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Abstract

Brain networks extracted by independent component analysis (ICA) from magnitude-

only fMRI data are usually denoised using various amplitude-based thresholds. By

contrast, spatial source phase (SSP) or the phase information of ICA brain networks

extracted from complex-valued fMRI data, has provided a simple yet effective way to

perform the denoising using a fixed phase change. In this work, we extend the

approach to magnitude-only fMRI data to avoid testing various amplitude thresholds

for denoising magnitude maps extracted by ICA, as most studies do not save the

complex-valued data. The main idea is to generate a mathematical SSP map for a

magnitude map using a mapping framework, and the mapping framework is built

using complex-valued fMRI data with a known SSP map. Here we leverage the fact

that the phase map derived from phase fMRI data has similar phase information to

the SSP map. After verifying the use of the magnitude data of complex-valued fMRI,

this framework is generalized to work with magnitude-only data, allowing use of our

approach even without the availability of the corresponding phase fMRI datasets.

We test the proposed method using both simulated and experimental fMRI data

including complex-valued data from University of New Mexico and magnitude-only

data from Human Connectome Project. The results provide evidence that the mathe-

matical SSP denoising with a fixed phase change is effective for denoising spatial

maps from magnitude-only fMRI data in terms of retaining more BOLD-related activ-

ity and fewer unwanted voxels, compared with amplitude-based thresholding. The

proposed method provides a unified and efficient SSP approach to denoise ICA brain

networks in fMRI data.
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1 | INTRODUCTION

Independent component analysis (ICA) has been widely used to

extract brain networks from functional magnetic resonance imaging

(fMRI) data, and these brain networks or ICA spatial maps are often

denoised by amplitude-based thresholding in the analyses of

magnitude-only fMRI data. For multiple subjects or single-subject with

multiple runs, the amplitude thresholds can be readily computed using

a one sample t-test to identify significant source voxels in the ICA

spatial maps at a predefined significant level, for example,

p < .05–.001 (Abou et al., 2010; Afshin-Pour et al., 2014; Calhoun,

Adalı, Pearlson, et al., 2001a; Calhoun & Pearlson, 2012; Erhardt

et al., 2011; Goebel et al., 2006; Gopinath et al., 2019; Kuang, Lin,

Gong, Cong, et al., 2017b; Wu & Calhoun, 2023). However, such sta-

tistical evaluation is unsuitable for determining the threshold when

denoising a single ICA brain network. The single ICA brain network is

usually obtained by three ways. The first way is by the ICA of single-

subject fMRI data at a single run or at the best run, which is selected

from multiple runs based on a specific criterion (Brookes et al., 2011;

Calhoun, Adalı, Pearlson, et al., 2001b; Calhoun & de Lacy, 2017;

Correa et al., 2005; Damoiseaux et al., 2007; Jung et al., 2001; Kuang,

Lin, Gong, Cong, et al., 2017a; Li et al., 2007; Long et al., 2009;

McKeown et al., 1998; Risk et al., 2013; Sui et al., 2012; Yu

et al., 2015). The second way is by averaging ICA spatial maps across

multiple subjects (Calhoun, Adalı, Mcginty, et al., 2001; Kuang

et al., 2018; Kuang, Lin, Gong, Chen, et al., 2017; Kuang, Lin, Gong,

Cong, et al., 2017b; Shi & Zeng, 2018). The third one is by detecting a

shared brain network via the temporally concatenated group ICA

(Britz et al., 2010; Calhoun et al., 2009; Calhoun & de Lacy, 2017;

Erhardt et al., 2011; Qi et al., 2019; Qin et al., 2018; Shi et al., 2018),

or via the tensor decomposition of multiple-subject fMRI data (Acar

et al., 2019; Beckmann & Smith, 2005; Han et al., 2022; Kuang

et al., 2015, 2020; Mørup et al., 2008; Wolf et al., 2010; Zhou

et al., 2016). In these situations, amplitude-based thresholding in

terms of z-score is widely used for denoising ICA brain networks.

Indeed, this z-score threshold was used in the first publication by

McKeown et al. (1998). The source voxels above a predefined z-score

threshold are recognized as the desired voxels in a brain network.

With the significantly increasing studies in ICA of magnitude-only

fMRI data, the z-score thresholds varied with different analyses, possi-

bly due to different considerations such as for clearer visualization

and closer to the reference. For example, z-score thresholds from 1 to

3 were predefined for denoising ICA spatial maps from a single sub-

ject (Brookes et al., 2011; Calhoun, Adalı, Pearlson, et al., 2001b; Cal-

houn & de Lacy, 2017; Correa et al., 2005; Damoiseaux et al., 2007;

Jung et al., 2001; Kuang, Lin, Gong, Cong, et al., 2017a; Li et al., 2007;

Long et al., 2009; Schwartz et al., 2019; Sui et al., 2012; Yu

et al., 2015); z-score thresholds ranging from 0.5 to 2.5 were used for

denoising an averaged ICA spatial map across multiple subjects

(Calhoun, Adalı, Mcginty, et al., 2001; Kuang et al., 2018; Kuang, Lin,

Gong, Chen, et al., 2017; Kuang, Lin, Gong, Cong, et al., 2017b; Shi &

Zeng, 2018; Yu et al., 2015); and z-score thresholds from 0.5 to 2.7

were used for denoising a shared spatial map obtained by the tempo-

rally concatenated group ICA (Britz et al., 2010; Calhoun et al., 2009;

Calhoun & de Lacy, 2017; Erhardt et al., 2011; Qi et al., 2019; Qin

et al., 2018; Shi et al., 2018) or by the tensor decomposition of

multiple-subject fMRI data (Acar et al., 2019; Han et al., 2022; Kuang

et al., 2015, 2020; Wolf et al., 2010).

