
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and
Analysis

© 2023 Copyright held by the owner/author(s).

Published version

Saini, Bhupinder Singh; Lárraga, Giomara; Miettinen, Kaisa

Saini, B. S., Lárraga, G., & Miettinen, K. (2023). Using a Database to Support Interactive
Multiobjective Optimization, Visualization, and Analysis. In GECCO '23 Companion : Proceedings
of the Companion Conference on Genetic and Evolutionary Computation (pp. 1703-1711). ACM.
https://doi.org/10.1145/3583133.3596383

2023

Using a Database to Support Interactive Multiobjective
Optimization, Visualization, and Analysis

Bhupinder Singh Saini
University of Jyvaskyla

Faculty of Information Technology,
P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla
Finland

bhupinder.s.saini@jyu.fi

Giomara Lárraga
University of Jyvaskyla

Faculty of Information Technology,
P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla
Finland

giomara.g.larraga-maldonado@jyu.fi

Kaisa Miettinen
University of Jyvaskyla

Faculty of Information Technology,
P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla
Finland

kaisa.miettinen@jyu.fi

ABSTRACT
Many libraries of open-source implementations of multiobjective
optimization problems (MOPs) and evolutionary algorithms (MOEAs)
have been developed in recent years. These libraries enable re-
searchers to solve their MOPs using diverse MOEAs. Some libraries
also implement interactive MOEAs, which enable decision-makers
(experts in the domain of the MOP) to provide their preferences
and guide the optimization process toward their region of interest.
These libraries also provide access to visualization methods and
benchmarking tools. However, they do not currently implement
a database to store and utilize the data generated while running
MOEAs.

We propose the creation of SIVA DB, a database designed to be
easily incorporated into existing libraries as a modular addition.
SIVA DB provides a standard way to archive an MOEA’s popula-
tion and the metadata associated with each population member.
Such metadata can include, e.g., the parameters and state of the
MOEA and the preferences the decision-maker gives (in the case
of interactive MOEAs). The database can store data from multiple
runs of any number of MOEAs, and even data from different MOPs.
SIVA DB provides easy access to the contained data to analyze the
optimization process or create efficient MOEAs. We demonstrate
the latter in this paper with experiments.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms.

KEYWORDS
Evolutionary multiobjective optimization, interactive optimization,
decision support software

ACM Reference Format:
Bhupinder Singh Saini, Giomara Lárraga, and Kaisa Miettinen. 2023. Using a
Database to Support Interactive Multiobjective Optimization, Visualization,
and Analysis. In Genetic and Evolutionary Computation Conference Compan-
ion (GECCO ’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3583133.3596383

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3596383

1 INTRODUCTION AND MOTIVATION
Multiobjective optimization problems (MOPs) are problems where
one must simultaneously optimize multiple, often conflicting, ob-
jective functions (shortened to objectives). Due to the trade-offs
between the objectives, such problems usually do not have a single
optimal solution. Instead, a large (or an infinite) number of so-called
Pareto optimal solutions exist, each representing different levels
of trade-offs among the objectives. Solving MOPs can present a
diverse set of challenges. The objectives can be nonlinear or non-
differentiable, and the problem can be nonconvex. Besides, one or
more objectives of an MOP can be expensive or time-consuming
to evaluate. While MOPs may have many Pareto optimal solutions,
generally, only one or few are of interest to a decision-maker (DM):
a domain expert who wishes to solve the MOP and implement the
chosen solution. A DMmay need to compare many solutions to find
ones that they find interesting. Thus, MOPs with many objectives
and Pareto optimal solutions can place a cognitive load on the DM,
introducing additional challenges.

Researchers have proposed a large number of so-called multiob-
jective evolutionary algorithms (MOEAs) to tackle these challenges
[7, 9, 12, 19, 23, 27]. MOEAs are population-based heuristics that
“evolve” a population of solutions over several generations towards
Pareto optimality. Because of the heuristic nature, Pareto optimality
cannot usually be guaranteed. Thus, the result is a representation
of approximated Pareto optimal solutions.

Various categories of MOEAs exist that tackle specific MOP chal-
lenges. Here we give two examples that we refer to in what follows.
Surrogate-assisted MOEAs tackle MOPs involving functions that
are expensive to evaluate by replacing such functions by cheap-
to-evaluate approximations known as surrogate models [6, 21].
Interactive MOEAs take the preferences of the DM into account
during the solution process [28]. This allows the MOEA to focus
on the region of interest of the DM, making the algorithm more
efficient. Moreover, this also lowers the cognitive load on the DM
by enabling them to focus on a smaller range of objective values
rather than covering the entire set of Pareto optimal solutions at
once. Interactive MOEAs allow the DM to learn and change their
preferences, enabling them to find the best-suited solution.

While researchers have published many MOEAs, finding their
implementations may be challenging. A DM, or even an analyst (an
expert in multiobjective optimization), cannot be expected to im-
plement the MOEAs to solve their MOP. To get around the issue of
the availability of MOEA implementations, a small number of open-
source libraries have been published. Popular libraries of MOEAs

1703

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-2455-3008
https://orcid.org/0000-0001-8280-7040
https://orcid.org/0000-0003-1013-4689
https://doi.org/10.1145/3583133.3596383
https://doi.org/10.1145/3583133.3596383
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596383&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Bhupinder Singh Saini, Giomara Lárraga, and Kaisa Miettinen

include DEAP [13], DESDEO Framework [25], jMetal/jMetalPy
[2, 11], MOEA Framework [14], paGMO/pyGMO [3, 20], Platypus
[8] and pymoo [4]. Some of them also provide a graphical user in-
terface [25, 26], making the MOEAs accessible to a larger audience.

