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We explore the impact of strong classical color fields, which occur in the earliest stages of heavy-ion
collisions and are known as the glasma, on the classical transport of hard probes, namely heavy quarks and
jets. To achieve this, we simulate SU(3) color fields using classical real-time lattice gauge theory and couple
them to an ensemble of test particles whose dynamics are described by Wong’s equations. We provide an
overview of how classical color algebras are constructed and introduce a method to generate random
classical SU(3) color charges. We extensively test our numerical particle solver in the limits of infinitely
massive heavy quarks and ultrarelativistic lightlike jets and obtain excellent quantitative agreement with
previous studies. Going towards realistic masses and initial momenta, we extract longitudinal and
transverse momentum broadening for heavy quarks and jets. The resulting accumulated momenta and the
anisotropy of these dynamical hard probes exhibit deviations from limiting scenarios, showing that the full
dynamics have a significant effect.

DOI: 10.1103/PhysRevD.107.114021

I. INTRODUCTION

Relativistic heavy-ion collision experiments, as conducted
at the Large Hadron Collider (LHC) or the Relativistic
Heavy Ion Collider (RHIC), provide the remarkable oppor-
tunity to study hadronic matter under extreme conditions
with increasing statistics and precision. Immediately after
the collision, the medium is characterized by large gluon
occupation numbers and a highly nonlinear regime, known
as the glasma [1–4]. Particularly sensitive probes of the very
early stage of the collision are heavy quarks and jets. Due to
their short formation time, they experience the initial stage of
the collision. By understanding the imprint of the glasma
fields on these probes, one can disentangle important

information about the structure of initially produced matter,
in both proton-nucleus and nucleus-nucleus collisions.
The glasma is described using a wider framework

entitled Color Glass Condensate (CGC) [5–7] which is
formulated at the high-energy limit of quantum chromo-
dynamics (QCD). The field equations for the color fields of
the gluons are solved numerically using methods from
lattice QCD [8–10]. To describe the properties of hard
probes from high-energy nuclear collisions, numerous
approaches based on perturbative QCD (pQCD) tech-
niques [11–14], lattice computations [15–19], or non-
Abelian Yang-Mills transport theories [20–22] have been
used. These probes are produced immediately after the
collision and may be affected by the entire evolution of the
resulting Quark Gluon Plasma (QGP).
Previous approaches that focus on the effect of the glasma

on hard probes include a study on jets in the glasma [23,24]
based on a lattice discretization of the Yang-Mills equations,
where the transport properties of jets are evaluated by
treating them as ultrarelativistic lightlike partons. More
precisely, the jet momentum broadening is extracted from
glasma field correlators computed on the lattice, without
explicitly solving the dynamical particle equations of
motion. Another lattice study [18,25,26] with over-occupied
Yang-Mills plasma instead of glasma, evaluates the heavy
quark transport coefficient from electric field correlators
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(assuming the heavy quarks to be infinitely massive and
static) and emphasizes the emergence of plasmon mass
induced oscillations. In another series [27–34], the effect
of the glasma phase on the diffusion of heavy quarks is
extensively studied and compared to the standard
Langevin description of heavy quark dynamics, with a
recent focus on memory effects. A different approach is
taken in [35–37], where both the glasma fields and particle
transport equations are derived using analytical frame-
works. The glasma fields are obtained in the proper time
expansion and the transport of the hard probes is treated
using the Fokker-Planck equations adapted to the glasma.
Complementary, it was shown that the initial stage,
implemented in different frameworks, has an effect on
jet quenching [38,39]. Even though these approaches vary
with respect to the approximations which are used, they all
converge to the same key result; the glasma phase has a
considerable effect on the transport of hard probes.
Nevertheless, very few of these studies have a built-in
way to describe the very early stage consistently and in
many cases they are constructed on approximations
applicable at later stages.
In this work, we present a novel framework that

simulates the full dynamics of hard particles right after
the collision on top of an evolving boost-invariant SU(3)
glasma background field. This is practically achieved by
developing a numerical solver for the equations of motion
of particles propagating in these fields. The particles are
initialized with finite masses, formation times and initial
momenta. The solver is used to extract relevant quantities
such as the momentum accumulated as the partons
propagate in the background fields. The novelty consists
in the numerical methods developed for the particle solver
and the techniques used to efficiently solve both the
glasma and particle equations concurrently. In particular,
we introduce a novel way to generate SU(3) classical color
charges using the Haar measure. The code runs on GPUs
and allows for the systematic study of the full dynamics of
particles and the dependence on many parameters used for
particle initialization.
There exist two relevant limiting cases in which the

accumulated momentum of hard probes in glasma may be
evaluated only from glasma lattice field correlators, with-
out solving the particle equations of motion. These
correspond to infinitely massive heavy quarks and highly
energetic jets. When we consider such quarks in our
particle solver, we reproduce the limiting results. The
limiting case of extremely fast lightlike jets is extracted
using two setups, namely the classical transport framework
using Wong’s equations and a quantum pQCD computa-
tion. By comparing the resulting momentum broadening,
we notice a discrepancy between the classical computation
and the quantum one, and propose a way to resolve it.
Going beyond these limiting cases, towards realistic
dynamical results, we quantitatively study whether the

full dynamics has a considerable effect. We extract the
instantaneous transport coefficients, namely κ for heavy
quarks and q̂ for jets, and check if the large transport
coefficients of hard probes in the glasma obtained by
previous studies are an artifact of the approximations used
or still persists with our full numerical setup. Most
remarkably, we observe that that momentum broadening
along rapidity oscillates as a function of proper time,
which could indicate plasmon modes in the glasma [25].
Preliminary results obtained using our solver have been
presented previously in [40].
This study is structured as follows. Section II contains an

overview of the classical description of the early stage in
terms of glasma initial conditions and classical boost-
invariant Yang-Mills equations. In Sec. III we present
Wong’s equations. In Sec. IV we describe how SU(2)
and SU(3) color charges are sampled correctly. Section V
describes the limiting cases for infinitely massive heavy
quarks and for extremely fast lightlike jets. In Sec. VI we
show how to reconcile classical particle simulations with
the calculation of momentum broadening within pQCD.
The results obtained with our particle solver are showcased
in Sec. VII. Finally, Sec. VIII includes a summary of all the
results, along with viable future extensions of our study.
Detailed calculations including the correct sampling of
color charges can be found in Appendixes A through D.

II. GLASMA IN A NUTSHELL

Within the Color Glass Condensate framework [5–7], the
medium produced after the collision of relativistic nuclei is a
state dominated by strong classical color fields known as the
glasma [1–4,8,9]. The CGC is an effective theory for high
energy nuclei and relies on the separation of scales between
degrees of freedom with small and large longitudinal
momentum fraction x. Hard (large-x) partons behave as
highly Lorentz-contracted, static color sources Jμ for the
gauge fields Aμ described by the soft (small-x) partons. At
leading order in the coupling constant g, the hard and soft
sectors are coupled via the Yang-Mills equations

DμFμν ¼ Jν; ð1Þ

with Dμð…Þ≡ ∂μð…Þ − ig½Aμ;…� denoting the gauge-
covariant derivative, Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν� the
field strength tensor and Jμ the color current. At sufficiently
high energies, we can approximate the nuclei to be propa-
gating along the light-cone directions x� ≡ ðx0 � x3Þ= ffiffiffi

2
p

.
Their color currents are given by

JμA;B ¼ δμ�ρA;Bðx∓; x⃗⊥Þ; ð2Þ

where ρA;B represent classical color charge densities and the
subscriptsA andB denote the two colliding nuclei. The color
charge densities are treated as stochastic variables whose

DANA AVRAMESCU et al. PHYS. REV. D 107, 114021 (2023)

114021-2



statistics are determined by the probability functional W½ρ�.
We take it to be given by the McLerran-Venugopalan (MV)
model [41–43]. It considers the color charges ρ to follow
Gaussian statistics, which are determined by the one- and
two-point correlators

hρaðx∓; x⃗⊥ÞiA;B ¼ 0;

hρaðx∓; x⃗⊥Þρbðy∓; y⃗⊥ÞiA;B ¼ g2λA;Bðx∓Þδab
× δðx∓ − y∓Þδð2Þðx⃗⊥ − y⃗⊥Þ;

ð3Þ

where λA;B is the average color charge per unit volume. One
may extract μ2A;B ¼ R

dx�λA;Bðx∓Þ, which denotes the MV
model parameter (in units of energy squared) and represents
the variance of the color charge density fluctuations of each
nucleus.
We can solve the Yang-Mills equations from Eq. (1) for

the special choice of color current in Eq. (2) in the covariant
gauge ∂μA

μ
cov ¼ 0. The only nonzero components of the

gauge field are given by A�
covðx∓; x⃗⊥Þ≡ αA;Bðx∓; x⃗⊥Þ

where αA;B obeys a Poisson equation restricted to the
transverse plane

Δ⊥αA;Bðx∓; x⃗⊥Þ ¼ −ρcovA;Bðx∓; x⃗⊥Þ; ð4Þ

in which Δ⊥ is the transverse Laplace operator. The
Poisson equation can be formally solved via Fourier
transformation

αA;Bðx∓; x⃗⊥Þ ¼
Z

d2k⃗⊥
ρ̃covA;Bðx∓; k⃗⊥Þ
k⃗2⊥ þ λ2

expð−ik⃗⊥ · x⃗⊥Þ; ð5Þ

where λ is an infrared regulator and ρ̃covA;B are the Fourier
transformed charge densities in the covariant gauge. By
performing a gauge transformation to the light-cone gauge
Aþ
lc ¼ 0, the gauge field only has transverse components

given by

Ai
A;Bðx∓; x⃗⊥Þ ¼

i
g
Vðx∓; x⃗⊥Þ∂iV†ðx∓; x⃗⊥Þ; ð6Þ

with the lightlike Wilson line

V†
A;Bðx∓; x⃗⊥Þ ¼ P exp

�
ig
Z

x∓

−∞
dy∓αA;Bðy∓; x⃗⊥Þ

�
; ð7Þ

where Pð…Þ denotes the path-ordering operation.
In the ultrarelativistic limit, the nuclei are contracted to

infinitesimally thin sheets. This can be expressed via
JμA;B ¼ δμ�δðx∓ÞρA;Bðx⊥Þ where the two-dimensional
charge densities obey the correlator

hρaðx⃗⊥Þρbðy⃗⊥ÞiA;B ¼ g2μ2A;Bδ
abδð2Þðx⃗⊥ − y⃗⊥Þ: ð8Þ

The transverse gauge fields are given by

Ai
A;Bðx∓; x⊥Þ ¼ θðx∓ÞαiA;Bðx⃗⊥Þ; ð9Þ

in which θ represents the Heaviside function and

αiA;Bðx⃗⊥Þ ¼
i
g
VA;Bðx⃗⊥Þ∂iV†

A;Bðx⃗⊥Þ; ð10Þ

involves a Wilson line depending on the transverse coor-
dinate, obtainable as VA;Bðx⃗⊥Þ ¼ limx∓→∞VA;Bðx∓; x⃗⊥Þ.
We now consider the classical collision problem

