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Abstract
We study a general form of a degenerate or singular parabolic equation

ut − |Du|γ (�u + (p − 2)�N∞u
) = 0

that generalizes both the standard parabolic p-Laplace equation and the normalized version
that arises from stochastic game theory. We develop a systematic approach to study second
order Sobolev regularity and show that D2u exists as a function and belongs to L2

loc for a
certain range of parameters. In this approach proving the estimate boils down to verifying
that a certain coefficient matrix is positive definite. As a corollary we obtain, under suitable
assumptions, that a viscosity solution has a Sobolev time derivative belonging to L2

loc.
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1 Introduction

Recently, the second order regularity for parabolic p-Laplace type equations has been studied
by Høeg and Lindqvist [13], Dong et al. [10], and the authors [11]. In this article, we consider
a rather general class of parabolic equations

ut − |Du|γ (�u + (p − 2)�N∞u
) = 0 (1.1)

with 1 < p < ∞ and −1 < γ < ∞, where

�N∞u := |Du|−2
n∑

i, j=1

uxi ux j uxi x j = |Du|−2 〈Du, D2uDu〉 = |Du|−2 �∞u

denotes the normalized infinity Laplacian. The equation contains the game theoretic or nor-
malized p-parabolic equation and the divergence form standard p-parabolic equation as
special cases. The equation is not uniformly parabolic or in divergence form except in spe-
cial cases, and it can be highly degenerate or singular in the gradient variable. Regularity for
such equations has been recently studied for example by Imbert, Jin and Silvestre as well as
Parviainen and Vázquez as discussed below. The objective of this article is to develop a sys-
tematic approach to study the second order spatial regularity of viscosity solutions to (1.1).
In this approach proving the estimate reduces down to verifying that a certain coefficient
matrix is positive definite. For the further notation and the definition of viscosity solutions
to (1.1), we refer to Sect. 2.

In [11]we considered second order Sobolev regularity of the parabolic p-Laplace equation

ut − �pu = 0 (1.2)

where �pu := div (|Du|p−2Du) is the p-Laplace operator. Notice that, in the special case
γ = p − 2, Eq. (1.1) can be formally, and also rigorously by [16], rewritten as (1.2). One
of the key tools is the fundamental inequality (the name stems from Dong, Peng, Zhang and
Zhou [10] for a related inequality)

|Du|4|D2u|2 ≥ 2|Du|2|D2uDu|2 + (|Du|2�u − �∞u)2

n − 1
− (�∞u)2 (1.3)

which holds for any smooth function u as shown by Sarsa [25]. Curiously, in [11] it was
sufficient to use the above inequality in a simpler form just estimating (|Du|2�u−�∞u)2 ≥
0 on the right hand side. With the general equation in this paper, we use the inequality in the
full generality. A natural approach to obtain second order Sobolev estimates is to differentiate
(1.1), multiply the equation with suitable quantities containing gradients, and manipulate in
a suitable way. Thus, among other terms, one can obtain terms in divergence form, which can
be controlled. In the case of (1.2), one then uses (1.3) in a simple form as explained above and
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thus gets an upper bound for a quantity containing second derivatives. Part of the difficulty
in dealing with the general equation instead of the p-parabolic equation stems from the fact
that this approach gives rise to the mixed terms of the type

|Du|−γ ut�
N∞u

which are difficult to handle.
Another difficulty arises from the fact that of course u is not known to be smooth a priori

when differentiating the equation, and negative powers of the gradient are problematic as
the gradient might vanish. A natural approach to these problems is regularizing the equation
by adding a small regularization parameter, which removes the singularity. Unfortunately,
when differentiating the regularized equation, one gets another set of problematic terms that
no longer match the terms in the fundamental inequality. Treating these terms is a subtle
issue, and we need to guarantee that a sum of certain terms remain nonnegative by carefully
analyzing explicit coefficients of the terms.

In order to analyze the nonnegativity of the problematic terms and their coefficients sys-
tematically, we develop several techniques. We interpret the terms and their coefficients, as a
quadratic form and derive a range condition for the parameters from the positive definiteness
condition of this quadratic form. In order to improve the range obtained in this way, we
use a hidden divergence structure. Indeed, suitable mixed terms can actually be written in a
divergence form, and thus by adding such terms, we can manipulate the coefficients at the
cost of adding divergence form terms that can be estimated.

Some steps, in particular checking that the quadratic form is positive definite, of the above
plan when written down explicitly are quite complicated, and thus for the convenience of the
reader we first provide a formal calculation in Sect. 5, where we assume that the solution is
smooth and the gradient nonvanishing. In this case, the aboveplan gives anoptimal (optimality
is discussed in Example 5.1) a priori estimate (Proposition 5.1),
∫

Qr

∣∣∣D(|Du| p−2+s
2 Du)

∣∣∣
2
dxdt ≤ C

r2

(∫

Q2r

|Du|p+sdxdt +
∫

Q2r

|Du|p+s−γ dxdt

)

in the range

1 < p < ∞, −1 < γ < ∞ and n ≥ 2.

with the range condition

s > max
{

− 1 − p − 1

n − 1
, γ + 1 − p

}
. (1.4)

The left hand side in the above estimate is of the same form as the estimate in [11]. In
particular, we may set s = 2 − p, s = 0 and s = p − 2 giving

D2u, D(|Du| p−2
2 Du) and D(|Du|p−2 Du)

as special cases.
Perhaps surprisingly, removing the smoothness assumption and the assumption on the

nonvanishing gradient by using the regularized equation turns out to be a problem. In partic-
ular, the additional terms resulting from the regularization add to the technical complication
of showing that the quadratic form is positive definite. To reduce technical complication
partly for expository reasons, we have decided to restrict ourselves to the case n = 2 in the
regularized case. In this context we obtain the following result.
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Theorem 1.1 Let n = 2. Let u : �T → R be a viscosity solution to the general p-parabolic
equation (1.1). If p and γ satisfy one of the following conditions:

(i) 1 < p ≤ 5 and −1 < γ < 1; or
(ii) 1 < p < ∞ and −1 < γ <

√
2 − 1

2 ,

then D2u exists and belongs to L2
loc(�T ). Moreover, we have the estimate

∫

Qr

|D2u|2dxdt ≤ C

r2

(∫

Q2r

|Du|2dxdt +
∫

Q2r

|Du|2−γ dxdt

)
,

where C = C(p, γ ) > 0 and Qr ⊂ Q2r � �T are concentric parabolic cylinders.

This also implies that time derivative exists as an L2-function, which is not evident directly
by the definition.

Corollary 1.2 (Time derivative) Let n = 2. Let u : �T → R be a viscosity solution to the
general p-parabolic Eq. (1.1). If p and γ satisfy one of the following conditions:

(i) 1 < p ≤ 5 and 0 ≤ γ < 1; or
(ii) 1 < p < ∞ and 0 ≤ γ <

√
2 − 1

2 ,

then the time derivative ut exists as a function and ut ∈ L2
loc(�T ).

At least to some extent the range condition in Theorem 1.1 is an artifact as we explain
later. It would be interesting to know whether the theorem is valid in the whole range of
parameters.

Next we review the known regularity results of Eq. (1.1) and explain how our results fit
into the existing literature. If γ = p − 2, then Eq. (1.1) is the parabolic p-Laplace Eq. (1.2).
For the regularity theory of weak solutions to (1.2) we refer to the monograph of DiBenedetto
[8]. In particular, if u is a continuous weak solution to (1.2), then u ∈ Cα

loc and Du ∈ Cβ
loc

for some 0 < α, β < 1.
Moreover, Lindqvist [18] showed in the degenerate case 2 < p < ∞ that

D(|Du| p−2
2 Du) ∈ L2

loc,

and further that

D(|Du|p−2Du) ∈ L
p

p−1
loc .

The singular case is treated in [20]. The results then imply the existence of time derivative ut
as a function in suitable spaces similar to Corollary 1.2. In the case of the obstacle problem
the existence of the time derivative was established in [19]. Dong, Peng, Zhang and Zhou [10]
gave a proof that D2u ∈ L2

loc with a sharp range 1 < p < 3. This range of p can be recovered
from assumption (i) of Theorem 1.1. In the global case, estimates for D(|Du|p−2Du) have
been derived by Cianchi and Maz’ya in [7].

If γ = 0, Eq. (1.1) is the normalized parabolic p-Laplace equation

ut − �N
p u = 0

where �N
p u := �u + (p − 2)�N∞u is the normalized or game theoretic p-Laplace opera-

tor. This equation arises from a two-player stochastic game with a fixed running time, see
Manfredi et al. [21], or from image processing, see Does [9]. Banerjee and Garofalo [5, 6]
studied the potential theoretic aspects and boundary regularity of the normalized p-Laplacian
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evolution. These papers also contain Lipschitz regularity results for solutions to the normal-
ized p-parabolic equation. The regularity method in [21] is global whereas in [23] a local
game theoretic method is applied in this context. Later Jin and Silveste [15] established

C1,α
loc -regularity in space and C

0, 1+α
2

loc -regularity in time. In [13], Høeg and Lindqvist studied
the second order Sobolev regularity for the normalized p-parabolic equation and showed
that when 6

5 < p < 14
5 , the second order spatial derivatives D2u and the time derivative ut

belong to L2
loc. Moreover, they also proved that when 1 < p < 2, ut also belongs to L2

loc.

In [3], C1,α
loc -regularity was established to the normalized p-parabolic equation with a source

term. The work of Dong et al. [10] also applies to the normalized p-parabolic equation; in
this case they obtained D2u ∈ L2+δ

loc and ut ∈ L2+δ
loc for some δ > 0 if 1 < p < 3 + 2

n−2 .
The key result of [10] with δ = 0 can be recovered from assumption (ii) of Theorem 1.1.
Recently Andrade and Santos [1] established improved Sobolev regularity estimates when p
is close to 2.

As stated, (1.1) is in non-divergence form and can be highly degenerate or singular.
Thus even defining viscosity solutions in such a way that existence and uniqueness can be
obtained becomes a nontrivial issue. This was done by Ohnuma and Sato [22], see also
Giga’s monograph [12]. For viscosity solutions to the general Eq. (1.1), where 1 < p < ∞
and −1 < γ < ∞ are allowed to be independent of each other, Imbert, Jin and Silvestre
[14] proved in particular that Du ∈ Cα

loc for suitable 0 < α < 1. In [24], Parviainen and
Vázquez established Harnack’s inequality and asymptotic behaviour by using the fact that
for radial solutions Eq. (1.1) is equivalent to a divergence form equation but in fictitious
dimension. Attouchi [2] in the degenerate case and Attouchi-Ruosteenoja [4] in the singular
case established spatial C1,α

loc -regularity for an equation of type (1.1) but with a source term.
The elliptic Harnack’s inequality in the singular range was obtained in [17].

This article is organized as follows. In Sect. 2 we provide the necessary preliminaries. In
Sect. 3 we explain the ideas of the proof of Theorem 1.1. In Sect. 4 we state several auxiliary
lemmas needed in the proofs, including the fundamental inequality (1.3). Sections5 and 6
are parallel to each other. In the former, we provide the formal calculation. In the latter, we
provide a similar calculation in a regularized setting, which eventually yields Theorem 1.1.
In Sect. 6.2 we prove Theorem 1.1 and Corollary 1.2. Some of the proofs for the technical
lemmas are postponed to the appendix.

2 Preliminaries

We use the following notation. Let � ⊂ R
n , n ≥ 2, be a domain and define the cylinder

�T := � × (0, T ).

IfU is compactly contained in �, i.e.U ⊂ � and the closure ofU is a compact subset of �,
we write U � �. For 0 < t1 < t2 < ∞, we set

Ut1,t2 := U × (t1, t2).

Moreover, we will use parabolic cylinders of the form

Qr (x0, t0) := Br (x0) × (t0 − r2, t0],
where Br (x0) denotes the open ball with radius r > 0 and center point x0 ∈ �. When no
confusion arises, we may drop the reference point (x0, t0) and write Qr .
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Given a function u = u(x, t) of point x ∈ R
n and time t > 0, the spatial gradient of u is

denoted by Du = (ux1 , . . . , uxn ), and the time derivative by ut . The Hessian matrix of u is
denoted by D2u = (uxi x j )

n
i, j=1. The Laplacian of u is given by

�u :=
n∑

i=1

uxi xi

and the infinity Laplacian by

�∞u :=
n∑

i, j=1

uxi ux j uxi x j = 〈Du, D2uDu〉

where 〈·, ·〉 stands for the inner product in Rn . The normalized infinity Laplacian is denoted
by

�N∞u := �∞u

|Du|2 .