As MOEAs are population-based metaheuristics, these libraries
deal with a large amount of data while solving MOPs. Using data-
base management systems is a natural way to handle, archive, and
analyze this data. However, to the best of our knowledge, no MOEA
library makes use of databases to facilitate multiobjective opti-
mization. The DESDEO framework [25] is a minor exception, as it
uses a database to add features such as user authentication in its
graphical user interface. However, even in this case, the database
has a generic design. The database does not provide support for
multiobjective optimization in general and interactive or surrogate-
assisted multiobjective optimization (for expensive problems) in
particular, even though DESDEO implements many interactive and
surrogate-assisted MOEAs.

As mentioned earlier, a database management system can help
these libraries handle and utilize the data they generate to make the
most of the data. The most straightforward implementation of such
a database can be used by the libraries to archive the population
members. This archive can then later be used for visualization
and analysis of solutions 1. However, additional features can be
implemented into the database, independent of the MOEAs or the
libraries, to support multiobjective optimization specifically.

For example, in case of interactiveMOEAs, the database can store
a DM’s preferences, and the solutions discovered to satisfy them.
The database can then allow the DM, with the help of an analyst, to
compare solutions that meet different preferences, making decision-
making easier. A database can also allow the DM to save some
solutions of interest, which they can return to at a later time.

In this paper, we identify many needs for a database in the con-
text of MOEAs and discuss requirements for a database to facilitate
multiobjective optimization. The idea is to demonstrate the added
value that a database offers in utilizing the data generated during
the evolutionary solution process in a more versatile manner than
is currently done. We then design a database for supporting in-
teractive multiobjective optimization, visualization, and analysis
and call it SIVA DB. We implement it as an open-source package.
Importantly, this package aims not to replace the existing MOEA
libraries. Instead, we have designed it to be easy to implement
within existing libraries and extend their functionality. Finally, we
showcase the usefulness of SIVA DB via two sets of experiments
that demonstrate how it can increase the performance of MOEAs
and the efficiency in interactive multiobjective optimization.

2 BACKGROUND
We consider MOPs with 𝑛 decision variables 𝑥 𝑗 constituting deci-
sion (variable) vectors 𝑥 and 𝑘 (conflicting) objectives 𝑓𝑖 : 𝑆 → R,
where the feasible region 𝑆 is defined by𝑚 constraints of the form
𝑔 𝑗 (x) ≤ 0 as well as upper and lower bounds for the variables. A
feasible decision vector satisfies all the constraints.

1Note that such use cases require additional implementation of, for example, user
interfaces and algorithms that assist analysis. A database can act a foundation as well
as a common interface of communication for such implementations.

For each feasible decision vector x, we have an objective vector
𝑓 (x) = (𝑓1 (x), . . . , 𝑓𝑘 (x))𝑇 . In a corresponding manner, we define a
so-called constraint vector as 𝑔(x) = (𝑔1 (x), . . . , 𝑔𝑚 (x))𝑇 . A feasible
decision vector x∗ and the corresponding objective vector 𝑓 (x∗)
dominate another feasible decision vector x and the corresponding
𝑓 (x) if 𝑓𝑖 (x∗) ≤ 𝑓𝑖 (x) for all 𝑖 = 1, . . . , 𝑘 and 𝑓𝑗 (x∗) < 𝑓𝑗 (x) for at
least one j. In MOEAs, each solution in a population represents one
decision vector. We say that a feasible solution is Pareto optimal if
there is no other feasible solution that dominates it. MOEAs can
typically only guarantee mutual nondominance, that is, no solution
in a final population dominates any of the others. We call them
approximated Pareto optimal solutions.

Since Pareto optimal solutions are not comparable without addi-
tional information, we need the domain expertise of a DM to identify
the most preferred solution for the MOP considered. The DM is
not assumed to know details of different methods and, therefore,
usually an analyst supports the DM. The analyst knows different
methods and takes care of technical matters so that the DM can
concentrate on providing preferences and analysing the solutions
obtained.

Interactive MOEAs, as mentioned earlier, are one way to utilize
DM preferences iteratively. Another class of interactive optimiza-
tion methods are scalarization functions [24], which are especially
popular in the field of multiple criteria decision-making. These
functions can use a DM’s preferences to convert an MOP into a
single objective optimization problem. This “scalarized” problem
can then be solved with any appropriate single objective solver. The
optimal solution of this scalarized problem is (generally) a Pareto
optimal solution of the original MOP, and follows the preferences
of the DM.

The most common types of databases are the following: Rela-
tional databases [18] organize the data into tables with rows and
columns. Each table contains a set of records, and each record is
made up of fields, which are also called attributes. The columns
of a table represent the fields of a record, and the rows represent
the records themselves. Relationships between tables are estab-
lished through common columns, called keys, which serve as links
between records. The structure of the tables, including the relation-
ships between tables, forms the so-called schema of the database.
The schema of relational databases are required to be defined dur-
ing initialization. Relational databases are the most commonly used
type of database, and examples include MySQL, Oracle, and Mi-
crosoft SQL Server.

Non-relational databases [22] are also known as NoSQL databases.
They do not use tables to store data. Instead, they use a variety of
data models, such as key-value, document, columnar, and graph.
Non-relational databases are often used for web applications and
big data applications, as they are designed to scale horizontally and
can handle large amounts of unstructured data. They are also often
used for real-time applications, as they are designed for low latency
and high performance. Examples include MongoDB, CouchDB,
Cassandra, and Redis.

