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Abstract
Molecular dynamics (MD) simulations are routinely performed of biomolecules in solution, because this is their native 
environment. However, the structures used in such simulations are often obtained with X-ray crystallography, which provides 
the atomic coordinates of the biomolecule in a crystal environment. With the advent of free electron lasers and time-resolved 
techniques, X-ray crystallography can now also access metastable states that are intermediates in a biochemical process. 
Such experiments provide additional data, which can be used, for example, to optimize MD force fields. Doing so requires 
that the simulation of the biomolecule is also performed in the crystal environment. However, in contrast to simulations of 
biomolecules in solution, setting up a crystal is challenging. In particular, because not all solvent molecules are resolved 
in X-ray crystallography, adding a suitable number of solvent molecules, such that the properties of the crystallographic 
unit cell are preserved in the simulation, can be difficult and typically is a trial-and-error based procedure requiring manual 
interventions. Such interventions preclude high throughput applications. To overcome this bottleneck, we introduce gmXtal, 
a tool for setting up crystal simulations for MD simulations with GROMACS. With the information from the protein data 
bank (rcsb.org) gmXtal automatically (i) builds the crystallographic unit cell; (ii) sets the protonation of titratable residues; 
(iii) builds missing residues that were not resolved experimentally; and (iv) adds an appropriate number of solvent molecules 
to the system. gmXtal is available as a standalone tool https:// gitlab. com/ pbusl aev/ gmxtal.
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1 Introduction

Multi-dimensional Nuclear Magnetic Resonance (NMR) 
spectroscopy can provide structural and dynamical infor-
mation on biomolecules in solution, but this technique is 

limited to macromolecules of up to 35 kDa [1]. In contrast, 
in X-ray crystallography there is no such limit [2, 3], but this 
technique can only provide static information about protein 
structure in a crystal environment, where there are strong 
inter-molecular interactions between the proteins. With the 
development of free electron lasers and time-resolved tech-
niques, also protein dynamics can now be probed by X-ray 
crystallography, but the limitation of the non-native crystal 
environment remains [4].

Protein dynamics in solution have therefore been pre-
dominantly investigated by means of molecular dynamics 
(MD) computer simulations [5]. The initial structure for 
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such simulations is normally prepared by placing a sin-
gle asymmetric unit from an X-ray crystal structure at the 
center of a periodic simulation box that is subsequently 
filled with water molecules, ions and other constituents 
if needed. However, because the protein environment in 
the simulations differs significantly from that in the crys-
tallography experiment, comparing observables obtained 
from MD simulations with observables from crystallog-
raphy remains challenging. Already in the early days of 
MD, Herman Berendsen et al. had addressed this issue and 
compared trajectories of proteins in solution and crystal 
environments [6, 7]. Later, it was demonstrated that pro-
teins simulated in solution can relax into a conformation 
that is different from the X-ray structure [8–10]. Thus, 
to validate MD simulations in general and force fields in 
particular, with either static or dynamic X-ray data, simu-
lations would need to be performed of protein in crystals, 
rather than solution [11–20].

To routinely perform MD simulations of protein crys-
tals, efficient standardized approaches are needed for 
building crystal models. Whereas for setting up simula-
tions of proteins in solution, a wide range of user-friendly 
methods has been introduced [21–23], the number of tools 
available to create a crystal model is much more limited. 
Although good guidelines exists, for example the tutorial 
of Cerutti and Case [24], and also CHARMM-GUI can 
generate protein crystals [21], these approaches are dif-
ficult to scale up for high-throughput applications, which 
would be needed for a systematic validation and improve-
ment of force fields based on X-ray data. Furthermore, 
because not all solvent molecules are typically resolved in 
X-ray structures, determining how many solvent molecules 
are needed to preserve the volume of the unit cell while 
sampling the isothermal-isobaric ensemble in MD simula-
tions under periodic boundary conditions, remains a major 
challenge that is currently not resolved. Instead, the addi-
tion of solvent molecules, which is essential to preserve 
the volume of the unit-cell, requires manual intervention, 
often by trial and error.

To overcome these challenges and provide the commu-
nity with an efficient tool for setting up protein crystals for 
MD simulations in an automated and hence reproducible 
manner, we have implemented gmXtal, a combination of 
python scripts that automatically constructs the unit-cell, 
estimates the correct number of solvent molecules to be 
added and prepares the workflow for running MD simu-
lations of the hydrated crystal with the GROMACS MD 
program [25, 26]. This paper is organized as follows: we 
first introduce the steps of the gmXtal workflow, we then 
provide the technical details of the simulations we per-
formed, and finally demonstrate how gmXtal works by 
building crystals of three representative biomolecules.