We study viscosity solutions to the general p-parabolic equation

ut − |Du|γ (�u + (p − 2)�N∞u
) = 0 in�T , (2.1)

where 1 < p < ∞ and −1 < γ < ∞. The definition of suitable viscosity solutions to (2.1)
requires some care because the operator may be singular. Nonetheless, a definition that fits
our needs can be found in [22]. First set

F(Du, D2u) := |Du|γ (�u + (p − 2)�N∞u
)

whenever Du �= 0. We define F to be a set of functions f ∈ C2([0,∞)) such that

f (0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0,

and moreover we require for g(x) := f (|x |) that
lim

x→0,x �=0
F(Dg(x), D2g(x)) = 0.

Further, let

� = {σ ∈ C1(R) : σ is even, σ (0) = σ ′(0) = 0, andσ(r) > 0 for all r �= 0}.
Definition 2.1 A function ϕ ∈ C2(�T ) is admissible if for any (x0, t0) ∈ �T with
Dϕ(x0, t0) = 0, there are δ > 0, f ∈ F and σ ∈ � such that

|ϕ(x, t) − ϕ(x0, t0) − ϕt (x0, t0)(t − t0)| ≤ f (|x − x0|) + σ(t − t0)

for all (x, t) ∈ Bδ(x0) × (t0 − δ, t0 + δ).

If Dϕ �= 0, a C2-function is automatically admissible.

Definition 2.2 We say that ϕ touches u at (x0, t0) ∈ �T (strictly) from below if

(1) u(x0, t0) = ϕ(x0, t0), and
(2) u(x, t) > ϕ(x, t) for all (x, t) ∈ �T such that (x, t) �= (x0, t0).

The definition for touching (strictly) from above is analogous.

Definition 2.3 A function u : �T → R ∪ {∞} is a viscosity supersolution to (2.1) if
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(i) u is lower semicontinuous,
(ii) u is finite in a dense subset of �T ,
(iii) for all admissible ϕ ∈ C2(�T ) touching u at (x0, t0) ∈ �T from below

{
ϕt (x0, t0) − F(Dϕ(x0, t0), D2ϕ(x0, t0)) ≥ 0 if Dϕ(x0, t0) �= 0,

ϕt (x0, t0) ≥ 0 if Dϕ(x0, t0) = 0.

The definition of a subsolution u : �T → R∪ {−∞} is analogous except that we require
upper semicontinuity, touching from above, and we reverse the inequalities above: in other
words if −u is a viscosity supersolution. If a continuous function is both a viscosity super-
and subsolution, it is a viscosity solution.

It is shown in [16] that if γ = p − 2 > −1, then the above notion coincides with the
notion of p-super/subparabolic functions, having a direct connection to the distributional
weak super/subsolutions as well. Moreover, if γ ≥ 0, then viscosity solutions can be defined
in a standard way by using semicontinuous envelopes, see Proposition 2.2.8 in [12].

3 Plan of proof

In this section we explain the idea of the proof of Theorem 1.1 and our plan of the proof.

3.1 Derivation of a basic estimate

In order to prove second order estimates, we first derive a key basic estimate (3.4) (or actually
equality at this point). To this end, we regularize the original Eq. (1.1) and consider

uε
t − (

∣∣Duε
∣∣2 + ε)γ/2

(
�uε + (p − 2)

�∞uε

|Duε|2 + ε

)
= 0 (3.1)

for small ε > 0. Solutions to this equation are smooth according to the standard theory.
We differentiate Eq. (3.1) with respect to xk , k = 1, . . . , n, and find that the spatial partial
derivatives uε

xk , k = 1, . . . , n, solve the equation

(|Duε|2 + ε)
p−2−γ

2 (uε
xk )t − div

(
(|Duε|2 + ε)

p−2
2 ADuε

xk

)

+ (p − 2 − γ )(|Duε|2 + ε)
p−4−γ

2 uε
t 〈Duε, Duε

xk 〉 = 0
(3.2)

where

A = I + (p − 2)
Duε ⊗ Duε

|Duε|2 + ε

is a uniformly positive definite n × n-matrix. Here I denotes the identity matrix.

We continue with the intention to study the derivatives of |Du| p−2+s
2 Du; in particular

the choice s = 2 − p corresponds to D2u. We multiply the differentiated Eq. (3.2) by
(|Duε|2 + ε)s/2uε

xk and obtain

(|Duε|2 + ε)
p−2−γ+s

2 uε
xk (u

ε
xk )t − (|Duε|2 + ε)s/2uε

xk div
(
(|Duε|2 + ε)

p−2
2 ADuε

xk

)

+ (p − 2 − γ )(|Duε|2 + ε)
p−4−γ+s

2 uε
t 〈Duε, Duε

xk 〉uε
xk = 0.

(3.3)
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Using the chain rule

uε
xk (u

ε
xk )t = 1

2

(
(uε

xk )
2 + ε

n

)

t
,

and summing (3.3) over k = 1, . . . , n gives that
(
(|Duε|2 + ε)

p+s−γ
2
)
t

p + s − γ
− (|Duε|2 + ε)s/2

n∑

k=1

uε
xk div

(
(|Duε|2 + ε)

p−2
2 ADuε

xk

)

+ (p − 2 − γ )(|Duε|2 + ε)
p−2−γ+s

2 uε
t

�∞uε

|Duε|2 + ε
= 0.

Observing that

div
(
(|Duε|2 + ε)

p−2+s
2 AD2uεDuε

)

=
n∑

k=1

div
((

(|Duε|2 + ε)s/2uε
xk

)(
(|Duε|2 + ε)

p−2
2 ADuε

xk

))

= (|Duε|2 + ε)s/2
n∑

k=1

uε
xk div

(
(|Duε|2 + ε)

p−2
2 ADuε

xk

)

+ (|Duε|2 + ε)
p−2+s

2

{
|D2uε|2 + (p − 2 + s)

|D2uεDuε|2
|Duε|2 + ε

+ s(p − 2)
(�∞uε)2

(|Duε|2 + ε)2

}
,

we obtain the identity

(|Duε|2 + ε)
p−2+s

2

{
|D2uε|2 + (p − 2 + s)

|D2uεDuε|2
|Duε|2 + ε

+ s(p − 2)
(�∞uε)2

(|Duε|2 + ε)2

+(p − 2 − γ )(|Duε|2 + ε)−γ /2uε
t

�∞uε

|Duε|2 + ε

}

= div
(
(|Duε|2 + ε)

p−2+s
2 AD2uεDuε

)−
(
(|Duε|2 + ε)

p+s−γ
2
)
t

p + s − γ
.

(3.4)

Here we assume that s �= γ − p. This is not restrictive, because eventually such value of s
violates the resulting range condition (1.4) in any case. It is important that the terms on the
right hand side are in divergence form and can thus be well estimated. An important step
towards the desired result would be a pointwise inequality

(|Duε|2 + ε)
p−2+s

2 |D2uε|2 � div
(
(|Duε|2 + ε)

p−2+s
2 AD2uεDuε

)−
(
(|Duε|2 + ε)

p+s−γ
2
)
t

p + s − γ
,

which then could be integrated to obtain the final result and for this we need to estimate the
excess terms on the left hand side of (3.4).

3.2 Formal calculation for smooth solutions with a nonvanishing gradient

Compared to our earlier work [11] where we treated the case γ = p − 2, we now have two
extra difficulties for the general case−1 < γ < ∞. The first difficulty arises from the fourth
term on the left hand side of (3.4), that is,

(p − 2 − γ )(|Duε|2 + ε)−γ /2uε
t

�∞uε

|Duε|2 + ε
.
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Note that this mixed term vanishes if γ = p − 2. In general we regard the term mixed in the
sense that we cannot determine its sign by the sign of the coefficient p − 2 − γ .

We first discuss the difficulty of mixed terms in the formal case with ε = 0, and denote
a solution by u. In this case, we assume in addition that Du �= 0. As indicated above, we
would like to estimate the excess term in (3.4) and obtain an estimate for |Du|p−2+s |D2u|2
with the range (1.4). To this end, we write the fundamental inequality (1.3) in the form

2|DT |Du||2 + (�T u)2

n − 1
+ (�N∞u)2 ≤ |D2u|2

and employ it in identity (3.4) on the term |Du|p−2+s |D2u|2 to obtain that

|Du|p−2+s
{

1

n − 1
(�T u)2 + (p + s)|DT |Du||2 + (p − 1)(s + 1)(�N∞u)2

+(p − 2 − γ ) |Du|−γ ut�
N∞u
}

≤ div
(|Du|p−2+s AD2uDu

)−
( |Du|p+s−γ

)
t

p + s − γ
,

(3.5)

where

|DT |Du||2 := |D2uDu|2
|Du|2 − (�N∞u)2 and �T u := �u − �N∞u.

Note that |DT |Du||2 ≥ 0. Sometimes �T u is called the normalized 1-Laplacian for the
obvious reason.

Except the mixed term that is the last term on the left hand side in (3.5), the nonnegativity
of other terms in the left hand side of (3.5) can be easily obtained by the restriction s > −1.
In order to develop a systematic way of checking nonnegativity of the mixed term utilizing
other terms, we use Eq. (1.1) to rewrite

|Du|−γ ut�
N∞u = �T u�N∞u + (p − 1)(�N∞u)2,

and view the mixed term �T u�N∞u as a part of a quadratic form of �T u and �N∞u. That is,
we consider

Q : = 1

n − 1
(�T u)2 + (p − 1)(p − 1 + s − γ )(�N∞u)2 + (p − 2 − γ )�T u�N∞u

=: 〈x̄, Mx̄〉,
where x̄ := (�T u,�N∞u)T ∈ R

2 and

M =
⎡

⎢
⎣

1

n − 1

1

2
(p − 2 − γ )

1

2
(p − 2 − γ ) (p − 1)(p − 1 + s − γ )

⎤

⎥
⎦

is a symmetric 2 × 2-matrix.
It turns out that in order to derive the desired estimate, it suffices to ensure along with

few other conditions that the quadratic form Q is strictly positive in R
2\{0}, that is, M is

positive definite. However, the range condition in (1.4) does not suffice to guarantee that the
positive definiteness of Q, hence we need to improve the estimate. We employ the following
observation: If q > 1, then

ut |Du|q−2�N
q u = ut div

(|Du|q−2Du
) = div (ut |Du|q−2Du) − (|Du|q)t

q
(3.6)
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holds for any smooth function u with nonvanishing gradient. In other words, the quantity on
the left hand side is a ‘good term’ with a hidden divergence structure.

It is easier to utilize this observation with inequality (3.5), if we rewrite the right hand
side of that inequality using Eq. (1.1). To be more precise,

div
(|Du|p−2+s AD2uDu

)−
( |Du|p+s−γ

)
t

p + s − γ

= div
(|Du|p−2+s(D2uDu − �uDu)

)+ ut div
(|Du|p−2+s−γ Du

)
,

(3.7)

where the last term now matches with (3.6) setting q := p + s − γ . On the other hand, for a
solution u, by Eq. (1.1), and by the definition of normalized q-Laplacian �N

q u, one has

ut = |Du|γ (�T u + (p − 1)�N∞u), and �N
p+s−γ u = �T u + (p − 1 + s − γ )�N∞u

and thus

ut div
(|Du|p−2+s−γ Du

)

= |Du|γ (�T u + (p − 1)�N∞u
) · |Du|p−2+s−γ · (�T u + (p − 1 + s − γ )�N∞u

)

= |Du|p−2+s
{
(�T u)2 + (2p − 2 + s − γ )�T u�N∞u + (p − 1)(p − 1 + s − γ )(�N∞u)2

}
.

