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Introduction

Observational studies find that a greater daily physical 
activity (PA) volume is associated with decreased risk of 
cardiometabolic diseases (CMDs), and the association is 
accounted for at least through effects on intermediate risk 
factors [1–3]. Clinical trials of physical activity also reduce 
intermediate risk factors, while strong evidence based on 
disease outcomes is largely lacking. Based on existing stud-
ies, PA is recommended for the prevention and treatment of 
CMDs [4].

Shared genetic factors may underlie the association 
between lifestyle behaviour and disease risk in observa-
tional epidemiological studies. Twin studies have sug-
gested that PA may be influenced by genetics [5, 6], and 
more recently, molecular genetics has identified multiple 
genetic loci associated with PA. Yet the fraction of variance 
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Abstract
Physical activity (PA), aerobic fitness, and cardiometabolic diseases (CMD) are highly heritable multifactorial phenotypes. 
Shared genetic factors may underlie the associations between higher levels of PA and better aerobic fitness and a lower 
risk for CMDs. We aimed to study how PA genotype associates with self-reported PA, aerobic fitness, cardiometabolic risk 
factors and diseases. PA genotype, which combined variation in over one million of gene variants, was composed using 
the SBayesR polygenic scoring methodology. First, we constructed a polygenic risk score for PA in the Trøndelag Health 
Study (N = 47,148) using UK Biobank single nucleotide polymorphism-specific weights (N = 400,124). The associations 
of the PA PRS and continuous variables were analysed using linear regression models and with CMD incidences using 
Cox proportional hazard models. The results showed that genotypes predisposing to higher amount of PA were associated 
with greater self-reported PA (Beta [B] = 0.282 MET-h/wk per SD of PRS for PA, 95% confidence interval [CI] = 0.211, 
0.354) but not with aerobic fitness. These genotypes were also associated with healthier cardiometabolic profile (waist 
circumference [B = -0.003 cm, 95% CI = -0.004, -0.002], body mass index [B = -0.002 kg/m2, 95% CI = -0.004, -0.001], 
high-density lipoprotein cholesterol [B = 0.004 mmol/L, 95% CI = 0.002, 0.006]) and lower incidence of hypertensive dis-
eases (Hazard Ratio [HR] = 0.97, 95% CI = 0.951, 0.990), stroke (HR = 0.94, 95% CI = 0.903, 0.978) and type 2 diabetes 
(HR = 0.94, 95 % CI = 0.902, 0.970). Observed associations were independent of self-reported PA. These results support 
earlier findings suggesting small pleiotropic effects between PA and CMDs and provide new evidence about associations 
of polygenic inheritance of PA and intermediate cardiometabolic risk factors.
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accounted for by genetics (i.e. the single nucleotide poly-
morphism (SNP) heritability is modest (8 to 16%) and less 
than the estimates from twin and family studies [7, 8]. Thus, 
it has been proposed that individuals with favourable PA 
genotypes participate more frequently in PA. These partici-
pants often have better cardiorespiratory fitness [5] and may 
more easily adopt a physically active lifestyle than those 
with less favourable genotypes [6]. The gene–environment 
interaction could prevent an assessment of the independent 
environmental contribution to active lifestyle preference 
because the healthy lifestyle adopted by an individual may 
be partly influenced by their genotypes. Previous studies 
have suggested that genetic factors affect disease risk [9, 
10]. If the genetic influences of PA behaviour and disease 
risk overlap, genetics may also cause bias in PA–CMD asso-
ciation studies because of genetic pleiotropy.

Polygenic risk scores (PRSs) may provide new insights 
into the genetic basis behind the associations among life-
styles, disease risks and mortality. Individual-level genetic 
risk estimates, that is, the PRSs, are generated by summaris-
ing genome-wide SNPs and the associated effect sizes into 
a single variable. PRSs have been used to estimate an indi-
vidual’s genetic propensity for multiple diseases and traits 
[11, 12]. Recently, PRSs of the lifetime risk for coronary 
heart diseases have been found to weakly improve predic-
tion models for coronary heart disease compared with mod-
els based on traditional risk factors [13]. Sillanpää et al. [14] 
found that PRSs for PA (PA PRSs) were weakly associated 
with several noncommunicable diseases, suggesting small 
pleiotropic effects. Recently, in their multiancestry meta-
analysis of genome-wide association studies (GWASs) 
based on over 700,000 persons, Wang et al. [8] found that 
self-reported moderate-to-vigorous leisure-time PA (LTPA) 
correlated weakly or moderately with multiple anthropo-
metric characteristics, lifestyle factors, noncommunicable 
diseases and biomarkers at the genomic level. A possible 
reason may be the difficulty of measuring PA accurately 
over sufficient time periods to obtain informative and reli-
able measures of lifetime physical activity.

