcq ¼ α1; cg ¼ α2g to fcq ¼ β1; cg ¼ β2g, the quan-
tity we should look at is in the form of Sq̄ ḡ qgjβ1β2β1β2;α1α2α1α2 .
Therefore, we only need to study the q̄gqg singlet states.
A closely related study in the color structure can be found
in Ref. [64], which is carried out in terms of six-point
fundamental Wilson line correlators.
In the s basis as given by Eq. (C10), we have [equivalent

to Eq. (49) in Ref. [64] ],

Ms
q̄ ḡ qg ¼

0
BBB@

Γ0 − 1ffiffi
2

p Γ2 0

− 1ffiffi
2

p Γ2
NC
4
Γ1

ffiffiffiffiffiffiffiffi
NcCd

p
4

Γ2

0
ffiffiffiffiffiffiffiffi
NcCd

p
4

Γ2
NC
4
Γ1

1
CCCA; ðD5Þ

where

Γ0 ¼ CFL13 þ NcL24;

Γ1 ¼ ðL1
2 þ L1

4 þ L3
2 þ L3

4Þ −
2

N2
c
L13 þ 2L24;

Γ2 ¼ L1
2 − L1

4 − L3
2 þ L3

4: ðD6Þ

For the convenience of reading, let us define a short-hand
notation for the scalar function LðrÞ, by putting the particle
index that labels the contracted quark (gluon) into the

superscript (subscript), L½quarks�
½gluons�. The four particles are

labeled by numbers 1 to 4 from left to right, the same order
used in the color indices αi as in Eq. (D3). For example,

L13 ¼ Lðjx⃗q;⊥ − y⃗q;⊥jÞ; L24 ¼ Lðjx⃗g;⊥ − y⃗g;⊥jÞ:

The four-point Wilson line correlator in the s basis reads

Ssq̄ ḡ qg ¼ e−ðCFþCAÞξLð0Þ
X3
i¼1

e−ziξ=4

dðziÞ

×

0
B@

m11ðziÞ m12ðziÞ m13ðziÞ
m21ðziÞ m22ðziÞ m23ðziÞ
m31ðziÞ m32ðziÞ m33ðziÞ

1
CA; ðD7Þ

in which

zi ¼ −
1

3

�
bþ ζiCþ Δ0

ζiC

�
; ζ ¼ −1þ i

ffiffiffi
3

p

2
; ðD8Þ

the roots of characteristic polynomial detð−z=4I −
Ms

q̄ ḡ qgÞ ¼ 0,

a ¼ 1;

b ¼ 2ð2Γ0 þ NcΓ1Þ;
c ¼ NcΓ1ðNcΓ1 þ 8Γ0Þ − ðN2

c þ 4ÞΓ2
2;

d ¼ 4fN2
cΓ0Γ2

1 − ½ðN2
c − 4ÞΓ0 þ 2NcΓ1�Γ2

2g; ðD9Þ

the coefficients, and

Δ0 ¼ b2 − 3ac;

Δ1 ¼ 2b3 − 9abcþ 27a2d;

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

3

vuut
: ðD10Þ

The matrix elements read

dðziÞ≡
Y3
j¼1;
j≠i

ðzi − zjÞ ¼ 3z2i þ 4c1zi þ c; ðD11aÞ
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m11ðziÞ ¼ ðzi þ NcΓ1Þ2 þ ð4 − N2
cÞΓ2

2; ðD11bÞ

m12ðziÞ ¼ m21ðziÞ ¼ 2
ffiffiffi
2

p
Γ2ðzi þ NcΓ1Þ; ðD11cÞ

m13ðziÞ ¼ m31ðziÞ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CdNc

p
Γ2
2; ðD11dÞ

m22ðziÞ ¼ z2i þ ð4Γ0 þ NcΓ1Þzi þ 4NcΓ1Γ0; ðD11eÞ

m23ðziÞ ¼ m32ðziÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
Γ2ð4Γ0 þ ziÞ; ðD11fÞ

m33ðziÞ ¼ m22ðziÞ − 8Γ2
2: ðD11gÞ

We, therefore, arrive at Eq. (55) in Ref. [64]. The result is
translationally invariant, which can also be seen from the
definition in Eq. (D4) in the sense that it only depends on the
relative positions among the four particles but not the center
of mass of the system. Explicitly, we can write