(3.8)

The idea is to add ut div
(|Du|p−2+s−γ Du

)
with a suitable weight on both sides of (3.5):

then by the above equation, it produces new coefficients on the left hand side that can be
utilized later to get better range, and controllable terms on the right hand side by (3.7). We
also add another positive weight by using

|Du|p−2+s
{
|D2u|2 − (�u)2 + (p − 2 + s)

|D2uDu|2
|Du|2 − (p − 2 + s)�u�N∞u

}

= div
(|Du|p−2+s(D2uDu − �uDu)

)
(3.9)

from Lemma 4.2 below which holds for any smooth function with nonvanishing gradient.
This allows us to obtain simplified coefficients in intermediate steps. Thus we obtain

|Du|p−2+s
{(

w2 − n − 2

n − 1
w1

)
(�T u)2 + w1(p + s) |DT |Du||2

+w2(p − 1)(p − 1 + s − γ )(�N∞u)2 + (w2(2p − 2 + s − γ ) − w1(p + s)
)
�T u�N∞u

}

≤ w1 div
(|Du|p−2+s(D2uDu − �uDu)

)+ w2ut div
(|Du|p−2+s−γ Du

)
,

(3.10)

which reduces to (3.5) if w1 = 1 and w2 = 1. Calculations reveal that if the range condition
(1.4) holds, then the weights w1 and w2 can be adjusted so that the weighted quadratic form

(
w2 − n − 2

n − 1
w1

)
(�T u)2 + w2(p − 1)(p − 1 + s − γ )(�N∞u)2

+ (w2(2p − 2 + s − γ ) − w1(p + s)
)
�T u�N∞u

is positive in R
2\{0}. This positivity in the formal case ε = 0 is shown in Lemma 5.2. By

Proposition 5.1, this then implies the desired estimate
∫

Qr

∣∣∣D(|Du| p−2+s
2 Du)

∣∣∣
2
dxdt ≤ C

r2

( ∫

Q2r

|Du|p+sdxdt +
∫

Q2r

|Du|p+s−γ dxdt
)
.
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Heuristically, in order to prove the above estimate, and setting s = 2 − p for simplicity,
we could have left a small piece of |D2u|2 when applying the fundamental inequality for
(3.5). Then the rest of the terms can be dropped by the above positivity result: in detail this is
implemented in Lemma 4.4 also for other values of s. The obtained pointwise estimate can
then be integrated by parts along with a cutoff function to get Proposition 5.1.

3.3 Solutions without smoothness assumptions and regularized equation

The second difficulty, which is related to the regularization, is that the left hand side of (3.4)
consists of regularized versions of second order derivative quantities,

|D2uεDuε|2
|Duε|2 + ε

and
�∞uε

|Duε|2 + ε
,

whereas employing the fundamental inequality (1.3) results in quantities like

|D2uεDuε|2
|Duε|2 and �N∞uε.

This mismatch causes that some of the formal calculations do not work as such but have
further complications: in particular positive definiteness of the quadratic form becomes an
issue.

For a certain range of parameters, the main result is obtained by a straightforward gener-
alization of the formal calculation (ε = 0) in the previous section. However, in the process
of extending the range, we consider

S := w1 div
(
(|Duε|2 + ε)

p−2+s
2 (D2uεDuε − �uεDuε)

)

+ w2u
ε
t div

(
(|Duε|2 + ε)

p−2+s−γ
2 Duε

)

+ w3ε div
(
(|Duε|2 + ε)

p−2+s
2 −1(D2uεDuε − �uεDuε)

)

+ w4εu
ε
t div

(
(|Duε|2 + ε)

p−2+s−γ
2 −1Duε

)
,

(3.11)

where w1, w2, w3, w4 ∈ R. Compared to the right hand side of (3.10), or (6.3), this sum
has two additional terms with weights w3 and w4. The latter additional term has a hidden
divergence structure, similarly to (3.6). These divergence structures can be used to adjust
the coefficients on the left hand side of the estimate (3.10), and thus to improve the range of
parameters. To be more precise, we denote

θ := |Duε|2
|Duε|2 + ε

and κ := 1 − θ = ε

|Duε|2 + ε
, (3.12)

and obtain

|D2uεDuε|2
|Duε|2 + ε

= θ
∣∣D
∣∣Duε

∣∣∣∣2 and
�∞uε

|Duε|2 + ε
= θ�N∞uε.
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The secondmixed term of (3.11) can also be written as a part of the quadratic form as follows

εuε
t div

(
(∣
∣Duε

∣
∣2 + ε

) p−2+s−γ
2 −1

Duε

)

= θ(
∣
∣Duε

∣
∣2 + ε)

p−2+s
2

(
(�T u

ε)2 + ((2p − 6 + s − γ )θ + 2
)
�T u

ε�N∞uε

+ ((p − 2)θ + 1
)(

(p − 4 + s − γ )θ + 1
)
(�N∞uε)2

)

(3.13)

with weight w4, where

uε
t = (|Duε|2 + ε)γ/2

(
�T u

ε + ((p − 2)θ + 1
)
�N∞uε

)

byusing the regularized equation and recalling the shorthandnotation�T uε := �uε−�N∞uε.

This will give rise to new coefficients and thus to a better range condition.
In order to produce new coefficients on the left hand side of (3.4), especially for the second

order term (|Duε|2 + ε)
p−2+s

2
∣
∣D2uε

∣
∣2, and also to improve the range of the parameters, we

add another divergence structure

ε div
(
(
∣∣Duε

∣∣2 + ε)
p−2+s

2 −1(D2uεDuε − �uεDuε)
)

= θ(
∣∣Duε

∣∣2 + ε)
p−2+s

2

{
|D2uε|2 − (�uε)2 + (p − 4 + s)θ

∣∣D
∣∣Duε

∣∣∣∣2

− (p − 4 + s)θ�uε�N∞uε
}
.

(3.14)

Also observe that the above choice of the power (p − 2 + s)/2 − 1 will be useful in the
proof of Lemma 4.5 when deriving an upper bound for the left hand side of the estimate,
after integration by parts where we estimate ε/(|Duε|2 + ε) ≤ 1 and thus the additional −1
in the power gets canceled out. Besides, the error terms obtained in Lemmas 4.4 and 4.7 in
[10] can be seen as special cases of the error terms above.

Then combining (3.8), (3.9), (3.13) and (3.14) together with definition (3.11) of S, we get

(|Duε|2 + ε)
p−2+s

2

{
c1|D2uε|2 + c2|DT |Duε||2 + (c3 − c1)(�T u

ε)2

+
(
(c3 + c4)

(
(p − 2)θ + 1

)− c1
)
(�N∞uε)2

+
(
c3
(
(p − 2)θ + 1

)+ (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε
}

= S, (3.15)

where c1, c2, c3 and c4 depend on w1, w2, w3, w4 and θ as computed in detail in Sect. 4.2.
Then we again use the fundamental inequality on part of c1|D2uε|2 and find such weights
w1, w2, w3 and w4 that the last three terms on the left hand side can be interpreted as a
positive definite quadratic form and thus removed. Finally, S on the right hand side can be
multiplied by a cutoff function and integrated by parts to get the final estimate. However, the
nonnegativity can only be checked in certain ranges, since it needs to hold uniformly for all
θ ∈ [0, 1).

4 Hidden divergence structures, the key estimate and auxiliary lemmas

In this section we prove several auxiliary tools. The lemmas in this section will be used to
prove estimates for both uε, that solves (3.1) with ε > 0, and u, that solves (3.1) with ε = 0
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and Du �= 0. Therefore we state the lemmas in such a generality that applies to both of these
cases.

4.1 Hidden divergence structures

In this subsection we gather some useful facts about generic smooth functions. First, if
u : �T → R, �T ⊂ R

n+1 is a smooth function, then |Du| is locally Lipschitz continuous
and thus, byRademacher’s theorem, differentiable almost everywhere on each time slice.Here
and in similar occurrences in what follows, we write that D|Du| exists almost everywhere
in space.

Note that if (x0, t0) ∈ �T is a space-time point where |Du| is differentiable and
Du(x0, t0) = 0, then D|Du|(x0, t0) = 0. Indeed, if we had D|Du|(x0, t0) �= 0, then we
could find a point ξ ∈ � × {t0} (close to (x0, t0)) such that |Du|(ξ) < 0, which is obviously
impossible. On the other hand, if Du(x0, t0) �= 0 for some (x0, t0) ∈ �T , then |Du| is
differentiable at (x0, t0) and

D|Du|(x0, t0) = D2u(x0, t0)Du(x0, t0)

|Du(x0, t0)| .

For each point in �T where Du �= 0, we fix an orthonormal basis of Rn , {e1, . . . , en},
such that en = Du

|Du| . Hence we have, for those points where Du �= 0,

D2uDu

|Du| = 〈e1, D|Du|〉e1 + . . . + 〈en−1, D|Du|〉en−1 +
〈
Du

|Du| , D|Du|
〉
Du

|Du| .

For those points where |Du| is differentiable, let us define the part of D|Du| which is
tangential to the spatial level sets of u as

DT |Du| :=
{

〈e1, D|Du|〉e1 + . . . + 〈en−1, D|Du|〉en−1 if Du �= 0,

0 if Du = 0,

and its orthogonal counterpart, the normalized infinity Laplacian, as

�N∞u :=
{

〈 Du
|Du| , D|Du|〉 = �∞u

|Du|2 if Du �= 0,

0 if Du = 0.

We employ these notation to write

|D|Du||2 = |DT |Du||2 + (�N∞u)2 a.e. in space in �T , (4.1)

and

�T u = �u − �N∞u a.e. in �T . (4.2)

Lemma 4.1 (Fundamental inequality) Let u : �T → R be a smooth function. Then

|D2u|2 ≥ 2|DT |Du||2 + (�T u)2

n − 1
+ (�N∞u)2 a.e. in space in �T . (4.3)

If n = 2, we have equality in the place of inequality.

For the proof of Lemma 4.1, we refer to [11, 25].
The following lemmas show that certain terms that first appear to be in non-divergence

form, can actually be expressed in a divergence form. On the other hand, these structures can
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be utilized in tuning the coefficients in the quadratic form as explained in Sect. 3.3, and thus
they improve the range we obtain. The first Lemma 4.2 will mainly adjust the coefficient

of the term (|Duε|2 + ε)
p−2+s

2
∣
∣D2uε

∣
∣2 . The second divergence structure, Lemma 4.3, will

produce certain new coefficients on the quadratic form as Q. The proofs of both of these
lemmas are direct calculations.

Lemma 4.2 (Hidden divergence structure 1) Let u : �T → R be a smooth function. Then
for any α ∈ R and ε > 0,

(|Du|2 + ε)α/2
{
|D2u|2 − (�u)2 + α

|D2uDu|2
|Du|2 + ε

− α�u
�∞u

|Du|2 + ε

}

= div
(
(|Du|2 + ε)α/2(D2uDu − �uDu)

)
.

Furthermore, if Du �= 0, then the above equality holds also for ε = 0.

Proof By the derivative rule of composite function, the right hand side

div
(
(|Du|2 + ε)α/2(D2uDu − �uDu)

)

= 〈D2uDu − �uDu, D
(
(|Du|2 + ε)α/2)〉+ (|Du|2 + ε)α/2 div (D2uDu − �uDu)

= 〈D2uDu − �uDu, D
(
(|Du|2 + ε)α/2)〉+ (|Du|2 + ε)α/2(|D2u|2 − (�u)2

)

= (|Du|2 + ε)α/2
{
|D2u|2 − (�u)2 + α

|D2uDu|2
|Du|2 + ε

− α�u
�∞u

|Du|2 + ε

}
,

where

D
(
(|Du|2 + ε)α/2) = α(|Du|2 + ε)

α−2
2 D2uDu.

��

The next lemma demonstrates that a mixed term can be written in a divergence form.
On the other hand by using Eq. (3.1), as explained in (3.13), the mixed term adds up in the
quadratic form, and thus adding such mixed terms can be used to improve the range.

Lemma 4.3 (Hidden divergence structure 2) Let u : �T → R be a smooth function. Then
for any β ∈ R and ε > 0,

ut (|Du|2 + ε)β/2
(

�u + β
�∞u

|Du|2 + ε

)

= ut div
(
(|Du|2 + ε)β/2Du

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div
(
ut (|Du|2 + ε)β/2Du

)−
(

(|Du|2 + ε)
β+2
2

β + 2

)

t

if β �= −2,

div
(
ut (|Du|2 + ε)−1Du

)−
(
ln(|Du|2 + ε)

2

)

t
if β = −2.

Furthermore, if Du �= 0, then the above equality holds also for ε = 0.

