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ABSTRACT: Understanding hydrogen adsorption on metal nanoparticles is a key
prerequisite for designing efficient electrocatalysts for water splitting and the
hydrogen evolution reaction. However, this seemingly simple elementary reaction
step is affected by several factors arising from the chemical environment at the
catalyst, and deciphering the most important contributions to optimal interactions
requires numerically heavy electronic structure calculations. Here, we combine
graph-based representations of the local atomic environment of hydrogen in
copper- and palladium-doped 25-atom gold nanoparticles with several kernel-
based machine learning (ML) methods to predict the interaction energy between
hydrogen and the nanoparticle catalyst. We demonstrate that simple distance-
based kernel models are able to predict the interaction energy within 0.1 eV when trained by reference data from state-of-the-art
density functional theory calculations. Analyzing the model performance with respect to attributes of the hydrogen node highlights
the locality of hydrogen adsorption. This implies the viability of combining graphs with kernel-based ML models for studying
hydrogen chemisorption in complex environment data efficiently.

1. INTRODUCTION
The ever-increasing energy demand of the society and the
awareness on environmental issues are increasing the interest
toward clean energy. Wind, wave, and solar power are good
renewable energy sources to produce electricity, but the
storage and usage as a fuel are still a challenge. Hydrogen is a
strong alternative to solving some of these problems. The
production of hydrogen relies on water splitting associated
with hydrogen evolution reactions (HERs) and oxygen
evolution reactions (OERs), both requiring suitable cata-
lysts.1,2 The former is the main motivation of this study. In
order to design better catalysts for any reaction, one has to
understand the reaction mechanisms and the factors of
catalytic activity. Various computational methods are irreplace-
able tools to probe these properties.3 Increased computational
power and data storage have enabled the increase of machine
learning (ML)-based studies on catalysis.4−8 ML methods can
be used to mine underlying dependencies from either
experimental or computational data in order to create models
for screening catalytic materials,9 finding binding sites,10 or
creating ML force fields to run dynamic simulations.11

One class of materials, with promising catalytic properties on
HER and OER, are provided with atomically precise metal
nanoparticles, also called monolayer protected clusters
(MPCs).12−17 MPCs are nanoparticles, which consist of a
metallic core, an organic ligand layer, and an interface structure

between.18 By controlling the metallic composition and
protecting ligands, one can tailor the properties of the MPCs
for given tasks.18−22 MPCs are challenging systems to any
computational method due to their chemical complexity.
However, they have also been studied on several occasions by
ML methods. The metal−ligand interface structures have been
predicted with a rule-based method,23 and positions of the
hydrides have been estimated with neural networks.24,25 Deep
learning methods have been utilized to predict from
experimental settings whether gold MPCs are formed and to
analyze determining factors of the synthesis.26 Distance-based
ML methods have been proven to be able to create realistic
potentials.27,28 Support vector machines have been utilized to
evaluate the fluorescence properties of MPCs,29,30 and recently
convolutional neural networks have been able to detect
features in UV−vis spectra of mixtures of different sized
thiolate protected clusters.31

In this study, we utilized four different kernel-based ML
methods, minimal learning machine (MLM),32,33 extreme
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minimal learning machine (EMLM),34,35 kernelized ridge
regression (KRR),36,37 and learning kernel ridge regression
(LKRR),38 to predict hydrogen interaction energies on
[MxAu25−x(SCH3)18 + H]q (M ∈ {Pd, Cu}, x ∈ {0, 1} and
q ∈ [−2, 2]) systems. In the notation, “+H” denotes the
adsorbed hydrogen atom on the nanoparticle. These systems
have been experimentally shown to have catalytic activity in
HER14 and they have been studied extensively with density
functional theory (DFT),17,39 which offers the data for this
study. The motivation is to construct a framework that could
reliably predict interaction energies and thus could be later
used to find possible catalytic sites on MPCs. At the same time,
we compared ML methods with varying complexities from a
single “method family”, offering a fair comparison of their
performance. Artificial neural networks (ANNs) are also a
popular method choice in catalysis studies,6,40−43 but in order
to ensure the optimal performance, ANNs often require at least
tens of thousands of data points. When data is limited, which is
a common situation in catalysis research, kernel-based methods
are oftentimes more reliable than ANNs. From kernel-based
methods, Gaussian processes, KRR, and support vector
machine are commonly used.41,44,45