Sq̄ ḡ qgð0; xþ; x⃗q;⊥; x⃗g;⊥; y⃗q;⊥; y⃗g;⊥Þ
¼ Sq̄ ḡ qgð0; xþ; x⃗q;⊥; x⃗g;⊥; x⃗q;⊥ − u⃗q;⊥; x⃗g;⊥ − u⃗g;⊥Þ;
¼ Sq̄ ḡ qgð0; xþ; v⃗⊥ þ u⃗q;⊥; u⃗q;⊥; v⃗⊥; u⃗q;⊥ − u⃗g;⊥Þ:

ðD12Þ

In the second line, we make the change of variables
according to Eq. (24); in the third line, we shift all the four
position arguments by −x⃗g;⊥ þ u⃗q;⊥. This rewriting is for the
convenience of identifying the relevant physical quantities,
without making any actual change to the content. Let us also
write out Γs defined in Eq. (D6) in terms of the three
independent vectors v⃗⊥; u⃗q;⊥, and u⃗q;⊥,

Γ0 ¼ CFLðuq;⊥Þ þ NcLðug;⊥Þ;
Γ1 ¼ ðLðv⊥Þ þ Lðjv⃗⊥ þ u⃗g;⊥jÞ þ Lðjv⃗⊥ − u⃗q;⊥jÞ

þ Lðjv⃗⊥ − u⃗q;⊥ þ u⃗g;⊥jÞÞ −
2

N2
c
Lðuq;⊥Þ þ 2Lðug;⊥Þ;

Γ2 ¼ Lðv⊥Þ − Lðjv⃗⊥ þ u⃗g;⊥jÞ − Lðjv⃗⊥ − u⃗q;⊥jÞ
þ Lðjv⃗⊥ − u⃗q;⊥ þ u⃗g;⊥jÞ: ðD13Þ

We denote the modulus of a vector using the same variable
without the arrow, ul ¼ ju⃗lj.
Knowing the explicit form of Ssq̄ ḡ qg, we can now evaluate

the probability function of a quark-gluon state. In doing so,
we interpret the q̄ ḡ qg state as a qg state and its conjugate.
Consider a quark-gluon state in a gauge-invariant color
space c with dimension dc, then the corresponding q̄ ḡ qg
state is in the color configuration c̄c. The color space c
could be the 3, the 6̄, the 15, and the full NcdA space
denoted by “X.” The first three cases correspond to the
three v-basis states, and the last one the js1i state. The
initial state is averaged over the corresponding qg color
space,

jψ q̄ ḡ qg;c̄iðq̄ ḡÞciðqgÞi

¼ 1

dc
jψ̄qg;cii ⊗ jψqg;cii

¼
8<
:

1ffiffiffiffiffiffiffiffiffiffiffi
dimðRiÞ

p jvii; ci ¼ 3; 6̄; 15

− 1ffiffiffiffiffiffiffiffi
NcdA

p js1i; ci ¼ X
: ðD14Þ

The final state is summed over the corresponding qg color
space,

jψ q̄ ḡ qg;c̄fðq̄ ḡÞcfðqgÞi
¼ dcjψ̄qg;cfi ⊗ jψqg;cfi;

¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðRfÞ

p jvfi; cf ¼ 3; 6̄; 15

−
ffiffiffiffiffiffiffiffiffiffiffi
NcdA

p js1i; cf ¼ X
: ðD15Þ

The probability function of a qg state is, therefore,
from one color subspace to the other,

Pqg;ci→cf ≡ hψ q̄ ḡ qg;c̄fðq̄ ḡÞcfðqgÞjSq̄ ḡ qgjψ q̄ ḡ qg;c̄iðq̄ ḡÞciðqgÞi;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðRfÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðRiÞ

p hvfjSq̄ ḡ qgjvii; ðD16Þ

and from one color subspace to the full space,

Pqg;c ≡
XNc

i¼1

XdA
a¼1

hψ q̄ ḡ qg;fi;a;i;agjSq̄ ḡ qgjψ q̄ ḡ qg;c̄ðq̄ ḡÞcðqgÞi;