Among the non-relational databases, document-oriented data-
bases are of interest in this paper. These databases store the data in
so-called “collections” of “documents”. A collection can be thought
of as the equivalent of a table of a relational database. Similarly,

1704

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and Analysis GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

a document can be considered the equivalent of a row in a rela-
tional database table. A document stores data of a single entity
(for example, the name and email address of a person). A collec-
tion groups together similar documents (for example, the multiple
documents containing names and email addresses of people can
be grouped together to form a Contacts collection). Every docu-
ment also contains a unique identifier. This identifier can be used
to form relationships between documents. These documents can be
within the same collection (for example, connecting family mem-
bers within the Contacts collection), or between documents from
different collection (for example, connecting a person in the Con-
tacts collection to perhaps a car in a “Cars” collection to signify
ownership). The documents are generally stored as JSON or XML
objects.

3 DESIRABLE PROPERTIES FOR THE
DATABASE

Different database management systems exhibit different sets of
properties, making some more appropriate for usage in MOEA
libraries than others. We identify the following desirable properties
for database management systems:

• Schema-less design: The database management system
must be able to support a schema-less design. The reason
for this is that we, as the creators of the database, do not
have complete knowledge of the MOPs that will be solved by
an analyst/DM using the libraries. Nor can we predict how
different analyst/DM would solve the associated challenges.
For example, we do not know whether surrogate-assisted or
interactive MOEAs would be used to solve an MOP. We do
not have prior knowledge of the number of objectives or de-
cision variables of the problem. As we lack knowledge about
the exact structure of the data that the libraries will save in
the database, we cannot enforce a schema on the database.
A schema-less database will allow the library to store arbi-
trary data. This data can include, for example, details about
the population members (decision vectors, objective vectors,
when the MOEA generated the population members), details
about the MOEAs (hyperparameter values), details about the
MOPs (MOP names, details about the decision variables and
objectives), and preference information of the DM.
Moreover, the library can make arbitrary connections (i.e.,
not limited by a schema definition) between the entries of
the databases. For example, in the case of interactive MOEAs,
the preference information entries in the database can be
connected to subsets of population member entries that were
generated using that preference information. Designing the
exact structure of the entries and connections can be left to
the maintainers of the individual libraries. However, we pro-
pose a general structure to promote interoperability between
various libraries in the next section.

• Modularity: Adding the database to any MOEA library
should not involve reimplementing the methods already
available in the library. Instead, the library’s maintainers
should be able to add the features provided by the database as
modular additions to the MOEAs. This allows the continued
usage of the existing MOEA implementations which are

database-agnostic. In such cases, the database can act as an
archive into which the MOEAs can save solutions and other
data. New MOEAs can be implemented with this database
as a core feature, creating more efficient MOEAs.

• Accessibility: It should be possible to install the database
management system in all major desktop operating systems.
This allows the analyst/DMwho uses the libraries on any op-
erating system to benefit from the inclusion of the database.
It should be possible to access the database from major pro-
gramming languages easily. This allows library maintainers
to add the features provided by the database effortlessly.

• Sharability and mergeability: Publishing and sharing the
database should be easy. Merging databases published by
various researchers should also be possible. Sharing such
databases will boost open science. A database created by
combining such shared databases can enable meta-analysis
studies. We expand further on this in Section 4.2.

4 SIVA DB
Now that we have listed desirable properties, we design a database
that follows them. SIVA DB has been designed with the needs of
interactive (and also surrogate-assisted) MOEAs in mind. In what
follows, we introduce SIVA DB and justify the choices made.

Requiring a schema-less design for the database makes it impos-
sible to use relational database management systems. CouchDB and
MongoDB are popular alternatives. Both exhibit all the desirable
properties mentioned in the previous section. While either is appro-
priate for managing databases for MOEA libraries, we recommend
using MongoDB, as it natively supports many more datatypes. They
include “timestamp” and “geospatial” types, which can be helpful
in MOPs from certain domains, and a “Javascript” type which can
be used to save implementations of the objectives in the JavaScript
programming language. Datatypes supported by both CouchDB
and MongoDB include various numeric types, arrays, booleans,
strings, and key-value pairs. The library can use these datatypes
to archive data related to the population members and the data
associated with MOEAs.

While MongoDB does not require a schema to be defined, it
allows the usage of a schema to validate entries into parts of the
database. This validation enables us to propose a general structure
for the database, allowing consistency among the various libraries
that use this database. The library maintainers are free to expand
upon this general structure to fulfill the needs of their MOEAs.

4.1 General structure
As mentioned, MongoDB is a document-oriented database man-
agement system that divides the database into collections (instead
of tables) which contain documents (in place of rows). With SIVA
DB, we support interactive optimization, visualization, and analysis
using the database by structuring it into the following collections:

• Users: Most MOEA libraries do not support the concept
of a “user”, who may be an analyst or a DM. However, we
consider the Users collection an essential part of the database
to support interactive optimization. Each document in this
collection stores the detail of a single user. The document
must contain these fields: identifier (present by default in all

1705

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Bhupinder Singh Saini, Giomara Lárraga, and Kaisa Miettinen

documents), user name, authentication details, and a list of
MOPs solved by the user.
The authentication details will enable the libraries to limit
the user’s access through the database. The document can
contain additional fields, for example, to represent whether
the user is an analyst or a DM. This information can help
the library present different user interfaces to analysts (who
may want to access complex analysis tools) and DMs (who
may prefer a simpler user interface). The libraries can use
another field to connect different users using their identifiers.
This can be helpful to connect an analyst to a DM they are
assisting or connect a group of DMs who are solving the
same MOP together and giving them shared access to the
stored data. Libraries that do not implement the concept of
a user can use a “default” user template for anyone using
the MOEAs for successful schema validation. We show an
example of this collection in Listing 1. The listing includes
two documents that contain the information of two users.
Each document contains compulsory (i.e., schema-validated)
fields and optional fields (that are not validated).