DμFμν ¼ JνA þ JνB; ð11Þ

where the initial conditions in the asymptotic past are
provided by the color fields of the nuclei. The glasma is
described by the gauge field in the future light cone of the
collision. In the ultrarelativistic limit, the total color current
generated by the two nuclei Jμ ¼ JμA þ JμB possesses invari-
ance under longitudinal Lorentz boosts, which implies that
any observables of the glasma must be invariant under
boosts as well. An appropriate choice of coordinates is given
by the Milne coordinates ðτ; ηÞ defined as

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþx−

p
; η ¼ 1

2
ln

�
xþ

x−

�
; ð12Þ

with proper time τ and space-time rapidity η. By fixing the
residual gauge freedom by imposing the temporal gauge
condition Aτ ¼ 0 and requiring boost invariance of the
gauge fields as Aμðτ; η; x⃗⊥Þ ¼ Aμðτ; x⃗⊥Þ, one may formu-
late initial conditions for the glasma fields along the
boundary of the future light-cone as [44]

Aiðτ; x⃗⊥Þ
���
τ¼0

¼ αiAðx⃗⊥Þ þ αiBðx⃗⊥Þ;

Aηðτ; x⃗⊥Þ
���
τ¼0

¼ ig
2
½αiAðx⃗⊥Þ;αiBðx⃗⊥Þ�; ð13Þ

accompanied by

∂τAiðτ; x⃗⊥Þ
���
τ¼0

¼ ∂τAηðτ; x⃗⊥Þ
���
τ¼0

¼ 0: ð14Þ

The conjugate momenta associated with the gauge
fields are

Pi ¼ τ∂τAi; Pη ¼ 1

τ
∂τAη: ð15Þ

The Yang-Mills action expressed in Milne coordinates,
together with boost-invariance, yields the field equations
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∂τPi ¼ τDjFji −
ig
τ

h
Aη;D iAη

i
;

∂τPη ¼ 1

τ
D iðD iAηÞ; ð16Þ

along with the Gauss constraint D iPi þ ig½Aη; Pη� ¼ 0

which is fulfilled throughout the evolution. In order for
these equations to preserve gauge invariance upon discre-
tization, they need to be recast in a lattice QCD formulation.

A. Numerical implementation

The Yang-Mills equations of the glasma may be solved
numerically. The work presented here is based on an
approach that employs classical real-time lattice gauge
theory [8,45]. In order to assure gauge invariance of the
field equations from Eq. (16) upon discretization, one may
proceed as follows: the Minkowski space is discretized on a
hypercubic lattice replacing the gauge fields with gauge
links, which are Wilson lines connecting neighboring
points on this lattice. A particularity of the boost-invariant
collision scenario is that one needs to employ this pro-
cedure only in the transverse plane. This is due to the fact
that Aηðτ; x⃗⊥Þ acts as a scalar under η-independent gauge
transformations, and thus the η direction is left continuous
with respect to a lattice discretization.
The transverse plane, taken as a square of length L and

accompanied by periodic boundary conditions for the
fields, is discretized in N2 points in which the fields are
assigned values at various proper times. In the continuum
limit, assuming small lattice spacings a ¼ L=N, a gauge
link connecting the lattice point located at x⃗⊥ and the
neighboring point along a direction î, where î is the unit
vector along xi, is given by

Uîðτ; x⃗⊥Þ ≈ exp

�
igaAi

�
τ; x⃗⊥ þ a

2
î

��
: ð17Þ

Links in opposite directions can be expressed through the
Hermitian operation U−îðτ; x⃗⊥Þ≡U†

î
ðτ; x⃗⊥ − îÞ. These

gauge links are then used to construct a plaquette variable
as Uî ĵðτ; x⃗⊥Þ≡Uîðτ; x⃗⊥ÞUĵðτ; x⃗⊥ þ îÞU−îðτ; x⃗⊥ þ îþ ĵÞ
U−ĵðτ; x⃗⊥ þ ĵÞ.
The Yang-Mills action can be approximated using link

and plaquette variables along with the conjugate momenta

Pηðτ; x⃗⊥Þ ¼
1

τ
∂τAηðτ; x⃗⊥Þ;

Piðτ; x⃗⊥Þ ¼ −i
τ

ga

h
∂τUîðτ; x⃗⊥Þ

i
U†

î
ðτ; x⃗⊥Þ: ð18Þ

Varying the discretized action yields discretized equations
of motion

∂τPηðτ; x⃗⊥Þ ¼
1

τ
D2

i Aηðτ; x⃗⊥Þ;

∂τPiðτ; x⃗⊥Þ ¼ −
X
j

τ

ga3

h
Uî ĵðτ; x⃗⊥Þ þ Uî−ĵðτ; x⃗⊥Þ

i
ah

−
ig
τ

h
Atransp
η ðτ; x⃗⊥Þ;DF

i Aηðτ; x⃗⊥Þ
i
; ð19Þ

where D2
i ≡ DF

i D
B
i contains the forward DF

i and backward
DB

i gauge-covariant finite differences on the lattice, ð…Þah
denotes the anti-Hermitian traceless part of a matrix, and
Atransp
η ðτ; x⃗⊥Þ≡Uîðτ; x⃗⊥ÞAηðτ; x⃗⊥ þ îÞU†

î
ðτ; x⃗⊥Þ repre-

sents the parallel transported scalar field. These equations
are accompanied by the Gauss constraint and are solved
numerically by employing the leapfrog algorithm. In this
numerical method, the conjugate momenta are evaluated at
half-integer time steps, whereas the rest of the fields are
computed at integer proper times.
Finally, the MV model initial conditions must be dis-

cretized as well. The naive use of Eq. (8) leads to loss of
randomness in the infinitesimal direction x� along which
the nucleus propagates, due to the nontrivial path-ordering
of the involved Wilson lines. Nevertheless, by sticking
together infinitesimally thin sheets of color charge and
regularizing the correlator as [46]

hρamðx⃗⊥Þρbnðy⃗⊥ÞiA;B ¼
1

Nsa2
g2μ2A;Bδmnδ

abδðx⃗⊥ − y⃗⊥Þ; ð20Þ

where m; n ∈ f1; 2;…Nsg denotes the index of the sheet,
and with Ns the number of such color sheets, this issue is
resolved. Numerically, color charges are generated by
sampling random numbers distributed according to a
Gaussian with zero mean and variance chosen to obey
Eq. (20). Once the color charges are provided, the
solutions of Eq. (4) now expressed for each color sheet
as Δ⊥αanðx⃗⊥Þ ¼ −ρanðx⃗⊥Þ may be obtained using Fast
Fourier Transformation (FFT), where the infrared and
ultraviolet cutoffs are λ and Λ. Furthermore, the Wilson
lines are constructed as products computed for each
sheet as V†ðx⃗⊥Þ¼

QNs
n¼1expð−igαnðx⃗⊥ÞÞ with αn ≡ αanTa.

Subsequently, the transverse gauge links are computed
from these discretized Wilson lines and the initial glasma
conditions given in Eq. (13) are also numerically dis-
cretized. Once all these steps are completed, the glasma
fields are numerically solved using our numerical simu-
lation routines.1

III. PARTONS IMMERSED IN GLASMA

The dynamics of particles propagating in classical Yang-
Mills fields is given by Wong’s equations [47] which

1The simulation code for the glasma fields is publicly available
at https://gitlab.com/openpixi/curraun.
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describe how the positions and momenta of the particles
evolve in time, while their charges rotate in color space
[48]. In the laboratory frame they read as

dxi

dt
¼ pi

E
;

dpi

dt
¼ gQaFiμ;a pμ

E
;

dQa

dt
¼ −gfabcAb

μQc p
μ

E
; ð21Þ

where i ∈ fx; y; zg and a ¼ f1; 2;…; DAg with the dimen-
sion of the adjoint representationDA ¼ N2

c − 1. The energy
is given by E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
with m being the mass of the

particle, p⃗≡ ðpx; py; pzÞ, and fabc the structure constants
for the SUðNcÞ group.
The dynamic equation for the energy p0 ¼ E is given by

dE
dt

¼ gQaF0i;a pi

E
¼ gQaE⃗a · v⃗; ð22Þ

with Ei ≡ F0i denoting the color-electric field. This rela-
tion states that the energy of a moving particle changes due
to the work exerted by the color-electric field upon it, where
p⃗ ¼ γmv⃗, with γ ¼ E=m the Lorentz factor and v⃗ the
laboratory frame velocity.
Wong’s equations may be recast into a covariant form,

with quantities computed along the worldline of the particle

dxμ

dτ
¼ pμ

m
;

Dpμ

dτ
¼ gQaFμν;a pν

m
;

dQa

dτ
¼ −gfabcAb

μQc p
μ

m
; ð23Þ

where ðdτÞ2 ¼ gμνdxμdxν denotes the relativistic proper
time and in which Ed=dt ¼ md=dτ is employed and D=dτ
is the covariant derivative taken along the particle world-
line. Further, we make use of the Lie-algebra-valued color
charges Q ¼ QaTa to write QaFμν;a ¼ Tr½QFμν�=TR,
where TR is the representation-dependent Dynkin index
defined through Tr½TaTb� ¼ TRδ

ab, with Ta ∈ SUðNcÞ.
The above equations simplify to

Dpμ

dτ
¼ g

TR
Tr½QFμν�pν

m
;

dQ
dτ

¼ −ig½Aμ; Q�p
μ

m
: ð24Þ

The equation governing the evolution of the color charge
may formally be solved by

QðτÞ ¼ Uðτ; τ0ÞQðτ0ÞUðτ0; τÞ; ð25Þ

where Q is rotated with Wilson lines. These Wilson lines
involve the path-ordered exponential computed along the
trajectory of the particle and are given by

Uðτ; τ0Þ ¼ P exp

0
@−ig

Zτ
τ0

dτ0
dxμ

dτ0
AμðxμÞ

1
A: ð26Þ

The last relation may be derived by making use of the
parallel transport equation for a Wilson line

d
dτ

Uðτ; τ0Þ ¼ −ig
dxμ

dτ
AμðxμðτÞÞUðτ; τ0Þ: ð27Þ

The use of Wilson lines in the evolution of the color
charge automatically conserves the quadratic

QaQa ≡ q2ðRÞ ð28Þ

and cubic classical Casimirs2

dabcQaQbQc ≡ q3ðRÞ; ð29Þ

where dabc are the symmetric structure constants and the
values q2ðRÞ, q3ðRÞ depend on the chosen representation R
for the color charge Q. We go into detail about how these
invariants are fixed in Sec. IV and Appendix B.
In this work we approximate hard partons as test

particles, which means that we neglect any back reaction
of the partons onto the glasma.