2  Methods

2.1  gmXtal

gmXtal is a python-based toolbox, which automati-
cally builds structures, generates topologies, and pre-
pares scripts for simulating biomolecular crystals with 
GROMACS [25, 26]. gmXtal consists of three modules: 
(i) a preparation module, (ii) a GROMACS workflow, and 
(iii) a check module (Fig. 1), which are explained in detail 
below. gmXtal can also be used for setting up simulations 
of biomolecules in solution, if requested. Building crystals 
of membrane proteins is currently not supported.

2.1.1  Preparation Module

The preparation module cleans the structure, builds the 
crystal and prepares a bash script for running a GROMACS 
workflow. The structure can either be downloaded from the 
protein data bank [27], or provided by the user. gmXtal 
works with PDBx/mmCIF format [28], which is currently 
the standard file format of the protein data bank. Structure 
cleaning includes (i) selecting alternative conformations 
and preferred conformers of redidues, which are decided by 
the user, (ii) fixing missing residues based on the sequence 
information, and (iii) determining the optimal protonation 
state of titratable amino acids at the pH value selected by the 
user. Addition of missing residues is required to complete 
protein chains. Residues that are missing in the experimental 
structures, are from parts of the biomolecule that are less 
structured and hence do not give rise to Bragg peaks. There-
fore, the resulting model structure might deviate from the 
real conformation, which can lead to bias in the simulation. 
Because adding missing residues can furthermore introduce 
steric clashes, gmXtal checks for such clashes and notifies 
the user. Structure cleaning also takes care of crystal waters, 
ions, and ligands, if a user wants these to remain included 
in the simulation box. Note, however, that gmXtal expects 
the ions to be part of the force field used. Also, if ligands are 
selected for processing, the user is expected to provide the 
structure and force field parameters of the ligand, including 
hydrogens, because at this stage, gmXtal cannot automati-
cally parameterise or add hydrogen atoms to ligands.

The mmCIF files are parsed with the BIO.PDB [29] and 
PDBeCIF [30] packages. The cleaning of the input structure 
is performed with standard routines from the Bio.PDB [29] 
and MDAnalysis [31, 32] packages. If needed, the structure 
is fixed either with pdbfixer [33], or with Modeller [34]. The 
protonation states of titratable residues can either be decided 
upon by the user, or automatically with pdb2gmx, based on 
pKa predictions by PROPKA [22, 35] or pKa-ANI [36].
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Crystals are reconstructed using routines from the 
GEMMI library [37], which generates symmetry matrices 
from the symmetry information in the structural files availa-
ble in PDBx/mmCIF format under _symmetry:space_group_
name_H-M entry. GEMMI generates all symmetry matrices 
that correspond to the particular symmetry group. The gen-
erated matrices are so-called Seitz matrices {R|t} , which 
are transformation matrices in the cell coordinate space and 
thus, have to be translated into Cartesian space, M . This is 
achieved by applying the following transformations:

Here, R is the rotational part of the Seitz matrix, and A is the 
coordinate transformation matrix:

(1)M = A ⋅ R ⋅ A
−1

(2)A =

⎛
⎜⎜⎝

a b cos(�) c cos(�)

0 b sin(�) − c sin(�) cos(�∗)

0 0 c sin(�) sin(�∗)

⎞⎟⎟⎠

with a, b, c the lengths of the unit cell vectors, and � , � , 
and � the angles between these vectors. Together these six 
parameters determine the geometry of the unit cell. The 
parameter �∗ is defined as

The translation vectors are computed from the translation 
part t of the Seitz matrices as follows:

With the matrices M and translation vectors V , all crystal-
lographic copies of asymmetric unit are created and then 
merged into a complete unit cell using routines from MDAn-
alysis [31, 32]. After the crystal structure is prepared, gmX-
tal writes a bash script for the GROMACS workflow.

(3)cos(�∗) =
cos(�) cos(�) − cos(�)

sin(�) sin(�)

(4)V = A ⋅ t

Fig. 1  gmXtal consists of three main parts: (i) a preparation module, 
(ii) a GROMACS [25, 26] workflow, and (iii) a check module. The 
preparation module retrieves the structure from the protein data bank 
[27] or uses a structure provided by the user, cleans the structure, 
builds the crystal and creates a bash script that sets up a GROMACS 
workflow. The GROMACS workflow solvates the crystal structure 
at different water concentrations, runs minimization, NVT and NPT 
equilibrations, and 20 nanosecond production runs. The check mod-

ule analyses the evolution of the simulation box volume for all pro-
duction runs and compares the volume of systems with different num-
bers of added water molecules to the unit cell volume from the X-ray 
structure file. If none of the simulated systems preserves the experi-
mental volume, the check module will suggest new parameters for the 
preparation module. Otherwise, it will recommend using the system 
that preserves the volume, for further production runs
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2.1.2  GROMACS Workflow