[{"_id": "ID_ALICE",
"name": "Alice",
"auth": {*****},
"problem_ids":["ID_DTLZ1", "ID_DTLZ3"],
"role":"analyst",
"groupMembers":["ID_BOB"]},

{"_id": "ID_BOB",
"name": "Bob",
"auth": {*****},
"problem_ids":["ID_DTLZ1"],
"role":"DM",
"groupMembers":["ID_ALICE"]}]

Listing 1: An example of the Users collection, containing two
documents

• Problems: Each document in the Problems collection con-
tains information of the formulation of an MOP and must in-
clude the following schema-validated fields: identifier (used
in the Users collection to connect problems to users), MOP
name, list of connected collections (more details in the fol-
lowing items in the list), and the so-called objects for de-
cision variables, objectives, and constraints. The decision
variables object must contain the names, type (for example,
real-valued or integer-valued), and bounds of the decision
variables.
The objective object must contain names of the objectives,
as well as information regarding whether it is to be min-
imized or maximized. The constraint object may contain
the names of the constraints (if any). The documents in this
collection can also include additional fields. For example,
suppose the problem formulation contains analytical func-
tions (as opposed to black-box simulations). In that case,
the formulation can be stored in the database as JavaScript

functions (requires Javascript) or MathJSON objects2 (can
be parsed in any programming language). Alternatively, if
surrogate-assisted MOEAs are used, the data for training
the surrogate models can be put into the database as a new
collection. The library can save the collection’s name in the
related document in the Problems collection.
We show an example of this collection in Listing 2. Note that
the identifier "_id" is generally a randomly generated string.
Thus, for example, multiple problems with the same name
(with a different number of decision variables or objectives)
can exist in the collection. In the listing, we use "ID_DTLZ1"
as the identifier for readability.

[{"_id": "ID_DTLZ1",
"name": "DTLZ1",
"collections": {

"decisionVectors": "decisionVectors_DTLZ1",
"objectiveVectors": "objectiveVectors_DTLZ1"},

"decisionVariables": {"names": ["x1", ... , "x10"],

"types": ["real", ... , "real"],

"bounds": [[0, 1], ... , [0, 1]]},
"objectives":{"names": ["f1", "f2", "f3"],

"maximized": [false, false, false]}}

Listing 2: An example of the Problems collection, showing
one document.

• MOEAs: A document in the MOEAs collection contains
details of an MOEA implemented within the library. This
information includes the name of the MOEA and a brief
description of the capabilities of the MOEA (for example,
the ability to handle constraints or whether the MOEA is
surrogate-assisted or not). The library can use this informa-
tion and the MOP document in the Problems collection to
suggest MOEAs to the user. We show an example of this
collection in Listing 3. This collection can contain multiple
documents for the same MOEA if a user has run the MOEA
multiple times (for example, with different hyperparameter
settings). In such cases, each document will have a different
identifier.

[{"_id": "ID_RVEA",
"name": "RVEA",
"hyperparameters": {"totalGenerations": 1000,

"populationSize":100, ...},

"additionalDetails": {"surrogateAssisted": False,

"handlesConsts": True, ...}}]

Listing 3: An example of the MOEAs collection, containing
one document

• Collections for decision vectors: These collections are
not initially part of the database. Instead, the library creates
a new collection each time a user solves a new MOP with an
MOEA for the first time. As the name of the collection (which

2https://cortexjs.io/math-json/

1706

https://cortexjs.io/math-json/

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and Analysis GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

the library can create randomly) is not known in advance,
the library must store the generated name in the relevant
document in the Problems collection. Each document in
this collection stores information about a single population
member and contains five compulsory fields: decision vectors
(to store the decision variable values) 3, a metadata object,
a field to hold the identifier of the user running the MOEA,
and two fields to hold the identifiers of an objective vector
and a constraint vector document (more details in the next
point in the list). The metadata object must store the state of
the MOEA when the population member is evaluated. This
information includes the generation number and the exact
values of the MOEA hyperparameters. We show an example
of this collection in Listing 4. The collection shown in this
listing is named “decisionVectors_DTLZ1” in the database,
which connects it to the collection in Listing 2.

[{"_id": "DV123",
"decisionVectors": [0.31, 0.1, ..., 0.05],
"metadata" : {"moeaID": "ID_RVEA",

"generation": 25,},
"userID": ["ID_ALICE"],
"objectiveVector": "OV127",
"constraintVector": ""}]

Listing 4: An example of a collection storing decision vectors,
containing one document.

• Collections for objective vectors: Similar to the decision
vector collections, the library creates collections for objective
vectors when needed and stores the name in the associated
MOP document. Each document in this collection contains
two compulsory fields: a vector for storing the component of
the objective vector and a list of identifiers from documents
in the related decision vector collection. Note that a single
objective vector document may connect to multiple decision
vector documents. Separating the objective vectors into an
independent collection instead of adding them directly to the
decision vector collection saves space by avoiding repetition.
The document can contain additional information, such as
whether an objective vector is nondominated.
The library can also apply clustering algorithms on the objec-
tive vectors to identify clusters and add this information to
the documents in this collection. The library may also create
a separate similar collection, if a surrogate-assisted MOEA is
used to store the predicted objective vectors. The documents
in such collections should contain metadata regarding the
surrogate modeling algorithm used for the prediction in ad-
dition to the information mentioned earlier. Moreover, the
documents can also store the uncertainty of the prediction if
the surrogate modeling algorithm provides such information.
We show an example of this collection in Listing 5. The collec-
tion shown in this listing is named “objectiveVectors_DTLZ1”

3Note that if the decision variables of the MOP are represented not as vectors but as a
different data structure, we can use an appropriate MongoDB datatype. As a fallback,
we can serialize the decision variable values and store the raw data in SIVA DB.

in the database, which connects it to the collection in Listing
2.

[{"_id": "OV127",
"objectiveVectors": [5.1, 25, 3],
"decisionVectors": ["DV123"],
"clusterID": 5,
"nondominated": True}]

Listing 5: An example of a collection storing objective vectors,
containing one document.