Proof We give the proof when β �= −2, the second case is similar. By the derivative rule of
composite function again, one has
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div
(
ut (|Du|2 + ε)β/2Du

)−
(

(|Du|2 + ε)
β+2
2

β + 2

)

t

= ut div
(
(|Du|2 + ε)β/2Du

)+ (|Du|2 + ε)β/2DuDut −
(

(|Du|2 + ε)
β+2
2

β + 2

)

t

= ut div
(
(|Du|2 + ε)β/2Du

)

= ut
〈
D
(
(|Du|2 + ε)β/2), Du

〉+ ut (|Du|2 + ε)β/2 div (Du)

= ut (|Du|2 + ε)β/2
(

�u + β
�∞u

|Du|2 + ε

)
.

��
For α ∈ R, we denote the ‘first good divergence structure’ as

GD1(α) := div
(
(|Du|2 + ε)α/2(D2uDu − �uDu)

)

and the ‘second good divergence structure’

GD2(α) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div
(
ut (|Du|2 + ε)

α−γ
2 Du

)−
(

(|Du|2 + ε)
α−γ+2

2

α − γ + 2

)

t

if α �= γ − 2,

div
(
ut (|Du|2 + ε)−1Du

)−
(
ln(|Du|2 + ε)

2

)

t
if α = γ − 2.

Then as explained in (3.11), we consider the following weighted sum of these ‘good
structures’,

S :=w1GD1(p − 2 + s) + w2GD2(p − 2 + s)

+ εw3GD1(p − 4 + s) + εw4GD2(p − 4 + s)
(4.4)

for some parameter s ∈ R and some weights w1, w2, w3, w4 ∈ R. Observe that taking into
account Lemmas 4.2 and 4.3, then S introduced above coincides with S in (3.11), i.e. the
notation is consistent. The reason for using the mixed term form in S there was to emphasize
the idea that we can improve the range by adding themixed terms. To derive the final estimate,
we need terms in the divergence form, and therefore this formwas used in the above definition
of S, but as stated they are equivalent.

4.2 The key estimate

As explained in (3.15), S represents the right hand side in our key estimate, and on the left
we should have the second derivatives and a positive definite quadratic form. In this section,
we derive the key estimate corresponding to (3.15) in detail.

We use Lemmas 4.2 and 4.3 to rewrite S as a linear combination of time derivatives and
second order spatial derivative quantities, similarly to the left hand side of (3.4). First recall
shorthand notation θ and κ from (3.12)

θ = |Duε|2
|Duε|2 + ε

and κ = ε

|Duε|2 + ε
,

thus 0 ≤ θ, κ ≤ 1, θ + κ = 1 and

|D2uεDuε|2
|Duε|2 + ε

= θ
∣∣D
∣∣Duε

∣∣∣∣2 and
�∞uε

|Duε|2 + ε
= θ�N∞uε.
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In particular, if ε = 0 and the gradient does not vanish, then θ ≡ 1 and κ ≡ 0. Next we recall
the definition of S from the above, and use the good divergence structures i.e. Lemma 4.2
(withα = p−2+s and p−4+s ) and Lemma 4.3 (withβ = p−2+s−γ and p−4+s−γ ).
For a smooth solution and indeed for any smooth function, we have

S = w1(|Duε|2 + ε)
p−2+s

2

{
|D2uε|2 − (�uε)2 + (p − 2 + s)

( |D2uεDuε|2
|Duε|2 + ε

−�uε �∞uε

|Duε|2 + ε

)}

+ w2u
ε
t (|Duε|2 + ε)

p−2+s−γ
2

{
�uε + (p − 2 + s − γ )

�∞uε

|Duε|2 + ε

}

+ εw3(|Duε|2 + ε)
p−4+s

2

{
|D2uε|2 − (�uε)2 + p − 4 + s)

( |D2uεDuε|2
|Duε|2 + ε

−�uε �∞uε

|Duε|2 + ε

)}

+ εw4u
ε
t (|Duε|2 + ε)

p−4+s−γ
2

{
�uε + (p − 4 + s − γ )

�∞uε

|Duε|2 + ε

}
.

Then by simplifying, we get

S =(|Duε|2 + ε)
p−2+s

2

{
(w1 + w3κ)

(|D2uε|2 − (�uε)2
)

+ (w1(p − 2 + s) + w3(p − 4 + s)κ
)
θ(|D|Duε||2 − �uε�N∞uε)

+ (w2 + w4κ)(|Duε|2 + ε)−γ /2uε
t �uε

+ (w2(p − 2 + s − γ ) + w4(p − 4 + s − γ )κ
)
θ(|Duε|2 + ε)−γ /2uε

t �
N∞uε

}

=(|Duε|2 + ε)
p−2+s

2

{
c1
(|D2uε|2 − (�uε)2

)+ c2(|D|Duε||2 − �uε�N∞uε)

+ c3(|Duε|2 + ε)−γ /2uε
t �uε + c4(|Duε|2 + ε)−γ /2uε

t �
N∞uε

}

almost everywhere in �T , where
{
c1 = w1 + w3κ, c2 = (w1(p − 2 + s) + w3(p − 4 + s)κ

)
θ,

c3 = w2 + w4κ, c4 = (w2(p − 2 + s − γ ) + w4(p − 4 + s − γ )κ
)
θ.

(4.5)

Observe that given p, γ and s, if ε = 0, then c1, . . . , c4 reduce to constants that only depend
on w1 and w2, which shows that in smooth case by adjusting w1 and w2, we can get the
desired estimate as explained in (3.10).

By employing expressions (4.1) and (4.2), we can write

s = (|Duε|2 + ε)
p−2+s

2

{
c1|D2uε|2 + c2|DT |Duε||2 − c1(�T u

ε)2 − c1(�
N∞uε)2

− (2c1 + c2)�T u
ε�N∞uε + c3(|Duε|2 + ε)−γ /2uε

t �T u
ε

+ (c3 + c4)(|Duε|2 + ε)−γ /2uε
t �

N∞uε
}

(4.6)

almost everywhere in �T . Next we use regularized Eq. (3.1) to replace time derivatives ut
in (4.6) with spatial derivatives. Thus we arrive to the key estimate for a smooth solution to
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the regularized equation (which is actually equality at this point)

(|Duε|2 + ε)
p−2+s

2

{
c1|D2uε|2 + c2|DT |Duε||2 + (c3 − c1)(�T u

ε)2

+ ((c3 + c4)Pθ − c1
)
(�N∞uε)2

+ (c3Pθ + (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε
}

= S,

(4.7)

where

Pθ := (p − 2)θ + 1 ∈ (0,∞)

for the sake of brevity. We rewrite this as

(|Duε|2 + ε)
p−2+s

2

{
c1|D2uε|2 + c2|DT |Duε||2 + R

}
= S (4.8)

where

R := (c3 − c1)(�T u
ε)2 + ((c3 + c4)Pθ − c1

)
(�N∞uε)2

+ (c3Pθ + (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε

is a quadratic form in variables �T u and �N∞u. We rewrite R as

R = 〈x̄, N x̄〉,
where x̄ = (�T uε,�N∞uε)T ∈ R

2 and N ∈ R
2×2 is a symmetric matrix whose entries Ni j ,

i, j = 1, 2, are given by
⎧
⎪⎨

⎪⎩

N11 = c2 − c1
N12 = N21 = 1

2

(
c3Pθ + (c3 + c4) − (2c1 + c2)

)

N22 = (c3 + c4)Pθ − c1.

Note that

‖N‖L∞(�T ) := sup{|N (x, t)| : (x, t) ∈ �T }
where

|N (x, t)| =
√(

N11(x, t)
)2 + (N12(x, t)

)2 + (N21(x, t)
)2 + (N22(x, t)

)2
,

has an upper bound that only depends on p, γ and s by fixing w1, w2, w3 and w4.

4.3 Auxiliary lemmas

In this subsection we state two technical lemmas that can be used to conclude our main
integral estimate.

Wewant to apply the fundamental inequality, Lemma4.1, to estimate |D2uε|2 in (4.8) from
below to improve the range condition by using terms we obtain in this application. However,
the direct application will eliminate the full Hessian |D2uε|2 that we want to estimate. We
could leave a small fraction of |D2uε|2 (like the method was first described at the end of
Sect. 3.3 for simplicity) and apply the fundamental inequality only to a remaining part, but
actually this will not be necessary: The next lemma shows that already a seemingly weaker
lower bound is sufficient. This will simplify the exposition.
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Lemma 4.4 Let uε : �T → R be a smooth solution to (3.1), S as in (4.4), c1 as in
(4.5), and ε ≥ 0. If ε = 0, we assume in addition that Duε �= 0. Suppose that
we can select w1, w2, w3, w4 ∈ R such that c1 = c1(n, p, γ, s, w1, w2, w3, w4) > 0,
c = c(n, p, γ, s, w1, w2, w3, w4) > 0 and

(|Duε|2 + ε)
p−2+s

2

{
c|DT |Duε||2 + Q

}
≤ S a.e. in space in �T , (4.9)

where

Q = 〈x̄, Mx̄〉
with x̄ = (�T uε,�N∞uε)T ∈ R

2 and a uniformly bounded positive definite (with a uniform
constant) symmetric matrix M = M(n, p, γ, s, w1, w2, w3, w4) ∈ R

2×2. Then there is
λ = λ(n, p, γ, s, w1, w2, w3, w4) > 0 such that

λ(|Duε|2 + ε)
p−2+s

2 |D2uε|2 ≤ S a.e. in space in �T .

Proof Recall that

S = w1GD1(p − 2 + s) + w2GD2(p − 2 + s)

+εw3GD1(p − 4 + s) + εw4GD2(p − 4 + s)

which, as pointed out in (4.8), can be written as

S = (|Duε|2 + ε)
p−2+s

2

{
c1|D2uε|2 + c2|DT |Duε||2 + 〈x̄, N x̄〉

}

almost everywhere in space �T , where x̄ and N are as in (4.8). Observe that we utilized
Eq. (3.1) at this step to get rid of the time derivatives.

For any λ ∈ (0, 1), we write

S = λS + (1 − λ)S

and use the assumption (4.9) to estimate (1 − λ)S from below. We end up with

S ≥ (|Duε|2 + ε)
p−2+s

2

{
λc1|D2uε|2 + (c + λ(c2 − c)

)|DT |Duε||2

+ 〈x̄, (M + λ(N − M)
)
x̄〉
}
.

We claim that we can select λ > 0 such that c + λ(c2 − c) ≥ 0 and M + λ(N − M) is a
positive definite matrix. Indeed, since c > 0, then

c + λ(c2 − c) ≥ c − λ‖c2 − c‖L∞(�T ) > 0,

uniformly if λ = λ(n, p, γ, s, w1, w2, w3, w4) > 0 is small enough. Next we recall that the
boundedness and positive definiteness of M implies

‖M‖L∞(�T ) ≤ C, and M11 ≥ c and det(M) ≥ c in �T

by Sylvester’s criterion and choosing small enough c > 0. For the positive definiteness of
the matrix M + λ(N − M) we can use Sylvester’s criterion again and check that the leading
principal minors are positive if λ > 0 is small enough. The first principal minor is the
upper-left corner entry, i.e.
(
M + λ(N − M)

)
11 = M11 + λ(N11 − M11) ≥ c − λ(‖N‖L∞(�T ) + ‖M‖L∞(�T )),

and the second principal minor is the determinant, i.e.
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det
(
M + λ(N − M)

) = det(M) + λ
(
M11N22 + M22N11 − 2M12N12 − 2 det(M)

)

+ λ2 det(N − M)

≥ c − 2λ
(
2‖M‖L∞(�T )‖N‖L∞(�T ) + ‖M‖2L∞(�T )

)

− λ2‖N − M‖2L∞(�T ) ≥ c − 4λ
(‖M‖L∞(�T ) + ‖N‖L∞(�T )

)2
.

Hence we choose λ such that

0 < λ < min
{
1,

c

‖c2 − c‖L∞(�T )

,
c

‖N‖L∞(�T ) + ‖M‖L∞(�T )

,

c

4
(‖M‖L∞(�T ) + ‖N‖L∞(�T )

)2

}
.

Since we have now proven the nonnegativity of the excess terms, the result follows. ��
The following lemma shows that we can derive the desired integral estimate from the

pointwise lower bound. The proof uses rather standard techniques and is based on localization
with a suitable cutoff function and then integration by parts. For the convenience of the reader,
we give the details in the appendix.