A. Dynamics of particles in Glasma

Let us express Eqs. (23) and (25) in Milne coordinates
and choose the background fields to be those of the boost-
invariant glasma. A detailed derivation can be found in
Appendix A 1. The coordinate Wong equations are given by

dxμ

dτ
¼ pμ

pτ ð30Þ

where xμ ∈ fx; y; ηg and ðpτÞ2 ¼ ðpxÞ2 þ ðpyÞ2 þ
τ2ðpηÞ2 þm2. The Wong equations for momenta read as

2One may also define Casimir invariants for classical Lie
algebras. For SU(2) and SU(3), we construct them in analogy
with the group-theoretical Casimir invariants. More details are
offered in Appendix B.
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τ
dpη

dτ
þ 2pη ¼ g

TR

�
Tr½QEη�−Tr½QBx�

py

pτ þTr½QBy�
px

pτ

�
;

dpx

dτ
¼ g
TR

�
Tr½QEx� þTr½QBη�

py

pτ −Tr½QBy�
τpη

pτ

�
;

dpy

dτ
¼ g
TR

�
Tr½QEy�−Tr½QBη�

px

pτ þTr½QBx�
τpη

pτ

�
;

ð31Þ

and are accompanied by the dynamic equation for the
temporal component

dpτ

dτ
þ τpη

pτ pη ¼ g
TR

�
Tr½QEη�

τpη

pτ þ Tr½QEx�
px

pτ

þ Tr½QEy�
py

pτ

�
; ð32Þ

where the color-electric and -magnetic fields are determined
from the field strength tensor via

Ei ≡ Fτi; Bi ≡ ϵij
1

τ
Fηj;

Eη ≡ 1

τ
Fτη; Bη ≡ −Fxy: ð33Þ

As for the proper time evolution of the color charge, the
Wilson line involved in the color rotation, see Eq. (26), can
be expressed as a path-ordered integral along the worldline

Uðτ; τ0Þ ¼ P exp

�
−ig

Z
xμðτÞ

xμðτ0Þ
dxμAμðxμðτÞÞ

�
: ð34Þ

As used in the glasma framework, we employ the temporal
gauge Aτ ¼ 0 and the gauge field is taken to be independent
of space-time rapidity η, which simplifies the Wilson lines.
As colored particles pass through the glasma, the

momentum of the particles pμ changes according to
Wong’s equations. The main observable we focus on,
which represents a measure of the accumulated momentum,
is the momentum broadening δpμ defined as

δp2
μðτÞ≡ p2

μðτÞ − p2
μðτformÞ: ð35Þ

Here τform denotes the formation time at which the particle
is introduced into the system and pμðτformÞ is the initial
momentum of the particle. The momentum broadening thus
reflects how much momentum is accumulated through
interactions with the glasma background field compared
to the initial momentum of the particle.

B. Numerical implementation

The positions and momenta of the partons are initialized
using a toy model setup. Namely, the initial coordinates of
the particles, chosen at formation time τform ≥ 0, are
randomly distributed in the transverse plane xðτformÞ,
yðτformÞ ∈ ½0; L� with ηðτformÞ ¼ 0. The particles initially
only have transverse momenta pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpxÞ2 þ ðpyÞ2

p
at

formation time, with fixed pTðτformÞ and pηðτformÞ ¼ 0 for
heavy quarks, or an initial pxðτformÞ and py;ηðτformÞ ¼ 0 for
jets propagating along the x-axis. As will become evident in
Sec. V, we choose jets with initial momenta along
x-direction in order to compare with previous studies
having the same particle setup. Color charges are randomly
sampled using Darboux variables for SU(2) or using the
Haar measure for SU(3), and their associated classical
Casimirs are fixed according to Eqs. (44a) and (44b). A
complete description of how these classical color charges
are constructed is given in Sec. IV and Appendix B.
Numerically, the Milne proper time evolution for posi-

tions and momenta from Eqs. (30) along with (31) and also
(32) for the temporal constraint is solved with Euler’s
method. An example of the numerical solutions of these
equations for particles propagating in glasma fields is
depicted in Fig. 1. The glasma electric and magnetic fields
from Eq. (33), which appear in Wong’s momenta equations
given in Eq. (23), have to be approximated on the lattice.
This is because the electric fields reside on gauge links, the
magnetic ones on plaquettes and we need to interpolate in
order to get their value on a lattice site. Appropriate
approximations that are accurate up to quadratic order in
the lattice and time spacing are given by

Eiðτn; xnÞ ¼
1

τn
Piðτn; xnÞ ≈

1

4τn

�
Pi
xn

�
τn þ

Δτ
2

�
þ Pi

xn

�
τn −

Δτ
2

�

þ Uxn;−îðτnÞ
�
Pi
xn−î

�
τn þ

Δτ
2

�
þ Pi

xn−î

�
τn −

Δτ
2

��
U†

xn;−î
ðτnÞ

	
;

Eηðτn; xnÞ ¼ Pηðτn; xnÞ ≈
1

2

�
Pη
xn

�
τn þ

Δτ
2

�
þ Pη

xn

�
τn −

Δτ
2

��
; ð36Þ

where i ¼ x, y, and similarly
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Biðτn; xnÞ ¼ −
1

τn
DiAηðτn; xnÞ ≈ −

1

2τnaT

h
Uxn;î

ðτnÞAxnþî;ηðτnÞU†
xn;î

ðτnÞ −Uxn;−îðτnÞAx−î;ηðτnÞU†
xn;−î

ðτnÞ
i
;

Bηðτn; xnÞ ¼ −Fxyðτn; xnÞ ≈ −
1

4ga2T

h
Uxn;x̂ ŷðτnÞ þ Uxn;ŷ−x̂ðτnÞ þ Uxn;−x̂−ŷðτnÞ þUxn;−ŷ x̂ðτnÞ

i
ah
: ð37Þ

When evaluating these expressions, the positions of the
particles are approximated with the nearest grid point
(NGP) on the transverse lattice of the glasma. Thus, the
color-electromagnetic fields that are exerted on the partons
are computed at xn ≡ ½x⃗⊥ðτnÞ�NGP.
The numerical solution for the rotation of the color

charge is more involved and relies on the same NGP
approximation. It is inspired by colored particle-in-cell
(CPIC) methods used in the context of particles in
classical Yang-Mills (CYM) plasmas [49–52]. In the
CPIC method, the color charge of a particle is rotated
with gauge links only when the NGP on the underlying
simulation lattice of the background Yang-Mills (YM)
fields changes. It should be emphasized that the glasma
fields are discretized only in the transverse plane because
of boost invariance, and the rapidity direction is left
continuous. Thus, one needs to adapt the CPIC method
to the glasma lattice discretization with gauge links only
in the transverse plane. Numerically, one may approxi-
mate the Wilson line from Eq. (34), namely Uðτi; τfÞ
at a given proper time τf as being comprised of sub-
sequent products of “short” Wilson lines Uðτn−1; τnÞ as
Uðτi; τfÞ ≈ Uðτi; τiþ1ÞUðτiþ1; τiþ2Þ…Uðτf−1; τfÞ. These
short Wilson lines may be reduced to

Uðτn−1; τnÞ ≃ exp

0
@ig

Zxn
xn−1

dx0iAiðx0Þ
1
A

× exp ðigδηnAηðxnÞÞ
¼ Uxn−1;î

ðτnÞUxn;η̂ðτnÞ: ð38Þ

Here, Uxn;î
ðτnÞ is a transverse gauge link along the

direction î with i ¼ x, y evaluated at position xn, while
Uxn;η̂ðτnÞ represents a Wilson line along the η̂ direction,
which can be computed from Aη via the matrix exponen-
tial. It should be noted that this approximation is only
valid for small time steps δτn ¼ τn − τn−1. We have made
use of the fact that the displacement in rapidity δηn is
numerically small and it follows that ½R dxiAi; δηnAη� ≃ 0

such that higher-order terms arising from the Baker-
Campbell-Hausdorff formula are suppressed. This
numerical color rotation is depicted in Fig. 2.
Alternatively, one may directly solve

dQ
dτ

¼ ig

�
½Q;Ax�

px

pτ þ ½Q;Ay�
py

pτ þ ½Q;Aη�
pη

pτ

�
; ð39Þ

FIG. 1. Trajectories of charm quarks in glasma, simulated with our particle solver, where the proper time evolution of (a) positions and
(b) momenta are given by Eqs. (30) and (31) for Ntp ¼ 100 test particles, all initialized with zero px;y;zðτformÞ. The color represents the
value of the proper time difference δτ≡ τ − τform at which the coordinates or momenta are evaluated.
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where the transverse gauge fields are numerically extracted
from the gauge links using matrix logarithms

igaAx



xþ a

2
; y
�
¼ lnðUx̂ðx; yÞÞ;

igaAy



x; yþ a

2

�
¼ lnðUŷðx; yÞÞ: ð40Þ

We checked that these two distinct methods for solving the
evolution of the color charge, either from Eqs. (25) or (40),
are consistent with each other in the limit of small time
steps and yield similar final results for momentum broad-
ening. Nevertheless, the advantage of performing numeri-
cal color rotations with Wilson lines as in Eq. (25) lies in
ensuring that the color charge remains in the Lie algebra,
i.e.Q ∈ suðNcÞ, and that the Casimir invariants are exactly
conserved. The Casimirs, Eqs. (28) and (29), remain
unchanged throughout the evolution; once the values of
the Casimirs are fixed at formation time, color rotations
with Wilson lines will not affect them.

IV. CLASSICAL COLOR CHARGES

In the previous sections we have outlined how to
numerically solve the field and particle equations on a
lattice. The question remains how to choose the classical
color charges Q in the ensemble of partons. Here, we
largely follow the seminal works on classical non-Abelian
transport theory [20–22,53]. There are three aspects to

consider: first, what values to assign to the classical Casimir
invariants of the color charges from Eqs. (28) and (29);
second, how to distribute the charges in color space (the
particular color charge a parton assumes after a random
hard scattering is a priori unknown, hence additional
considerations are required in order to construct their
distribution); third, how fixing one affects the other. We
address these by treating the color charge components Qa

as stochastic variables with fixed values of q2 ¼ QaQa and
q3 ¼ dabcQaQbQc. We emphasize that this is a choice and
in our framework, where the Casimirs remain constant
throughout the evolution, see Sec. A 2, the obvious choice
is to fix the Casimirs. In analogy with the trace relations for
operator-valued elements of the suðNcÞ color algebra

Tr½Q̂a� ¼ 0;

Tr½Q̂aQ̂b� ¼ TRδ
ab;

Tr½Q̂aQ̂bQ̂c� ¼ AR

4
ðdabc þ ifabcÞ; ð41Þ

we choose to have color charges randomly distributed
according to one-, two- and three-point functions

hQai ¼ 0; ð42aÞ

hQaQbi ¼ TRδ
ab; ð42bÞ

hQaQbQci ¼ AR

4
dabc; ð42cÞ

where the representation-dependent coefficients TR and AR
are given by

TR ¼
� 1

2
; R ¼ F

Nc; R ¼ A
; AR ¼

�
1; R ¼ F

0; R ¼ A
: ð43Þ

The Casimir invariants from Eqs. (28) and (29) constrain
what values the color chargesQa can take. It may be shown
that the ansatz for the two- and three-point functions from
Eqs. (42b) and (42c) fixes the quadratic and cubic classical
Casimirs, defined in Eqs. (28) and (29), to

q2ðRÞ ¼
� N2

c−1
2

; R ¼ F

NcðN2
c − 1Þ; R ¼ A

; ð44aÞ

q3ðRÞ ¼
� ðN2

c−4ÞðN2
c−1Þ

4Nc
; R ¼ F

0; R ¼ A
: ð44bÞ

We point out that assigning the labels “fundamental” and
“adjoint” to the classical Casimirs is inspired by the
corresponding quantum representations and is inherited
from the choice we made in Eqs. (42). A detailed derivation
of the classical Casimirs from Eqs. (44a) and (44b) is given