• Collections for constraint vectors: The structure for con-
straint vectors collections is identical to that of objective
vectors. However, these are only created if the MOP has
constraints.

• Additional collections: The library can add further collec-
tions to store any information deemed useful by the library’s
maintainer. For example, the library may create a collection
to store performance indicator values (such as the hypervol-
ume indicator [29]). A document in such a collection may
include the following fields: identifiers connecting to docu-
ments in the Problems and MOEAs collection, fields for dif-
ferent indicator values, and a field for the generation number.
Using this collection, researchers can study the performance
behavior of various MOEAs on different MOPs.

Note that many fields in the database need to be updated regu-
larly. For example, the “nondominated” field in Listing 5 can change
from true to false if additional solutions are discovered that domi-
nate the objective vector in that document. Other examples include
the values of some performance indicators and clustering infor-
mation. Keeping this data up to date should not slow down the
MOEA generating the solutions. We propose that the database and
the MOEA be run on two different processes in parallel. Multiple
processes can connect to MongoDB databases, which SIVA DB is
based on, simultaneously without blocking any other connected
processes. We can have different processes running to keep SIVA
DB up-to-date, such as a process to keep checking the nondomi-
nation of objective vectors. Similar ideas have been proposed, for
example, in [1].

4.2 Benefits of using SIVA DB
We have implemented SIVA DB using MongoDB in the Python
programming language as the open-source package [Hidden] in a
library-agnostic manner. This implementation provides the main-
tainers of MOEA libraries (at least those implemented in the same
programming language) with an easy way to swiftly incorporate
the database into their libraries to gain several benefits. The range
of these benefits depends on how deeply the maintainer chooses
to incorporate the SIVA DB into their library. Using SIVA DB can
support the following:

• Interactive multiobjective optimization: SIVA DB makes
it easier for library maintainers to create graphical user in-
terfaces for DMs to apply interactive methods by providing
a standard method of communication between the backend
(the MOEAs) and the front end (the user interface). DMs

1707

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Bhupinder Singh Saini, Giomara Lárraga, and Kaisa Miettinen

can benefit significantly from the features made possible
via SIVA DB. The ability to save solutions (along with the
associated preference) can enable the DM to see previously
found solutions, making comparing and decision-making
easier. These solutions can either be from a single MOEA or
a group of MOEAs used by the DM.
Separating the user interface from the backend also allows
the library maintainers to run multiple MOEAs at once, in-
creasing the likelihood of finding acceptable solutions for
the DM while keeping the interface simple and intuitive.
The library can also use SIVA DB to run the backend on a
more powerful computer or a remote server while serving
the user interface to the DM on a desktop computer [15].
Running time-consuming optimization on powerful remote
computers saves the DM’s time while letting them provide
preferences and analyze the results quickly from their desk-
top computers.
Finally, keeping an archive of solutions can enable the cre-
ation of more efficient interactive methods, for example, by
finding the best solutions in the database to use to “warm
start” an MOEA based on the preferences of a DM. We test
this idea in Section 5.

• Visualization: SIVA DB stores not only the solutions found
by the MOEA but also a vast amount of metadata associated
with each solution. This can include clustering information,
associated with the DM’s preferences (in case of interac-
tive optimization), and uncertainty information (in case of
surrogate-assisted optimization). An analyst can use this
information to create insightful visualizations for the DM,
aiding decision-making.

• Analysis: As mentioned earlier, SIVA DB can help a DM and
an analyst analyze solutions by enabling features such as
saving solutions that are of DM’s interest, storing metadata
related to the solutions, and assisting in interactive optimiza-
tion. SIVA DB can also help researchers analyze the perfor-
mance of MOEAs. SIVA DB is designed to be easy to share
online. Researchers who create new MOEAs or test already
published MOEAs can save not only the performance of the
final population of the MOEA but the performance of all
generations of the population. They can also save additional
information, such as performance indicator measurements,
into the database. As we have designed SIVA DB to be merge-
able, we can merge databases shared by different researchers
into an expanding corpus of MOEA performance. Such a
corpus can enable meta-analyses and studies of MOEAs that
are currently infeasible to perform.

• Advanced caseswhich require additional research: SIVA
DB is designed to be future-proof and can easily be updated
to support currently unsupported cases. One such case of
interest is group decision-making, where a group of DMs
(whose interests may not be aligned) must collectively find
acceptable solutions to an MOP. SIVA DB can form the back-
bone around which new MOEAs can be designed to tackle
group decision-making challenges. Another case of interest
is the automatic selection of MOEAs to solve MOPs. Using
the aforementioned corpus of MOEA performance knowl-
edge, we can design predictive algorithms to automatically

select the best MOEAs based on the properties of the MOP.
Another advanced case is to use SIVA DB is a channel of
communication between various MOEA libraries. This can
make it easier for a library to use MOEAs implemented in
other libraries, making a large number of MOEAs accessible
to researchers and analysts.

5 INITIAL EXPERIMENTS
In this section, we evaluate two rudimentary use cases of SIVA
DB using experiments with benchmarking MOPs from the DTLZ
[10] family of test problems. In the first set of experiments, we
use SIVA DB as an archiving tool with an MOEA and show how
we can improve the performance of any MOEA with negligible
additional computational cost. In the second set of experiments, we
demonstrate how SIVA DB can make interactive optimization faster
and more efficient, thereby saving the DM’s time and resources.
We achieve these gains in efficiency by using the database, which
contains the entire history of the evolution process, to find the best
set of decision vectors (with known values for the objectives) to
form a new population whenever the DM changes their preference.
This population is composed of individuals that conform to the new
preferences the best and thus making the convergence faster. Note
that these experiments demonstrate the benefits of SIVA DB that
rely solely on the SIVA DB implementation. Other benefits enabled
by SIVA DB require the implementation of additional software
(for example, a user interface that can use SIVA DB to provide
visualization and analysis benefits) and are thus beyond the scope
of this study. The codes for all experiments conducted in this study
are available at https://github.com/industrial-optimization-group.