In comparison with various amplitude (z-score) thresholds utilized

for denoising ICA spatial maps from magnitude-only fMRI data, a fixed

phase change Δφ, provides a simple yet effective measure to denoise

highly noisy complex-valued maps extracted via ICA of complex-

valued fMRI data (Lin et al., 2022; Yu et al., 2015). Spatial source

phase (SSP), the phase of a source voxel in the ICA complex-valued

map (Qiu et al., 2019), is such a measure that identifies blood

oxygenation-level dependent (BOLD) related voxels in terms of their

phase changes unrelated to their amplitudes. Different from the

meaningless phase changes for the random complex Gaussian noise,

as shown in Figure 1, smaller SSP phase changes (Δφ ≤ π/4) corre-

spond to BOLD-related voxels, whereas larger SSP phase changes

F IGURE 1 Different meaning
of phase changes for (a) SSP and
(b) the phase of random complex
Gaussian noise in denoising an
ICA complex-valued map (DMN).
(1) Full phase changes [�π, π],
(2) phase mask with phase
changes Δφ ≤ π/4, and
(3) magnitude map denoised by
phase masking. The noisy
magnitude map and spatial
reference of DMN are shown at
the top.
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(Δφ > π/4) are unwanted voxels (Lin et al., 2022; Yu et al., 2015), after

removing the phase ambiguity of an ICA complex-valued map. Based

on this, a fixed phase change (Δφ = π/4) has been used to generate a

binary mask in the SSP denoising of ICA spatial maps for both task-

related and resting-state fMRI data (Iqbal et al., 2020; Kuang

et al., 2020; Kuang, Lin, Gong, Cong, et al., 2017a; Lin et al., 2022; Qiu

et al., 2019; Song et al., 2021). More desired voxels can remain when

using a large phase change Δφ = π/4 than using a smaller one

(Δφ < π/4). A large number of unwanted voxels (in practice 60%–70%

of the full phase changes) are removed, including those with larger

amplitudes that cannot be removed using amplitude-based

thresholding.

Meanwhile, many weak BOLD-related voxels (e.g., z-score

threshold = 0.5) are detected to provide additional brain activity

beyond magnitude-only fMRI data (Kuang et al., 2016, 2020; Kuang,

Lin, Gong, Cong, et al., 2017a, b; Yu et al., 2015). Taking analyses of

motor task-related complex-valued fMRI data as examples, 139%

more contiguous motor-related voxels were detected for the task-

related brain network as well as 331% more contiguous voxels were

detected in the regions expected to be activated for the default mode

network (DMN) in ICA of single-subject data (Yu et al., 2015); 393%

more contiguous and reasonable activations were extracted for the

task-related brain network and 301% for DMN in independent vector

analysis of multiple-subject data (Kuang, Lin, Gong, Cong,

et al., 2017b); and 178.7% more contiguous activations were detected

in task-related regions consisting of the left and right primary motor

areas and the supplementary motor areas in tensor decomposition of

multiple-subject data (Kuang et al., 2020). These are consistent with

the improved sensitivity and activation detection results obtained by

model-driven (Rowe, 2005, 2009; Rowe & Logan, 2004; Yu

et al., 2018, 2022) and data-driven (Arja et al., 2010; Calhoun &

Adalı, 2012a; Calhoun et al., 2002) methods for analyzing complex-

valued fMRI data, supporting the fact that fMRI phase contains bio-

logical information regarding the vasculature contained within voxels

(Adrian et al., 2018; Feng et al., 2009; Yu et al., 2018, 2022). The

effectiveness of SSP denoising is also consistent with previous find-

ings that the phase change of observed phase fMRI data has the

capacity of accessing the voxel quality. The desired microvascular

response exhibits relatively smaller phase changes over time

(Menon, 2002; Nencka & Rowe, 2007; Tomasi & Caparelli, 2007), and

good-quality activation areas exhibit low phase variations when com-

paring to their surroundings such as skull and background of the fMRI

slices (Feng et al., 2009; Rodriguez et al., 2011).

Motivated by the success of a fixed SSP threshold in denoising

complex-valued spatial maps, we extend it to magnitude-only fMRI

data, as most studies do not save the complex-valued fMRI data. To

this end, we propose to get similar SSP values, namely mathematical

SSP, for each ICA magnitude map derived from magnitude-only fMRI

data. The development of mathematical SSP is reasonable because we

have complex-valued fMRI data with known SSP maps as the refer-

ence. Figure 2 shows an overview of the proposed method. Here we

leverage the fact that similar source phase information can be

obtained from either the complex-valued fMRI data via complex ICA

(i.e., SSP map) or the phase data via real ICA (i.e., phase map), and

ICA phase/magnitude maps exhibit super-Gaussian distribution since

the underlying fMRI sources are typically sparse (Calhoun &

Adalı, 2012a, b; Ge et al., 2015, see also Figures S1–S3). By using

complex-valued fMRI data and assuming similar super-Gaussian

SSP map
complex-valued

fMRI data

magnitude map
magnitude-only 

fMRI data

magnitude mapmagnitude data

phase mapphase data mathematical 
SSP map

reference

mapping framework

mapping framework

mathematical 
SSP map

mathematical 
SSP map

mapping framework

Complex-valued fMRI data

Magnitude-only fMRI data

ICA

ICA

ICA

ICA

fixed phase change
binary phase mask

denoising

generalizing

verifying

building

F IGURE 2 An overview of the proposed method. The mapping framework is used to generate a mathematical spatial source phase (SSP) map
for a magnitude map from magnitude-only fMRI data (see the lower panel), the mathematical SSP map is sequentially used to denoise the
magnitude map with a binary mask for a fixed phase change. The mapping framework is built using complex-valued fMRI data with a known SSP
map (see the upper panel), leveraging the fact that the SSP map and the phase map (from phase data) have similar phase information or similar
super-Gaussian distribution. The mapping framework is generalized to work with magnitude-only fMRI data after verifying the use of the
magnitude data of complex-valued fMRI.
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distribution between the SSP maps and the phase maps, we propose a

reliable mapping framework comprising three stages: building, verify-

ing and generalizing. First, we build the mapping framework for trans-

forming a phase map into a mathematical SSP map. Second, we verify

it using the magnitude data of complex-valued fMRI. Third, we gener-

alize this mapping framework to deal with magnitude-only data, allow-

ing use of our approach even without the availability of the

corresponding phase fMRI datasets. Finally, we demonstrate

the effectivity of mathematical SSP denoising using both simulated

and experimental fMRI data including complex-valued data from the

University of New Mexico (UNM) and the magnitude-only data from

the Human Connectome Project (HCP, n.d.), in comparison to

amplitude-based thresholding at three different z-score thresholds.

2 | MATERIALS AND METHODS

2.1 | Materials

2.1.1 | Simulated fMRI data

We generated simulated resting-state complex-valued fMRI

data based on the linear mixing model used in SimTB (Erhardt

et al., 2012) as follows:

Zk ¼AkSkþBk , ð1Þ

where Sk ¼ skc
� �

�CC�V and Ak ¼ akc
� �

�CT�C (c¼1,…,C) include

C pairs of complex-valued spatial maps and time courses, and Bk

denotes the baseline, k¼1,…,K, with K being the number of subjects.

We used C=8 and K=10 in this study. Figure 3 shows the magnitude

and phase templates of eight complex-valued spatial maps and their

associated time courses. C1–C7 correspond to the medial visual areas

(VIS), DMN, cerebellum, sensorimotor (MOT), auditory cortex (AUD),

right and left frontoparietal components, respectively (Smith

et al., 2009), and C8 is a noisy component.