¼ −
ffiffiffiffiffiffiffiffiffiffiffi
NcdA

p
hs1jSq̄ ḡ qgjψ q̄ ḡ qg;c̄ðq̄ ḡÞcðqgÞi: ðD17Þ

The relation between the color-differential and the color-
inclusive cross sections is

Pqg;ci ¼ Pqg;ci→X ¼
X

cf¼3;6̄;15

Pqg;ci→cf : ðD18Þ

In analogy, the relation between the cross sections of the
color-differential and the color-inclusive incoming states is

NcdAPqg;X→cf ¼
X

cf¼3;6̄;15

dimðRiÞPqg;ci→cf : ðD19Þ

The probability function in the full-color space is

Pqg;X ¼ hs1jSq̄ ḡ qgjs1i ¼ Ss11: ðD20Þ

The probability function of the triplet is

Pqg;3 ¼ Ss11 −
Nc

ffiffiffi
2

p

2
Ss12 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
p

2
Ss13: ðD21Þ
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The color differential probability is

Pqg;3→3 ¼
1

2ðN2
c − 1Þ

�
2Ss11 − 2

ffiffiffi
2

p
NcSs12 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
q

Ss13 þ N2
cSs22 þ 2Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss23 þ ðN2

c − 4ÞSs33
�
;

Pqg;3→6̄ ¼
1

4ðNc − 1Þ
�
2ðNc − 2ÞSs11 − ðNc þ 1ÞðNc − 2Þ

ffiffiffi
2

p
Ss12 − ðNc − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
q

Ss13

þ NcðNc − 2ÞSs22 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss23 − ðNc þ 2ÞðNc − 2ÞSs33

�
;

Pqg;3→15 ¼
1

4ðNc þ 1Þ
�
2ðNc þ 2ÞSs11 − ðNc − 1ÞðNc þ 2Þ

ffiffiffi
2

p
Ss12 − ðNc þ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
q

Ss13 − NcðNc þ 2ÞSs22

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss23 þ ðNc þ 2ÞðNc − 2ÞSs33

�
: ðD22Þ

The probability function of the 6̄ is

Pqg;6̄ ¼ Ss11 −
ffiffiffi
2

p

2
Ss12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc þ 2

2ðNc − 2Þ

s
Ss13; ðD23Þ

and color differentially,

Pqg;6̄→3 ¼
dimð3Þ
dimð6̄ÞPqg;3→6̄;

Pqg;6̄→6̄ ¼
1

4ðNc − 1Þ
�
2ðNc − 2ÞSs11 − 2

ffiffiffi
2

p
ðNc − 2ÞSs12 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
q

Ss13 þ ðNc − 2ÞSs22

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss23 þ ðNc þ 2ÞSs33

�
;

Pqg;6̄→15 ¼
1

4ðNc þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc þ 2

Nc − 2

s �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss11 þ 4

ffiffiffi
2

p
Ss13 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss22 þ 2NcSs23 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss33

�
: ðD24Þ

The probability function of the 15-plet is

Pqg;15 ¼ Ss11 þ
ffiffiffi
2

p

2
Ss12 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 2

2ðNc þ 2Þ

s
Ss13 ðD25Þ

and

Pqg;15→3 ¼
dimð3Þ
dimð15ÞPqg;3→15;

Pqg;15→6̄ ¼
dimð6̄Þ
dimð15ÞPqg;6̄→15;