Our graph-based representation approach is inspired by the
works of Xu et al., who predicted the binding of molecules on
metal surfaces,44 and Cha et al., where graph features were
used to estimate protein interactions.46 We combine similar
graph representation ideas with several kernel-based ML
methods not only to predict the interaction energies but also
to enable further analysis of the relevant properties dictating
the nanoparticle−hydrogen interactions. In addition to features
connected to the system geometry and atom types, the
methodology also addresses the charge state of the system,
which is a crucial parameter for electrocatalysis. Our best
models reached a cross-validation RMSE of below 0.1 eV, the
stability of which was confirmed by separate validation. The
analysis of the multikernel method LKRR revealed the relative
importance of data features, which provides interpretability for
acquiring chemical knowledge about catalytic systems.

2. THEORETICAL METHODS
In this section, we present our data set and depict the graph
representation and ML methods used in the study. We
represented the nanoparticle−hydrogen catalytic systems as
graphs, which were used to store properties and form
connections between the parts of the system. The continuous
Weisfeiler−Lehman (WL)47,48 scheme was applied to
propagate data around the system/graph controlling the
range of the interaction information. This updated information
was used as an input for the ML methods.
2.1. System and Data. The data used in this work

originates from an extensive set of DFT calculations by Loṕez-
Estrada et al.17,39 for simulating the interaction of hydrogen
with the atomically precise nanoparticle [Au25(SR)18]−. The
atomic system has a known crystal structure,49,50 but a
simplified ligand structure (methylthiolate) was used as a
model thiolate ligand (see Figure 1a). The figure also
schematically shows possible atom sites for metal exchange
from Au to Pd or Cu (metal doping) and the sites of hydrogen
adsorption.
The DFT calculations in refs 17,39 were run on a real-space

grid-based DFT code GPAW51,52 with the GGA-PBE func-
tional53 and continuum solvation model.54 From the DFT

data, we evaluated the nanoparticle−hydrogen interaction
energy as

= +E E E E(MPC H) (MPC)
1
2

(H )int 2 (1)

where E(MPC + H) is the energy of the nanoparticle with
adsorbed hydrogen, E(MPC) is the energy of the optimized
nanoparticle, and E(H2) is the energy of the hydrogen
molecule.
In the DFT calculations, a hydrogen atom was initially

placed in the vicinity of the desired binding site, and the whole
system was optimized until the hydrogen atom was bound to
the nanoparticle. These optimization trajectories (atomic
structure vs total energy) served as our data set containing
in total 3994 configurations, of which 655 structures contained

Figure 1. Studied system, graph representation, and DFT data. (a)
Visualization of the [MxAu25−x(SCH3)18 + H]q (M ∈ {Pd, Cu}, x ∈
{0, 1} and q ∈ [−2, 2]) system, where different metal doping and
hydrogen adsorption sites are highlighted. Orange: gold; yellow:
sulfur; turquoise: carbon; white: methyl hydrogen. Violet-tinted gold
atoms point to the example dopant location types. Three green
spheres show examples of H adsorption sites. (b) A graph
representing the nanoparticle and an adsorbed hydrogen atom.
Orange: gold (or other metal atoms); yellow: sulfur; blue: methyl;
green: adsorbed hydrogen. (c) Distribution of DFT data points based
on the total charge q of the system. (d) Distribution of DFT data
points based on the nanoparticle−hydrogen interaction energy Eint.
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only gold atoms in the nanoparticle, 2446 systems had one Au
changed to Cu, and 893 systems included the change of one
Au to Pd atom. The nanoparticle may also have a total charge
in the range of −2 ≤ q ≤ 2 as follows: 807 systems with −2,
810 with −1, 705 with +1, and 929 with +2 charge and 743
neutral systems. The distributions of the data with respect to
the metal content, total charge, and Eint are shown in Figure
1c,d.
2.2. Graph Representation of the Nanoparticle−