The activations in the spatial maps were formed by the sphere

with randomly reduced size (<20%) at its edge for different subjects.

The sphere activations had the same center location for the magni-

tude and phase maps of a complex-valued component, but 5% larger

radius for the phase map than for the magnitude map. For C1–C7, the

magnitude maps consisted of activation voxels within [0.5, 10] satisfy-

ing exponential distribution and the phase maps included signal voxels

with small phase changes within [�π/4, π/4] satisfying Gaussian dis-

tribution, as shown in Figure 3a(1) and b(1). The other noisy voxels of

magnitude maps were within [0, 3] with Rayleigh distribution and

those of the phase maps were with large phase changes ([�π, �π/4)

and (π/4, π]) following exponential distribution. The noisy component

C8 was formed by uniformly distributed noisy voxels for both the

F IGURE 3 Eight simulated
resting-state complex-valued
components. (a) Magnitude,
(b) phase; (1) spatial maps,
(2) time courses. C1–C7
correspond to medial visual areas,
DMN, cerebellum, sensorimotor,
auditory cortex, right and left
frontoparietal, and C8 is a noisy
component.
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magnitude (within [0, 3]) and phase (within [�π, �π/4) and (π/4, π])

maps. The time courses of C1–C8, as shown in Figure 3a(2) and b(2),

were generated based on the resting-state model and default parame-

ters used in SimTB (Erhardt et al., 2012). The magnitude and phase of

each complex-valued time course had the same waveform, consisting

of random and unique events, and each unique event occurred with a

probability of .5 at each TR with an amplitude of 1. The difference

was that the amplitude of the magnitude time course was 100 times

larger than that of the phase time course. We set the total number of

time points T = 146 and TR = 2 s to simulate the experimental

complex-valued fMRI data. To increase differences among 10 subjects,

we used different baseline Bk , which was the averaged experimental

complex-valued fMRI signal across all time points from 10 healthy

controls.

Next, we added Gaussian noise to the real and imaginary parts of

above-generated complex-valued data Zk , in terms of contrast-

to-noise ratio (CNR) defined as 20log(σs/σn), where σs and σn are the

temporal standard deviation of the true signal and the noise (Erhardt

et al., 2012). The noisy data were with five levels of CNRs: �25, �20,

�15, �10, �5dB. Finally, the magnitude and phase images were spa-

tially smoothed with an 8�8�8mm3 FWHM Gaussian kernel. Each

spatial image had 53�63�46 voxels with V=62,336 in-brain voxels

(non-brain voxels were set to zeroes), which was the same as those of

the experimental complex-valued spatial images.

2.1.2 | Experimental fMRI data

We used two kinds of experimental fMRI datasets in this study,

including complex-valued data from University of New Mexico and

magnitude-only data from HCP. First, the complex-valued, resting-

state fMRI datasets from UNM have been described in Qiu et al.

(2019). These datasets were collected from 82 subjects with written

subject consent overseen by the UNM Institutional Review Board.

During the scan, all participants were instructed to rest quietly in the

scanner, keep their eyes open without sleeping, and not think of any-

thing in particular. fMRI scans were acquired using a 3.0 T Siemens

Allegra scanner (Siemens Medical Solutions USA, Inc., Malvern, PA,

USA) equipped with 40 mT/m gradients and a standard quadrature

head coil. The functional scan was acquired using gradient-echo echo-

planar imaging with the following parameters: TR = 2 s, TE = 29 ms,

field of view = 24 cm, acquisition matrix = 64 � 64, flip angle = 75�,

slice thickness = 3.5 mm, slice gap = 1 mm. The Statistical Parametric

Mapping (SPM) software package (http://www.fil.ion.ucl.ac.uk/spm)

was used in data preprocessing. Five scans were excluded because of

steady-state magnetization effects. Functional images were motion

corrected and then spatially normalized into the standard Montreal

Neurological Institute (MNI) space. In spatial normalization, the data

were slightly resampled to 3 � 3 � 3 mm3, resulting in 53 � 63 � 46

voxels. Both the magnitude and phase images were spatially

smoothed with an 8 � 8 � 8 mm3 FWHM Gaussian kernel. The phase

images were first motion corrected using the transformations com-

puted from the magnitude data; next, complex division of the phase

data by the first time point reduced the need for phase unwrapping;

and spatial normalization of the phase images used the warp parame-

ters computed from the magnitude-only data. A total of 146 scans

(i.e., time points T = 146) and V = 62,336 in-brain voxels per subject

were entered into the ICA analysis. In addition to the complex-valued

fMRI data, both the magnitude and phase fMRI data are separately

used to verify the effectivity of the proposed method.

Second, we used resting-state, magnitude-only fMRI datasets

from the WU-Minn (Washington University, the University of Minne-

sota, and Oxford University) HCP consortium to verify our proposed

method. The detail information has been described in Essen et al.

(2013) and the reference manual of HCP 1200 Subjects release

(S1200 Release, February 2017). S1200 HCP subjects were collected

from young healthy adult twins and their non-twin siblings, in the age

range of 22–35 years. The first 40 subjects, as shown in Table 1, were

selected for testing the proposed method. The fMRI data

were scanned on a customized Siemens 3 T “Connectome Skyra” at

Washington University, using a standard 32-channel Siemens receive

head coil. The functional scan was acquired using gradient-echo EPI

imaging with the following parameters: TR = 720 ms, TE = 33.1 ms,

field of view = 208 � 180 mm, acquisition matrix = 104 � 90, flip

angle = 52�, slice thickness = 2.0 mm, multiband factor = 8, echo

spacing = 0.58 ms. The SPM software package was used in data pre-

processing. For each subject, the fMRI data were acquired in four

runs, two runs in one session and two in another session, with eyes

TABLE 1 The identification (ID) for
the 40 subjects used in our experiments.

Subject ID Subject ID Subject ID Subject ID

1 100206 11 102109 21 103515 31 106016

2 100307 12 102311 22 103818 32 106319

3 100408 13 102513 23 104012 33 106521

4 100610 14 102614 24 104416 34 106824

5 101006 15 102715 25 104820 35 107018

6 101107 16 102816 26 105014 36 107220

7 101309 17 103010 27 105115 37 107321

8 101410 18 103111 28 105216 38 107422

9 101915 19 103212 29 105620 39 107725

10 102008 20 103414 30 105923 40 108020

ZHANG ET AL. 5

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26471 by U
niversity O

f Jyväskylä L
ibrary, W

iley O
nline L

ibrary on [01/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.fil.ion.ucl.ac.uk/spm


open with relaxed fixation on a projected bright cross-hair on a dark

background (and presented in a darkened room). In this study, we

selected the run with oblique axial acquisitions alternated between

phase encoding in a left-to-right (LR) direction in the first session. The

functional images were motion corrected and spatially normalized into

the standard MNI space. Following spatial normalization, the data

were resampled to 3 � 3 � 3 mm3, resulting in 53 � 63 � 46 voxels.