In the present study, we have applied a previously devel-
oped PA PRS for self-reported moderate PA volume [15]. 
We first assessed PA–PA PRS association with LTPA using 
the Trøndelag Health Study (HUNT, Fig. 1). Then, we 
examined whether PA PRS, as a measure of PA genotype, 
were associated with aerobic fitness, cardiometabolic risk 
factors and disease outcomes, here as derived from Norwe-
gian health register data. We hypothesise that the PA PRS 
were associated with LTPA, aerobic fitness and disease-
related phenotypes, possibly because of pleiotropic effects. 
In addition, we tested whether these associations were inde-
pendent of self-reported LTPA measured at the same time 
point. This can provide evidence for the hypothesis that the 

PA genotype directly affects aerobic fitness, cardiometa-
bolic risk factors and the incidence of CMDs.

Methods

Study cohorts

We used Pan-UK Biobank GWAS summary statistics from 
the data-sharing repository as base data for PA PRS calcula-
tion [16] (Fig. 1). Pan-UK biobank GWAS included 458,541 
participants (45.9% men), and our analysis sample was 
restricted to persons of European ancestry (N = 400,124). 
The Pan-UK Biobank participants are not a representative 
cohort of the general UK population because the partici-
pants were somewhat healthier [17]. For more information, 
see Supplementary material (Supplementary methods).

A PRS was computed and association analyses were 
conducted in an independent Norwegian cohort, the HUNT 
Study, which is one of the largest population-based health 
studies worldwide. Notably, the HUNT data is not part of 
the Pan-UK Biobank data. The HUNT Study is a unique 
database of questionnaire data, clinical measurements, and 
biological samples from over 120,000 participants through 
four waves of data collection conducted over 35 years [18]. 
We calculated PA PRS for participants which had both 
genotype and self-reported LTPA data available in HUNT3 
(third measurement round of HUNT). The HUNT3 data 
was collected between 2006 and 2008, and the study sample 
included 47,148 participants with mean age of 52.9 years 
(range, 19.1–100.8 years; 45.9% men, Table 1).

To analyse the association of the PA PRS and aerobic 
fitness, we used data from the HUNT3 Fitness Study [19], 
which is a subcohort of HUNT3. The HUNT3 Fitness Study 
consist of healthy adults (age ≥ 20 year), free from cardio-
vascular disease (CVD), respiratory symptoms, cancer and 
use of blood pressure medication. This subcohort included 
4,462 genotyped participants with self-reported LTPA, along 
with directly measured aerobic fitness tests (mean participa-
tion age, 48.5 years [range, 19.2–89.2 years]; 49.1% men; 
Table 1). The HUNT3 Fitness Study is one of the largest 
European reference materials on cardiorespiratory fitness in 
the adult population [19]. Sex-specific descriptive tables for 
all cohorts used can be viewed in the Supplementary mate-
rial (Sex-specific association analyses and Supplementary 
Tables S1 and S2).

Survival analyses between the PA PRS and CMD inci-
dences were conducted using 24,960 genotyped HUNT3 
participants. The participants were selected for the survival 
analyses if they had given a permission to use their health 
register data. The register data was derived from the Nord-
Trøndelag Health Trust discharge register (1987–2017) and 
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linked to HUNT3 phenotype data using personal identifica-
tion numbers. Mean participation age of this subsample was 
59.1 years (range, 19.1–100.8 years) in HUNT3 and 46.5% 
of the participants were men (Table 1).

Genotyping, quality control, and imputation

The UK Biobank Axiom Array was used for genome-wide 
genotyping in the Pan-UK Biobank. Detailed description of 
genotyping, quality control and imputation for the Pan-UK 
Biobank study is available in the Pan-UK Biobank docu-
mentation [20]. Genotyping of the HUNT participants was 
performed with one of three different Illumina Human-
CoreExome arrays (HumanCoreExome12 version 1.0, 
HumanCoreExome12 version 1.1 and UM HUNT Biobank 

version 1.0) according to standard protocols. Genetic prin-
cipal components (PCs) were calculated from pruned SNP 
data to account for clustering related to ancestry. A detailed 
description of the HUNT Study genotyping, quality control 
and imputation have been published by Brumpton et al. [21].

Polygenic risk scoring

We utilised previously derived PRS for the self-reported 
moderate PA [15]. In the original Pan-UK Biobank, GWAS 
moderate PA was determined based on the self-report ques-
tion on the ‘number of days/week of moderate PA 10 + min’ 
[16]. To construct the PA PRS in the HUNT Study we 
utilised SBayesR summary statistics methodology in the 
GCBT software [22], and the Pan-UK Biobank GWAS 

Fig. 1 Design and workflow of the study. Polygenic score for question-
naire-based moderate physical activity was derived from the Pan-UK 
Biobank genome-wide association study summary statistics and the 
third cohort of the HUNT Study (HUNT3; N = 47,148). Association 

analyses were conducted in HUNT3 and its subcohorts. The cardio-
metabolic disease (CMD) endpoints were derived from a Norwegian 
hospital discharge register
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Tampa, USA). The arithmetic average of the second and 
third measurements was used. A combined scale (Model 
DS-102, Arctic Heating AS, Nøtterøy, Norway) was used to 
measure weight (kg) and height (cm). BMI was calculated 
as weight divided by height squared (kg/m2). The waist cir-
cumference was measured horizontally at the umbicillus 
height (cm).