Hydrogen System and Continuous Weisfeiler−Lehman
Scheme. The nanoparticle−hydrogen systems were repre-
sented as graphs based on their atomistic structure. Au, Cu, Pd,
and S atoms as well as methyl (CH3) groups were considered
the nodes of the graph. The nodes were connected via edges if
they were within the cutoff radii listed in Supporting
Information Table S1. The cutoff radii were selected such
that every node was connected to at least one neighboring
node. A visualization of the graph is shown in Figure 1b. Every
node had a set of attributes, which contains geometric, graph
theoretical, and tabulated properties, hence termed GGT
features (geometry, graph, tabulated).
As the geometric features, we used the minimum

inaccessible radius,55 accessible shell volume,55 and Osipov−
Pickup−Dunmur chirality indices,56 calculated with five and
seven nearest neighbors. The graph theoretical features were
Ollivier−Ricci and Forman−Ricci curvatures,57−60 multifractal
dimensionality (also called the “box-counting dimension”),61

and Gaussian network mode square sums62,63 (for further
details, see Supporting Information Sections 1.2−1.6). The
tabulated features contained atomic numbers, masses, covalent
radii, and electronic configurations. The electronic config-
uration is listed as electron occupations in shells (3d, 4s, 4p,
4d, 5s, 5p, 6s, 4f, 5d). The electronic configuration further
distinguished Au, Pd, and Cu atoms from each other.
Graphs and graph kernels could be used directly to represent

the MPCs.64 However, chemical intuition implies that
hydrogen adsorption is a “local” chemical event, modifying
atomistic interactions only in the vicinity of the adsorption site.
Therefore, we utilized the graph structure in the context of the
Weisfeiler−Lehman (WL) scheme47 in its continuous form,48

collecting the relevant information on the graph node
representing the adsorbed hydrogen atom. As shown in ref
65, the WL scheme is at least as good in separating the
nonisomorphic graphs as the popular graph neural network
architectures.
We start with a graph g containing nodes (vertexes) v. Every

node v has the initial attribute a0(v), composed of the GGT
features as described above. In the WL scheme, the node
attributes are updated iteratively as

i

k
jjjjjjj

y

{
zzzzzzz= ++a v a v

v
w v u a u( )

1
2

( )
1

deg( )
( , ) ( )i i

u v

i1

( ) (2)

where the superscript i refers to the WL iteration in question.
Notation deg(v) tells the degree of the node v, and v( )
denotes the neighboring nodes of the v. Weights w(v, u) for
edges connecting nodes v and u are set here to unity. The final
node attributes are collections of h WL iterations, afinal(v) =
[a0(v), a1(v), ···, ah−1(v), ah(v)], where a0(v) are the initial
attribute values. Here, we use the notation WL-i to indicate the
attributes from the ith WL update, and WL-i-j denotes the
collection of attributes from ith up to the jth update (i, j ∈ [0,

h]). In this study, the updated hydrogen node attributes serve
as the input to ML methods.
Aside from the chemical intuition, our approach is motivated

also by the previous works by Jag̈er et al., who showed that the
local descriptors are more suitable for prediction of the
hydrogen adsorption events than the global descriptors,66 and
by Xu et al., who used the WL scheme to predict binding
energies of molecules on metal surfaces.44 The work by Linja
et al. also stressed the importance of selecting only the most
useful features/variables to optimize the performance and
accuracy of the ML models,35 thus supporting the idea of using
only the most important node of the graph.
2.3. Extreme Minimal Learning Machine and Kernel

Ridge Regression. EMLM and KRR share the same
prediction model structure, but EMLM uses an Euclidean
distance kernel, while KRR can use any kernel. In this study,
we use both EMLM and KRR derived in a similar manner as
presented by Kar̈kkaïnen.34 The input data is contained in a
vector = { }=