5.1 Using SIVA DB as an archive
In this experiment, we will use SIVA DB as an archive for RVEA [5],
a popular MOEA that generalizes well to many objectives. We use
SIVA DB only as a modular addition to RVEA without making any
changes to the algorithm. We use the hypervolume indicator [29]
to test the performance of RVEA on DTLZ{1-4} problems with and
without SIVA DB. To test the performance without SIVA DB, we use
the final population attained by RVEA to calculate the hypervolume.
To test the performance with SIVA DB, all individuals (saved into
SIVA DB every generation) in the archive that are non-dominated
are used to calculate the hypervolume. We run the algorithm on 3,
6, and 10 objective versions of all four DTLZ problems considered.
We set the number of decision variables to 10+𝑘 − 1, where 𝑘 is the
number of objectives. In all cases, we use the nadir point of the MOP
(an objective vector with all components equal to 0.5 in DTLZ1 and
1 in DTLZ{2-4}) as the reference point to calculate hypervolume.
Except for the population size, we use the default hyperparameter
values for RVEA as suggested in [5]. We set the population size to
100 in all MOPs, which is lower than the recommended values (105
for three objectives and 275 for ten objectives). The recommended
values led to much longer computation times and only a minor
increase in the resultant hypervolume.

We ran RVEA on each MOP five times and recorded the hyper-
volume values at the end of one thousand generations with and
without SIVA DB. We present the median and standard deviation
of the hypervolume values in Table 1. The better hypervolume

1708

https://github.com/industrial-optimization-group

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and Analysis GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

values are highlighted in bold. RVEA with SIVA DB achieved better
hypervolume values for every single MOP. Such performance is not
unexpected, as the archive in SIVA DB contains the final population
of the RVEA as well. Thus, at worst, RVEA with SIVA DB will be at
least as good as RVEA without SIVA DB. The better performance
with SIVA DB is due to the non-dominated individuals that were
evaluated before the final population but were then removed in
favor of individuals that performed better in the selection step of
RVEA.

Problem Number of
objectives

Hypervolume
without SIVA DB

Hypervolume
with SIVA DB

DTLZ1
3 0.0980

(0.0005)
0.0990
(0.0007)

6 0.0149
(0.0040)

0.0152
(0.0030)

10 0.00096
(10^-6)

0.00097
(10^-6)

DTLZ2
3 0.413

(10^-4)
0.426

(0.0021)

6 0.661
(10^-4)

0.724
(0.0027)

10 0.838
(10^-1)

0.870
(0.0018)

DTLZ3
3 0.391

(0.01)
0.395
(0.01)

6 0.611
(0.03)

0.619
(0.03)

10 0.813
(0.009)

0.825
(0.007)

DTLZ4
3 0.412

(10^-4)
0.428
(0.001)

6 0.66
(10^-4)

0.72
(0.003)

10 0.839
(10^-4)

0.873
(0.001)

Table 1: Medians and standard deviations (in parentheses)
of hypervolume values achieved by RVEA with and without
SIVA DB.

In many cases, such as DTLZ3 with three objectives, the hyper-
volume values attained with and without SIVA DB are very similar.
Thus, in such cases, the final population of RVEA and the archive
of all non-dominated solutions discovered by RVEA have a similar
performance. In the tests we conducted, the final population had
converged close to the Pareto front of the MOP and was well dis-
tributed. Any additional individuals introduced by the archive thus
only increased the hypervolume value by a small amount. However,
the final population only contained close to a hundred individuals
(the population size in RVEA can be smaller than the number set by
the hyperparameter). However, the archive had stored thousands
of non-dominated objective vectors for each MOP, attaining addi-
tional diversity. This diversity can allow a DM to choose a much

more fine-tuned solution in real-life MOPs. In our implementa-
tion, SIVA DB runs parallel to the MOEAs that use it. Thus, the
additional computational cost of storing individuals and finding
non-dominated individuals does not slow down the MOEA. There-
fore, using SIVA DB as a simple archive, even without making any
changes to the associated MOEA, can lead to immediate benefits at
negligible additional costs.

5.2 Using SIVA DB to increase efficiency in
interactive optimization

In this experiment, we will use an artificial DM to generate random
preferences for MOPs and conduct interactive optimization. As
with the previous experiment, DTLZ{1-4} problems are used with
three, six, and ten objectives. The artificial DM generates three sets
of preferences for each MOP as aspiration levels (values for the
objectives the DM aspires to attain), leading to three iterations in the
interactive optimization process. The preference is generated close
to the line connecting the ideal and nadir points in the first iteration.
The artificial DM generates the second preference bymaking a large
random change to the first preference. This behavior simulates a
real DM exploring to check what objective values are attainable.
The artificial DM generates the third preference by making a small
random change to the second preference. This behavior simulates
a real DM fine-tuning their preference to find the best solution.
Readers can find the exact details of the artificial DM in the linked
repository.

We find the solution that best represents the artificial DM’s as-
piration levels in each iteration by first converting the MOP into
a single objective optimization problem. We use the augmented
STOM scalarization function, which utilizes aspiration levels to
form the single objective problem. We then solve this problem with
CMA-ES [17], a state-of-the-art algorithm for continuous black-box
optimization, as implemented in [16], using the default hyperpa-
rameter values. CMA-ES requires an initial solution and generates
the first population in its vicinity. In the first iteration, i.e., before
any individuals are evaluated, we choose the initial decision vector
to be the average of the decision variables’ lower and upper bounds.
We refer to this strategy of choosing the initial decision vector as a
“cold start”.