Blood-based measures included total cholesterol 
(mmol/L), HDL cholesterol (mmol/L), LDL cholesterol 
(mmol/L) and triglycerides (mmol/L). Total cholesterol was 
analysed by Enzymatic Cholesterol Esterase Methodology 
Reagent Kit 7D62-20 Cholesterol (Abbott Diagnostics), 
HDL cholesterol by the Accelerator Selective Detergent 
Methodology Reagent Kit 3K33-20 Ultra HDL (Abbott 
Diagnostics, Clinical Chemistry, USA) and triglycerides 
by Glycerol Phosphate Oxidase Methodology Reagent Kit 
7D74 Triglyceride (Abbott Diagnostics, Clinical Chemistry, 
USA). LDL cholesterol was calculated using Friedwald’s 
equation [26].

Cardiometabolic disease endpoints

The International Statistical Classification of Diseases 
and Related Health Problems (ICD-9, and ICD-10) codes 
derived from the Nord-Trøndelag Health Trust discharge 
register (1987–2017) were used to identify CMD endpoints 
(Supplementary material; Supplementary Table S10). The 
quality of the CMD diagnoses in Norwegian registers has 
been previously validated [27]. The ICD codes included 
in each endpoint category (disease group) were selected 
according to FinnGen Data Freeze 9 categorisation, which 
can be found on FinGenn webpages [28]. This was done to 
allow for a comparison of the results with a previous Finn-
ish study [14]. The FinnGen disease endpoints have been 
determined by expert groups, which include medical doc-
tors with different areas/fields of speciality.

Smoking status

Self-reported smoking status included four response 
options: ‘Never smoked’, ‘Ex-smoker’, ‘Daily smoker’ and 
‘Occasional smoker’. In analyses, responses were reclassi-
fied into two dichotomous variables: never smokers vs. oth-
ers and current smokers vs. others.

Alcohol consumption

In HUNT3 alcohol consumption was determined as total 
quantity of pure ethanol in grams per week (g/wk). Alcohol 
consumption was calculated using the variables “Alcohol 
Frequency Last 12 months”, “Alcohol Beer Last 2 Week(s) 
Number”, “Alcohol Wine Last 2 Week(s) Number” and 

provided the SNP-specific weights used in the computation. 
This methodology is based on multiple regression models 
and a reference link disequilibrium estimated from the gen-
otype correlation matrix. GWAS summary statistics, and the 
HUNT data were restricted to the European HapMap3 [23] 
variants with minor allele frequency > 5% and excluding the 
major histocompatibility complex region from chromosome 
6 (GRCh37: 6p22.1–21.3). Restricting subjects to European 
ancestry minimises the risk of false positives by stratify-
ing the population [24]. PA PRS was computed as a sum of 
risk alleles, as weighted by risk allele effect sizes from Pan-
UK Biobank, to the HUNT Study’s data. The utilised PA 
PRS is a genome-wide score, and the number of SNPs was 
restricted to 1,006,313 for computational purposes.

LTPA variable

Average weekly LTPA was collected from three questions 
regarding frequency, intensity, and duration in HUNT3. We 
calculated MET-h/wk by recoding the response values of 
the LTPA intensity and duration, and multiplying the fre-
quency, intensity, and duration for each participant [25]. See 
the Supplementary material (Supplementary methods) for 
detailed description of the International Physical Activity 
Questionnaire (short format) items in the HUNT Study used 
to assess the dimensions of LTPA.

Aerobic fitness

In the HUNT3 Fitness Study, aerobic fitness was measured 
as the maximal oxygen uptake (VO2max) during an indi-
vidualised treadmill test protocol until volitional exhaustion 
[19]. Standard respiratory parameters were measured using 
mixing chamber gas analyser ergospirometry (Cortex Meta-
Max II, Cortex, Leipzig, Germany). VO2max was measured 
as millilitres of oxygen per minute relative to body weight 
(mL/kg/min). All participants did not reach true VO2max, 
as defined by reaching a plateau in oxygen consumption, 
despite increased workload and the respiratory exchange 
ratio reaching above 1.05. Therefore, we used the term 
peak oxygen consumption (VO2peak) for aerobic fitness. A 
detailed description of the aerobic fitness test protocol is in 
the Supplementary data (Supplementary methods).

Clinical measurements

Standardised clinical measurements were performed in 
HUNT3, including blood pressure (diastolic and systolic), 
waist circumference and body mass index (BMI) and blood 
lipid and lipoprotein fresh venous nonfasting blood samples 
[18]. Blood pressure (mmHg) was measured three times 
at 1-minute intervals using a Dinamap 845XT (Citikon, 
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The proportional hazards assumption was assessed using 
scaled Schoenfeld residuals and removal of outliers were 
assessed based on df-beta statistics. The number of events 
for the different disease categories varied between 934 
(stroke) and 19,387 (all CVDs; Fig. 3). We assumed that 
the human genome stays nearly constant during the life 
course, so we could set the follow-up starting years to indi-
vidual birth years. The participants were followed-up until 
the year of the first CMD event or when contact with the 
individual was lost (no subsequent healthcare visits). We 
created separate follow-up times in each CMD analysis. 
Incidence rate per 10,000 person-years was calculated by 
dividing the number of CMD events by the total number of 
person-years and multiplying the result by 10,000 for each 
CMD category. Because all register data participants either 
got a disease or were censored, their last follow-up year was 
averagely considered to contribute half of their last year’s 
follow-up time. We also conducted sensitivity analyses by 
excluding participants whose disease-onset predated the 
HUNT3 data collection and set the follow-up starting years 
to the HUNT3 laboratory visit (Supplementary material; 
Supplementary Table S9). In these sensitivity analyses we 
were also able to adjust CMD analyses with LTPA and other 
lifestyle and socioeconomic covariates.