Lemma 4.5 Let uε : �T → R be a smooth solution to (3.1), and S as in (4.4). If ε = 0, we
assume in addition that Duε �= 0. Suppose that we can find weights w1, w2, w3, w4 ∈ R

such that

λ(|Duε|2 + ε)
p−2+s

2 |D2uε|2 ≤ S a.e. in space in �T , (4.10)

for some constant λ = λ(n, p, γ, s, w1, w2, w3, w4) > 0. If s �= γ − p, then for any
concentric parabolic cylinders Qr ⊂ Q2r � �T with center point (x0, t0) ∈ �T , we have
the estimate

∫

Qr

∣∣∣D
(
(|Duε|2 + ε)

p−2+s
4 Duε

)∣∣∣
2
dxdt

≤ C

r2

(∫

Q2r

(|Duε|2 + ε)
p−2+s

2 |Duε|2dxdt +
∫

Q2r

(|Duε|2 + ε)
p+s−γ

2 dxdt

)

+ ε

(
C

r2

∫

Q2r

∣∣ ln(|Duε|2 + ε)
∣∣dxdt + C

∫

B2r

∣∣ ln(|Duε(x, t0)|2 + ε)
∣∣dx
)

(4.11)

where C = C(n, p, γ, s, λ,w1, w2, w3, w4) > 0.

The last two integrals on the right hand side of (4.11) do not appear if s �= γ − p + 2. The
source of such error terms in the case s = γ − p + 2 is the logarithm in Lemma 4.3 when
β = −2.

5 Smooth case with non-zero gradient

Let 1 < p < ∞ and −1 < γ < ∞. In this section we assume that u : �T → R is a smooth
solution to

ut − |Du|γ (�u + (p − 2)�N∞u
) = 0, (5.1)

such that Du �= 0. That is, u does not have critical points in space. Our main result in this
case is the following a priori estimate. Usually extending a regularity result to a general
nonsmooth case is quite straightforward.
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Proposition 5.1 Let n ≥ 2, 1 < p < ∞ and −1 < γ < ∞. Let u : �T → R be a smooth
solution to (5.1) such that Du �= 0. If

s > max
{

− 1 − p − 1

n − 1
, γ + 1 − p

}
, (5.2)

then for any concentric parabolic cylinders Qr ⊂ Q2r � �T , we have the estimate
∫

Qr

∣∣
∣D
(
|Du| p−2+s

2 Du
)∣∣
∣
2
dxdt ≤ C

r2

(∫

Q2r

|Du|p+sdxdt +
∫

Q2r

|Du|p+s−γ dxdt

)
,

where C = C(n, p, γ, s) > 0.

The following Lemma, Lemma 5.2, is the main ingredient in the proof of Proposition 5.1.
Thus we postpone the proof of Proposition 5.1 until after the proof of Lemma 5.2.

In the following lemma we consider the weighted sum

S = w1GD1(p − 2 + s) + w2GD2(p − 2 + s)

where w1, w2 ∈ R, and the notation was defined in (4.4). Note that since ε = 0 in this
section, the terms with weights w3 and w4 in (4.4) disappear. The purpose of Lemma 5.2 is
to show that under restriction (5.2), we can find positive weights w1 = w1(n, p, γ, s) > 0
and w2 = w2(n, p, γ, s) > 0 such that S has a suitably nonnegative lower bound to make
Lemma 4.4 applicable. Moreover, by the proof of Lemma 5.2 and Sylvester’s condition, we
can choose the value c = c(n, p, γ, s) > 0 small enough such that for M in the proof it
holds

M11 ≥ c and det(M) ≥ c.

The proof of Proposition 5.1 is then finished by using Lemma 4.5.

Lemma 5.2 Let n ≥ 2, 1 < p < ∞ and−1 < γ < ∞. Let u : �T → R be a smooth solution
to (5.1) such that Du �= 0. If (5.2) holds, then we can select w1 = w1(n, p, γ, s) > 0 and
w2 = w2(n, p, γ, s) > 0, such that

|Du|p−2+s
{
c|DT |Du||2 + Q

}
≤ S

where c = c(n, p, γ, s) > 0 and

Q = 〈x̄, Mx̄〉
with x̄ = (�T u,�N∞u)T ∈ R

2 and a uniformly bounded positive definite (with a uniform
constant) symmetric matrix M = M(n, p, γ, s) ∈ R

2×2.

Proof Similarly as in (4.7), recalling that ε = 0, by expressions (4.5), we arrive at

|Du|p−2+s
{
w1|D2u|2 + w1(p − 2 + s)|DT |Du||2 + (w2 − w1)(�T u)2

+ (w2(p − 1)(p − 1 + s − γ ) − w1
)
(�N∞u)2

+ (w2(2p − 2 + s − γ ) − w1(p + s)
)
�T u�N∞u

}
= S.

(5.3)

We estimate |D2u|2 on the left hand side of (5.3) from below by the fundamental inequality,
Lemma 4.1. This yields the following lower bound for S

|Du|p−2+s
{
w1(p + s)|DT |Du||2 + Q

}
≤ S,
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where

Q : =
(
w2 − n − 2

n − 1
w1

)
(�T u)2 + w2(p − 1)(p − 1 + s − γ )(�N∞u)2

+ (w2(2p − 2 + s − γ ) − w1(p + s)
)
�T u�N∞u.

We write Q more compactly as

Q = 〈x̄, Mx̄〉,
where x̄ = (�T u,�N∞u)T ∈ R

2 is a vector and

M :=
⎡

⎢
⎣

w2 − n − 2

n − 1
w1

1

2

(
w2(2p − 2 + s − γ ) − w1(p + s)

)

1

2

(
w2(2p − 2 + s − γ ) − w1(p + s)

)
w2(p − 1)(p − 1 + s − γ )

⎤

⎥
⎦

is a symmetric 2×2-matrix.We claim that under assumption (5.2) we can choosew1, w2 ∈ R

such that M is uniformly bounded positive definite (with a uniform constant).
If n = 2, this is easy to see by selecting

w1 = 2p − 2 + s − γ and w2 = p + s,

because then

M =
[
p + s 0
0 (p + s)(p − 1)(p − 1 + s − γ )

]

and hence

Q = (p + s)
(
(�T u)2 + (p − 1)(p − 1 + s − γ )(�N∞u)2

)
.

In other words, with such choice of w1 and w2, the mixed term �T u�N∞u vanishes. Notice
that (5.2) implies that w1 > 0 and w2 > 0.

For the higher dimensional case n ≥ 3, we set w1 = 1 and find w2 = w2(n, p, γ, s) > 0
such thatM is uniformly bounded positive definite (with a uniform constant). This is possible
precisely when (5.2) holds: Since the proof is quite tedious, we postpone it to Lemma B.1 in
the appendix. ��

We are ready to give the proof of Proposition 5.1.

Proof of Proposition 5.1 Let us fix w1 = w1(n, p, γ, s) > 0 and w2 = w2(n, p, γ, s) > 0
according to Lemma 5.2. Lemma 4.4 is then applicable becausew1 > 0, w3 = 0 implies that
c1 = w1 + w3κ > 0 and the conclusion of Lemma 5.2 implies that (4.9) holds. Therefore,
by Lemma 4.4 there exists λ = λ(n, p, γ, s, w1, w2, w3, w4) > 0 such that

λ|Du|p−2+s |D2u|2 ≤ S

in �T . Now the desired estimate follows from Lemma 4.5. ��
Range (5.2) in Proposition 5.1, is optimal in the following sense: In the elliptic case, [10] and
[25], the best known range is s > −1 − p−1

n−1 . On the other hand, Example 5.1 below shows
that in the parabolic case we cannot hope to reach any better range than s > γ + 1 − p. A
counterexample of this type was used in [10, Sect. 1.3] for the standard p-parabolic equation.
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Example 5.1 (Counterexample) Let u : Rn × (0,∞) → R be given by

u(x, t) := Ct + |x1|α
for some C ∈ R and α > 0. Note that

|Du|γ �N
p u = αγ+1(α − 1)(p − 1)|x1|(α−1)(γ+1)−1.

Hence, if

α = 1 + 1

γ + 1
and C = αγ+1(α − 1)(p − 1)

then u solves (2.1) in the classical sense whenever x1 �= 0. Indeed, by a direct computation,
we have

ux1 = α|x1|α−2x1, uxi = 0 for i = 2, . . . , n,

and

ux1x1 = α(α − 1)|x1|α−2, uxi x j = 0,

where i, j = 1, . . . , n and i and j are not both 1.
Next we verify that the function u is a viscosity solution in the whole R

n according to
Definition 2.3 also at those points where x1 = 0. Whenever x1 �= 0, x0 = (x1, . . . , xn), and
the test function ϕ touches u at (x0, t0) from below (the argument is analogous from above),
we may use the facts that

Dϕ(x0, t0) = Du(x0, t0) �= 0, φt (x0, t0) = ut (x0, t0) = 0

and

D2ϕ(x0, t0) ≤ D2u(x0, t0).

Let us consider the points where x1 = 0. We study the degenerate case γ > 0 and
the singular case −1 < γ ≤ 0 separately. If x1 = 0 and γ > 0, then there are no test
functions touching u from above and for a test function ϕ touching from below, we have
Dϕ(x0, t0) = Du(x0, t0) = 0 and

ϕt (x0, t0) = ut (x0, t0) = C .

Since C > 0, the function u is a viscosity supersolution.
The given function is also a viscosity solution whenever −1 < γ ≤ 0: the proof for the

supersolution property is the same as in the degenerate case above. It is also a subsolution
because (similarly to the degenerate case) there are no admissible test functions touching u
from above. We provide a detailed proof of this fact. Thriving for a contradiction, suppose
that there is an admissible test function ϕ touching u at (x0, t0) with x0 = (0, . . . , 0) (for
simplicity) from above. Then necessarily

ϕt (x0, t0) = C > 0.

By the definition of a viscosity solution it holds that

φ(x, t) = u(x0, t0) + ϕt (x0, t0)(t − t0) + f (|x |) + σ(t − t0)

is an admissible test function touching strictly from above. By strict touching and regularity
of u, by translating with respect to x1 and lifting we may assume that φ touches u at a point
(x, t0), x = (ε, 0, . . . , 0), with small ε > 0. Also observe that by an approximation, we
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could assume that σ is a C2 function, but we omit this step as well. Also recall the notation
g(y) = f (|y|) and that

lim
y→0,y �=0

F
(
Dg(y), D2g(y)

) = 0.

Then by this and the counter assumption it holds at a point (x, t0) for x close enough x0 that

φt (x, t0) − F
(
Dφ(x, t0), D

2φ(x, t0)
) = ϕt (x0, t0) − F

(
Dg(x), D2g(x)

)
> 0. (5.4)

On the other hand, since u is now C2-function with the explicit formula, we have

φt (x, t0) − F
(
Dφ(x, t0), D

2φ(x, t0)
) = ϕt (x0, t0) − F

(
Dg(x), D2g(x)

)

= ut (x, t0) − F
(
Dg(x), D2g(x)

)

≤ ut (x, t0) − F
(
Du(x, t0), D

2u(x, t0)
) = 0,

which contradicts inequality (5.4).
In the above inequality we used the fact that since φ touches u from above at (x, t0) we

have D2g(x) ≥ D2u(x, t0) and Dg(x) = Du(x, t0) �= 0 and thus

F
(
Dg(x), D2g(x)

) ≥ F
(
Du(x, t0), D

2u(x, t0)
)
.

We study the local W 1,2-regularity of |Du| p−2+s
2 Du for s ∈ R and see what kind of

restrictions for s arise. We have
∣∣∣D(|Du| p−2+s

2 Du)

∣∣∣ = 1

2
α

p+s
2 (α − 1)(p + s)|x1|

(α−1)(p+s)
2 −1

= C(p, s, γ )|x1|
p+s

2(γ+1) −1
.

The function D(|Du| p−2+s
2 Du) locally belongs to L2(Rn × (0,∞)) if and only if

2
( p + s

2(γ + 1)
− 1
)

> −1,

that is,

s > γ + 1 − p.

Observe that range condition (5.2) gives this in the plane, but in higher dimensions we have
an additional restriction, which is the same restriction as in the elliptic case.

When s = 2 − p, then for W 2,2-regularity, the range

−1 < γ < 1

is sharp in the plane.