×X xi i
N N n

1
x, and the corresponding output

data is in = { }=
×Y yi i

N N n
1

y. From X, we sample M

reference points into = { } =
×Q q j j

m M n
1

x. For every ML
method in this study, we used the RS-maximin method33,67 to
sample the reference points. RS-maximin picks the data point
closest to the mean as an initial reference, and then the
following points are required to maximize the Euclidean
distances to the previously selected ones. This forms an even
sampling over the data set. The training of the EMLM and
KRR is done via regularized least-squares as

= | |

+ | |

=

= =

×
J

N

M
W

W d W ymin ( )
1

2

2

i

N

i
T

i
T

i

K

j

n

ij

W 1

2

1 1

2

M ny

y

(3)

Here, di
M is a vector containing kernel values between

the ith input and every M reference. The aim is to find the
optimal weight matrix ×W M ny, which minimizes the
prediction error and satisfies the regularization determined by
the parameter β. Equation 3 can be solved by writing it in the
matrix form and finding the zero of the first derivative. Hence

+ =
N K

D DW Y W1
( ) 0T

(4)

i
k
jjj y

{
zzz+ =

K
D D I W D YT T

(5)

which is straightforward to calculate numerically. The
prediction for output p is calculated as pT = dTW. In this
study, we use the kernel function of type 1/r

=
| | +

a
a

x x
x x

( , , )
1

11 2
2 1 (6)

for KRR. The parameter a was decided during the cross-
validation. EMLM uses the Euclidean distance as a kernel
function.
2.4. Learning Kernel Ridge Regression. When using

multiple kernels in a kernel-based ML method, there are many
choices for a base learner.68 In this study, we used the KRR-
based method developed by Cortes et al.38 This, so-called
learning kernel ridge regression (LKRR), can be derived
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similarly to a normal KRR. We include a detailed derivation in
the Supporting Information Section 2.1. For the sake of
understanding the parameters of the method, it is enough to
consider the following equation

i
k
jjjjjj

y
{
zzzzzz+ = = +

| |=

v
G I Y

v
, where

i

N

i i i i
i

1
0,

k

(7)

which is used iteratively to solve Lagrangian multipliers in the
vector α ∈ RN×ny. N is the number of training data points, and
Nk is the number of kernel functions. Y contains the expected
outputs, as before. Gi ∈ RN×N is a Gram matrix, which contains
all of the dot products between training data points projected
into the ith kernel space. The elements of vector v ∈ RNk are
defined as vi = αTGiα. The μ0 vector is a base combination
vector, the values of which are parameters, β is the model
regularization, and Λ is a sensitivity parameter for kernel
weighting. The kernel weights μi are learned during the
training process. The final weight matrix is calculated as

i

k
jjjjjjj

y

{
zzzzzzz=

= =
W x( )

i

N

i
j

N

j j i
1 1

k

(8)

The output is predicted as p = [∑j=1
Nk μjϕj(x)]T W. We used the

same 1/r-type kernel for the LKRR as shown in eq 6.
During testing, we observed that the LKRR method has a

tendency to contain a linear displacement. Hence, we added a
linear correction at the end of the training. When the model
weight matrix W and kernel weighting μ are solved, we predict
the outputs for the training data and make a linear correction
of form y = s·p + c, where y is the expected result, p is a model
prediction, and s and c are the slope and the constant,
respectively. Everything is done based on the training data.
The linear correction is discussed in the Supporting
Information Section 2.2.
2.5. Minimal Learning Machine. The minimal learning

machine (MLM), presented originally by de Souza et al.32 and
thoroughly formalized in reference,33 differs from EMLM,
KRR, and LKRR by its fundamental way of forming
predictions. The MLM contains reference points from both
input and output spaces, and it forms a regression between
input and output space distances (similarities) with respect to
reference points. The starting point is exactly the same as for
EMLM and KRR but one has also the output space reference
points = { } =

×T tj j
M M n

1
y. The aim is to form a regression

between distance (similarity) spaces as

= +D D Bout in (9)

Here, ×D N M
in contains the kernel values between

training data and reference points in the input space.
×D N M

out contains similarity measures in the output
space. We used the Euclidean distance as a kernel function
the same way as in an original MLM. The residue ϵ is assumed
to be small. According to de Souza et al., the weight matrix

×B M M is solved as32

=B D D D D( )T T
in in

1
in out (10)

The output prediction is done in two parts. First, the output
space distances are predicted from the input space distances in
the same way as in eq 9. The output is solved from a

multilateration problem discussed in the Supporting Informa-
tion Section 3.