An increase in the outcome variables and CMD inci-
dences was calculated per standard deviation (SD) unit 
change in the PRS. The significance threshold was set to 
P < 0.05, with no adjustment for multiple testing. Stan-
dardised PA PRS was used in all models. For linear regres-
sion models, the effect size estimation was assessed based 
on squared semipartial correlation coefficient approach, and 
for event time models hazard ratios, they were expressed as 
comparative Cohen’s d effect size estimates based on the 
approach presented by Chen et al. [31] and Rahlfs and Zim-
mermann [32].

Results

Descriptive characteristics of the cohorts

In the present study, we used three subcohorts of the HUNT 
Study, which is one of the largest health-related cohorts in 
Europe. The HUNT3 dataset consist of 47,148 participants, 
including 21,658 (45.9%) men and 25,490 (54.1%) women. 
The descriptive statistics of the participants at baseline are 
shown in Table 1. The age span of the participants ranged 
from 19 to 101 years. On average, they were mildly over-
weight and had slightly elevated cardiometabolic risk fac-
tors. Sex-specific tables for all cohorts used can be viewed 
in the Supplementary material (Supplementary Tables S1 
and S2).

“Alcohol Liquor Last 2 Week(s) Number”. One unit of alco-
hol in Norway are equal to (1) 33 cl of beer (4.5%, 11.9 g 
of pure ethanol), (2) 15 cl of wine (12%, 14.4 g of pure 
ethanol) and (3) 4 cl liquor (40%, 12.8 g of pure ethanol). 
For each beverage type the number of units consumed in the 
prior two weeks was multiplied by the average ethanol con-
tent, and then summed over all beverage types and divided 
by two to estimate the weekly consumption of alcohol as 
grams of ethanol per week.

Socioeconomic status

Socioeconomic status (SES) was declared according to par-
ticipant working title in HUNT3. The Norwegian working 
title version of the occupation codes were based on the Euro-
pean standard of the International Classification of Occupa-
tions – ISCO-88(COM). In the Norwegian version there are 
nine major categories as in the International Classification 
of Occupations – ISCO-88. The coding was re-encoded 
into three categories according to the International Classi-
fication of Occupations – ISCO-88 occupation skill levels 
[29]. Skill category one (high) includes managers, profes-
sionals and technicians (ISCO-88(COM) major categories 
from one to three). Skill category two (medium) includes 
clerical, service and sales workers, skilled agricultural and 
trades workers, and plant and machine operators and assem-
blers (ISCO-88(COM) major categories from four to eight). 
Skill category three (low) includes elementary occupations 
(ISCO-88(COM) major category nine).

Statistical analyses

In the first part, we tested the associations of PA PRS and 
LTPA using linear regression models. All models were 
adjusted for the HUNT3 participation age, sex, and 10 
genetic PCs. The model was further adjusted for weekly 
alcohol consumption, smoking status and SES.

Second, the associations of PA PRS with aerobic fitness 
and cardiometabolic risk factors were analysed using linear 
regression models and same covariates. When necessary, 
the outcome variables were log- or square-root-transformed 
to resemble a normal distribution as far as possible (abso-
lute skewness ≤ 0.5 and kurtosis ≤ 0.5). Model assumptions 
(linearity, homoscedasticity and outliers) were investigated 
using plots and relevant statistics and tests before conduct-
ing the final modelling. Including genetic PCs as covariates 
reduced the risk of false positives by stratifying the popula-
tion [30]. Additionally, because some PRS–sex interactions 
were found, all analyses were also performed separately by 
sex (Supplementary material; Supplementary Tables S3–8).

Third, Cox proportional hazard models were used to anal-
yse the association between PA PRS and CMD incidence. 
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PA PRS. There were no statistically significant sex–PA PRS 
interactions in LTPA or VO2peak (P-values for interaction 
0.584 and 0.140, respectively) analyses. See Supplementary 
material (Supplementary Tables S3 and S4) for sex-specific 
association analyses.