FIG. 2. Diagram with the color rotation performed during a
numerical time step from τn−1 to τn. The electric and magnetic
glasma fields reside on lattice points in the transverse plane
xðτnÞ≡ xn, while a particle may move at any location in the
transverse plane. The particle position is approximated with the
NGP on the lattice xðτnÞ ↦ NGPðτnÞ and when the transverse
coordinates of the NGP change, one performs a color rotation
with the corresponding transverse gauge link, in this case Ux̂.
Along the rapidity direction, a Wilson lineUη̂ is computed via the
matrix exponential and used in the color rotation, which here is
simply given by Uðτn−1; τnÞ ¼ Ux̂ðτnÞUη̂ðτnÞ.
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in Appendix B 2. Here, we provide a sketch of the
derivation. If we take the two-point function from
Eq. (42b), choose the color component a ¼ b and perform
a sum over it, we get the classical quadratic Casimir
q2ðRÞ ¼ DATR. Similarly, we start from the three-point
function in Eq. (42c), multiply by dabc and sum over all
color indices. Eventually, with the normalization we chose
in Eqs. (42), the quadratic and cubic classical Casimirs may
be recast in the following form:

q2;3ðRÞ ¼ DRC2;3ðRÞ; ð45Þ

where DR denotes the dimension of the representation,
namely

DR ¼
�
Nc; R ¼ F

N2
c − 1; R ¼ A

; ð46Þ

and C2;3ðRÞ are the group-theoretical quadratic and cubic
Casimirs, given here for the fundamental and adjoint
representations as

C2ðRÞ ¼
� N2

c−1
2Nc

; R ¼ F

Nc; R ¼ A
; ð47aÞ

C3ðRÞ ¼
� ðN2

c−4ÞðN2
c−1Þ

4N2
c

; R ¼ F

0; R ¼ A
: ð47bÞ

Combining Eq. (45) with the definitions in Eqs. (46)
and (47) yield the values for the classical Casimirs as a
function of number of colors and representation as written
in Eqs. (44a) and (44b). More details about the classical and
group-theoretical color algebras and their Casimir invari-
ants, a discussion about why the choice in Eq. (45) is made,
along with other useful relations, are all collected in
Appendix B.
With the chosen normalization from Eqs. (42), the

resulting classical Casimirs differ from the group-theoretical
ones, see Eq. (45). This immediately raises the question
whether the factor of DR in Eq. (45) can be absorbed in the
normalization of the color charges from Eqs. (42), such that
the classical Casimirs ofQa automatically match the group-
theoretical ones q2;3 ↦ q2;3=DR ¼ C2;3. We found that this
is not always possible, i.e. the classical Casimirs do not
coincide with the quantum ones for any gauge group or
representation. In particular, when we consider quarks in
SU(3), we were not able to find a color charge vector Qa

which satisfies Eqs. (28) and (29) with q2;3ðFÞ ¼ C2;3ðFÞ.
Although we do not have a formal proof, we believe that
there exist no solutions to the color charge constraints for
these particular values of q2 and q3. In Sec. VI we discuss in
more detail how this difference between classical and
quantum color charges affects some particular expectation

values, for example the momentum broadening hδp2i
defined in Eq. (35), and how to address it.
The initial random classical color charges of the partons

at formation time must satisfy the above relations in order
to describe the physics of heavy quarks, and jets of quarks
and gluons. In the following two subsections we show how
random color charges satisfying the above n-point func-
tions can be numerically realized for SU(2) and SU(3).

A. SU(2) classical color charges

For generating SU(2) classical color charges, we rely on
the Darboux variables parametrization [22,54]. One may
generically construct the classical limit of any semi-simple
Lie algebra [55]. This is done by starting from the defining
commutation relations

½Q̂a; Q̂b� ¼ ifabcQ̂c; ð48Þ

where fabc denote the structure constants and fQ̂ag is the
set of operator-valued generators. Taking the reverse of
the quantum limit, the classical correspondent is given by
the Poisson bracket

fQa;QbgPB ¼ fabcQc: ð49Þ

If one interprets the generators as classical variables
depending on the symplectic structure of the underlying
manifold through some phase-space coordinates ðϕi; ξiÞ,
the Poisson brackets may be expressed as

fQa;QbgPB ¼
X
k

�
∂Qa

∂ϕk

∂Qb

∂ξk
−
∂Qa

∂ξk

∂Qb

∂ϕk

�
: ð50Þ

The pair of conjugate variables obey the canonical
Poisson bracket relations fϕi; ξjg ¼ δij and are called
Darboux variables. For SU(2), whose generators fQag
with a ∈ f1; 2; 3g obey Eq. (50) with fabc ¼ ϵabc, one
identifies a single pair fϕ; ξg and the subsequent phase-
space evolution is restricted to conserve the quadratic
Casimir from Eq. (28).
Simply distributing the color charges uniformly on a

three-dimensional sphere of fixed radius J2 ensures that
Eq. (50) is satisfied and that the Casimir is fixed by
q2 ¼ J2. The SU(2) color charges are sampled according
to the parametrization

Q1 ¼ cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ξ2

p
;

Q2 ¼ sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ξ2

p
;

Q3 ¼ ξ; ð51Þ

where ϕ ∈ ½0; 2πÞ and ξ ∈ ½−J; J� are uniformly distributed
random numbers.
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B. SU(3) classical color charges

Similar to SU(2), one may construct a parametrization
for classical SU(3) color charges in terms of the Darboux
variables [54]. Unfortunately, any parametrization of
classical color charges only covers a portion of the under-
lying manifold of SU(3) [55], leading to ill-defined one-,
two- and three-point functions that will differ from the
expected ones given in Eq. (42). For this reason, we rely on
a different method to sample them, namely through the Haar
measure of SU(3). The main idea is that the integration over
color charge configurations may be mapped to integration
over the underlying manifold of the group. This is done
by first constructing an initial color vector Q0 ¼ Qa

0T
a

such that the quadratic and cubic Casimirs Qa
0Q

a
0 and

dabcQa
0Q

b
0Q

c
0 satisfy Eqs. (44a) and (44b). The exact choice

of Q0 is arbitrary, as long as the Casimir invariants q2;3ðRÞ
match the desired values. Once the initial color vector is
fixed, random color charges are generated by performing
color rotations as

QðUÞ ¼ UQ0U†; ð52Þ

with a random special unitary matrixU ∈ SUð3Þ distributed
according to the Haar measure. From this color vector Q,
color components are given by projecting onto the gen-
erators Ta

Qa ¼ 1

TR
Tr½QTa� ¼ Qb

0U
ab; ð53Þ

where we introduced the adjoint representation matrix

Uab ≡ 1

TR
Tr½TaUTbU†�: ð54Þ

By construction, the quadratic and cubic Casimirs are
invariant to these color rotations.
We have to verify whether replacing the integration over

classical SU(3) color charges with that over the SU(3)
group elements as

R
dQ →

R
dU yields equivalent results.

For this purpose, it suffices to check that the n-point
functions of the color charges computed with the Haar
measure

hQaiU ≡
Z

dUQa

¼ Qa0
0

Z
dUUaa0 ; ð55aÞ

hQaQbiU ≡
Z

dUQaQb

¼ Qa0
0 Q

b0
0

Z
dUUaa0Ubb0 ; ð55bÞ

hQaQbQciU ≡
Z

dUQaQbQc

¼ Qa0
0 Q

b0
0 Q

c0
0

Z
dUUaa0Ubb0Ucc0 ; ð55cÞ

along with the classical Casimirs fixed by Eqs. (44a) and
(44b), exactly match the n-point functions of the classical
colors charges from Eq. (42), namely

hQai ¼ hQaiU; ð56aÞ

hQaQbi ¼ hQaQbiU; ð56bÞ

hQaQbQci ¼ hQaQbQciU: ð56cÞ

This can be explicitly checked by carrying out the required
integrals for SU(3). A detailed calculation can be found in
Appendix C. In particular, we show that the n-point
functions become independent of the initial color charge
Q0, except for the values of the two Casimirs q2 and q3. In
this way, the generation of classical color charges for SU(3)
can be replaced by sampling over the Haar measure.

V. LIMITING CASES

In general, the dynamics of colored particles passing
through Yang-Mills background fields are nontrivial and
can only be solved numerically, e.g. with the methods
introduced in earlier sections. However, there are certain
limiting cases where the dynamics become trivial and
observables such as the momentum broadening defined
in Eq. (35) can be reduced to simple functionals of the
background fields. These limiting cases are those of
infinitely massive heavy quarks and highly energetic jets.
In both cases, the particle trajectories are trivial in the sense
that the particles are not deflected by the forces acting
on them.
These cases are of interest since there exist numerous

studies which rely on the infinitely massive heavy quark
approximation, with momentum broadening and diffusion
coefficient κ extracted from electric fields correlators
computed on the lattice [16,19,25,56], and the highly
energetic jet scenario, with accumulated momentum and
transport coefficient q̂ related to lightlike Wilson loops
[11,17,23,24,57]. Moreover, they represent valuable
numerical checks for our particle solver which, in these
limiting cases, should give similar momentum broad-
enings as those extracted solely from glasma fields.
Using the formal solution for the evolution of the color

charge from Eq. (25), one may recast Wong’s equation in
the Milne frame from Eq. (24) in the following form:

dpμ

dτ
¼ g

TR
Qa

0Tr½TaF̃ μ�; ð57Þ
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where

F̃ μðτÞ≡ U†ðτ; τ0ÞF μðτÞUðτ; τ0Þ ð58Þ

denotes the parallel transported color Lorentz force with

F μ ≡ Fμν
pν

pτ ; ð59Þ

and the initial color charge vector is expressed as
Q0 ≡QðτformÞ ¼ Qa

0T
a. Equipped with Eq. (57), the

momentum broadening from Eq. (35) may be written as

hδp2
μðτÞiR ¼ g2

T2
R

Z
dQQa

0Q
b
0

Zτ
τform

dτ0
Zτ
τform

dτ00

×
D
Tr
h
TaF̃ μðτ0Þ

i
Tr
h
TbF̃ μðτ00Þ

iE
R
; ð60Þ

where no sum over μ is implied. Using the two-point
function of the color charges chosen according to Eq. (42b),
along with the Fierz identity expressed as

Tr½TaX �Tr½TaY� ¼ TRTr½XY�; ð61Þ

valid for traceless Nc × Nc complex matrices, we arrive at
the formal solution for the momentum broadening

hδp2
μðτÞiR ¼ g2

Zτ
τform

dτ0
Zτ
τform

dτ00
D
Tr
h
F̃ μðτ0ÞF̃ μðτ00Þ

iE
R
:

ð62Þ

A. Infinitely massive heavy quarks

An infinitely massive heavy quark is static and remains
at rest in the Milne frame. Due to temporal gauge, all
temporal Wilson lines are unity Uðτ; τ0Þ ¼ 1. Therefore, no
parallel transport is required, thus F̃ μ ¼ F μ according to
Eq. (58). Furthermore, in the infinite mass limit m → ∞,
the temporal component of the four-momentum simply
behaves as pτ → ∞. Thus, the Lorentz force contains only
contributions from the electric fields

F i ¼ Fiμ
pμ

pτ !p
τ→∞

Fiτ ¼ −Ei; i ∈ fx; y; ηg: ð63Þ

The momentum broadening for static particles thus reduces
to an integral over electric field correlators

hδp2
i ðτÞim→∞ ¼ g2

Zτ
τform

dτ0
Zτ
τform

dτ00
D
Tr
h
Eiðτ0ÞEiðτ00Þ

iE
R
;

ð64Þ

where no sum over i is implied and the fields are evaluated
at some fixed transverse coordinate. This expression can be
evaluated purely from color-electric fields, without the need
to solve the dynamical particles equations of motion.