3. RESULTS AND DISCUSSION
In this section, we present how data was processed and the
main findings for our ML methods. The performance was
determined via a 5-fold cross-validation and separate
validation.
3.1. Data Preparation. We formed graph structures as

described above and applied the WL updates five times. All
input data features were minmax-scaled in [0, 1], and constant
variables were excluded. The interaction energies were
minmax-scaled in [−1, 1]. Before forming the 5-fold cross-
validation sets, 414 data points were separated for validation.
Validation and cross-validation sets were sampled randomly,
but stratification with respect to the relative amount of
different charge states was performed.
In order to utilize the weighting of the multikernel LKRR,

we split the input data in five different ways. Initially, all input
features are kept in a single vector, which then contains the
charge and the GGT features from the WL updates up to the
fifth iteration. This is considered as a splitting scheme 0.
Scheme 0 is used for all ML methods but the four following
ones only with the LKRR. In the splitting scheme 1, charge is
represented with its own set of kernels. The charge of the
system has a significant effect on the energies; hence, we
wanted to see whether the LKRR can address this. The
splitting scheme 2 separates the charge and different WL-0-j
updates, so that the inputs contain the whole WL update
history up to the given level. The splitting scheme 3 is similar
to scheme 2 but it uses the WL-i updates, therefore considering
only the current WL updates without the whole update history.
The splitting scheme 4 has the most separation. There charge,
the WL-i updates, and within the WL updates, the three GGT
feature sets are separated. In schemes 1−4, the charge is
handled as a categorical variable; i.e., it is represented as a unit
vector. For example, the charge state −1 would be [01000] and
the neutral system would be [00100]. This increases the
dimensionality of the charge input. Catalytic HER reactions are
performed under a voltage; thus, MPCs possess energetically
favorable charge states. In simulations, the voltage effect is
imitated by setting up a certain charge state, which makes it a
crucial input for the ML methods.
In the LKRR, every data segment gets its own set of 1/r

kernel functions shown in eq 6, where the parameter a spans
20 values from 0.5 to 10.0 in increments of 0.5. Hence, every
data segment has 20 kernels and the number of kernels in
different splitting schemes is 0:20, 1:40, 2:140, 3:140, and
4:360. For the conventional KRR, we used the same type of
kernel, but parameter a was given 10 values from 1.0 to 10.0 in
increments of 1.0, from which the best models were selected
for further analysis.
3.2. Cross-Validation with Single Vector Features.

The different levels of the concatenated WL updates were
studied with the MLM, EMLM, and KRR. There were two
hyperparameters tested: the number of reference points for all
methods and kernel parameter a for the KRR. The learning
capabilities of the kernel-based ML methods are determined by
the reference points sampled from the training data. During the
prediction, kernel function(s) measure the similarities between
an input and reference points forming a kernel vector/matrix,
which is used to perform regression. The regularization
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coefficient for the EMLM and KRR was set equal to machine .
The average test RMSEs for the KRR are shown in

Supporting Information Figures S6−S11 as a function of kernel
parameter a and the relative number of reference points with
respect to the WL-0-i updates. Setting a = 1.0 produced the
most accurate models, and this value is used for the KRR from
here on. The average cross-validation test RMSEs are
visualized in Figure 2 and in Supporting Information Figure