The images were finally spatially smoothed with an 8 � 8 � 8 mm3

FWHM Gaussian kernel. A total of T = 1200 scans and V = 62,336

in-brain voxels per subject were entered into the ICA analysis.

2.2 | Methods

The mapping framework is shown in Figure 4. The input is a real-

valued ICA map (a magnitude/phase/magnitude-only map extracted

from magnitude/phase/magnitude-only fMRI data), and the output is

the mathematical SSP map. A mapping function is first learned and

then used to transform a processed ICA map into its corresponding

mathematical SSP map. The ICA map processing consists of polarity

correction and z-score normalization, as required by amplitude-based

thresholding, followed by denoising (square, smooth, root) to increase

the distribution similarity to the SSP map (super-Gaussian with high

percentage of large phase voxels, referring to Section 4.2). We select

a generalized Gaussian function to form the mapping function, and

estimate its shape and scale parameters using maximum likelihood

estimation (MLE), based on augmented voxels (symmetrically adding

negative values for each voxel) in the denoised ICA map. The ampli-

tude of mapping function is finally adjusted to [0, π] to generate the

mathematical SSP map. Below we provide the details of the proposed

method.

2.2.1 | Polarity correction and z-score normalization

Given observed phase or magnitude fMRI data from a single subject

Z�ℝT�V , where T is the total number of time points, and V is the

number of in-brain voxels. The model of ICA is Z=AS, where

S¼ snf g�ℝN�V and A¼ anf g�ℝT�N (n=1, …, N) include N pairs of

real-valued spatial and temporal components, and N is the model

order (i.e., the number of components). One can select an algorithm

such as Infomax (Bell & Sejnowski, 1995) to perform ICA on Z and

obtain N estimates of spatial components denoted as bs¼ bsnf g�ℝN�V .

We then select a component of interest using the maximum correla-

tion principle max corr bsn,srefð Þj jf g, where “corr” denotes the

correlation coefficient between two vectors, sref is the spatial refer-

ence for the component of interest. The mostly used spatial refer-

ences are the resting state networks obtained in Allen et al. (2011)

and Smith et al. (2009).

Assuming bs denotes the spatial component of interest (i.e., the

real-valued ICA map in Figure 4), its polarity may invert activations

(negative) and noise (positive) due to the sign ambiguity of ICA, result-

ing in the removal of all activations as insignificant voxels (z-

score< 0.5). Thus, we first correct the polarity of bs as follows:

bs¼ bs, if corr bs,srefð Þ≥0
�bs, otherwise

�
: ð2Þ

Z-score normalization is performed for the polarity corrected

component bs as follows:

s¼bs�mean bsð Þ
std bsð Þ , ð3Þ

where “mean” and “std” denote the mean and standard deviation ofbs, respectively.

2.2.2 | Denoising via squaring, smoothing and
rooting

Next, we denoise the polarity corrected and z-score normalized ICA

map s to increase the number of large phase voxels to remove as

many noisy voxels as possible, that is, to have similar super-Gaussian

distribution to the SSP map. We propose to incorporate squaring and

rooting into spatial smoothing to improve the denoising. The squaring

is used to widen the amplitude gap between signal and noisy voxels

by enhancing the continuity of larger activations, and the rooting

together with spatial smoothing incorporates this merit into the

denoised ICA map. As a result, the percentage of large phase voxels is

increased to largely remove noisy voxels.

The denoising for the polarity corrected and z-score normalized

ICA map is expressed as follows:

es¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smooth s2

� �r
, ð4Þ

F IGURE 4 The mapping
framework for generating
mathematical SSP map from a
real-valued ICA map.
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where “smooth” denotes the 3D spatial smoothing in a neighborhood

with a pre-defined full width at half-maximum (FWHM) Gaussian ker-

nel, and the voxels in the denoised ICA map es¼ esvf gVv¼1 are with posi-

tive values. When generating the mapping function, we need a

symmetrical distribution from es¼ esvf gVv¼1 with both positive and nega-

tive values. As such, we remove the minimum voxel value esv,min for

each voxel to eliminate the gap between the positive and sequentially

augmented negative values. Finally, es¼ esv-esv,minf gVv¼1 is used in the

next step.

2.2.3 | Distribution symmetrizing and mapping
function estimation

Similar to the fact that the ICA phase/magnitude maps exhibit the

super-Gaussian distribution (see Figures S1–S3), the SSP map also

exhibits a super-Gaussian distribution when representing the large

phase voxels as a whole via a sharp and strong peak (refer to

Figure 14). Thus, we select the generalized Gaussian function with

zero mean to form the mapping function as follows:

p x;βð Þ¼ β2
2β1Γ 1=β2ð Þ exp � jxj=β1ð Þβ2

� �
, ð5Þ

where β = [β1, β2]
T denotes the parameter vector of the function; β1

is the scale parameter, β2 is the shape parameter: β2 < 2 is super-

Gaussian, β2 = 2 is Gaussian, β2 > 2 is sub-Gaussian; and “Γ �ð Þ”
denotes Gamma function.

Given the augmented voxels of the denoised ICA map, that is,

s
_¼ -esv ,esvf gVv¼1 with symmetrical positive and negative values, we esti-

mate the shape and scale parameters of the mapping function using

MLE to avoid the choice of bin width for the least squares fitting of

the parametric model. Specifically, we estimate β= [β1, β2]
T by maxi-

mizing the logarithmic likelihood function of p s
_

v ;β
� 	

, v¼1,…,V based

on Nelder–Mead simplex method (Jeffrey et al., 1998) as follows:

βmle ¼ argmax
β

XV
v¼1

lnp s
_

v ;β
� 	

: ð6Þ

With the estimated βmle = [βmle,1, βmle,2], we obtain the mapping

function p x;βmleð Þ from (4).