B. Highly energetic lightlike jets

The case of a highly energetic jet moving through the
glasma has already been studied in [23,24] and here only
the final results are quoted, as the derivation is analogous to
the case of static particles. The momentum broadening of a
lightlike parton traveling along the x-axis in glasma fields is
given by

hδp2
i ðτÞipx→∞ ¼ g2

Zτ
0

dτ0
Zτ
0

dτ00
D
Tr
h
f̃iðτ0Þf̃iðτ00Þ

iE
R
;

ð65Þ

since for jets we assume τform ¼ 0. The various components
of the Lorentz force are evaluated using the glasma color
electric and magnetic fields as

fx ≡ Ex; fy ≡ Ey − Bz; fz ≡ Ez þ By: ð66Þ

These color field components have to be parallel trans-
ported according to

f̃iðτÞ≡ U†
xðτ; τ0ÞfiðτÞUxðτ; τ0Þ; ð67Þ

using a Wilson line constructed along x as

Uxðτ; τ0Þ ¼ P exp

0
@−ig

Zτ
0

dτ0Axðτ0Þ
1
A: ð68Þ

VI. MAPPING CLASSICAL TO QUANTUM
EXPECTATION VALUES

In our classical framework, we can express classical
expectation values of arbitrary observables O½Q;Aμ� via
functional integrals

hO½Q;Aμ�iclassic ¼
Z

dQ
Z

DAμW½Aμ�O½Q;Aμ�: ð69Þ

The integration over initial color charges is replaced by the
Haar measure over SUðNcÞ, with particular choices for
the Casimir invariants, as in Eqs. (44a) and (44b), and the
functional integration over the background field is an
average over the glasma initial conditions encoded in a
probability functional W½Aμ�. In order to reproduce the
correct physics using classical calculations, these classical
expectation values should match quantum expectation
values computed for example in pQCD in the limit where
the classical approximation is appropriate. Due to the
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overoccupied nature of the gluon field in the early stages of
the collision, this approximation is valid for the background
field, but in a strict sense fails when we approximate quarks
and gluons as classical color charges. The problem is that
quarks and gluons are low-dimensional representations of
the color algebra, whereas classical color charges are
obtained in the limit of high-dimensional representations
(for example, in the case of SU(3) quarks, we found no
classical color charges whose Casimirs coincide with the
group-theoretical ones, see Sec. IV and Appendix B).
However, as we shall see below, the classical framework
can nevertheless reproduce quantum expectation values for
certain observables of interest, such as the momentum
broadening defined in Eq. (35), by constructing a mean-
ingful quantity whose classical expectation value correctly
gets mapped to its quantum version.
To establish this relationship, we focus on the case of a

lightlike parton moving along the xþ-axis in the eikonal
approximation, i.e. in the case where the trajectory is fixed.
Within pQCD and holography, momentum broadening may
be related to particular Wilson loops [11,14,57,58]. In
particular, momentum broadening orthogonal to the tra-
jectory may be evaluated from a rectangular Wilson loop
with one side parallel to the trajectory (lightlike extent L)
and the other side chosen to be spatial and orthogonal to xþ
(transverse extent L⊥). In the small transverse extent limit
L⊥ → 0 one finds

1

DR
hRefTr½Wiþ�giR ¼ exp

�
−
L2⊥
2

hp2
i iquantumR

�
; ð70Þ

where hp2
i iR is the momentum broadening of a parton in

representation R along the transverse direction î. The
expectation value is taken over an ensemble of background
fields. It is relevant to notice the factor 1=DR in front, which
ensures that the identity holds for L⊥ → 0, when the
Wilson loop reduces to WiþðRÞ → 1DR

. This factor will
play an important role when matching with the classical
computation. Performing a Taylor expansion in L⊥, where
the Wilson loop is written as

Wiþ ¼ 1þ L⊥W
ð1Þ
iþ þ L2⊥

2
Wð2Þ

iþ þOðL3⊥Þ; ð71Þ

and inspecting the second-order coefficient yields the
momentum broadening [23]

hp2
i iquantumR ¼ −

1

DR

D
Re

n
Tr
h
Wð2Þ

iþ
ioE

R
: ð72Þ

From this relation, one expects RefTr½…�g ∝ DRC2ðRÞ,
thus hp2

i iquantumR ∝ C2ðRÞ.
In the case of classical background fields such as the

glasma, the second-order coefficient can be written in terms
of the field strength tensor via

hδp2
i ðτÞiquantumR

¼ 2g2

DR

Zτ
τform

dτ0
Zτ
τform

dτ00hTr½F̃iþðτ0ÞF̃iþðτ00Þ�iR; ð73Þ

where F̃iþðτÞ≡ F̃iþðxðτÞÞ denotes the parallel-transported
field strength tensor which is given by

F̃iþðxðτÞÞ ¼ Wþð0; xþÞFiþðxðτÞÞWþðxþ; 0Þ; ð74Þ

and contains the lightlike Wilson line

Wþðxþ2 ; xþ1 Þ ¼ Pþ exp

0
@−ig

Zxþ2
xþ
1

dxþAþðxþÞ
1
A: ð75Þ

On the other hand, we can compute the same expectation
value within the classical particle framework. For a light-
like trajectory xþ ¼ ffiffiffi

2
p

t, see also Eq. (65), the momentum
broadening is given by

hδp2
i ðτÞiRclassic

¼ 2g2
Zτ
τform

dτ0
Zτ
τform

dτ00
D
Tr
h
F̃iþðτ0ÞF̃iþðτ00Þ

iE
R
: ð76Þ

Moreover, as may be inferred from Eq. (60), one expects
hp2

i iclassicR ∝ q2ðRÞ. A direct comparison of Eq. (73) with
(76) suggests that the classical computation may be
mapped to the quantum one by considering

hδp2
i iRclassic=q2ðRÞ ↦ hδp2

i iRquantum=C2ðRÞ: ð77Þ

or equivalently, the classical expectation value coincides
with the quantum one after a division by the dimension of
the representation, since DR ¼ q2ðRÞ=C2ðRÞ according to
the classical Casimirs from Eqs. (45). An analogous
calculation can be performed for infinitely massive partons,
which involves a time-like Wilson loop instead of a
lightlike loop. Repeating the same steps, we arrive at the
same factor of DR to match the classical to the quantum
expectation value. We note that this division is also
performed in [14,59].
It should not be surprising that calculations based on

classical colored particles do not entirely match pQCD
calculations since, already on a formal level, there is an
important difference between the high-dimensional classical
and the low-dimensional quantum representations (see
Appendix B), namely they are not labeled by the same
Casimir invariants. Our choice given in Eq. (45) shows that
the classical Casimirs q2;3ðRÞ are the dimension of the
representationDR times the group-theoretical ones C2;3ðRÞ,
which comes from how we choose to distribute the classical
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color charges, see Eq. (42). Thus, the origin of the difference
between the classical and the quantum expectation values
may be traced back to the statistical properties of the
ensemble of classical color charges. Specifically, hδp2i is
directly related to the classical two-point function hQaQbi,
see Eq. (62), and thus, the quadratic classical Casimir
hδp2iclassical ∝ q2. On the other hand, the quantum corre-
spondent satisfies hδp2iquantum ∝ C2. Therefore, when
mapping classical to quantum expectation values, the mean-
ingful quantity to compare is actually hδp2i=C 2, where C 2

denotes either the classical or quantum quadratic Casimir, as
stated in Eq. (77).
Moreover, a similar argument which leads to Eq. (77) also

works for hδp3i, namely hδp3i=C 3 is the correct quantity to
map from classical to quantum, whereC 3 denotes the classic
or group-theoretical cubic Casimir. Nevertheless, it fails for
hδp4i or higher-order moments. As shown in [60], where the
computation of the averages over the classical color charges
is performed for SU(2), such a matching fails for the four-
point function of the gauge field when compared to the
1-loop quantum effective action. It is only in the limit of
high-dimensional representations, where such a matching is
exact. More concretely, the previous arguments generalize to
hδpniclassic ∝ hQa1…Qani. In analogy with Eq. (42), we
choose Z

dQQa1…Qan ¼ Tr½Tða1…TanÞ� ð78Þ

where TðaTbÞ denotes the symmetric part of TaTb. As
previously shown, such relations are satisfied for n ¼ 1, 2, 3
with Qa obeying the classical Casimir constraints in
Eqs. (45), but are violated for n ≥ 4. For consistency with
pQCD calculations, the classical framework is thus limited
to the quadratic and cubic moments of the momenta in a
strict sense.
There is another important property of highly energetic

jets that suggests that the matching condition in Eq. (77) is
appropriate, namely Casimir scaling. The ratio of the
accumulated momentum of the adjoint and fundamental
representation must yield the ratio

hδp2
μiquantumA =hδp2

μiquantumF ¼ C2ðAÞ=C2ðFÞ; ð79Þ

as was already noted for Eq. (72). This scaling with the
ratios of the Casimir invariants is observed in many
systems. For example, the Casimir scaling of the trans-
verse-momentum broadening coefficient q̂ is a result
inherited from pQCD computations of partons in
weakly-coupled QGP [12,13] or in weakly-coupled N ¼
4 SYM [61] and holds in the eikonal limit as in Eq. (73).
Moreover, it is also a direct consequence of Wong’s
equations and the properties of the color charges provided
that we use the matching condition in Eq. (77). To see this,
we first rewrite Eq. (76) into

hδp2
μðτÞiclassicR

¼ TRg2
Zτ
τform

dτ0
Zτ
τform

dτ00
D
F̃ a

μðτ0ÞF̃ a
μðτ00Þ

E
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

independent of R

: ð80Þ

This expression states that the classical accumulated
momentum for a colored parton in representation R is
simply proportional to the representation-dependent factor
TR. Consequently, since TA=TF ¼ q2ðAÞ=q2ðFÞ, the
classical accumulated momenta behave as

hδp2
μiclassicA =hδp2

μiclassicF ¼ q2ðAÞ=q2ðFÞ; ð81Þ

which resembles the Casimir scaling of Eq. (79) but in
terms of the classical Casimir from Eqs. (28). The division
by DR of the classical momentum broadening, see
Eq. (77), restores it to a Casimir scaling with group-
theoretical Casimirs

ðhδp2
μiclassicA =DAÞ=ðhδp2

μiclassicF =DFÞ
¼ hδp2

μiquantumA =hδp2
μiquantumF ð82Þ

for a given SUðNcÞ group. Such a relation can equivalently
be seen from the mapping proposed in Eq. (77). We
checked, with our particle solver, that the group-theoretical
Casimir scaling for momentum broadenings divided byDR
is satisfied throughout the evolution, see Fig. 10 and the
discussion in Appendix D.