Associations between polygenic scores for physical 
activity and cardiometabolic risk factors

Second, we tested the associations of the PA PRS and cardio-
metabolic risk factors in HUNT3. The risk factors included 
diastolic and systolic blood pressure, waist circumference, 
BMI, total cholesterol concentration, HDL cholesterol con-
centration, LDL cholesterol concentration and triglyceride 
concentration. One SD unit increase in the PA PRS was sta-
tistically significantly associated with lower waist circum-
ference (B = -0.003 cm per SD of PA PRS, 95% CI = -0.004, 
-0.002) and BMI (B = -0.002 kg/m2, 95% CI = -0.004, 
-0.001) and higher HDL cholesterol (B = 0.004 mmol/L, 
95% CI = 0.002, 0.006) (Fig. 2). The variances explained by 
the PA PRS were low (< 0.001–0.050%). The associations 
remained statistically significant when self-reported LTPA 
was added into the models (P < 0.001; P = 0.021; P = 0.016, 
respectively) and further when smoking status, weekly 
alcohol consumption and SES were added into the mod-
els (P < 0.001; P = 0.028; P = 0.004). Additionally, when 
weekly alcohol consumption, smoking status and SES were 
added into the model regarding systolic blood pressure, the 
association between systolic blood pressure and the PA PRS 
was statistically significant (P = 0.037) suggesting slightly 
stronger protective association among women. No statis-
tically significant associations were observed with other 
cardiometabolic risk factors. Sex–PA PRS interaction was 
statistically significant only for BMI (max P = 0.024). The 
association analyses separated by sex are presented in the 
Supplementary material (Supplementary Tables S5 and S6).

The HUNT3 Fitness Study, a further subcohort of 
HUNT3, consist of 4,462 participants, including 2,191 men 
(49.1%) and 2,271 (50.9%) women, here with a mean par-
ticipation age of 48.5 years (range, 19–89 years). The mean 
peak oxygen consumption (VO2peak) was 40.0 mL/kg/min. 
Compared with HUNT3, the mean PA PRS and self-reported 
LTPA were higher in this subcohort. The participants were 
also healthier based on their cardiometabolic risk factors.

In the survival analyses between PA PRS and CMD inci-
dences, we used data from the Nord-Trøndelag Health Trust 
discharge register (1987–2017), which included 24,960 par-
ticipants (mean birth year 1944 [range 1907–1988]; 46.5% 
men) from HUNT3. The average age at CMD onset was 60 
years, ranging from 4 to 99 years.

Associations between polygenic score for physical 
activity, self-reported leisure time physical activity 
and aerobic fitness

First, we derived a genome-wide PRS (over 1 million SNPs) 
for self-reported moderate PA using Pan-UK Biobank sum-
mary statistics (Phenotype manifest 2020 phenocode: 884) 
[16]. We determined the proportions of variation of LTPA in 
HUNT3 and aerobic fitness (VO2peak) in the HUNT3 Fit-
ness Study explained by the PA PRS. PA PRS was statistically 
significantly associated with self-reported LTPA (B = 0.282 
metabolic equivalent of task hours per week [MET-h/
wk] per one SD unit of PA PRS, 95% confidence interval 
[CI] = 0.211, 0.354; Table 2) and further when smoking sta-
tus, weekly alcohol consumption and socioeconomic status 
(SES) were added into the model (P < 2∙10–16). PA PRS 
accounted for 0.13% of the variation in the LTPA. However, 
PA PRS was not statistically significantly associated with 
VO2peak (B = 0.093 mL/kg/min, 95% CI = -0.112, 0.299) 
in the HUNT3 Fitness Study. The squared semipartial cor-
relations indicated low explanatory strength (< 0.13%) for 

Table 2 Associations between the polygenic score for physical activity and self-reported leisure time physical activity and aerobic fitness in 
HUNT3 (LTPA) and the HUNT3 Fitness Study (VO2peak)

PA PRSa

Models N B 95% CI P R2 100ΔR2

LTPA (MET-h/wk) 47,148
 Model 1 47,148 0.013
 Model 2 47,148 0.282 0.211, 0.354 0.737∙10− 14 0.014 0.127
 Model 3 41,754 0.335 0.260, 0.409 < 2∙10− 16 0.043 2.857
VO2peak (mL/kg/min)
 Model 1 4,462 0.456
 Model 2 4,462 0.093 -0.112, 0.299 0.373 0.457 0.010
Note. aStandardised. Model 1: adjusted for participation age, sex and 10 genetic principal components; Model 2: adjusted for participation age, 
sex, 10 genetic principal components and PA PRS; Model 3: adjusted for participation age, sex, 10 genetic principal components, PA PRS, smok-
ing status, alcohol consumption and socioeconomic status. PA PRS = polygenic risk score for moderate physical activity. LTPA = leisure time 
physical activity. MET-h/wk = metabolic equivalent of task hours per week. VO2peak = peak oxygen consumption. B = standardized regression 
coefficient. CI = confidence interval. R2 = coefficient of determination. 100ΔR2 = R-square difference between current and previous model mul-
tiplied by 100. Bold type indicates statistical significance at the level of P ≤ 0.05
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6% lower hazard for stroke (HR = 0.94, 95% CI = 0.903, 
0.978) and 6% lower hazard for type 2 diabetes (HR = 0.94, 
95% CI = 0.902, 0.970; Fig. 3). The statistically significant 
effects were low when expressed as comparative Cohen’s 
d effect size estimates. No significant associations were 
observed between PA PRS and other diseases, and their effect 
sizes were also low. Sex–PA PRS interaction was statisti-
cally significant only for pulmonary CVDs, which included 
pulmonary heart disease and pulmonary circulation diseases 
(P = 0.026). However, the sex-specific analyses for pulmo-
nary CVDs did not show statistically significant association 