Finally, we adjust the amplitude range of p x;βmleð Þ from

0,βmle,2= 2βmle,1Γ 1=βmle,2

� 	� �
 �
to [0, π] to match the absolute range of

SSP values. Let γ¼ βmle,2= 2βmle,1Γ 1=βmle,2

� 	� �
, we have the final map-

ping function as follows:

g x;βmleð Þ¼ πp x;βmleð Þ
γ

: ð7Þ

The mapping function transforms the value of a voxel in es into a

mathematical SSP value within [0, π]. Note that we use the range of

[0, π] instead of [�π, π], since the polarity of SSP is not explicitly uti-

lized in SSP denoising (Kuang, Lin, Gong, Cong, et al., 2017a; Yu

et al., 2015).

2.2.4 | Generation of mathematical SSP and
denoising

Given the mapping function g x;βmleð Þ estimated by (6), we can gener-

ate the mathematical SSP from a real-valued ICA map. As shown in

Figure 4, the input of the mapping function is es, which is obtained via

polarity correction, z-score normalization and denoising (square,

smooth, root). The output of the mapping function is the mathemati-

cal SSP map. Specifically, taking es as the input of the mapping func-

tion, the mathematical SSP (shortened as mSSP) is generated as

follows:

mSSP¼ g es;βmleð Þ, ð8Þ

where mSSP� 0,π½ �. Similar to the SSP denoising approach proposed

in Yu et al. (2015), a binary phase mask is generated based on the

phase change Δφ as follows:

BM¼ 1, if mSSP vð Þ� 0,Δφ½ �
0, otherwise

:

�
ð9Þ

Here the baseline phase is 0, and Δφ = π/4 is used as the fixed

phase change for the denoising. Then, we denoise s, i.e., the z-score

normalized component, using the binary mask as follows:

s¼ s ∘BM, ð10Þ

where “ ∘ ” means the Hadamard product, and s is the mathematical

SSP denoised component. A very low z-scores threshold 0.5 was

finally used to remove insignificant voxels from s.

2.2.5 | Parameter selection and performance
measures

We use the Infomax algorithm to perform real ICA of the magnitude/

phase/magnitude-only fMRI data with the default parameters pro-

vided by the GIFT toolbox (http://trendscenter.org/software/gift/).

This algorithm provides a good match to the super-Gaussian distribu-

tion of the ICA maps by using the sigmoid nonlinearity as the sore

function (Bell & Sejnowski, 1995; Calhoun & Adalı, 2012a, b;

McKeown et al., 1998). The model order is N = 20 for simulated data

and N = 80 for experimental data, that is, we separate a total of

N components from the fMRI data using ICA. We analyze C1–C7 for

simulated fMRI data and select a component of interest named as the

anterior cingulate cortex (ACC) for experimental fMRI data based on

the spatial reference network detected in Allen et al. (2011). The ACC

component was found to be a biomarker region for patients with

schizophrenia (Fletcher et al., 1999; Qiu et al., 2019) and can be found

in different model orders of ICA. We repeat the ICA separation

R = 10 times and estimate the best run using the principle of maxi-

mum correlation with the reference. We also select the FWHM

(i.e., FWHM = 8 � 8 � 8 mm3) used in the preprocessing of the simu-

lated and experimental fMRI data as a routine procedure.

ZHANG ET AL. 7
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To make relatively fair comparisons between the two denoising

approaches, namely, mathematical SSP denoising and amplitude-

based thresholding, we define three kinds of z-scores thresholds

within [0.5, 2.5] with an interval of 0.001 for amplitude-based thresh-

olding: (1) to minimize the difference number of total activation voxels

(i.e., similar Ѵtotal) in the two spatial components obtained by the two

denoising approaches, denoted as Zth1; (2) to minimize the difference

number of activation voxels within the component reference

(i.e., similar Ѵin), denoted as Zth2; and (3) to minimize the difference

number of activation voxels outside the component reference

(i.e., similar Ѵout), denoted as Zth3.

The denoised components by the two denoising methods are

evaluated using the following three kinds of indices: (1) the correlation

coefficients with the spatial reference for each subject, denoted as ρ,

and the mean of ρ over all subjects, denoted as ρ; (2) the number of

activated voxels for each subject in terms of the total voxels Ѵtotal, the

voxels inside the reference Ѵin (i.e., true positive voxels), the voxels

outside the reference Ѵout (i.e., false positive voxels), where

Ѵtotal=Ѵin+Ѵout, and the mean of Ѵin and Ѵout over all subjects,

denoted as Ѵ in and Ѵout; (3) the mean of relative differences in Ѵin or

Ѵout over all subjects between the two denoising methods with

respect to the Ѵin or Ѵout from amplitude-based thresholding (Ѵ),

denoted as ΔѴ/Ѵ; where ΔѴ/Ѵ>0 means that mathematical SSP

denoising detects (100ΔѴ/Ѵ)% more activated voxels than amplitude-

based thresholding, and vice versa.

3 | RESULTS

3.1 | Simulation results

3.1.1 | Single-subject performance

Figures 5 and 6 display DMN (C2) phase and magnitude maps

obtained by mathematical SSP denoising (shortened as phase

denoising) and amplitude-based thresholding (shortened as amplitude

thresholding) at Zth1, Zth2 and Zth3 from a single-subject simulated

fMRI data under CNR = �25 dB as an example. Subject 10 was spe-

cifically selected due to having a correlation coefficient close to the ρ

value for the phase and magnitude data, as shown in Figure 7. The

threshold for phase denoising was fixed as Δφ=π/4, while the

thresholds Zth1, Zth2 and Zth3 for amplitude thresholding were 1.8,

1.41, 2.18 for the phase data and 1.09, 0.88, 1.22 for the magnitude

data. From the results of phase data shown in Figure 5, we see that

phase denoising obtains much higher ρ value (0.80 vs. 0.68, 0.66,

0.68), and detects 33.91%–80.28% more Ѵin at Zth1 and Zth3 (2176

vs. 1625, 1207) as well as 69.87%–88.55% fewer Ѵout at Zth1 and Zth2

(238 vs. 790, 2078) than amplitude thresholding. These results are

reasonable when observing the phase mask shown in Figure 5c. It

contains more/fewer voxels inside/outside the ground truth (Ѵin:

2196 vs. 2176, Ѵout: 1390 vs. 2078) than the denoised DMN using

the lowest amplitude threshold (Zth2=1.41).

The results of magnitude data displayed in Figure 6 verify the

conclusion from the phase data. Although phase denoising achieves a

similar ρ value (0.92 vs. 0.90, 0.90, 0.91), it detects 7.45%–12.88%

more Ѵin at Zth1 and Zth3 (5362 vs. 4990, 4750) as well as 40.22%–

71.28% fewer Ѵout at Zth1 and Zth2 (556 vs. 930, 1936), compared

with amplitude thresholding. The phase mask shown in Figure 6c also

defines more BOLD-related voxels but fewer unwanted voxels (Ѵin:

5406 vs. 5363, Ѵout: 1011 vs. 1936) than the spatial map denoised by

amplitude thresholding at the lowest threshold (Zth2 = 0.88).