Remark 5.1 Also the case n = 1 holds. Recall that the key point is identity (3.4), that is,

(|Duε|2 + ε)
p−2+s

2

{
|D2uε|2 + (p − 2 + s)

|D2uεDuε|2
|Duε|2 + ε

+ s(p − 2)
(�∞uε)2

(|Duε|2 + ε)2

+(p − 2 − γ )(|Duε|2 + ε)−γ /2uε
t

�∞uε

|Duε|2 + ε

}

= div
(
(|Duε|2 + ε)

p−2+s
2 AD2uεDuε

)−
(
(|Duε|2 + ε)

p+s−γ
2
)
t

p + s − γ
,
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provided that s �= γ − p. If n = 1 this reduces to

(|Duε|2 + ε)
p−2+s

2

{
1 + (p − 2 + s)θ + s(p − 2)θ2

+ (p − 2 − γ )
(
(p − 2)θ + 1

)
θ
}
|D2uε|2

= div
(
(|Duε|2 + ε)

p−2+s
2 (D2uεDuε − �uεDuε)

)

+ uε
t div

(
(|Duε|2 + ε)

p−2+s−γ
2 Duε

)
.

(5.5)

The left hand side of (5.5) is

(|Duε|2 + ε)
p−2+s

2

{
(p − 1)(p − 1 + s − γ )θ2 + (2p − 2 + s − γ )θκ + κ2

}
|D2uε|2

≥ λ(|Duε|2 + ε)
p−2+s

2 |D2uε|2,
for some constant λ = λ(p, γ, s) > 0, provided that s > γ + 1 − p. From this it is easy to
derive the desired integral estimate. We conclude that Proposition 5.1 holds in case n = 1
without the additional smoothness assumptions for u, and with the interpretation

s > max
{

− 1 − p − 1

n − 1
, γ + 1 − p

}
= max{−∞, γ + 1 − p} = γ + 1 − p.

6 Removing the smoothness assumption

Section 5 gives a formal derivation of the regularity estimate under the assumption that the
gradient of a solution does not vanish. In this section, we remove the additional assumption
in a certain range of parameters by regularizing the equation and then finally pass to a limit
to obtain the result for the original equation.

6.1 Regularization

Let uε : �T → R be a smooth solution to the equation

uε
t − (|Duε|2 + ε)γ/2

(
�uε + (p − 2)

�∞uε

|Duε|2 + ε

)
= 0 (6.1)

where 1 < p < ∞, −1 < γ < ∞, and ε > 0 is a regularization parameter. As explained in
Sect. 3.3, the mismatch between the second order differential quantities in the fundamental
inequality and the regularized equation and consequently in the basic estimate causes that
some of the formal calculations do not work as such even if most of the steps work for general
s. In particular positive definiteness of the quadratic form becomes an issue.

In this section, partly for the convenience of the reader, we have decided to limit ourselves
to the planar case n = 2 and focus on the square-integrability of the second order derivatives
D2u, that is, we consider the case s = 2 − p. In this case the range condition in (1.4) that is

s > max
{

− 1 − p − 1

n − 1
, γ + 1 − p

}

reduces to

1 < p < ∞ and − 1 < γ < 1.
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Then range (i)

1 < p ≤ 5 and − 1 < γ < 1, (6.2)

inTheorem1.1 and the Proposition belowwill be obtained by a straightforward generalization
of the formal calculation (ε = 0). That is, we consider the sum

S = w1 div (D2uεDuε − �uεDuε) + w2u
ε
t div

(
(|Duε|2 + ε)−

γ
2 Duε

)
, (6.3)

and show that if (6.2) holds, then we can find w1, w2 > 0 such that

c
∣
∣DT

∣
∣Duε

∣
∣
∣
∣2 + Q ≤ S,

where c > 0 and Q is positive definite. For range (ii) in the Proposition below which is the
same as in Theorem 1.1, we instead consider the full S as defined in (3.11) or equivalently
in (4.4).

Our main result for uε is the following.

Proposition 6.1 Let n = 2. Let uε : �T → R be a smooth solution to (6.1). If p and γ satisfy
one of the following conditions:

(i) 1 < p ≤ 5 and −1 < γ < 1; or
(ii) 1 < p < ∞ and −1 < γ <

√
2 − 1

2 ,

then for any concentric parabolic cylinders Qr ⊂ Q2r � �T with center point (x0, t0) ∈ �T ,
we have the estimate
∫

Qr

|D2uε|2dxdt ≤ C

r2

(∫

Q2r

|Duε|2dxdt +
∫

Q2r

(|Duε|2 + ε)
2−γ
2 dxdt

)

+ ε

(
C

r2

∫

Q2r

∣∣ ln(|Duε|2 + ε)
∣∣dxdt + C

∫

B2r

∣∣ ln(|Duε(x, t0)|2 + ε)
∣∣dx
)

where C = C(p, γ ) > 0.

The proof of Proposition 6.1 is postponed to the end of the section. The main ingredients
of the proof of Proposition 6.1 are the following lemmas, Lemmas 6.2 and 6.3. The first
lemma, Lemma 6.2, yields case (i). The second lemma, Lemma 6.3 yields case (ii). In both
lemmas we consider the same weighted sum as before now selecting s = 2 − p i.e.

S = w1GD1(p − 2 + s) + w2GD2(p − 2 + s) + εw3GD1(p − 4 + s)

+ εw4GD2(p − 4 + s)

= w1GD1(0) + w2GD2(0) + w3εGD1(−2) + w4εGD2(−2), (6.4)

where w1, w2, w3, w4 ∈ R are some weights, and the notation was defined in (4.4).
The purpose of Lemmas 6.2 and 6.3 is to show that under restrictions (i) and (ii), respec-

tively, we can find suitable weights w1, w2, w3 and w4, that only depend on p and γ , such
that S has a suitable lower bound.

Lemma 6.2 Let n = 2, S be as in (6.4), and (i) in Proposition 6.1 hold. For η = η(p, γ ) > 0
small enough, if

{
w1 = p − γ − 2

√
(p − 1)(1 − γ ) + η, w2 = 2,

w3 = 0, w4 = 0,
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then

S ≥ c|DT |Duε||2 + Q

where c = c(p, γ ) > 0 and

Q = 〈x̄, Mx̄〉
with x̄ = (�T uε,�N∞uε)T ∈ R

2 and a uniformly bounded positive definite (with a uniform
constant) symmetric matrix M = M(p, γ ) ∈ R

2×2.

Lemma 6.3 Let n = 2, S be as in (6.4), and (ii) in Proposition 6.1 hold. If
{

w1 = p − γ, w2 = 2

w3 = 4 − p + γ, w4 = 2,

then a statement similar to that in Lemma 6.2 holds.

To begin with, recall from (4.7) that S can be written as

S = c1|D2uε|2 + c2|DT |Duε||2 + (c3 − c1)(�T u
ε)2 + ((c3 + c4)Pθ − c1

)
(�N∞uε)2

+ (c3Pθ + (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε.

where
{
c1 = w1 + w3κ, c2 = −2w3θκ,

c3 = w2 + w4κ, c4 = −(w2γ + w4κ(2 + γ ))θ,
(6.5)

and

Pθ = (p − 2)θ + 1 ∈ (0,∞), θ = |Du|2
|Du|2 + ε

∈ [0, 1),

κ = 1 − θ = ε

|Duε|2 + ε
∈ (0, 1].

Fundamental equality (4.3) in the plane yields that

S =c1
(
2|DT |Duε||2 + (�T u

ε)2 + (�N∞uε)2
)+ c2|DT |Duε||2 + (c3 − c1)(�T u

ε)2

+ ((c3 + c4)Pθ − c1
)
(�N∞uε)2 + (c3Pθ + (c3 + c4) − (2c1 + c2)

)
�T u

ε�N∞uε

=(2c1 + c2)|DT |Duε||2 + Q.
(6.6)

where

Q = c3(�T u
ε)2 + (c3 + c4)Pθ (�

N∞uε)2

+(c3Pθ + (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε, (6.7)

is a quadratic form in �T uε and �N∞uε. We write Q compactly as

Q = 〈x̄, Mx̄〉,
where x̄ = (�T uε,�N∞uε)T ∈ R

2 is a vector and

M :=
⎡

⎢
⎣

c3
1

2

(
c3Pθ + (c3 + c4) − (2c1 + c2)

)

1

2

(
c3Pθ + (c3 + c4) − (2c1 + c2)

)
(c3 + c4)Pθ

⎤

⎥
⎦
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is a symmetric 2 × 2-matrix.
To prove Lemmas 6.2 and 6.3, it now suffices to check that (6.6) satisfies all the require-

ments of the lemmas: The coefficient of |DT |Duε||2 in (6.6) needs to be bounded from below
by a positive constant, that is,

2c1 + c2 = 2(w1 + w3κ) − 2w3θκ ≥ c (6.8)

uniformly in�T . For the quadratic form Q, we need to analyse the uniform boundedness and
uniform positive definiteness of matrix M . Uniform boundedness is quite straightforward,
so we focus our attention on the uniform positive definiteness. By Sylvester’s condition, it
suffices to check that

c3 = w2 + w4κ ≥ c, (6.9)

and

det(M) = c3(c3 + c4)Pθ −
(
c3Pθ + (c3 + c4) − (2c1 + c2)

)2

4
≥ c (6.10)

uniformly in �T . Next we prove Lemma 6.2, which implies nonnegativity of the necessary
terms when 1 < p ≤ 5 and −1 < γ < 1. In this case a simple choice of the weights
w3 = w4 = 0 will work.

Proof (Proof of Lemma 6.2) Similarly to the smooth case, we start with w3 = w4 = 0, plug
these values into (6.5), and obtain

{
c1 = w1, c2 = 0,

c3 = w2, c4 = −w2γ θ.

This together with (6.6) gives

S = 2w1|DT |Duε||2 + w2(�T u
ε)2 + w2Pθ Rθ (�

N∞uε)2 + (w2(Pθ + Rθ ) − 2w1
)
�T u

ε�N∞uε,

where we denote Rθ := 1 − γ θ ∈ (0, 2), for the sake of brevity. To simplify the above
identity, we select w2 = 2. Thus

S =2w1|DT |Duε||2 + 2
(
(�T u

ε)2 + Pθ Rθ (�
N∞uε)2 + (Pθ + Rθ − w1)�T u

ε�N∞uε
)

=2w1|DT |Duε||2 + Q,

where the matrix of the quadratic form Q is

M(θ) :=
[

2 Pθ + Rθ − w1

Pθ + Rθ − w1 2Pθ Rθ

]
.

The determinant of M(θ) is uniformly positive if and only if

Pθ Rθ − (Pθ + Rθ − w1)
2

4
≥ c > 0,

that is,

X2(θ) := (
√
Pθ +√Rθ )

2 > w1 > (
√
Pθ −√Rθ )

2 := X1(θ)

uniformly in �T . Thus it suffices to verify

inf
θ

X2(θ) > sup
θ

X1(θ).
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Computing the derivative of X1 with respect to θ , one has

X ′
1(θ) =p − 2 − γ − (p − 2)Rθ − γ Pθ√

Pθ Rθ

= (
√
Pθ − √

Rθ )
(
(p − 2)

√
Rθ + γ

√
Pθ

)

√
Pθ Rθ

.

Then in the eligible range of parameters X ′
1(θ) = 0 if and only if p − 2+ γ = 0. Hence, by

considering the values at the endpoints, we obtain the supremum of X1 with respect to θ :

sup
θ

X1(θ) = max{X1(0), X1(1)}

= max
{
0,
(√

p − 1 −√1 − γ
)2}

= (√p − 1 −√1 − γ
)2

.

Similarly, we obtain the derivative of X2 with respect of θ :

X ′
2(θ) = (

√
Pθ + √

Rθ )
(
(p − 2)

√
Rθ − γ

√
Pθ

)

√
Pθ Rθ

,

and thus the eligible stationary point is

θ2 = p − 2 − γ

(p − 2)γ

if (p − 2)γ > 0. Then

inf
θ

X2(θ) = min
{
X2(0), X2

( p − 2 − γ

(p − 2)γ

)
, X2(1)

}

= min
{
4,

p − 2

γ
+ γ

p − 2
+ 2,

(√
p − 1 +√1 − γ

)2}

= min
{
4,
(√

p − 1 +√1 − γ
)2}

.

Obviously, we have

(√
p − 1 +√1 − γ

)2
>
(√

p − 1 −√1 − γ
)2

.