To test the utility of SIVA DB, we run two versions of CMA-ES in
the second and third iterations. The first version does not use SIVA
DB, and cold starts in the second and third iterations. The second
version uses SIVA DB and looks through the database to find the
best solution to use as an initial solution for the second and third
iterations, thus conducting a “warm start”. To find this solution, we
find the objective vector that minimizes the new single objective
optimization problem formed using the augmented STOM function
and the new preference provided by the artificial DM. We then use
the decision vector connected to the objective vector in SIVA DB as
the initial solution. If multiple decision vectors are connected to the
best objective vector, we choose a random decision vector from that
set. Note that we use the same aspiration levels in each iteration
when comparing the cold and warm starts for a fair comparison.
However, we repeat the tests five times for each MOP, and the
artificial DM randomly generates a different set of three aspiration
levels each time.

1709

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Bhupinder Singh Saini, Giomara Lárraga, and Kaisa Miettinen

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4

Number of objectives 3 6 10 3 6 10 3 6 10 3 6 10

Iteration 1 Cold
Start

4896
(473)

12433
(1890)

13549
(6689)

2135
(130)

4357
(447)

7232
(1017)

4918
(676)

13657
(1462)

15109
(6885)

760
(15)

949
(48)

1177
(75)

Iteration 2
Cold
Start

5215
(186)

10921
(4110)

12325
(2877)

2311
(157)

5101
(977)

9205
(2814)

6293
(667)

6673
(5449)

20605
(5094)

694
(104)

1177
(149)

1129
(162)

Warm
Start

3279
(398)

5509
(795)

10057
(8210)

1871
(232)

4105
(3067)

4633
(902)

3081
(847)

3481
(1194)

8233
(1922)

804
(89)

1141
(155)

1237
(107)

Iteration 3
Cold
Start

4742
(872)

13537
(4143)

14245
(4226)

2399
(392)

5977
(1199)

6001
(2282)

5853
(1225)

7489
(2841)

16729
(5580)

804
(127)

1105
(195)

1237
(50)

Warm
Start

3642
(691)

5259
(904)

7189
(833)

1981
(126)

1199
(558)

4033
(1263)

3180
(348)

4801
(1264)

8413
(2596)

705
(147)

1093
(218)

1165
(108)

Table 2: Medians and standard deviations (in parentheses) of the number of objective function evaluations conducted by
CMA-ES with and without a warm start enabled by SIVA DB to solve MOPs with preferences from an artificial decision-maker.

In Table 2, we report the median and standard deviations in
the total number of objective function evaluations conducted by
CMA-ES in each iteration for each MOP, using the cold and warm
start strategies. We highlight the strategy that required a lower
median number of objective function evaluations in each iteration
for each MOP by presenting the number in bold. As can be seen, the
warm start strategy (which can only be used in the second and third
iterations) required a lower median number of objective function
evaluations in almost every MOP. In most MOPs, the number of
objective function evaluations conducted by CMA-ES using the
cold start strategy does not vary much in consecutive iterations.
For example, in DTLZ1 with three objectives, CMA-ES using the
cold start strategy took 4896, 5215, and 4742 (median) objective
function evaluations. The warm start strategy took significantly
fewer (median) objective function evaluations for the same problem.
In some cases, such as the DTLZ3 problem with ten objectives, the
cold start strategy took double the number of objective function
evaluations as the warm start strategy enabled by SIVA DB.

The DTLZ4 problem is the only problem where the warm start
strategy seemingly fails. However, the numbers of objective func-
tion evaluations in all DTLZ4 problems (and across cold and warm
starts) are very low compared to DTLZ{1-3} problems. In our testing,
this was because CMA-ES reached its termination criteria before
converging to the true optima of the single objective problem. This
behavior is not unexpected. The DTLZ4 MOP is designed so that
it is difficult for MOEAs to find diverse solutions across its Pareto
front [10]. In our case, as the artificial DM generates aspiration lev-
els randomly, the resulting single objective problem created using
the augmented STOM function is challenging to optimize. Neither
a cold nor a warm start could help CMA-ES achieve convergence
on the DTLZ4 problems.

In DTLZ{1-3} problems, SIVA DB helped us conduct interactive
optimization using much fewer objective function evaluations us-
ing the warm start strategy. In real-life MOPs with real DMs, this
would mean that the DM has to spend less time between providing
their preferences and being able to analyze the resulting solutions.
This increase in efficiency is especially beneficial in MOPs with

expensive objectives. The computational cost of archiving the indi-
viduals each generation and finding the best decision vector from
the set of decision vectors in SIVA DB to enable the warm start is
insignificant.

6 CONCLUSIONS AND FUTURE PROSPECTS
In this paper, we have proposed incorporating databases into pop-
ular libraries of MOEAs to support interactive multiobjective op-
timization, visualization, and analysis. We have identified the re-
quirements such a database should meet and the needs specific to
multiobjective optimization that it should fulfill. We implemented
SIVA DB in an open-source package in Python and documented
the conventions it follows. Lastly, we showed through multiple
experiments that SIVA DB can help increase the performance and
efficiency of MOEAs (especially in the case of interactive optimiza-
tion) while requiring minimal changes to the existing MOEAs and
low computational costs.

The ideas presented in this paper have only glimpsed into the
possibilities enabled by SIVA DB. As mentioned earlier, further re-
search into using databases with MOEA libraries can help us tackle
exciting challenges, including group decision-making and the auto-
matic selection of the best MOEAs to solve MOPs. It enables open
science by assisting researchers in sharing data regarding MOEAs
and MOPs and merging and utilizing data shared by others. It can
also help us unify the currently fragmented landscape of MOEA
libraries and make them cross-compatible. This will lay the foun-
dations of a one-stop software containing a massive compendium
of MOEAs presented to researchers, analysts, and DMs alike in a
user-friendly package.