S12. As illustrated in Figure 2, the first WL update is almost
enough to reach the highest accuracy. There are only minor
improvements visible after adding further updates. The
method type also affects how much the method benefits
from the WL updates. In Figure 2b,c, we see that the EMLM is
able to lower the RMSE even if the KRR could not. In
Supporting Information Table S3, the maximum, minimum,
and average RMSEs are tabulated for WL-0-5, which shows
that the MLM is overall the most accurate method by a small
margin.
The effect of the WL updates supports chemical intuition

about the locality of the H adsorption. Knowing only the
environment of the hydrogen atom is not enough, but when
information about the environments of the nearest neighbors is
included, the model performance is enhanced significantly.
However, information about the second nearest or further
atoms is not equally vital. This highlights the locality of
hydrogen chemisorption on the studied nanoparticles.
Furthermore, the effect of WL updates agrees with the
observations of Xu et al., who showed that kernel using WL
updates and Wasserstein metrics on graphs outperformed

conventional radial basis function kernels in Gaussian
processes.44

Next, we tested the LKRR similarly with splitting scheme 0.
The LKRR has three main hyperparameters: number of
reference points, model regularization β, and kernel sensitivity
Λ. The initial combination vector μ0, which affects the
weighting of the kernels, was initialized with machine . We ran
the cross-validation as before with the relative numbers of
reference points [20%, 40%, 60%, 80%, 100%], β ∈ {0.001,
0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5}, and Λ ∈ {0.5,
1.0, 5.0, 10.0, 15.0, 20.0}. The cross-validation test RMSEs are
shown in Supporting Information Figures S14−S18. It has to
be noted that not all of the LKRR models managed to
converge with every set of parameters. We picked three
representative models with (β, Λ) parameters numbered 1:
(0.5, 1.0), 2: (1.5, 0.5), and 3: (0.75, 20.0).
The trained and tested RMSEs for these three LKRR models

are visualized in Figure 3. The LKRR has a reasonable

performance with about 0.15 eV RMSE, which is higher than
with the single kernel methods. Interestingly, contrary to the
previous methods, the LKRR has a clear optimal amount of
reference points. This is caused by the two sets of weights:
model weights and kernel weights. The relative importance of
the kernels, shown in Supporting Information Figure S13,
supports this. When the number of reference points increases,
the kernel weighting becomes more linear and less flexible. The
number of reference points determines the learning capabilities
of a kernel method; hence, it can be thought that with a low
number of reference points, the model compensates for the
performance with the kernel weighting. Furthermore, the
kernel weighting has only a minor variation across the cross-
validation sets proving the LKRR to be stable.

Figure 2. Average cross-validation RMSEs with different WL updates.
(a) MLM, (b) EMLM, and (c) KRR models with kernel parameter a
= 1.0 as a function of the relative number of reference points. In every
model, charge and GGT data up to the designated WL level are used
as a single input.

Figure 3. Performance of three LKRR models. (a) Training RMSEs
and (b) test RMSEs are visualized for three LKRR models as a
function of the relative number of reference points. The model
parameters (β, Λ) are as follows: model 1: (0.5, 1.0), model 2: (1.5,
0.5), and model 3: (0.75, 20.0). Shaded areas highlight the maximum
and minimum values.
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3.3. Data Splitting with LKRR. Next, the input data were
split into segments. The LKRR hyperparameters were tested as
before with every splitting scheme, and the results are shown in
Supporting Information Figures S19−S38. The cross-valida-
tion training and test RMSEs are visualized in Figure 4a−h for
representative models, whose parameters are listed in
Supporting Information Table S4. The splitting scheme
shows a compelling effect on the model performance in Figure
4, visualizing minimum, maximum, and average RMSEs.
Corresponding test RMSE values are listed for ”model 1”s in
Supporting Information Table S5. The best-performing models
are the ones with the simplest data splitting (scheme 1: charge
and WL-0-5) in Figure 4a,e. In the best cases, the average test
RMSE reached 0.15 eV.
The initial impression about the relative importances in