Associations between polygenic score for physical 
activity and cardiometabolic diseases

Finally, we tested associations of the PA PRS and CMD 
incidences in a dataset of participants who gave their con-
sent for their data to be used from a health registry data 
(the Nord-Trøndelag Health Trust discharge register). One 
SD unit increase in the PA PRS was associated with a 5% 
lower hazard for cerebrovascular diseases (hazard ratio 
[HR] = 0.95, 95% CI = 0.917, 0.984), 3% lower hazard for 
hypertensive diseases (HR = 0.97, 95% CI = 0.951, 0.990), 

Fig. 2 Associations between 
the polygenic risk score for 
physical activity (PA PRS) and 
cardiometabolic risk factors in 
HUNT3. Model 1: adjusted for 
participation age, sex and 10 
genetic principal components; 
Model 2: adjusted for participa-
tion age, sex, 10 genetic principal 
components and PA PRS; Model 
3: adjusted for participation 
age, sex, 10 genetic princi-
pal components, PA PRS and 
leisure-time physical activity; 
Model 4: adjusted for participa-
tion age, sex, 10 genetic principal 
components, PA PRS, leisure-
time physical activity, smoking 
status, alcohol consumption 
and socioeconomic status. 
HDL = high-density lipoprotein. 
LDL = low-density lipoprotein. 
N = number of all participants. 
B = standardized regression coef-
ficient. CI = confidence interval. 
R2 = coefficient of determination. 
100ΔR2 = R-square difference

 

1 3



Associations of polygenic inheritance of physical activity with aerobic fitness, cardiometabolic risk factors and…

behaviour and risk of CMDs. However, the associations, 
although statistically significant, were minor and may not 
be clinically relevant. Overall, the PA PRS has low predic-
tive power, possibly because of the acknowledged inconsis-
tencies in assessing PA in cohort studies [33] and the PRS 
methodology [34]. For example, self-reports are prone to 
bias because of personal characteristics and according to 
meta-analyses self-reported and device-based measures can 
yield discrepant estimates of PA [35]. Device based mea-
sures of PA have low repeatability [36] and they do not con-
sider effects of aging on relative intensity of activity [37], 
which make it difficult to estimate associations with health 
variables.

Because LTPA is a behavioral trait, genetic variation is 
not expected to be explained by single-gene variants but 
rather by a large set of different gene variants. According to 
the polygenic model, each variant has its own effect on the 
LTPA phenotype, with a variety of magnitude, but mostly 
of small effects. Many GWASs have discovered statistically 
significant gene variants related to LTPA phenotypes [7, 
8]. However, replications of these findings have not been 
successful. The data in the GWASs studies require a very 
large sample size and accurate phenotype measurements to 
reach reasonable power to detect significant loci, and both 
have been a challenge in physical activity and sports-related 
phenotypes. There are several inherent problems in many 
LTPA measurements [38]. For example, LTPA levels within 
individuals vary over the lifespan, and even the day-to-day 
variation in activity is large [39, 40]. Harmonising PA data 
across cohorts often leads to oversimplifying PA behaviour. 
For example, in the largest GWAS of PA thus far, Wang et 
al. [8] created a binary variable of self-reported moderate-
to-vigorous PA to integrate the differently measured LTPA 
variables of multiple studies.

Polygenic scores are generated by summarising 
genome-wide genotype data of multiple single-nucleotide 

for men (HR = 0.913, 95% CI = 0.833, 1.001) or women 
(HR = 1.049, 95% CI = 0.961, 1.146). Sex-specific analyses 
can be viewed in the Supplementary material (Supplemen-
tary Tables S7 and S8). Sensitivity analyses were conducted 
to see whether changing the follow-up starting year from 
birth year to the year 2008, the year of data collection in 
HUNT3, to see if these adjustments would change results 
substantially. The HRs of Model 1 (Supplementary mate-
rial; Supplementary Table S9) of the sensitivity analyses of 
cerebrovascular diseases, hypertensive diseases and stroke 
remained statistically significant but were slightly lower 
compared to the HRs from the main analyses (Fig. 3). Also, 
type 2 diabetes was no longer statistically significant in the 
sensitivity analyses. However, the effect sizes of the statisti-
cally significant HRs remained low in the sensitivity analy-
ses when expressed as Cohen’s d effect size estimates.

Discussion

In the current study, we constructed a polygenic score for 
self-reported moderate PA [15] in a large Norwegian pop-
ulation-based study, using it as a measure of PA genotype. 
We observed that the PA PRS was statistically significantly 
associated with self-reported LTPA, but accounting for 
only 0.13% of the variance in LTPA. We also found that 
the PA genotype was statistically significantly associated 
with some cardiometabolic risk factors and the incidence 
of several CMDs but not with aerobic fitness. Our observa-
tions are consistent with previous findings, suggesting that 
participants whose genotype supports lower PA volumes 
tend to participate slightly less in LTPA [15] and may be 
at a slightly higher risk of developing some major CMDs 
when compared with participants having a genetic predispo-
sition for high PA [14]. This could suggest small pleiotropic 
effects; that is, the same genetic variation regulated both PA 