Note that

4 >
(√

p − 1 −√1 − γ
)2

is equivalent to

1 < p ≤ 5 and − 1 < γ < 1,

or 5 < p < 7+ 4
√
2 and −1 < γ < −2− p + 4

√
p − 1. Thus if p and γ satisfy range (i),

for small enough η = η(p, γ ) > 0, in addition to the above choice w2 = 2, we set

w1 = (√p − 1 −√1 − γ
)2 + η.

The proof is finished. ��
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Next we prove Lemma 6.3, which implies nonnegativity of the necessary terms when 1 <

p < ∞ and −1 < γ <
√
2 − 1

2 . In this case, we use a choice of the weights which leads to
the vanishing coefficient of the mixed term �T uε�N∞uε in (6.7).

To be more precise, at the beginning of this section, we obtained three conditions (6.8),
(6.9) and (6.10), i.e. that

⎧
⎪⎨

⎪⎩

2c1 + c2 = 2(w1 + w3κ) − 2w3θκ ≥ c,

c3 = w2 + w4κ ≥ c,

det(M) = c3(c3 + c4)Pθ − (c3Pθ+(c3+c4)−(2c1+c2))2

4 ≥ c

(6.11)

need to hold uniformly in �T . Here

M =
⎡

⎢
⎣

c3
1

2

(
c3Pθ + (c3 + c4) − (2c1 + c2)

)

1

2

(
c3Pθ + (c3 + c4) − (2c1 + c2)

)
(c3 + c4)Pθ

⎤

⎥
⎦

is the coefficient matrix of quadratic form

Q = c3(�T u
ε)2 + (c3 + c4)Pθ (�

N∞uε)2 + (c3Pθ + (c3 + c4) − (2c1 + c2)
)
�T u

ε�N∞uε.

To simplify the computations in checking the last condition in (6.11), we will consider a
special casewhere the coefficient c3Pθ +(c3+c4)−(2c1+c2) of themixed term�T uε�N∞uε

vanishes.

Lemma 6.4 (Vanishing mixed term) The mixed term �T uε�N∞uε in Q vanishes, i.e.

c3Pθ + (c3 + c4) − (2c1 + c2) = 0

uniformly in �T if and only if
⎧
⎪⎨

⎪⎩

2w1 = (p − γ )w2,

2w3 = (4 − p + γ )w4,

(p − 2 − γ )(w4 − w2) = 0.

Proof Recall that θ = 1−κ , κ > 0, and Pθ = (p−2)θ +1. Then recalling the expressions of
c1, . . . , c4 in (6.5),we canwrite the coefficient of themixed term�T uε�N∞uε as a polynomial
of κ as

c3Pθ + (c3 + c4) − (2c1 + c2)

= ((4 − p + γ )w4 − 2w3
)
κ2 + (p − 2 − γ )(w4 − w2)κ + (p − γ )w2 − 2w1.

Set all the coefficients to be zero, we have the desired condition. ��
By the above Lemma, we can easily to obtain the following result.

Corollary 6.5 If
{

w1 = p − γ, w2 = 2,

w3 = 4 − p + γ, w4 = 2,
(6.12)

then the mixed term �T uε�N∞uε in Q vanishes.

The above corollary gives a choice of the coefficients w1, w2, w3 and w4 to obtain the
vanishing coefficient of mixed term �T uε�N∞uε. This then helps us in proving Lemma 6.3.
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Proof of Lemma 6.3 If w1, w2, w3 and w4 satisfy (6.12), then by Corollary 6.5, the last
condition in (6.11) reduces to checking that

det(M) = c3(c3 + c4)Pθ ≥ c.

Since

Pθ = (p − 2)θ + 1 ≥ min{p − 1, 1} > 0,

sufficient conditions to obtain (6.11) can be written as
⎧
⎪⎨

⎪⎩

2c1 + c2 = 2(w1 + w3κ) − 2w3θκ ≥ c,

c3 = w2 + w4κ ≥ c,

c3 + c4 = w2 + w4κ − (w2γ + w4κ(2 + γ )
)
θ ≥ c

uniformly in �T .

First, using values (6.12) in the first condition and replacing θ by 1 − κ , we have

2c1 + c2 =2(p − γ ) + 2(4 − p + γ )κ2.

Since κ is positive, the sign of the derivative with respect to κ that is 4(4− p + γ )κ is fixed.
Then 2c1 + c2 with respect to κ is monotone and the minimum point corresponds either
κ = 0 or κ = 1. Thus

2c1 + c2 ≥ min{2(p − γ ), 8} > 0.

For the second condition, when w2 = w4 = 2, it is obvious that

c3 = 2 + 2κ ≥ 2 > 0.

Finally, for the last condition plugging values (6.12) in and rewriting as

c3 + c4 =2(1 − γ ) − 2κ + 2(2 + γ )κ2.

When the derivative of c3 + c4 with respect to κ vanishes, that is, −2+ 4(2+ γ )κ = 0, one
has

κ1 = 1

2(2 + γ )
∈ (0, 1].

Then the minimum point is one of the boundary points or the extreme point κ1. Selecting
κ = κ1, we have

c3 + c4 = 2(1 − γ ) − 1

2(2 + γ )
> 0 (6.13)

if and only if

−1 < γ <
√
2 − 1

2
.

If κ = 0, we have c3 + c4 = 2(1 − γ ), and if κ = 1, then c3 + c4 = 4. It follows that the
minimum is given by strictly positive expression (6.13), and the proof is finished. ��

The proof of Proposition 6.1 now immediately follows.

Proof of Proposition 6.1 The result immediately follows from the previous lemmas, since
under assumption (i), Lemma 6.2 implies that (4.9) holds and thus Lemma 4.4 is applicable.
Similarly under assumption (ii), Lemma 6.3 implies that Lemma 4.4 is applicable. Now the
desired estimate follows from Lemma 4.5. ��
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6.2 Passing to the original equation

In this section we justify the limiting argument to let ε → 0 in Proposition 6.1 and thus
derive our main result, Theorem 1.1.

Proof of Theorem 1.1 Let u : �T → R be a viscosity solution to

ut − |Du|γ (�u + (p − 2)�N∞u
) = 0.

Let us fix concentric parabolic cylinders Qr ⊂ Q2r � �T with center point (x0, t0) ∈ �T

and moreover, let us fix a smooth subdomain U � � and 0 < t1 < t2 < T such that
Q2r � Ut1,t2 � �T . For ε > 0 small, let us consider the Dirichlet problem

⎧
⎨

⎩
uε
t − (|Duε|2 + ε)γ/2

(
�uε + (p − 2)

�∞uε

|Duε|2 + ε

)
= 0 in Ut1,t2 ;

uε = u on ∂pUt1,t2 ,

where

∂pUt1,t2 := (U × {t1}) ∪ (∂U × (t1, t2])
is the parabolic boundary ofUt1,t2 . By the classical theory of uniformly parabolic equations,
the above problem has a unique solution uε ∈ C∞(Ut1,t2) ∩ C(Ut1,t2).

Proposition 6.1 is applicable to uε and we conclude that
∫

Qr

|D2uε|2dxdt ≤ C

r2

(∫

Q2r

|Duε|2dxdt +
∫

Q2r

(|Duε|2 + ε)
2−γ
2 dxdt

)

+ ε

(
C

r2

∫

Q2r

∣∣ ln(|Duε|2 + ε)
∣∣dxdt

+C
∫

B2r

∣∣ ln
(|Duε(x, t0)|2 + ε

)∣∣dx
)

(6.14)

where C = C(p, γ ) > 0. By [14], for any QR � Ut1,t2 there exist positive constants
α ∈ (0, 1) andC > 0, that are allowed to depend on p,γ , dist (QR, ∂Ut1,t2) and ‖u‖L∞(Ut1,t2 ),
such that

‖Duε‖Cα(QR) ≤ C . (6.15)

Arzelà-Ascoli theorem gives that uε and Duε both converge locally uniformly, up to a
subsequence, and

uε ε→0−−→ ū and Duε ε→0−−→ Dū

for some continuous function ū : Ut1,t2 → R, which by a barrier argument is continuous up
to the parabolic boundary, and whose spatial gradient Dū is locally continuous.

By the well known [12] stability properties of viscosity solutions, ū is a viscosity solution
to

{
ūt − |Dū|γ (�ū + (p − 2)�N∞ū

) = 0 in Ut1,t2 ;
ū = u on ∂pUt1,t2 .

By the uniqueness theorem for viscosity solutions [22], we conclude that ū = u.
By employing bound (6.15), we find that the right hand side of (6.14) is bounded from

above by a constant independent of ε. Thus {D2uε}ε is bounded in L2(Qr ), and consequently
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we may extract a subsequence that converges weakly in L2(Qr ). Further, using integration
by parts, we see that the limit is D2u, and thus D2u ∈ L2

loc(�T ). Finally, we conclude that
∫

Qr

|D2u|2dxdt ≤ lim inf
ε→0

∫

Qr

|D2uε|2dxdt

≤ lim inf
ε→0

(
C

r2

(∫

Q2r

|Duε|2dxdt +
∫

Q2r

(|Duε|2 + ε)
2−γ
2 dxdt

)

+ε

(
C

r2

∫

Q2r

∣∣ ln(|Duε|2 + ε)
∣∣dxdt + C

∫

B2r

∣∣ ln
(|Duε(x, t0)|2 + ε

) ∣∣dx
))

= C

r2

(∫

Q2r

|Du|2dxdt +
∫

Q2r

|Du|2−γ dxdt

)
,

which is the desired estimate. ��
It is possible to improve the ranges in Theorem 1.1. However, the computations get more

technical, even if they follow the same ideas as above, and thus we have chosen to omit them.
In any case the question whether the full range obtained in the smooth case in Proposition 5.1
can also be obtained here remains an open problem.

Next we give the proof of Corollary 1.2.

Proof of Corollary 1.2 Assume that uε is a smooth solution to (6.1), and observe

∣∣uε
t

∣∣ =
∣∣∣∣(|Duε|2 + ε)γ/2

(
�uε + (p − 2)

�∞uε

|Duε|2 + ε

)∣∣∣∣

≤(|Duε|2 + ε)γ/2(
∣∣�uε

∣∣+ |p − 2| ∣∣D2uε
∣∣)

≤(p + 2)(|Duε|2 + ε)γ/2
∣∣D2uε

∣∣ .

As above, the spatial gradient is Hölder continuous and since γ is nonnegative, we have in
Q2r

(|Duε|2 + ε)γ/2 ≤ C .

For all Qr ⊂ Q2r � �T , we have
∫

Qr

|uε
t |2dxdt

≤ (p + 2)2
∫

Qr

(|Duε|2 + ε)γ |D2uε|2dxdt

≤ (p + 2)2
∣∣∣∣(|Duε|2 + ε)γ

∣∣∣∣
L∞(Qr )

∫

Qr

|D2uε|2dxdt .r

Then we use (6.14) estimate the right hand side of the above estimate. Similarly to the
proof of Theorem1.1, up to a subsequence, {uε

t }ε convergesweakly in L2(Qr ). By integration
by parts, the weak limit is ut . In particular ut exists as a function and ut ∈ L2

loc(�T ). ��
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Appendix A: Proof of Lemma 4.5

Next we prove Lemma 4.5. For convenience of the reader, we recall its statement here: Let
S be as in (4.4), and u : �T → R be a smooth solution to (3.1). (If ε = 0, we assume in
addition that Du �= 0.) Suppose that we can find weights w1, w2, w3, w4 ∈ R such that

S ≥ λ(|Du|2 + ε)
p−2+s

2 |D2u|2 a.e. in space in �T , (A.1)

for some constant λ = λ(n, p, γ, s, w1, w2, w3, w4) > 0. If s �= γ − p, then for any
concentric parabolic cylinders Qr ⊂ Q2r � �T with center point (x0, t0) ∈ �T we have
the estimate

∫

Qr

∣∣∣D
(
(|Du|2 + ε)

p−2+s
4 Du

)∣∣∣
2
dxdt

≤C

r2

(∫

Q2r

(|Du|2 + ε)
p−2+s

2 |Du|2dxdt +
∫

Q2r

(|Du|2 + ε)
p+s−γ

2 dxdt

)

+ ε

(
C

r2

∫

Q2r

∣∣ln(|Du|2 + ε)
∣∣ dxdt + C

∫

B2r

∣∣ln
(|Du(x, t0)|2 + ε

)∣∣ dx
)

where C = C(n, p, γ, s, λ,w1, w2, w3, w4) > 0.