VII. RESULTS

In this section we apply the previously developed
numerical methods to study momentum broadening of
heavy quarks and jets in the early glasma stage of heavy-
ion collisions. To gain trust in our methods, we first compare
our particle simulations to the limiting cases of infinitely
heavy quarks and infinitely energetic jets. In Sec. VII C we
proceed with realistic simulations of dynamical heavy
quarks, such as charm and beauty. Similarly, in Sec. VII D
realistic jet momentum broadenings are extracted and the jet
transport coefficient is computed.

A. Choice of parameters

For the glasma, the saturation momentum is chosen as
Qs ¼ 2 GeV, while the MV model parameter is fixed
through g2μ ≈ 0.8Qs for Ns ¼ 50 color sheets and the
IR regulator as m ¼ 0.1g2μ, according to [62], and the UV
regulator as Λ ¼ 10 GeV. The coupling constant is evalu-
ated from the running coupling constant as g2 ¼ 4παsðQsÞ
computed at a given saturation momentum
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αsðQsÞ ¼
1

33−3Nf

12π ln Q2
s

Λ2
QCD

≈ 0.341; ð83Þ

with Nf ¼ 3 and ΛQCD ¼ 200 MeV, which yields
g ≈ 2.07. The rest of the numerical parameters of the
glasma are set as follows; the length of the simulation
domain in the transverse plane is L ¼ 10 fm, the number of
lattice points is N ¼ 512 for heavy quarks or N ¼ 1024 for
jets. The time stepΔτ, which is used in the leapfrog scheme
for the glasma fields, is given in terms of the transverse
lattice spacing a⊥ ¼ L=N; for heavy quarks we use Δτ ¼
a⊥=8 and for jets we use Δτ ¼ a⊥=16. The numerical code
for this work is an extension of an earlier glasma code used
in [23,24] and is hosted publicly [63].
As initial conditions for classical particles, we rely on a

toy model initialization of positions and momenta. Namely,
all partons are randomly distributed in the transverse plane,
at midrapidity, and have a fixed initial transverse momen-
tum. For heavy quarks, their formation time is given by
τform ≈ 1=ð2mHQÞ, with mcharm ¼ 1.27 GeV and mbeauty ¼
4.18 GeV [64]. All jets are formed instantaneously, at the
same time as the glasma fields. A single glasma event
contains Ntp ¼ 105 test particles and most of the results are
obtained for Nevents ¼ 30 glasma events, although conver-
gence was reached for fewer events. The transverse
simulation region has periodic boundary conditions for
the particles, whereas the rapidity direction is left continu-
ous. We emphasize that the nuclei we simulate are not finite
in size (their realistic geometry is not taken into account)
and occupy a square lattice in the transverse plane, with
periodic boundary conditions. Moreover, expecting that the
glasma picture holds up to τ ⪅ 0.3 fm=c, the details of the

geometry and the transverse expansion are expected to be
less relevant in the extraction of less sensitive quantities, for
example the momentum broadening.

B. Comparison with limiting cases

In the limit of infinite particle mass m → ∞ (infinitely
heavy quarks) or infinite spatial momentum px → ∞
(infinitely energetic jets), the dynamics of the particles
become trivial and the accumulated momenta reduce to
Eqs. (64) and (65) respectively. In order to validate our
simulations, we compare results from the limiting cases
(which were already used in [23,24]) to simulations with
classical particles in these particular limits. Our results are
shown in Fig. 3. For heavy quarks, we show the transverse
δp2

T ¼ δp2
x þ δp2

y and the longitudinal δp2
L momentum

components. We note that “longitudinal” refers to the
component along the beam axis, whereas “transverse”
denotes the orthogonal direction. For jets, we show all
three independent components δp2

i with i ∈ fx; y; zg. In
both cases, the longitudinal momentum broadening
increases much faster than the transverse one at early times
and reaches a maximum around Qsτ ≈ 10. Peculiarly, the
longitudinal component for heavy quarks undergoes multi-
ple damped oscillations before settling to a constant value at
late times. In contrast, the longitudinal component for
lightlike jets has only a single pronounced peak and then
quickly saturates. For both heavy quarks and jets, the
transverse momentum broadening components increase
rapidly at early times, due to strong coherent fields, but
become essentially constant within Qsτ ≲ 10. Similar phe-
nomena have been observed in [25], where heavy quark
diffusion was studied in overoccupied gluonic systems

FIG. 3. Comparison of the proper time evolution for longitudinal and transverse momentum broadenings, computed from expressions
for limiting cases (full lines) or using the particle solver (dashed lines): (a) infinitely massive heavy quarks with accumulated momenta
extracted from Eq. (64) vs particle solver with m → ∞; (b) highly energetic lightlike jets with momentum broadenings computed from
Eq. (65) vs particle solver with px → ∞. For an easy comparison with previous works [23], the corresponding dimensionless quantities
are labeled (gray color) on the remaining (upper and right) axes.
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without expansion. In these systems, the accumulated
momenta of heavy quarks exhibit damped oscillations with
the plasmon frequency. It is likely that the longitudinal
component hδp2

zi in the glasma oscillates for a similar
reason (plasmon excitations), although it is not clear why
only the longitudinal component is affected.
As is evident from our data, both approaches yield the

same results to a large degree. The slight numerical
difference is due to the fact that for the limiting case result
in terms of field correlators, we discretize over time the
integrals in Eqs. (64) and (65) in steps of the transverse
lattice spacing a⊥. For our particle solver we typically use
much smaller time steps Δτ ≪ a⊥ leading to a slightly
more accurate result. More concisely, we numerically
checked that reducing the lattice spacing used in the
particle solver (in order to make it “less accurate”) lead
to a better agreement with the limiting case result.

C. Heavy quark momentum broadening

Having established that our particle simulations correctly
reproduce limiting cases, we can now focus on more
realistic simulations of heavy quarks with finite masses
and finite formation times. Moreover, we can use our
simulations to extract the heavy quark transport coefficient,
which we define as

κinstL;TðτÞ≡ d
dτ

hδp2
L;TðτÞi: ð84Þ

This is the instantaneous heavy quark coefficient and may
be interpreted as a diffusion coefficient in the limit of large
proper times, namely κdiffusion ¼ limτ→∞ κinstðτÞ. Our results
for beauty quarks with vanishing initial transverse momen-
tum are shown in Fig. 4, where we plot the accumulated
momenta and their time derivatives. As in the case of

infinitely heavy quarks, the longitudinal momentum broad-
ening component hδp2

Li increases more rapidly than the
transverse component hδp2

Ti at early times. Even though
not shown here, we checked that the longitudinal and
transverse momentum broadenings have the same behav-
iors at larger proper times τ ≫ 2 fm=c, as already noticed
in Fig. 3 for static quarks. The first peak of the oscillations
in hδp2

Li happens at around δτ ¼ 0.8 fm=c, giving rise to a
temporary negative heavy quark diffusion coefficient κL. In
contrast, the transverse component approaches a constant
value after δτ ≈ 0.5 fm=c. A qualitatively similar picture
emerges for charm quarks.
In general, the accumulation of momentum of heavy

quarks depends not only on their mass (and thus formation
time), but also their initial transverse momentum pT .
Figure 5 shows the numerical results for beauty and charm
quarks for various values of the initial pT ∈ f0; 2; 5; 10g
GeV.3 For comparison, we include the static quark limit
as a dashed curve. Since the glasma affects the heavy
quarks in an anisotropic manner, we also plot the heavy
quark anisotropy coefficient, which we define as

heavy quark anisotropy≡ hδp2
Li

hδp2
Ti

: ð85Þ

Beauty quarks, due to their early formation time, expe-
rience the initial strong and coherent glasma fields more
than charm quarks. For this reason, their momentum
broadening is generally larger than that of charm quarks.
On average, beauty quarks acquire 30–50% more momen-
tum than charm quarks. A similar observation was also
emphasized in [33].

FIG. 4. (a) Longitudinal and transverse momentum broadening components of beauty quarks formed at τform ≈ 0.02 fm=c, initialized
with pTðτformÞ ¼ 0 GeV, as a function of the time difference δτ≡ τ − τform. (b) Derivatives of the accumulated momenta which give the
transport coefficients according to Eq. (84).

3It should be noted that at the highest initial transverse
momenta, these heavy quarks essentially behave like jets.
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Focusing on the heavy quark anisotropy, we find that as
the initial pT increases, hδp2

Li decreases and hδp2
Ti

increases. Consequently, the corresponding anisotropy
hδp2

Li=hδp2
Ti becomes smaller. Compared to the static

quark accumulated momentum (dashed lines), beauty
quarks with zero initial pT have an increase in hδp2

Li of
50% and charm quarks 50–80% throughout the proper time
evolution. For the maximum initial pT taken in our
simulations, hδp2

Li for dynamic quarks differs from that
for static quarks by 50% for beauty and 30–70% for charm
quarks, whereas hδp2

Ti increases only by 20–30% com-
pared to static quarks. These will have a complementary
effect on the anisotropy. Namely, hδp2

Li=hδp2
Ti for beauty

or charm quarks is 20–40% larger or smaller, depending on
the initial pT , than that of infinitely massive heavy quarks
formed at the same formation time. The anisotropy is
higher for small initial pT heavy quarks and lower for quite
large initial pT . The anisotropy is more pronounced for the
zero initial pT heavy quarks. Therefore, there are slight
differences between static quarks that “see” only the glasma
electric fields, and quarks initialized with vanishing
momentum but allowed to move in the glasma.
Understanding the dynamics of heavy quarks in the

glasma in terms of the electric and magnetic color fields is
generally not trivial, but some of their properties may be
inferred from particular features of the background glasma
fields. Initially at τ ¼ 0 fm=c, the glasma consists of
correlated domains of longitudinal color-electric and -
magnetic flux tubes with a typical size of ≈ 1=Q2

s . This

shortly lived initial phase is probed by heavy quarks with
very high mass mHQ due to their early formation time
τform ¼ 1=ð2mHQÞ. These heavy quarks are accelerated due
to the strong longitudinal color-electric fields of the glasma,
leading to the rapid increase of the longitudinal momentum
broadening component as seen in Figs. 4 and 5. If heavy
quarks have a non-negligible initial transverse momentum,
there is additional transverse acceleration due to longi-
tudinal color-magnetic flux tubes. This effect, albeit small,
is seen in Fig. 5 for both beauty (left panel) and charm
(right panel) quarks, where the transverse momentum
broadening component increases with the initial transverse
momentum. Remarkably, the opposite occurs for the
longitudinal component: larger initial transverse momen-
tum leads to reduced longitudinal broadening, but we have
found no simple explanation in terms of the field structure
of the initial glasma for this effect.
Immediately after their initial formation, the flux tubes

start to expand in the transverse plane, which generates
transverse color-electric and -magnetic field components.
These transverse electric fields lead to a slightly delayed
increase of the transverse momentum broadening compo-
nent. At the same time, the highly correlated regions
within the glasma are lost, and the longitudinal acceler-
ation becomes less efficient. Eventually, the glasma
transitions to the free-streaming regime at around
τfree ≈ 1=Qs ≈ 0.1 fm=c, after which the fields become
more dilute and the mean energy density falls off as 1=τ.
As seen in Fig. 4(b), the heavy quark diffusion coefficient