3.1.2 | Group-level performance

We compare phase denoising using Δφ = π/4 and amplitude thresh-

olding using Zth1, Zth2 and Zth3 at a group level, in terms of ρ, Ѵ in, Ѵout,

and ΔѴ/Ѵ. Figure 7 displays results averaged across C1–C7 estimated

from simulated phase and magnitude data under different CNRs. We

observe that phase denoising yields higher ρ values, more Ѵ in, but less

F IGURE 5 A comparison of DMN (C2) phase maps obtained by (a) phase denoising and (b) amplitude thresholding at (1) Zth1, (2) Zth2, and
(3) Zth3 from the phase of single-subject simulated fMRI data under CNR = �25 dB. The binary phase mask generated with Δφ = π/4 is shown in
(c). The correlation coefficients (ρ) of the denoised DMN with the ground truth component and the number of the total voxels (Ѵtotal), the voxels
inside (Ѵin) and outside (Ѵout) the ground truth component are also shown.
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Ѵout than amplitude thresholding for both phase and magnitude data,

especially for the lower CNRs (CNRs≤�5dB). For the phase data,

phase denoising obtains 0.06%–30.31% and 0.08%–67.10% more Ѵ in

(ΔѴ/Ѵ> 0) than amplitude thresholding at Zth1 and Zth3, and 0.69%–

67.78% and 9.85%–90.40% fewer Ѵout (ΔѴ/Ѵ<0) than amplitude

thresholding at Zth1 and Zth2. The results on the magnitude data are

similar to those from the phase data, except that the performance of

phase denoising becomes close to amplitude thresholding at higher

CNRs (CNRs>�15dB), since the magnitude maps were less noisy in

these cases.

F IGURE 6 A comparison of DMN (C2) magnitude maps obtained by (a) phase denoising and (b) amplitude thresholding at (1) Zth1, (2) Zth2, and
(3) Zth3 from the magnitude of single-subject simulated fMRI data under CNR = �25 dB. The binary phase mask generated with Δφ = π/4 is
shown in (c). The correlation coefficients (ρ) of the denoised DMN with the ground truth component and the number of the total voxels (Ѵtotal),
the voxels inside (Ѵin) and outside (Ѵout) the ground truth component are also shown.

(a)

(b)

F IGURE 7 A comparison of ρ, Vin, Vout and ΔѴ/Ѵ averaged over C1–C7 obtained by phase denoising and amplitude thresholding at Zth1, Zth2,
and Zth3 from (a) phase and (b) magnitude simulated fMRI data of all subjects under CNRs=�25, �20, �15, �10, �5dB. When ΔѴ/Ѵ>0, phase
denoising detects (100ΔѴ/Ѵ)% more activated voxels than amplitude thresholding, and vice versa.

ZHANG ET AL. 9
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3.2 | Experimental results

3.2.1 | Complex-valued fMRI data from UNM

Figure 8 displays the ACC component obtained by phase denoising

(Δφ = π/4) and amplitude thresholding at Zth1, Zth2 and Zth3 (1.39,

1.08, 1.43) from a single-subject phase fMRI data. Subject 30 was

selected to have a correlation coefficient close to the ρ value, as

shown in Figure 11. We can see that phase denoising yields a similar ρ

value (0.30 vs. 0.27, 0.28, 0.27), but detects 23.11%–27.23% more Ѵin

at Zth1 and Zth3 (911 vs. 740, 716) and 7.50%–44.99% fewer Ѵout at

Zth1 and Zth2 (2096 vs. 2266, 3810), compared to amplitude threshold-

ing. The phase mask shown in Figure 8c contains more BOLD-related

voxels both within and outside the spatial reference (Ѵin: 1079

vs. 911, Ѵout: 5177 vs. 3810) than the denoised component using the

lowest threshold (Zth2=1.08), supporting the advantages of phase

denoising over amplitude denoising. Another thing worth noting is

that the phase mask defines BOLD-related voxels in terms of the

source phase, which is completely different from the amplitude.

When verifying our proposed phase denoising to the magnitude

of the complex-valued fMRI data, as shown in Figure 9, the results are

similar to those of the phase data. The ACC components were

selected from Subject 32 due to a close correlation coefficient to the

ρ value (see Figure 11). Phase denoising obtains a similar ρ value to

amplitude thresholding at Zth1=0.94, Zth2=0.76 and Zth3=0.98

(0.67 vs. 0.66, 0.66, 0.66), but detects more Ѵin and fewer Ѵout than

amplitude thresholding. Specifically, phase denoising detects 10.12%–

12.55% more Ѵin at Zth1 and Zth3 (2143 vs. 1946, 1904) and 6.31%–

34.10% fewer Ѵout at Zth1 and Zth2 (2970 vs. 3170, 4507) than ampli-

tude thresholding. The phase mask shown in Figure 9c also defines

more BOLD-related voxels than amplitude thresholding at the lowest

threshold (Zth2=0.76) both within and outside the spatial reference

(Ѵin: 2215 vs. 2143, Ѵout: 5669 vs. 4507). In addition, we provide

denoising results of Subject 30 (magnitude data) and Subject 32 (phase

data) supplementary to those in Figures 8 and 9 in Figures S4 and S5

for consistency. All the results verify the suitability of the mathemati-

cal SSP for denoising magnitude-only components.

To verify the mapping framework shown in Figure 2, we also

incorporate the “true” SSP map, the SSP mask and the SSP-

denoised magnitude map from the complex-valued fMRI data into

Figure 9 as references. This SSP-denoised magnitude map should be

similar to but more intact than the magnitude map from the magni-

tude data of complex-valued fMRI (Figure 9a), due to incorporation

of additional activations from the phase data. As expected, the acti-

vation regions in the magnitude map, phase mask and mSSP map

from the magnitude data (Figure 9a,c,d) are much similar to but

smaller than their corresponding references from the complex-

valued fMRI data (top row of Figure 9). The overlapping rate is 70%

between the masks of mSSP and SSP, and 89.24% between the

magnitude maps denoised by mSSP and SSP. By contrast, the three

magnitude maps denoised by amplitude thresholding have decreas-

ing overlapping rates (74.45%–83.34%) with the SSP-denoised mag-

nitude map. These results verify the feasibility of the proposed

method.