Fig. 3 Associations between the polygenic risk score for physical 
activity (PA PRS) and cardiometabolic diseases using Cox propor-
tional hazard models among 24,960 participants free of cardiometa-
bolic diseases at baseline. Hazard ratios (HRs) alongside with their 

respective confidence intervals (CIs) per each standard deviation of PA 
PRS for overall cardiovascular diseases and specific outcomes identi-
fied in the hospital register are graphically and numerically illustrated. 
CVD = cardiovascular disease
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not to physiological determinants of aerobic fitness. In addi-
tion, mitochondrial genome variation may explain some of 
the missing associations with aerobic fitness [44]. Finally, 
the baseline characteristics have suggested selection bias in 
these analyses because both PA PRS (2.0 vs. 1.9 per 107 
units) and LTPA (10.1 vs. 7.8 MET-h/wk) were somewhat 
larger in the HUNT3 Fitness Study than in HUNT3. Selec-
tion bias is a commonly observed phenomenon in sport sci-
ence research. In our study, it may have limited the variance 
in aerobic fitness.

Previous studies have suggested that regular participa-
tion and increases in LTPA may have a positive impact on 
cardiometabolic health [45, 46]. Managing cardiometabolic 
risk factors through adequate levels of LTPA may decrease 
the risks for many CMDs, but the potential effects of shared 
genetic factors have been unclear. As far as we know, the 
current study was the first to report the associations between 
a PA PRS and laboratory measured cardiometabolic risk 
factors. Our results have suggested that the risk of unhealthy 
health behaviour (low PA) and CMDs are potentially over-
lapping to a small degree. We found that a genotype sup-
porting a lower duration of PA was statistically significantly 
but weakly associated with unfavourable cardiometabolic 
health measured as intermediate clinically validated risk 
factors. In the total group of participants, lower PA PRS 
was statistically significantly but weakly associated with 
higher waist circumference, greater BMI and lower HDL 
cholesterol concentration. These results were in line with 
the associations observed regarding PA PRS and diseases 
in our study and earlier studies [14]. Future studies are 
needed to investigate how genetics affect individual training 
response on cardiometabolic risk factors and adherence in 
interventions.

There is a limited number of studies related to the genetic 
predisposition for PA and its association with noncommu-
nicable diseases. Recently, Sillanpää et al. [14] used a large 
Finnish biobank study, FinnGen, and found that PA PRS 
was weakly associated with lower CMD incidence. In our 
study, the associations of PA PRS with stroke, hypertension 
and type 2 diabetes were comparable to the results observed 
in the FinnGen study. However, we found that the PA geno-
type was not statistically significantly associated with CVD 
(all), coronary atherosclerosis and ischaemic heart diseases 
incidence, while an increase in PA PRS was, to a small 
degree, related to a reduction in the incidence of these dis-
eases in the Finnish population. The PA PRS in the current 
study was developed based on self-reported moderate PA, 
while Sillanpää et al. [14] used PA PRS based on continu-
ous device-based overall PA volume. Also, the larger cohort 
size (N = 218,792) and utilisation of the logistic regression 
modelling, which did not consider the follow-up time in the 

polymorphism gene variants, here based on trait-risk asso-
ciation, into a single individual-level score [12]. To the best 
of our knowledge, at least three different PRS have been uti-
lised to describe the PA genotype [8, 15]. Kujala et al. [15] 
constructed a PRS for self-reported moderate PA volume 
(‘number of days/week of moderate PA 10 + min’). Addi-
tionally, they constructed a second PRS for device-based 
overall PA volume (a 7-day period using an Axivity AX3 
wrist-worn triaxial accelerometer). These scores, which 
used Pan-UK Biobank as a base data and included varia-
tions in over 1.1 M SNPs, were obtained using a Bayesian 
approach. In two Finnish cohorts, the self-reported PA PRS 
explained 0.24% and 0.25% of the variation in the daily 
self-reported MET scores. The predictive value of the objec-
tively measured PA PRS was largest in the device-based 
daily steps (1.44%) and worst in the self-reported daily 
MET score (0.07%). Our current results from the Norwe-
gian cohort are consistent with those reported in the Finnish 
cohorts [15]. Our PA PRS explained a statistically signifi-
cant but small proportion of the variation in LTPA (0.13%), 
which is slightly less than for the different PA phenotypes in 
the Finnish cohorts (0.24–0.25%). This was to be expected 
because in HUNT3, the LTPA variable was constructed dif-
ferently from the Pan-UK Biobank moderate PA variable. 
Recently, Wang et al. [8] created a PRS for self-reported 
dichotomous moderate-to-vigorous PA. In their study, the 
effect sizes were small and largely nonsignificant. Taken 
together, the previous findings and ours suggest the current 
PA PRSs can explain only a very small amount of the varia-
tion in LTPA.