Proof of Lemma 4.5 Let us assume that s �= γ − p and s �= γ − p+ 2. As remarked after the
lemma when s �= γ − p + 2, the logarithmic term does not appear in S and in the estimate
of the lemma. Assumption (A.1) can be written as

λ(|Du|2+ε)
p−2+s

2 |D2u|2

≤ w1 div
(
(|Du|2 + ε)

p−2+s
2 (D2uDu − �uDu)

)

+ w2 div
(
ut (|Du|2 + ε)

p−2+s−γ
2 Du

)− w2

(
(|Du|2 + ε)

p+s−γ
2

p + s − γ

)

t

+ εw3 div
(
(|Du|2 + ε)

p−4+s
2 (D2uDu − �uDu)

)

+ εw4 div
(
ut (|Du|2 + ε)

p−4+s−γ
2 Du

)− εw4

(
(|Du|2 + ε)

p−2+s−γ
2

p − 2 + s − γ

)

t

.

(A.2)

Let us fix any concentric parabolic cylinders Qr ⊂ Q2r � �T and then select a nonnegative
cutoff function φ : Rn × [0, t0] → [0, 1] such that

φ ≡ 1 in Qr , φ ≡ 0 outsideQ2r , |Dφ| ≤ C

r
and |φt | ≤ C

r2
(A.3)
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for some absolute constant C > 0. We multiply (A.2) with φ2 and integrate over Q2r , apply
integration by parts to each integral on the right hand side to obtain

λ

∫

Q2r

(|Du|2+ε)
p−2+s

2 |D2u|2φ2dxdt

≤ −2w1

∫

Q2r

(|Du|2 + ε)
p−2+s

2 〈D2uDu − �uDu, Dφ〉φdxdt

− 2w2

∫

Q2r

ut (|Du|2 + ε)
p−2+s−γ

2 〈Du, Dφ〉φdxdt

+ 2w2

p + s − γ

∫

Q2r

(|Du|2 + ε)
p+s−γ

2 φtφdxdt

− 2εw3

∫

Q2r

(|Du|2 + ε)
p−4+s

2 〈D2uDu − �uDu, Dφ〉φdxdt

− 2εw4

∫

Q2r

ut (|Du|2 + ε)
p−4+s−γ

2 〈Du, Dφ〉φdxdt

+ 2εw4

p − 2 + s − γ

∫

Q2r

(|Du|2 + ε)
p−2+s−γ

2 φtφdxdt .

Above we dropped the nonpositive boundary terms that appear when we integrate by parts
with respect to time. Next we take absolute values and estimate ε/(|Du|2 + ε) ≤ 1 in the
last three integrals of the above display. We arrive at

λ

∫

Q2r

(|Du|2 + ε)
p−2+s

2 |D2u|2φ2dxdt

≤ C

(∫

Q2r

(|Du|2 + ε)
p−2+s

2 |D2u||Du||Dφ|φdxdt

+
∫

Q2r

|ut |(|Du|2 + ε)
p−2+s−γ

2 |Du||Dφ|φdxdt

+
∫

Q2r

(|Du|2 + ε)
p+s−γ

2 |φt |φdxdt
)

,

where C = C(n, p, γ, s, w1, w2, w3, w4) > 0. By Young’s inequality

(λ − 2η)

∫

Q2r

(|Du|2 + ε)
p−2+s

2 |D2u|2φ2dxdt

≤ C

η

∫

Q2r

(|Du|2 + ε)
p−2+s

2 |Du|2|Dφ|2dxdt + C
∫

Q2r

(|Du|2 + ε)
p+s−γ

2 |φt |φdxdt,

for any η > 0 and some C = C(n, p, γ, s, w1, w2, w3, w4) > 0. Above we also employed
equation (5.1) and estimated

(|Du|2 + ε)−γ /2|ut | =
∣∣∣∣�u + (p − 2)

�∞u

|Du|2 + ε

∣∣∣∣ ≤ C |D2u| (A.4)

for someC = C(n, p) > 0. Finally, we select η > 0 small enough and employ (A.3) together
with the fact that

∣∣∣D
(
(|Du|2 + ε)

p−2+s
4 Du

)∣∣∣
2 ≤ C(|Du|2 + ε)

p−2+s
2 |D2u|2 (A.5)

where C = C(p, s) > 0, to arrive to the desired estimate.
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Now, let us assume that s = γ − p + 2. Assumption (A.1) is now

λ(|Du|2 + ε)γ/2|D2u|2 ≤ w1 div
(
(|Du|2 + ε)γ/2(D2uDu − �uDu)

)

+ w2 div (ut Du) − 1

2
w2(|Du|2 + ε)t

+ εw3 div
(
(|Du|2 + ε)

γ−2
2 (D2uDu − �uDu)

)

+ εw4 div
(
ut (|Du|2 + ε)−1Du

)− ε

2
w4
(
ln(|Du|2 + ε)

)
t .

(A.6)

Let us fix any concentric parabolic cylinders Qr ⊂ Q2r � �T and then select a nonnegative
cutoff function φ : Rn × [0, t0] → [0, 1] such that (A.3) holds. We multiply (A.6) with φ2,
integrate over Q2r , apply integration by parts to each integral on the right hand side to obtain

λ

∫

Q2r

(|Du|2 + ε)γ/2|D2u|2φ2dxdt

≤ −2w1

∫

Q2r

(|Du|2 + ε)γ/2〈D2uDu − �uDu, Dφ〉φdxdt

− 2w2

∫

Q2r

ut 〈Du, Dφ〉φdxdt + w2

∫

Q2r

(|Du|2 + ε)φtφdxdt

− 2εw3

∫

Q2r

(|Du|2 + ε)
γ−2
2 〈D2uDu − �uDu, Dφ〉φdxdt

− 2εw4

∫

Q2r

ut (|Du|2 + ε)−1〈Du, Dφ〉φdxdt + εw4

∫

Q2r

ln(|Du|2 + ε)φtφdxdt

− εw4

2

∫

B2r
ln(|Du(x, t0)|2 + ε)φ2(x, t0)dx

Above we dropped the nonpositive boundary term that appears when we integrate by parts
with respect to time.However,we cannot drop the boundary term that appears from integrating
by parts the last term of the right hand side of (A.6), because logarithm may change sign.

Next we take absolute values and employ again the estimate ε/(|Du|2 + ε) ≤ 1 to arrive
at

λ

∫

Q2r

(|Du|2 + ε)γ/2|D2u|2φ2dxdt

≤ C

(∫

Q2r

(|Du|2 + ε)γ/2|D2u||Du||Dφ|φdxdt +
∫

Q2r

|ut ||Du||Dφ|φdxdt

+
∫

Q2r

(|Du|2 + ε)|φt |φdxdt + ε

∫

Q2r

∣∣ ln(|Du|2 + ε)
∣∣|φt |φdxdt

+ε

∫

B2r

∣∣ln
(|Du(x, t0)|2 + ε

)∣∣φ2(x, t0)dx

)
,
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where C = C(n, p, γ,w1, w2, w3, w4) > 0. By Young’s inequality

(λ − 2η)

∫

Q2r

(|Du|2 + ε)γ/2|D2u|2φ2dxdt

≤ C

η

∫

Q2r

(|Du|2 + ε)γ/2|Du|2|Dφ|2dxdt + C

(∫

Q2r

(|Du|2 + ε)|φt |φdxdt

+ε

∫

Q2r

∣
∣ ln(|Du|2 + ε)

∣
∣|φt |φdxdt + ε

∫

B2r

∣
∣ ln
(|Du(x, t0)|2 + ε

)∣∣φ2(x, t0)dx

)

for any η > 0 and some C = C(n, p, γ,w1, w2, w3, w4) > 0. Above we also employed
estimate (A.4). Finally, we select η > 0 small enough and employ (A.3) and (A.5) to arrive
to the desired estimate. ��

Appendix B: Positive definiteness condition for the coefficient matrix

In the proof of Lemma 5.2, we wrote one of the key estimates as

|Du|p−2+s {w1(p + s)|DT |Du||2 + Q
} ≤ S

where

Q =
(

w2 − n − 2

n − 1
w1

)
(�T u)2 + w2(p − 1)(p − 1 + s − γ )(�N∞u)2

+ (w2(2p − 2 + s − γ ) − w1(p + s)
)
�T u�N∞u.

This can also be written as

Q = 〈x̄, Mx̄〉,
where x̄ = (�T u,�N∞u)T ∈ R

2 is a vector and

M =
⎡

⎢
⎣

w2 − n − 2

n − 1
w1

1

2

(
w2(2p − 2 + s − γ ) − w1(p + s)

)

1

2

(
w2(2p − 2 + s − γ ) − w1(p + s)

)
w2(p − 1)(p − 1 + s − γ )

⎤

⎥
⎦ .

Then we stated that if w1 = 1 and the range condition is satisfied, we can select w2 =
w2(n, p, γ, s) > 0 in such a way that Q is positive definite, which then allows us to get rid
of the excess terms. Next we prove this fact.

Lemma B.1 Let n ≥ 2, 1 < p < ∞, −1 < γ < ∞, w1 = 1 and let M be as above. Then if

s > max

{
−1 − p − 1

n − 1
, γ + 1 − p

}
,

there is w2 = w2(n, p, γ, s) > 0 such that M is uniformly bounded positive definite (with a
uniform constant).

Proof Wewill show that det(M) > 0 andw2− n−2
n−1 > 0 with uniform lower bound, and thus

by Sylvester’s condition M is uniformly bounded positive definite with a uniform constant.
We fix w1 = 1 and introduce the following shorthand notation,

P := p − 1 and K := γ + 1,
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and

G := p − 1 + s − γ and E := s + 1 + p − 1

n − 1
.

We observe that P, K ,G, E > 0 under the assumptions of the lemma. Using this notation,
one has

M =
⎡

⎢
⎣

w2 − n − 2

n − 1

1

2

(
w2(P + G) − (K + G)

)

1

2

(
w2(P + G) − (K + G)

)
w2P · G

⎤

⎥
⎦ .

Then we rewrite the determinant

det(M) = a

(
w2 − n − 2

n − 1

)2
+ b
(
w2 − n − 2

n − 1

)
+ c

where

a = −1

4
(G − P)2, b = P · E + 1

2
(G − P)

(
G

n − 1
+ K − (n − 2)P

n − 1

)

and

c = −1

4

(
G

n − 1
+ K − (n − 2)P

n − 1

)2
.

The discriminant of such a polynomial is

b2 − 4ac = G · P · E
(

G

n − 1
+ K

)
.

Notice that b2 − 4ac > 0 and hence our polynomial has two distinct roots, unless G = P ,
in which case our polynomial is of the first order and has one root. Moreover det(M) > 0 if
and only if w2 − n−2

n−1 lies between these roots, that is,

Root+ < w2 − n − 2

n − 1
< Root−,

where

Root± =
−
(
P · E + 1

2 (G − P)
( G
n−1 + K − (n−2)P

n−1

))± √
b2 − 4ac

− 1
2 (G − P)2

=
(√

P · E ∓
√
G( G

n−1 + K )
)2

(G − P)2

=
⎛

⎜
⎝

√
E√

G ± √
P

−
√
G
(√

E −
√

G
n−1 + K

)

(
√
G + √

P)(
√
G − √

P)

⎞

⎟
⎠

2

≥ 0.

These formulas are valid if G �= P . Indeed, recall that a < 0 if G �= P , then

Root− − Root+ = −
√
b2 − 4ac

a
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= 4

√
G · P · E( G

n−1 + K )

(G − P)2
> 0.

On the other hand, by

lim
G→P

E = lim
s→γ

(
s + 1 + p − 1

n − 1

)
= P

n − 1
+ K ,

and by l’Hopital’s rule, one has

lim
G→P

√
E −

√
G

n−1 + K
√
G − √

P
= (n − 2)

√
P

(n − 1)
√

P
n−1 + K

.

We conclude that for the smaller root

Root+
G→P−−−→

⎛

⎝

√
P

n−1 + K

2
√
P

− (n − 2)
√
P

2(n − 1)
√

P
n−1 + K

⎞

⎠

2

.

For the bigger root, it is easy to see that

Root−
G→P−−−→ ∞.

The proof is finished. ��
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