Simulations of crystals are simulations of crystallographic 
unit cell of proteins. gmXtal prepares files for simulations 
of such system with GROMACS. By default, all simulations 
are performed with periodic boundary conditions, with the 
initial box dimensions set to experimental crystallographic 
unit cell parameters. The preparation module generates 
the symmetry mates of proteins, DNA chains and cofac-
tors. Water molecules and ions, which are not visible in the 
experimental structure, still have to be added. After the addi-
tion of water and ions, the system has to relax and equilibrate 
to the desired temperature and pressure. All these steps are 
performed in GROMACS workflow. The GROMACS work-
flow includes the following steps: (i) adding hydrogens to 
the biomolecule with gmx pdb2gmx tool; (ii) adding water 
(solvent) molecules to the system; (iii) adding ions; (iv) 
running energy minimization; (v) running NVT and NPT 
equilibration; (vi) and performing a production run. The 
parameters for the energy minimization, equilibration, and 
production runs are provided as a part of gmXtal package, 
but the user can also provide own GROMACS parameter 
files (i.e., .mdp) for each of these steps.

Although not all solvent molecules are resolved in a 
crystal structure, these molecules determine density of the 
biomolecules in the crystal. Therefore, it is imperative that 
these missing solvent molecules are added to the unitcell. 
To determine the number of solvent molecules required to 
maintain the correct density, and hence unit cell volume, 
gmXtal creates multiple simulation boxes with different 
numbers of solvent molecules and checks which number 
preserves the unit cell volume during MD simulations. The 
number of solvent molecules is controlled with the -scale 
option of the gmx solvate routine. While the default value 
of 0.57 is suitable for creating simulation boxes of solvated 
proteins with the correct water density, this value may not 
be suitable for proteins in crystals (see results). Therefore, 
gmXtal probes several values of -scale parameter around 
0.57 and recommends the optimal value based on an analy-
sis of the MD simulations performed by the check module.

2.1.3  Check Module

The check module of gmXtal analyses the time-evolution 
of the unit cell volume in the production runs of systems 
with different numbers of added solvent molecules. For each 
frame the volume is computed as

(5)

V = a × b × c

×
√

1 − cos(�)2 − cos(�)2 − cos(�)2 + 2 cos(�) cos(�) cos(�)

If the average unit cell volume in a production run is within 
0.5% of the experimental value, the system is considered 
optimal and gmXtal will recommend the user to proceed 
with the corresponding parameters. If the average volume 
is too far from the experimental volume in all trajectories, 
gmXtal will propose to rerun the whole workflow with a 
different set of -scale parameters for the gmx solvate routine. 
In this case gmXtal will output a file with the suggested new 
input parameters, for the preparation module.

2.1.4  gmXtal Input

The input required to run gmXtal in both preparation and 
check modes can either be provided interactively via the user 
interface, or read in from a file in .yaml format. If the input 
is provided interactively via the user-interface, gmXtal will 
save the input parameters locally in .yaml format, which can 
be reused or modified if needed. Examples of .yaml files 
are provided alongside with the script at https:// gitlab. com/ 
pbusl aev/ gmxtal.

2.2  Simulation Setup

To validate the workflow implemented in gmXtal we set 
up crystals for MD simulations of (i) chey-binding (P2) 
domain of chea in complex with chey from Escherichia coli 
(PDB ID: 1EAY) [38], of (ii) UvrD-DNA-ADPNP ternary 
complex (PDB ID: 2IS4) [39], and of (iii) alpha-amylase 
B from Halothermothrix orenii (PDB ID: 3BCF) [40]. The 
1EAY structure is a hetero-dimer, has a symmetry P

212121
 , 

and has two copies of the protein dimer in the asymmetric 
unit. It also includes 124 structural water molecules. The 
2IS4 structure is a homo-dimer that includes protein and 
DNA, has a symmetry P

1211
 , and also includes two mag-

nesium structural ions and 118 structural water molecules. 
The 3BCF structure is a monomer with C

121
 symmetry. The 

structure contains also four calcium and one sodium struc-
tural ions, as well as 256 crystallographic water molecules. 
The structures of the initial complexes as well as the fully 
solvated crystals generated by gmXtal are shown in Fig. 2.