FIG. 5. (Top) Longitudinal and transverse momentum broadening components, along with their ratio (bottom). The simulations are
performed for (left) beauty and (right) charm quarks for various values of initial transverse momentum (colored full lines). We compare
to the static case (gray dashed line), when the quarks are considered infinitely massive and the accumulated momentum is extracted
solely from color-electric correlator, see Eq. (64).
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κ has already peaked by then and falls off quickly. The
formation time of heavy quarks has a large influence on
the accumulated momenta in the glasma stage. As can be
seen from Fig. 5 (right panel), charm quarks accumulate
less momentum because they “skip”, at least in part, the
initially highly correlated phase of the glasma at τ ≪ Q−1

s .
Even though in our current setup we initialize heavy

quarks homogeneously in the transverse plane, it is more
likely that partons are formed inside the glasma flux tubes,
where the energy density is larger, and thus the particle
production is more favorable. Thus, for illustrative pur-
poses, we look at trajectories of almost static or dynamic
beauty and charm quarks, initialized in the “center” of such
a glasma correlation domain, where the energy density
reaches its maximum value.
The results are shown in Fig. 6, where the different

colors of the trajectory lines correspond to various values of
initial pT ∈ f0; 2; 5g GeV and the background shows the
energy density at the formation time of the corresponding
heavy quark. Almost static quarks with very high mass
barely move during the evolution and thus essentially
remain where they were originally produced at formation
time. On the other hand, quarks with realistic masses are
able to move further and probe larger spatial regions of the
glasma. Moreover, the quark mass determines when the
particles are being introduced into the system and what
regime of the evolution the partons are able to “see”. For
example, as shown in Fig. 6, charm quarks are produced
close to the transition to the free-streaming regime, where
the color flux tubes already started to expand. Slow heavy
quarks spend more time in the correlation domains before
they expand, whereas fast quarks escape them more
quickly, and thus lose the correlation faster. Even though
the picture of heavy quarks probing the glasma correlation

domains as illustrated in Fig. 6 describes an oversimplified
scenario, it still offers a valuable qualitative understanding.
Moreover, within the approximations we use for particle
initialization, it offers hints that beauty quarks might be
more viable probes of the glasma than charm quarks.

D. Jet momentum broadening

In recent years, jets in the glasma have been investigated
using classical simulations [23,24] and the small τ expan-
sion [36,37]. In all of these works, the initial energy of the
jet has been assumed to be very large, such that the
trajectory can be approximated as essentially lightlike.
Since we account for particle dynamics via Wong’s
equations, we can use our particle solver to go beyond
the lightlike jet case and consider the effect of finite initial
momentum along the propagation axis and different jet
masses. For simplicity, we choose the jets to be initialized
with finite px values.
Similarly to the heavy quark transport coefficient κ, we

distinguish between various components of the jet transport
coefficient q̂. We define the instantaneous jet broadening
coefficient

q̂iðτÞ≡ d
dτ

hδp2
i ðτÞi ð86Þ

with i ∈ fx; y; zg. This is different from the collisional
energy loss dE=dx. Since the jet propagates along the x-
axis, we introduce the transverse q̂T ≡ q̂y and longitudinal
q̂L ≡ q̂z jet transport coefficients.
In addition, we are interested in deviations from the

lightlike jet scenario by considering a finite jet mass m and
an initial px. We find that jet momentum broadening
essentially only depends on the ratio px=m. In the limit

FIG. 6. (Colored lines) trajectories of heavy quarks propagating in a single glasma flux tube evolved up to τ ¼ 0.2 fm=c. All partons
are produced at the center of a flux tube, where the energy density was locally maximal at the creation time of the glasma. We consider
three cases: (left) very massive quarks with m ¼ 200 GeV (approaching the static quark limit) with τform ¼ 0 fm=c, (middle) beauty
quarks with τform ¼ 0.02 fm=c and (right) charm quarks with τform ¼ 0.06 fm=c. The initial transverse momentum pT is varied between
0 GeVand 5 GeV. The background shows the energy density at formation time of the respective particle type, namely ϵform ≡ ϵðτformÞ.
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of px=m → ∞, we can compare to the limiting case given
by Eq. (65). Similarly to the heavy quark anisotropy, we
also introduce a measure of how the glasma anisotropy
affects the jets by defining the ratio

jet anisotropy≡ hδp2
zi

hδp2
yi
; ð87Þ

Our numerical results for jets are shown in Figs. 7 and 8.
Figure 7(a) shows the accumulated momentum broadening
for a quark jet withm ¼ 1 GeV and initial px ¼ 10 GeV as
a function of Milne proper time τ. The longitudinal
component hδp2

zi (along the beam axis) shows similar
behavior as in the case of heavy quarks. After reaching a
maximum at roughly τ ≈ 0.8 fm=c, the longitudinal com-
ponent hδp2

zi starts to decrease at late times τ ≳ 1 fm=c.
The same early-time behavior is observed for heavy quarks,
see Fig. 4(a). Nevertheless, at later proper times, the jets do
not appear to undergo multiple oscillations. This was
noticed in the limiting cases shown in Fig. 3 and we have
checked that it is still present in realistic heavy quark and
jets simulations. The other components, hδp2

yi and hδp2
xi,

show a steady monotonic increase at late times. We also
plot the jet broadening coefficient q̂i as the time derivative
of the momentum broadening in Fig. 7(b). Similar to the
case of heavy quarks, there is a strong peak at very early
stages with τ < 0.1 fm=c and a quick decay afterwards.
Due to the decrease of hδp2

zi at later times (τ ≳ 0.6 fm=c),
the longitudinal component q̂z becomes negative.
Results for jets with various values of px=m are shown in

Fig. 8, where we also plot the momentum broadening
anisotropy. The values of the initial jet momentum are
chosen such that px > 5 GeV. We also include the results
for lightlike jets. As expected, one recovers the highly
energetic jet limit by choosing a sufficiently large value for

px=m in the particle solver. Compared to heavy quarks,
there is little difference in the results when accounting for
finite masses and momenta. Increasing px=m leads to a
slight decrease in the longitudinal component hδp2

zi (at
most 15%). The transverse component is affected in the

FIG. 7. (a) Momentum broadening components of jets withm ¼ 1 GeV and initial px ¼ 10 GeV, along the x, y, z-axes, as a function
of proper time and (b) the derivative of the accumulated momenta that produces components of the jet transport coefficients according to
Eq. (86). (Insets) Zoom-in on the very early stage.

FIG. 8. Momentum broadening along (top) z-axis and y-axis,
together with (bottom) their ratio, which is a measure of the
momentum-broadening anisotropy. The simulations are per-
formed for various values of px=m ∈ f1; 2; 5; 10g (colored full
lines), compared to lightlike jets moving along the x-axis (gray
dashed line). For large px=m, the jet becomes lightlike and our
particle simulations approach the limiting case.
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opposite way; hδp2
yi increases with px=m (at most 25%).

Remarkably, while the momenta are not strongly affected,
the anisotropy is enhanced (up to 40–60%) for less
relativistic jets with px=m ≈ 1 as can be seen from the
lower panel in Fig. 8.
Figure 9 depicts jet trajectories overlaid on top of the

initial energy density of the glasma for various initial
momenta pT ∈ f10; 20; 50g GeV. Here, instead of fixing
px as the initial direction, we choose the direction of the
initial transverse momentum randomly. Unlike slow heavy
quarks (see Fig. 6), jets propagate on straight lines, due to
their high initial momentum. Similar to Fig. 8, the initial
value for pT only weakly affects the jet trajectories.

VIII. SUMMARY AND OUTLOOK

We have investigated the impact of the early stages of
heavy-ion collisions, namely the glasma, on hard probes
such as heavy quarks and jets. To accomplish this, we
approximate these hard probes as classical colored particles
and simulate their dynamics using Wong’s equations on top
of the non-Abelian background field of the boost-invariant
glasma. This work can be understood as an extension of
earlier studies on highly energetic jets [23,24] and heavy
quarks [27–33] in the pre-equilibrium medium, which were
limited in different ways. Simulations of jets in the glasma
were based on the ultrarelativistic limit, i.e. the jets were
assumed to be lightlike. Thus, these simulations only apply
to jets at extremely high energies. On the other hand,
studies of heavy quarks in the glasma relied on using SU(2)
[29–32] instead of SU(3) as the gauge group, which can
only provide a qualitative picture. Thus, to improve upon

these earlier studies, we have developed a fully non-
perturbative simulation of classical particles with SU(3)
color charges based on Wong’s equations. The background
field in which the charges are moving in is provided by
classical real-time simulations of the glasma. As such, we
have realized a unified numerical setup where the effects of
the glasma on both heavy quarks and jets can be studied
quantitatively.
To measure the impact of the glasma on hard probes, we

focused on the momentum broadening components
hδp2

i ðτÞi, which describe how much momentum is accu-
mulated by heavy quarks and jets as they pass through the
medium. This observable is particularly interesting,
because it can be related to transport coefficients such as
the heavy quark diffusion coefficient κ and the jet momen-
tum broadening coefficient q̂. Additionally, we studied
anisotropy ratios of different components of hδp2

i ðτÞi.
As a consistency check for our simulations, we have

performed nontrivial numerical checks of our code by
comparing to certain limiting cases, where the dynamics
of the hard probes become trivial. These cases are heavy
quarks with infinite mass (static quarks) and jets at very high
energies (lightlike jets), where the particle trajectories are
fixed and the eikonal approximation applies. Consequently,
it is possible to compute momentum broadening directly
fromWilson loops of the background field, which provides a
benchmark result that our particle simulations must be able
to reproduce. By taking these limits in the particle solver and
performing extensive numerical checks, we have verified
that our numerical solutions to Wong’s equations are indeed
consistent with the calculation from Wilson loops.
Going towards more realistic settings, we then consid-

ered the effects of finite mass and initial momentum of the
hard probes. In particular, we performed simulations for
beauty and charm quarks. In both cases, we notice
deviations from the static quark limit. We found that there
is strong initial acceleration at early times which results in
a strongly time-dependent diffusion coefficient κ, with a
characteristic peak at early times τ ≲ 0.1 fm=c and a
subsequent quick decay. This behavior differs from the
standard Langevin or Boltzmann approaches, in which the
momentum broadening grows slowly, is generally smaller
and does not exhibit a peak [32]. Following [30], it is of
future interest to investigate the impact of such large
broadening induced by the glasma on observables such as
elliptic flow or nuclear modification factors in both
proton-nucleus or nucleus-nucleus collisions. Moreover,
our calculations showed that beauty quarks, even though
they are heavier, accumulate more momentum compared
to charm quarks. This is due to their larger mass, which
allows them to be formed slightly earlier in the evolution
of the glasma, where the color fields are particularly
strong. Regardless of quark species, there is a sizable
momentum broadening anisotropy with hδp2