Earlier studies using a rat model reported that inherited 
high aerobic fitness was associated with higher levels of 
spontaneous PA [41, 42]. Also, Hanscombe et al. [43] found 
that genetic variants, expressed mainly in the heart, artery, 
lungs, skeletal muscle and adipose tissue, were associated 
with both aerobic fitness and device-based overall PA; they 
reported a moderate genetic correlation (rg=0.37) between 
device-based overall PA and cardiorespiratory fitness 
(VO2max). Based on this evidence, we hypothesised that 
higher PRSs for PA could have been associated with better 
aerobic fitness in humans. To the best of our knowledge, 
previous studies have not assessed the association of genetic 
inheritance of PA using polygenic scores and aerobic fitness. 
The results of the current study did not support our hypoth-
esis about shared genetic variation behind PA and aerobic 
fitness. There are several potential explanations for this. The 
low heritability (approx. 5%) reported for the GWAS from 
the Pan-UK Biobank suggests that the lack of association 
may be explained by the low associations of PA PRS, which 
can lead to weak statistical power in our relatively small 
and healthier subcohort. It is also possible that the PA PRS 
mainly includes genetic variants related to PA behaviour, 
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data, the results of the Cox regression were in line with 
those from the main analyses. It is also commonly known 
that PRS may not be portable across cohorts representing 
different genetic ancestry [49]. As Europeans, the Pan-UK 
Biobank population (British) and Norwegians are both of 
European ancestry genetically but may have some minor 
genetic differences [50]. These differences may affect how 
the PA PRS constructed using genetic data of British par-
ticipants is adaptable to a Norwegian population. To address 
the possible genetic differences in the cohorts, all analyses 
were adjusted for the 10 first PCs, to account for population 
stratification. In addition, the selected sub-cohort with fit-
ness measurements was smaller, younger, more physically 
active and healthier compared to the whole HUNT3 cohort.

Conclusions

Our results have provided complementary evidence that 
polygenic inheritance of PA statistically significantly over-
laps with cardiometabolic diseases and their associated 
intermediate risk factors and that these associations were 
not substantially changed when LTPA was included as a 
predictor. However, in general, the PA PRS explained only 
a minor proportion of variance in the studied phenotypes. 
A major limitation in this field is the use of varying meth-
odologies to measure PA, which complicates harmonisa-
tion of different data sets and hinders the development of 
adequately powered datasets. For the first time, we tested 
the association between PA PRS and aerobic fitness, here 
as measured as VO2peak, which was found to not be statis-
tically significant in the HUNT3 Fitness Study. However, 
different PRSs derived using aerobic fitness variable might 
reveal stronger associations between genetic predisposi-
tion for PA and aerobic fitness. In addition, in this field, 
large-scale collaborative efforts are needed to pool together 
genotyped datasets with measured aerobic fitness. To con-
clude, the current study suggests some similarities in the 
genetic inheritance of PA behaviour and development of 
cardiometabolic diseases. However, currently the PA PRS 
is not expected to have clinical utility in health promotion 
but improved PRSs constructed based on different types of 
device-based PA measurements should be tested.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10654-
023-01029-w.
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previous study, may have made smaller effects statistically 
significant.

The sex differences in our association analyses were 
generally minor. We found that an increase in PA PRS was 
statistically significantly but weakly associated with lower 
BMI in women but not in men. Some studies have found 
sex-specific genetic effects associated with BMI variance 
[47, 48], suggesting modifications depending on lifestyle 
factors arising from calorie intake, PA and sedentary behav-
iour. We also found a statistically significant sex-PA PRS 
interaction in pulmonary heart disease and pulmonary cir-
culation diseases. This could indicate commonly known dif-
ferences in health behaviour between genders (e.g., more 
frequent smoking among men) and biological sex differ-
ences affecting cardiometabolic health, such as the protect-
ing effect of estrogen before menopause in women. Overall, 
sex differences were very marginal and can also be related 
to sample-to-sample variations.

Strengths and limitations

There were several markable strengths in our study com-
pared with previous research. We were able to assess the 
associations between the PA genotype, directly measured 
aerobic fitness and clinically assessed cardiometabolic risk 
factors and diseases in one of the largest population-based 
health studies worldwide. This has not been possible in 
earlier population-based studies [14]. We utilised a state-
of-the-art method for quantifying the PA genotype and 
robust analyses to evaluate the associations between the PA 
genotype and outcomes. These novel approaches elucidated 
whether the associations between genetic inheritance of PA, 
cardiometabolic risk factors and diseases were confounded 
by LTPA, hence helping to test the hypothesis of shared 
genetic associations between PA and aerobic fitness.

There were several notable limitations. First, the moder-
ate PA phenotype of the Pan-UK Biobank GWAS differed 
from the LTPA phenotype available for PRS computation in 
HUNT3. This may have lowered the predictive capability of 
the PA PRS. The diagnosis codes for the CMDs studied were 
comprehensive, but the data of the Nord-Trøndelag Health 
Trust discharge register (1987–2017) may have included 
identification bias because the Norwegian Patient Registry 
started to use personal identification codes only from the 
year 2008 onwards [27]. The major weaknesses in the Cox 
regression models were that we were not able to separately 
analyse fatal CMDs, the register data patient number was 
relatively low for this kind of genetic analysis and we did 
not have exact death dates available. Although our sensi-
tivity analyses, including confounding variables and adjust-
ment for initial measurement time, reduced the sample size 
by a loss of more than half of the participants due to missing 
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