3.2.2 | Magnitude-only fMRI data from HCP

Figure 10 shows comparison of phase denoising and amplitude

thresholding for denoising the ACC components estimated from the

magnitude-only HCP datasets. The single subject was selected as Sub-

ject 34 with a correlation coefficient close to the ρ value shown in

Figure 11. These results extend those presented in Figures 8 and 9.

Phase denoising and amplitude thresholding at Zth1=1.11, Zth2=0.68

and Zth3=1.17 obtain similar ρ values (0.61 vs. 0.58, 0.57, 0.58), as

displayed in Figure 10a,b. The differences exist for the number of the

detected voxels. Phase denoising detects 20.83%–24.47% more Ѵin at

Zth1 and Zth3 (1816 vs. 1503, 1459) as well as 10.54%–60.83% fewer

Ѵout at Zth1 and Zth2 (2639 vs. 2950, 6737) than amplitude threshold-

ing. As expected, the phase mask shown in Figure 10c defines more

F IGURE 8 A comparison of
the ACC components obtained by
(a) phase denoising and
(b) amplitude thresholding at
(1) Zth1, (2) Zth2, and (3) Zth3 from
the phase of a single-subject
complex-valued UNM data. The
binary phase mask generated with
Δφ = π/4 is shown in (c). The
correlation coefficients (ρ) of the
denoised ACC components with
the spatial reference and the
number of the total voxels (Ѵtotal),
the voxels inside (Ѵin) and outside
(Ѵout) the spatial reference are
also shown.
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F IGURE 9 A comparison of the ACC components obtained by (a) phase denoising and (b) amplitude thresholding at (1) Zth1, (2) Zth2, and
(3) Zth3 from the magnitude of a single-subject complex-valued UNM data. The binary phase mask generated with Δφ = π/4 is shown in (c), and
the generated mathematical SSP (mSSP) is displayed in (d). The top row (from right to left) shows the “true” SSP map, the SSP mask and the SSP-
denoised magnitude map from the complex-valued fMRI data. The correlation coefficients (ρ) of the denoised ACC components with the spatial
reference and the number of the total voxels (Ѵtotal), the voxels inside (Ѵin) and outside (Ѵout) the spatial reference are also shown.

F IGURE 10 A comparison of
the ACC components obtained by
(a) phase denoising and
(b) amplitude thresholding at
(1) Zth1, (2) Zth2, and (3) Zth3 from
a single-subject magnitude-only
HCP data. The binary phase mask
generated with Δφ = π/4 is
shown in (c). The correlation
coefficients (ρ) of the denoised
ACC components with the spatial
reference and the number of the
total voxels (Ѵtotal), the voxels
inside (Ѵin) and outside (Ѵout) the

spatial reference are also shown.

ZHANG ET AL. 11

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26471 by U
niversity O

f Jyväskylä L
ibrary, W

iley O
nline L

ibrary on [01/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOLD-related voxels within the spatial reference than amplitude

thresholding at the lowest threshold (Zth2=0.68), while defines less

outside the spatial reference (Ѵin: 2066 vs. 1816, Ѵout: 5484 vs. 6737).

3.2.3 | Group-level performance

Phase denoising also exhibits better performance than amplitude

thresholding at a group level in terms of ρ, Ѵ in, Ѵout, and ΔѴ/Ѵ.

Figure 11 shows the results from the complex-valued fMRI data

(phase and magnitude) and the magnitude-only HCP data. We see

that phase denoising yields slightly higher ρ values, more Ѵ in, and

less Ѵout, compared with amplitude thresholding at Zth1, Zth2 and

Zth3. In addition, we observe that, for the three kinds of fMRI data,

phase denoising detects 13.22%–16.27% and 15.49%–19.80% more

Ѵ in (ΔѴ/Ѵ>0) than amplitude thresholding at Zth1 and Zth3, and

3.76%–11.86% and 28.72%–55.69% fewer Ѵout (ΔѴ/Ѵ< 0) than

amplitude thresholding at Zth1 and Zth2. These group-level results

highlight the benefit of phase denoising over amplitude thresholding

in retaining more BOLD-related voxels while removing more

noisy voxels, when denoising the magnitude/magnitude-only ICA

spatial maps.

We select the ACC component at N = 80 as an example to show

the superiority of phase denoising over amplitude thresholding. Simi-

lar results can be obtained for other ICA networks such as VIS, DMN,

MOT and AUD at different model orders. Figure 12 shows the aver-

aged results of ρ, Ѵ in, Ѵout, and ΔѴ/Ѵ for VIS, DMN, MOT and AUD

obtained from the HCP data with model orders N=40, 80 and 120.

The spatial references for selecting the four components are from

Smith et al., 2009 (Zth=1). As expected, phase denoising yields higher

ρ values, more Ѵ in, and less Ѵout, compared with amplitude threshold-

ing at Zth1, Zth2 and Zth3 for all four components at three model orders.

In terms of ΔѴ/Ѵ, phase denoising detects 10.52%–15.05% and

15.80%–21.43% more Ѵ in, as well as 11.26%–20.66% and 34.51%–

56.76% fewer Ѵout than amplitude thresholding at Zth1, Zth3 and Zth1,

Zth2, respectively.

F IGURE 11 A comparison of ρ, Vin, Vout and ΔѴ/Ѵ for the ACC components obtained by phase denoising and amplitude thresholding at Zth1,
Zth2, and Zth3 from the three experimental fMRI datasets consisting of the phase and magnitude of the complex-valued UNM data and the
magnitude-only HCP data.

F IGURE 12 A comparison of ρ, Vin, Vout and ΔѴ/Ѵ averaged across VIS, DMN, MOT, and AUD estimated from the HCP data at three
different model orders N=40, 80, and 120 and denoised by phase denoising and amplitude thresholding at Zth1, Zth2, and Zth3.
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4 | DISCUSSION

4.1 | Effect of a very low z-score threshold

It is not an easy thing to define an objective threshold to remove

noisy voxels within a component in the analysis of magnitude-only

fMRI data. Previously reported z-score thresholds are often different

in different analyses (e.g., Zth = 1–3), and usually larger than

1 (Brookes et al., 2011; Calhoun, Adalı, Pearlson, et al., 2001b; Cal-

houn & de Lacy, 2017; Correa et al., 2005; Damoiseaux et al., 2007;

Jung et al., 2001; Kuang, Lin, Gong, Cong, et al., 2017a; Li

et al., 2007; Schwartz et al., 2019; Sui et al., 2012; Yu et al., 2015).