After the construction of the crystals, these systems were 
simulated with GROMACS2022 [25, 26] using periodic 
boundary conditions. The Amber ff99SB-ildn force field was 
used to model the interactions between the atoms [41]. The 
parameters used in our simulations are standard parameters 
recommended for using the AMBER family force fields with 
the GROMACS software [42]. Water was modeled with the 
TIP3P water model [43]. To all systems Na+ and Cl− ions 
were added at 0.15 M concentration to neutralize the simula-
tion box. Coulomb interactions were treated with the smooth 
PME method using a real-space cut-off of 1.0 nm and a grid 
spacing of 0.16 nm [44, 45]. Van der Waals interactions were 
modeled with a Lennard–Jones potential that was truncated 

https://gitlab.com/pbuslaev/gmxtal
https://gitlab.com/pbuslaev/gmxtal
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at 1 nm and shifted using the Verlet modifier. The tempera-
ture was kept constant at 300 K with the v-rescale thermostat 
[46] using a time constant 0.5 ps−1 . The pressure was kept 
constant at 1 bar with c-rescale barostat [47] using relaxation 
time of 5.0 ps. Trajectories were calculated using a leap-frog 
algorithm with a time step of 2 fs. The LINCS algorithm was 
used to constrain the lengths of bonds involving hydrogens 
in the protein and DNA [48, 49], while SETTLE was used to 
constrain the internal degrees of freedom of the water mol-
ecules [50]. All production runs were simulated for 20 ns. 
Prior to the production runs, the energy of all systems was 
minimized with the steepest descent method, first followed 
by a 100 ps simulation at constant temperature and volume, 
and then by a 100 ps simulation at constant temperature and 
pressure. All parameter files used for these simulations are 
provided as a part of gmXtal at https:// gitlab. com/ pbusl aev/ 
gmxtal.

3  Results

We performed simulations of three systems that have differ-
ent symmetries and content of the asymmetric unit (Fig. 2). 
These systems were selected to demonstrate that gmXtal is 
applicable to a wide range of biomolecular complexes and 
crystallographic symmetries. Thus, we selected (i) a hetero-
dimer and (ii) a protein-DNA complex with two copies of 
the asymmetric unit in the unit cell and (iii) a large enzyme 
with four copies of the asymmetric unit in the unit cell. Fig-
ure 2 shows the structural organization of the crystals that 
were build by gmXtal. The differences in crystallographic 
symmetries lead to differences in the empty spaces between 

the proteins, which gmXtal fills up with water during the 
preparation phase.

To determine the correct number of solvent molecules, 
we ran gmXtal with five different values of the -scale option 
of the gmx solvate program: 0.53, 0.55, 0.57, 0.59, and 0.61. 
These values determine the initial water density in the crys-
tals. For each system a 20 ns MD trajectory was computed 
and the time-evolution of the volume was analyzed (Fig. 3).

For systems 2IS4 and 3BCF the experimental volume was 
reproduced with the -scale option set to 0.53. For 1EAY sys-
tem, the experimental volume was not reproduced fairly well 
for any of the selected densities of added solvent. Instead, 
gmXtal recommended to prepare new systems with the 
-scale option in the range from 0.53 to 0.55, and run a new 
set of simulations. After this second iteration, we found 
that the optimal water density was achieved with the -scale 
option set to 0.54. The three examples suggest that, while the 
number of added solvent molecules cannot be predicted in 
advance, gmXtal provides a means to estimate that number. 
For crystals the optimal value for the -scale option of gmx 
solvate tool can be different from the recommended value for 
solvating proteins in water. The crystals created by gmXtal 
provide the starting point for investigating the properties of 
biomolecular crystals by means of MD simulations, just as 
Herman Berendsen et al. did, almost four decades ago [6].

4  Conclusion

To summarize, we have presented gmXtal, a python-based 
toolbox for automatically generating hydrated crystals from 
protein data bank files. We believe that this tool can be use-
ful for performing simulations of crystals as it avoids the 

Fig. 2  Structures of simulated 
systems (top row) and crystals 
build by gmxtal (bottom row). 
Different chains are shown in 
different colors. The unit cell 
is indicated by the black box. 
Structural waters are shown as 
gray spheres, ions as colored 
spheres

https://gitlab.com/pbuslaev/gmxtal
https://gitlab.com/pbuslaev/gmxtal
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tedious procedure of setting up crystal models manually and 
in particular determining the number of solvent molecules 
required to maintain the experimental density and unit cell 
volume. We expect that our tool will pave the way to sys-
tematically explore the effects of the crystal environment on 
the properties of biomolecular systems, including catalytic 
activity and p K

a
 s of titratable amino acids, which can be 

dramatically different between solution and crystal, as for 
instance in PYP, for which it was suggested that an Arginine 
is deprotonated in the crystal [51].
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