Figure 4i−k is positive because the differences between the
highest and the lowest values are small, implying a systematic
behavior. The splitting scheme 4 in Figure 4l caused more
variation than the others, which is expected, as it has the most
kernels. The common characteristic is that the relative

importance of the charge is low. This is anticipated because
it is just a single discrete property and should not dictate too
strongly the Eint. Figure 4 demonstrates clearly how the LKRR
emphasizes different features depending on the reference
points. The WL-0-i contains all updates up to the ith level;
hence, it is expected that in Figure 4j the WL-0-5 gets always
the highest priority. The WL-0 is interesting in the same figure
because it initially gets high importance but is then reduced to
the least-weighted WL feature when the reference points are
added. This again highlights the locality of the hydrogen
adsorption because WL-0 contains only information about the
local geometric environment of the hydrogen atom. The
locality is also supported by the similar high weighting in
Figure 4k. Another plausible origin is the dimensionality of the
kernel space where the regression is performed. In order to
extract the necessary information from WL-0-5 and WL-5, the
LKRR needs enough reference points.
The data splitting 4 could also be analyzed in terms of the

GGT features. In Figure 5, the relative importances of these
data types are visualized for the LKRR model 1 from Figure

Figure 4. Effect of data splitting on the LKRR performance. For splitting scheme 1, train RMSE is shown in panel (a), test RMSE in panel (e), and
relative importances for different kernels (i). Panels (b), (f), and (j) are the corresponding visualizations for splitting 2. Panels (c), (g), and (k) are
for splitting 3. Panels (d), (h), and (l) are for splitting 4. Relative importances are always shown for the models labeled as ”model 1”. The label Q
refers to the charge kernels. The β and Λ parameters of the models are listed in Supporting Information Table S4. Shaded areas highlight the
maximum and minimum values.
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4d,h,l. We observed that the geometric features get weighted
the most, then the graph theoretical ones, and finally the
tabulated features. This agrees with the findings of Cha et al.
who also reported similar conclusions for the protein−protein
interaction.46 However, one has to keep in mind that tabulated
features have 20 kernels less than the other GGT features due
to the deletion of the constants.
3.4. Validation Results. The validations were run with

representative parameters acquired from the tests above. For
MLM, EMLM, and KRR, we used the WL-0-5 updates and
60% of the training data as reference points. For the LKRR
models, only 40% of the training data was used as reference
points and the other parameters correspond to the ones listed
as ”model 1”s in Figures 3 and 4. All of the validation

predictions were averaged over the sets of five models trained
with the respective cross-validation sets.
The validation results in Figure 6 show that MLM and

EMLM are easily the best-performing models with the KRR in
close pursuit. The LKRR with splitting schemes 0 and 1 shows
similar performance. However, the splitting proves to be a
“double-edged sword”. Even if it enables the analysis of
different data sources, it also causes prediction errors.
Changing from splitting scheme 0 to 1 induced a slightly
larger RMSE. Comparison of Figure 6f,g demonstrates how
differently the LKRR behaves with WL-0-i and WL-i inputs.
Using only current WL-i updates, the lower RMSE is reached,
but we observe clear shifts depending on the charge. This
refers to the fact that the charge state and the structure play an
intertwined role in adsorption. Handling charge separately is
able to highlight its property as a global feature but it hides
some underlying connections.
It is not totally straightforward to compare our model

performance if the studied catalytic systems are different, but
we could get some qualitative ideas from the literature. Chen et
al. estimated the CO adsorption on bare gold nanoparticles
with 168,419 gold atoms using ANNs.42 They used 1104 data
points for training and 140 data points for testing and
validation, respectively. At best, they reached RMSE between
0.05 and 0.06 eV. Here, we have to keep in mind that their
nanoparticle did not have any protecting ligands in contrast to
our study. Fung et al. predicted binding energies of H atom on
nitrogen-doped graphene single atom catalysts using just 108
data points with various ML methods.45 Their data set was
small, and test RMSE values varied from 0.218 to 0.366 eV. Xu
et al. predicted binding energies of molecules on different
metal surfaces using around 1700 data points.44 Their best
Gaussian process regressor using WL updates and Wasserstein

Figure 5. Relative importances of the GGT features. The curves show
the relative importances of the charge and GGT features of the LKRR
model 1 (β = 0.001, Λ = 0.5) in Figure 4d,h,i using splitting scheme 4.
Shaded areas highlight the maximum and minimum values.