Pqg;15→15 ¼
1

4ðNc þ 1Þ
�
2ðNc þ 2ÞSs11 þ 2

ffiffiffi
2

p
ðNc þ 2ÞSs12 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 4Þ
q

Ss13 þ ðNc þ 2ÞSs22

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 4

q
Ss23 þ ðNc − 2ÞSs33

�
: ðD26Þ

We have written above the color-differential and inclusive probability functions Pqg in terms of the components of Ssq̄ ḡ qg.
In the dilute limit, one can replace Ssq̄ ḡ qg by its exponent Ms

q̄ ḡ qg as given in Eq. (D5). Then the probability function can
be written in terms of the dipole cross sections L13; L24;…; see discussion in Ref. [76] in the context of quark-gluon dijet
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production off nuclei. The curious Nc → −Nc symmetry
between the 6̄ and 15 states is observed here as

Pqg;3→6̄ðNcÞ ¼ −Pqg;3→15ð−NcÞ; ðD27aÞ

Pqg;6̄→6̄ðNcÞ ¼ −Pqg;15→15ð−NcÞ; ðD27bÞ

by noting thatMs
iiðNcÞ ¼ −Ms

iið−NcÞ; i ¼ 1, 2, 3 accord-
ing to Eq. (D5).
Then, the derivative is

lim
u⃗g;⊥;u⃗q;⊥→0⃗⊥

∇!u;q · ∇!u;gSsq̄ ḡ qg ¼

0
B@

0 s12ðvÞ 0

s12ðvÞ sddðvÞ s23ðvÞ
0 s23ðvÞ sddðvÞ

1
CA;

ðD28Þ

in which

α̃1 ¼ 4Nc½Lð0Þ − LðvÞ�;

sddðvÞ ¼ −∇2
vLðvÞ

Ncξ

4
e−ξα̃1=4 − ½L0ðvÞ�2 N

2
cξ

2

4
e−ξα̃1=4;

s12ðvÞ ¼ −∇2
vLðvÞ

2
ffiffiffi
2

p

α̃1
½e−ξα̃1=4 − 1�;

s23ðvÞ ¼ −∇2
vLðvÞ

ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
4

e−ξα̃1=4ξ: ðD29Þ

In the quark-gluon coincidence limit,

lim
v→0

sddðvÞ ¼
Nc

4
ξG2;

lim
v→0

s12ðvÞ ¼ −
ffiffiffi
2

p

2
ξG2;

lim
v→0

s23ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
4

ξG2: ðD30Þ

It is straightforward to verify that, in the v → 0 limit,
the total momentum of the quark-gluon system
behaves as a single particle in the corresponding color
representation c,

lim
v→0

ðp⃗q;⊥ þ p⃗g;⊥Þ2jqg;c ¼ CcG2ξ; ðD31Þ

in which Cc is the corresponding Casimir, and specially
CX ¼ C3 þ C8 for color-uncorrelated state for which the
cross term p⃗q;⊥ · p⃗g;⊥ vanishes. The total momentum can
be calculated as

ðp⃗q;⊥ þ p⃗g;⊥Þ2jqg;c
¼ lim

u⃗g;⊥;u⃗q;⊥→0⃗⊥
− ð∇!2

u;q þ ∇!2

u;g þ 2∇!u;q · ∇!u;gÞPqg;c:

ðD32Þ

FIG. 21. Plot of vsmnðvÞ (mn ¼ dd; 12, 23) as a function of v according to Eq. (D29).

MOMENTUM BROADENING OF AN IN-MEDIUM JET EVOLUTION … PHYS. REV. D 108, 036016 (2023)

036016-27



To compute the momentum broadening for a quark-
gluon state in general, the next step is to integrate over v⃗ as
shown in Eq. (27),Z

v
fRelðv⃗⊥Þ∇!u;q · ∇!u;gPqg;cð0; xþ;

v⃗⊥ þ u⃗q;⊥; u⃗q;⊥; v⃗⊥; u⃗q;⊥ − u⃗g;⊥Þju⃗q;⊥;u⃗g;⊥¼0⃗⊥ : ðD33Þ

All three nonvanishing elements exhibit a logarithmic
divergence at v ¼ 0, as indicated by the G2 in Eq. (D30).
We present the behavior of those elements multiplied by v
in Fig. 21. In the plots, we take a dimensionless quantity
vmg, such that we are looking at the quark-gluon separation
in units of 1=mg.
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