ACKNOWLEDGMENTS
This research was partly funded by the Academy of Finland (grant
322221). The research is related to the thematic research area De-
cision Analytics utilizing Causal Models and Multiobjective Opti-
mization (DEMO), jyu.fi/demo, at the University of Jyvaskyla.

1710

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and Analysis GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] B. Afsar, D. Podkopaev, and K. Miettinen. 2020. Data-driven Interactive Mul-

tiobjective Optimization: Challenges and a Generic Multi-agent Architecture.
Procedia Computer Science 176 (2020), 281–290.

[2] A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, and J. Del Ser. 2019. jMet-
alPy: A Python framework for multi-objective optimization with metaheuristics.
Swarm and Evolutionary Computation 51 (2019), article 100598.

[3] F. Biscani, D. Izzo, and C. H. Yam. 2010. A global optimisation toolbox for
massively parallel engineering optimisation. arXiv:1004.3824 (2010).

[4] J. Blank and K. Deb. 2020. Pymoo: Multi-Objective Optimization in Python. IEEE
Access 8 (2020), 89497–89509.

[5] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. 2016. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Transactions on
Evolutionary Computation 20, 5 (2016), 773–791.

[6] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. 2019. A survey on handling
computationally expensive multiobjective optimization problems with evolution-
ary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

[7] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary
algorithms for solving multi-objective problems. Springer New York.

[8] Hadka. D. [n. d.]. Platypus: Multiobjective Optimization in Python. https://
platypus.readthedocs.io. https://platypus.readthedocs.io Accessed February 9th,
2023.

[9] K. Deb. 2001. Multi-objective optimization using evolutionary algorithms. Wiley
UK, Chichester.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2002. Scalable Multi-Objective Op-
timization Test Problems. In Proceedings of the 2002 IEEE Congress on Evolutionary
Computation (CEC 2002). IEEE, 825–830.

[11] J. J. Durillo and A. J. Nebro. 2011. jMetal: A Java framework for multi-objective
optimization. Advances in Engineering Software 42, 10 (2011), 760–771.

[12] J. G. Falcón-Cardona and C. A. C. Coello. 2020. Indicator-based multi-objective
evolutionary algorithms: A comprehensive survey. Comput. Surveys 53, 2 (2020),
1–35.

[13] F.-A. Fortin, F.-M De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné. 2012.
DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning
Research 13, 1 (2012), 2171–2175.

[14] D. Hadka. [n. d.]. MOEA Framework: A Free and Open Source Java Frame-
work for Multiobjective Optimization. http://moeaframework.org/. http:
//moeaframework.org/ Accessed February 9th, 2023.

[15] J. Hakanen, S. Radoš, G. Misitano, B. S. Saini, K. Miettinen, and K. Matković.
2022. Interactivized: Visual Interaction for Better Decisions With Interactive
Multiobjective Optimization. IEEE Access 10 (2022), 33661–33678.

[16] N. Hansen, Y. Akimoto, and P. Baudis. 2019. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634.

[17] N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation 9, 2 (2001), 159–195.

[18] M. J. Hernandez. 2013. Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design. Addison-Wesley Professional.

[19] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. 2008. Evolutionary many-objective
optimization: A short review. In Proceedings of the 2008 IEEE Congress on Evolution-
ary Computation (IEEEWorld Congress on Computational Intelligence). 2419–2426.

[20] D. Izzo and F. Biscani. [n. d.]. PyGMO: Python Parallel Global Multiobjective
Optimizer. https://esa.github.io/pygmo. https://esa.github.io/pygmo Accessed
February 9th, 2023.

[21] Y. Jin, H. Wang, and C. Sun. 2021. Data-Driven Evolutionary Optimization.
Springer.

[22] K. Kaur and R. Rani. 2013. Modeling and querying data in NoSQL databases. In
2013 IEEE International Conference on Big Data. 1–7.

[23] K. Li, R. Wang, T. Zhang, and H. Ishibuchi. 2018. Evolutionary Many-Objective
Optimization: A Comparative Study of the State-of-the-Art. IEEE Access 6 (2018),
26194–26214.

[24] K. Miettinen. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston.

[25] G. Misitano, B. S. Saini, B. Afsar, B. Shavazipour, and K. Miettinen. 2021. DES-
DEO: The modular and open source framework for interactive multiobjective
optimization. IEEE Access 9 (2021), 148277–148295.

[26] Y. Tian, R. Cheng, X. Zhang, and Y. Jin. 2017. PlatEMO: A MATLAB platform
for evolutionary multi-objective optimization. IEEE Computational Intelligence
Magazine 12, 4 (2017), 73–87.

[27] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. 2016. A survey of multiob-
jective evolutionary algorithms based on decomposition. IEEE Transactions on
Evolutionary Computation 21, 3 (2016), 440–462.

[28] B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu. 2018. Interactive
Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access 6
(2018), 41256–41279.

[29] E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: a com-
parative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation 3, 4 (1999), 257–271.

1711

https://platypus.readthedocs.io
https://platypus.readthedocs.io
https://platypus.readthedocs.io
http://moeaframework.org/
http://moeaframework.org/
http://moeaframework.org/
https://esa.github.io/pygmo
https://esa.github.io/pygmo

	Abstract
	1 Introduction and motivation
	2 Background
	3 Desirable properties for the database
	4 SIVA DB
	4.1 General structure
	4.2 Benefits of using SIVA DB

	5 Initial experiments
	5.1 Using SIVA DB as an archive
	5.2 Using SIVA DB to increase efficiency in interactive optimization

	6 Conclusions and Future Prospects
	Acknowledgments
	References