By contrast, mSSP denoising uses a fixed phase change (π/4) to

remove the unwanted voxels, followed by further removal of the

noisy voxels with a very low z-score threshold (i.e., Zth = 0.5). Note

such a low z-score threshold is not acceptable for amplitude-based

thresholding, as shown in Figure 13. A large amount of noisy voxels

appear in the component when using Zth = 0.5, though the correla-

tion coefficients are almost the same as those displayed in

Figures 8–10. The results in Figure 13 suggest similar fingerprint

capacity of mSSP to SSP in identifying unwanted voxels from BOLD-

related voxels, and demonstrate the risk of denoising the brain net-

works relying only on the voxel amplitude. Note the improvement of

the proposed method can increase when using a higher z-score

threshold such as Zth = 2.5 for amplitude-based thresholding. In this

case, the number of voxels may significantly decrease for both

BOLD-related and unwanted voxels, resulting in the missing of the

BOLD-related activations.

4.2 | Effect of denoising (square, smooth, root)

Referring to the mapping framework shown in Figure 4, the similar

super-Gaussian distributions to complex SSP were indeed obtained by

denoising the normalized ICA map using squaring, smoothing and

rooting. Figure 14 shows distributions of the phase maps before

and after denoising, and the reorganized and original distribution of

complex SSP maps from simulated and experimental fMRI data. It can

be seen that the denoised phase maps had more similar distributions

to the complex-SSP maps for both datasets. As a result, the denoising

increases the number of large phase voxels to remove as many noisy

voxels as possible.

In addition, we define the percentage of large phase voxels

(PoLPV) at Δφ = π/4 to further evaluate the mapping framework as

follows:

PoLPV π=4ð Þ¼ Vtotal�V0-π=4
� 	

Vtotal
, ð11Þ

where V0-π=4 is the number of voxels with absolute phase values

within [0, π/4], and the large phase denotes the phase values larger

than π/4 for mSSP of a real-valued ICA map or for absolute SSP of a

F IGURE 13 A comparison of
the ACC components obtained by
(a) phase denoising and
(b) amplitude thresholding at
Zth = 0.5 from (a) the phase and
(b) the magnitude of single-
subject complex-valued UNM
data shown in Figures 8 and 9,
and (c) single-subject magnitude-
only HCP data shown in
Figure 10. The correlation
coefficients (ρ) with the spatial
reference and the number of the
total voxels (Ѵtotal), the voxels
inside (Ѵin) and outside (Ѵout) the
spatial reference are also shown.
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(a) (b)

F IGURE 15 A comparison of the percentage of large phase voxels (PoLPV) larger than π/4 computed by CDF strategy and mSSP values for
normalized and denoised (square, smooth, root) ICA maps from (a) simulated and (b) experimental fMRI data. The results in (a) are averaged across
C1–C7 maps extracted from simulated phase and magnitude data of all subjects under five CNRs, and the results in (b) are averaged across ACC
maps extracted from the phase and magnitude of complex-valued UNM data and the magnitude-only HCP data of all subjects.

(a)

(b)

F IGURE 14 The effect of denoising (square, smooth, root) on the distribution of the normalized phase maps from (a) simulated and
(b) experimental fMRI data. (1) Phase map before and after denoising. (2) Complex SSP map reorganized by representing the large phase
voxels as a whole (left) and the original one (right). For complex SSP map, high bar in dark blue corresponds to unwanted voxels (outside
[�π/4, π/4]) while the other bars in light blue correspond to BOLD-related voxels (within [�π/4, π/4]). A Gaussian distribution is shown as a
reference.
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complex-valued ICA map. Given the mapping function g x;βmleð Þ, we

can also compute PoLPV(π/4) using the cumulative distribution func-

tion (CDF) strategy as follows:

PoLPV π=4ð Þ¼

ð∞
0
g x;βmleð Þdx�

ð∞
gπ=4

g xð ;βmleÞdx
( )

ð∞
0
g x;βmleð Þdx

, ð12Þ

where gπ=4 denotes the x value for g x;βmleð Þ¼ π=4, and we indeed use

the right half of the mapping function g x;βmleð Þ, as shown in Figure 4.

As such, we can verify the effects of denoising (square, smooth,

root) in terms of PoLPV (π/4) computed in two ways: (1) experimental

computation using Equation (11); (2) theoretical strategy based on

CDF using Equation (12) based on the mSSP values obtained from

both simulated and experimental fMRI data. Figure 15 displays the

results from the CDF strategy and the mSSP values. We see that

the denoising (square, smooth, root) consistently enables the increase

of PoLPV, and the PoLPV increase in the mSSP values is higher than

that in the CDF values, demonstrating the good performance of mSSP

denoising for real-valued ICA maps.

4.3 | Limitations and future work

Although we can detect much more additional activations from the

complex-valued fMRI data than from the magnitude-only fMRI data

using SSP denoising (Yu et al., 2015), this may not be true by mSSP

denoising because of the use of the same fMRI datasets. The mSSP,

however, can locate more different BOLD-related voxels both within

and outside the spatial reference than the amplitude. The difference is

actually derived from the denoising (square, smooth, root) on the real-

valued component to match the super-Gaussian distributions of com-

plex SSP, which simultaneously strengthens the amplitude difference

between the signal and noisy voxels. As a result, the mSSP achieves sim-

ilar fingerprint capacity to SSP in terms of detecting more BOLD-related

voxels and fewer unwanted voxels than amplitude-based thresholding

at moderate z-score thresholds (e.g., Zth1, Zth2, Zth3), as shown in

Figures 8–10. Note the amplitude-based thresholding can be improved

by using spatial smoothing of the ICA brain networks, but this also leads

to the problem of selecting a proper amplitude-based threshold. A phase

change unrelated to the amplitude could provide a simple yet effective

way for denoising magnitude maps in ICA of fMRI datasets with differ-

ent signal-to-noise levels. In the future, the differences between mathe-

matical SSP denoising and amplitude-based thresholding can be further

investigated by analyzing the magnitude-only fMRI data from patients

with mental disorders for improved prediction accuracy.

5 | CONCLUSION

In this study, we propose a mapping framework to generate mathe-

matical SSP (mSSP) for a real-valued ICA brain network based on

the assumption that the phase map has a similar distribution with

the SSP map from the same component. The resting-state complex-

valued simulated fMRI data and two kinds of experimental fMRI

datasets, consisting of an 82-subject complex-valued datasets and

a 40-subject magnitude-only HCP datasets, were used to evaluate

the proposed method. The results show that mSSP denoising can

detect more BOLD-related voxels and fewer unwanted voxels,

compared with amplitude-based thresholding. Since the parameter

selection is minimized in the mapping function estimation, mSSP

denoising is a simple yet effective alternative to amplitude-based

thresholding in denoising the ICA derived brain networks from

magnitude-only fMRI data using a fixed mathematical phase

change.
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