Figure 6. Averaged validation predictions for all ML methods. (a) MLM, (b) EMLM, and (c) KRR (a = 1.0) use WL-0-5 and 60% of the training
data as reference points. LKRR-0 in panel (d) has not gone through data splitting. In panels (e−h), LKRR models utilize corresponding data
splitting schemes. All LKRR models had 40% of the training data as reference points, and the hyperparameters corresponded to the models labeled
as “model 1”s in previous analysis cases. The data points are visualized by the system charge per the color labels.
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metrics as a kernel managed to reach an RMSE of 0.18 eV.
Chowdhury et al. used various representations and ML
methods to predict binding energies of small molecules with
a maximum of four carbon atom backbones on the Pt(111)
surface.41 Their data set was also small, less than 300 data
points. Their test mean absolute error (MAE) varied between
0.14 and 0.40 eV when the test set contained similar-sized
molecules as in the training set, i.e., models were interpolating.
With smaller molecules, i.e., models were at least partially
extrapolating, MAEs varied between 0.20 and 3.50 eV. In light
of these results, one can conclude that our data set and model
performance are on par with recent studies.

4. CONCLUSIONS
In this study, we created a simple graph representation about
[MxAu25−x(SCH3)18]q (M ∈ { Pd, Cu }, x ∈ {0, 1}, and q ∈
[−2, 2]) structures and utilized the continuous WL scheme to
update node attributes, which were used to predict interaction
energies with various kernel-based ML methods. Graph
representation encoded geometric, graph theoretical, and
tabulated features about the atomic system, but the method-
ology was also able to address the charge state of the system.
Catalytic reactions are regularly studied on surfaces, substrates,
or large metal particles; thus, the charge of the system is
ambiguous. However, electrocatalysis is performed under a
voltage and nanoparticles will opt for a charge state
accordingly. Hence, in the simulations, the charge is used to
imitate the effect of the voltage. Being able to implement
physically and chemically meaningful properties into the
representation is highly useful because it enables the analysis
of model behavior and feature effects on the level, which can
be directly mapped back into the real chemical setting.
From the machine learning point of view, our data sets were

limited in size, which justified the kernel-based approach.
Moreover, a similar size of the training data as here, only
thousands of observations, has been used with multilabel
classification problems.69−71 Both shallow and deep neural
networks (NNs) are popular tools in catalysis.6,40−43 However,
NNs are known to be “data hungry”, often requiring at least a
few tens of thousands of training data points to reach their
optimal performance, thus further justifying the method
choice. Furthermore, several non-NN-based methods have
also shown to be able to predict binding behavior accurately
for molecules and hydrogen on various surfaces and doped
graphene.44,45,72−75

From our kernel-based methods, the MLM, EMLM, and
KRR reached the highest accuracy, and the analysis showed
that applying WL updates only once was enough for accurate
predictions. This demonstrated that the imminent surround-
ings of the hydrogen atom dictate adsorption. We also
explored the multikernel method LKRR and how it could be
utilized to split the features into separate kernels. The
importance of the data features was evaluated based on the
kernel weighting learned by the LKRR. We found out that the
geometric and graph theoretical features proved to be more
meaningful than tabular information about atom properties.
Geometric properties describe how accessible/exposed an
atom is, and graph theoretical features encode the connectivity
of the node, i.e., how much an atom interacts with its
neighbors; hence, this highlights the local nature of the
hydrogen−nanoparticle interaction. We also observed that the
charge state is closely linked to the structural features.
Separating the charge enabled us to address it as a global

feature, but it lost some key connections. In conclusion, we
demonstrated that the combination of graphs and kernel ML
offers powerful tools to find relevant information for a high-
dimensional catalysis problem with a limited number of data.
This study also promotes simple ML methods as analysis tools
for complex problems in nanoscience and attempts to advance
interpretable ML.
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