Li > hδp2
Ti,

i.e. more accumulation along the beam axis compared to

FIG. 9. (Colored lines) Trajectories of jets propagating
out of a single glasma flux tube evolved up to
τsim ¼ 0.2 fm=c. The colors of the lines indicate the initial
momentum pT ∈ f10; 20; 50g GeV. All jets are initialized with
m ¼ 1 GeV. The jet trajectories are essentially straight and are
barely affected by the color fields of the glasma.
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the transverse plane at early times. Curiously, this effect
is reversed at late times for charm quarks, where
hδp2

Li < hδp2
Ti. Most remarkably, we observed that the

longitudinal component hδp2
Li oscillates as a function of

time. It is possible that this effect could be traced back to
the existence of plasmon modes in the glasma. The
plasmon modes are a collective feature of the glasma
color fields themselves. They could further be transmitted
to the particles propagating in these fields, thus causing
oscillations in their accumulated momenta. Moreover,
plasmon frequency oscillations were already observed
in a study involving a Yang-Mills plasma with large
occupation numbers [25]. The emergence of such oscil-
lations only in the longitudinal direction and not in the
transverse plane is intriguing and requires further inves-
tigation. Thus, a possible extension of the current work
would be to determine the glasma plasmon frequency
using methods similar to [65–67].
We have performed analogous calculations for jets with

finite mass and finite initial momenta. Similar to heavy
quarks and also confirming previous studies [24], we found
that the jet momentum broadening coefficient q̂ is highly
peaked at early times τ ≲ 0.1 fm=c. There is a rapid
increase of both longitudinal and transverse components
at early times, and a sizable momentum broadening
anisotropy at later times with hδp2

Li > hδp2
Ti. For less

relativistic jets with jpj ∼m, this anisotropy is more
pronounced compared to the ultrarelativistic limit. In con-
trast to heavy quarks, the effects of finite masses and initial
momentum are quantitatively less important. Remarkably,
there is a notable absence of oscillatory behavior in the
longitudinal (beam axis) component. Instead, hδp2

Li exhib-
its a single peak around τ ≈ 0.8 fm=c. It would be interest-
ing if this behavior could also be understood in terms of the
excitation spectrum of the glasma.
Besides determining the origin of the oscillations of

hδp2
Li, there are multiple other ways to extend our current

work. Concerning the glasma itself, a possible extension is
to consider more complicated initial conditions beyond the
McLerran-Venugopalan model used here. In particular, it
would interesting to see the effects of more realistic trans-
verse structure (such as in the IP-glasma model [68,69]) or
hot spots [70–72]. Another extension, related to the longi-
tudinal structure of the colliding nuclei, could be to go
beyond the boost-invariant approximation and consider the
full (3þ 1)-dimensional structure of the glasma, either due
to finite extent along the beam axis [73–76] or due to the
JIMWLK evolution [77–79]. Although generalizing our
numerical setup to 3þ 1 dimensions is in principle trivial, a
large amount of computational resources would be required
to carry out such simulations. In practice, this generalization
might still be possible through the weak field approximation
[80], which exhibits significantly reduced computational
costs compared to lattice simulations at the expense of
neglecting nonperturbative effects.

Regarding the dynamics of the hard probes, an immediate
improvement would be the inclusion of the color current
generated by the color charges as they propagate through the
glasma. This would induce a back reaction of the hard
particles onto the glasma. It has already been demonstrated
in [32] that including the color current of heavy quarks does
not significantly modify momentum broadening, spectra, or
nuclear modification factor at early times. However, one
would expect the back reaction to be more significant for
jets, in particular regarding (classical) gluon radiation and
energy loss. Unfortunately, fast moving charged particles in
lattice simulations are plagued by the numerical Cherenkov
instability which is not tractable in the current setup without
significant changes to the numerical scheme [81].
Another interesting aspect, unrelated to classical particle

simulations, would be a more detailed study of large
temporal and lightlike Wilson loops in the glasma.
Beyond just the lowest moments hδp2i, the Wilson loops
encode information about the probability Pðp⊥Þ that a hard
parton picks up transverse momentum p⊥ during its
evolution [57,58]. The Wilson loop formulation therefore
allows for the extraction of the collision kernel for momen-
tum broadening. Such a quantity was computed in the
context of anisotropic plasmas within a kinetic theory
approach [82] or using perturbative computations [13] or
nonperturbative lattice techniques [83]. Computing the
collision kernel in the glasma, which is an anisotropic
and out-of-equilibrium medium, is an exciting prospect.
Lastly, there are additional observables which describe

the effect of the glasma on heavy quarks and jets, namely
two-particle correlations that may be significantly affected
by the large momentum broadening. In principle, these are
possible observables within the available setup, which
could be extended by off-central collisions, more sophis-
ticated nuclear models, and more realistic ways of initial-
izing particles in our simulation. We plan to include such
features in our code and study the angular correlations of
quark-antiquark pairs and how they are affected by the
early stages of heavy-ion collisions.
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APPENDIX A: SOME DETAILS REGARDING
WONG’S EQUATIONS

In this part of the appendix we collect some derivations
and technical details regarding Wong’s equations.

1. Wong’s equations in Milne coordinates

Here, we provide an explicit derivation of Wong’s
equations in the Milne frame. We start from the covariant
form given by Eq. (23).
The coordinate vector of the Milne frame is x̃μ ¼

ðτ; x; y; ηÞ with Milne proper time τ and longitudinal
space-time rapidity η. The coordinate change from the
laboratory to the Milne frame is described by

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ 1

2
ln

�
tþ z
t − z

�
: ðA1Þ

The inverse transformations are t ¼ τ cosh η and
z ¼ τ sinh η. The components of the metric are g̃μν ¼
diagð1;−1;−1;−τ2Þ. Consequently, the only nonvanishing
Christoffel symbols are

Γτ
ηη ¼ τ; Γη

τη ¼ Γη
ητ ¼ 1

τ
: ðA2Þ

The Christoffel symbols of the second kind are related to
the first-kind Christoffel symbols through

½ab; c� ¼ gcdΓd
ab;

which in Milne coordinates read

½ηη; τ� ¼ τ; ½ητ; η� ¼ ½τη; η� ¼ −τ: ðA3Þ

The Christoffel symbols are used to relate the covariant
derivative along the worldline of a particle, denoted by
D=dτ, to the usual derivative d=dτ. For the four-velocity uμ

of a particle, this relationship is given by

Duμ
dτ

¼ gμν
duν

dτ
þ ½νλ; μ�uνuλ: ðA4Þ

Note that τ denotes the proper time in the rest frame of
the particle, which should not be confused with Milne
proper time τ. The transformations of the four-velocity
components are uτ ¼ cosh ηut − sinh ηuz along with
uη ¼ −ðsinh ηut þ cosh ηuzÞ=τ. The inverse transforma-
tions are ut ¼ cosh ηuτ þ sinh ητuη and uz ¼ sinh ηuτþ
cosh ητuη.
The next step is to express derivatives with respect to τ in

terms of τ-derivatives. In particular, we use md=dτ ¼
pτd=dτ. This allows us to write the τ-evolution of the
particle coordinates from Eq. (23) as

dx
dτ

¼ px

pτ ;
dy
dτ

¼ py

pτ ;
dη
dτ

¼ pη

pτ ; ðA5Þ

where the temporal component pτ is given by

pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ τ2ðpηÞ2 þm2

q
; ðA6Þ

with p2
T ¼ ðpxÞ2 þ ðpyÞ2. The Milne proper time evolution

of the momenta is given by

Dpν

dτ
¼ g

TR
Tr½QFνμ�

pμ

pτ ; ðA7Þ

where the covariant derivatives can be written as

Dpτ

dτ
¼ dpτ

dτ
þ τ

ðpηÞ2
pτ ; ðA8Þ

Dpi

dτ
¼ −

dpi

dτ
; ðA9Þ

Dpη

dτ
¼ −τ2

dpη

dτ
− 2τpη: ðA10Þ

The last set of equations follows from Eq. (A4)
and pμ ¼ muμ.
Finally, we write the components of the field strength

tensor in terms of color-electric and -magnetic fields. Using
the relations

Ei ≡ Fτi; Bi ≡ ϵij
1

τ
Fηj;

Eη ≡ 1

τ
Fτη; Bη ≡ −Fxy; ðA11Þ

the spatial components of the momentum equations
become

τ
dpη

dτ
þ 2pη ¼ g

TR

�
Tr½QEη�−Tr½QBx�

py

pτ þTr½QBy�
px

pτ

�
;

dpx

dτ
¼ g
TR

�
Tr½QEx� þTr½QBη�

py

pτ −Tr½QBy�
τpη

pτ

�
;

dpy

dτ
¼ g
TR

�
Tr½QEy�−Tr½QBη�

px

pτ þTr½QBx�
τpη

pτ

�
:

ðA12Þ

The temporal component is given by

dpτ

dτ
þ τpη

pτ pη ¼ g
TR

�
Tr½QEη�

τpη

pτ þ Tr½QEx�
px

pτ

þ Tr½QEy�
py

pτ

�
: ðA13Þ
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2. Conservation of Casimirs by Wong’s equations

Wong’s equations from Eq. (23) preserve the classical
Casimir values of the color charge Qa. The quadratic and
cubic Casimirs are given by

QaQa ¼ q2; ðA14Þ

dabcQaQbQc ¼ q3: ðA15Þ

Taking the time derivative of the quadratic Casimir and
using the antisymmetry of the structure constants immedi-
ately yields

dq2
dτ

¼ 2Qa dQ
a

dτ
¼ −2g

pμ

m
Ab
μfabcQaQc ¼ 0: ðA16Þ

Using the identity (see e.g. [84]) valid for the fundamental
generators

Tr½TaTbTc� ¼ 1

4
ðdabc þ ifabcÞ; ðA17Þ

the cubic Casimir can be written as

q3 ¼ 4Tr½Q3�; ðA18Þ

where Q ¼ QaTa. The conservation of q3 then follows
from

d
dτ

Tr½Q3� ¼ 3Tr

�
Q2

dQ
dτ

�

¼ −3igTr½Q2½Aμ; Q��p
μ

m
¼ 0; ðA19Þ

where we have used Eq. (24) in the second line. The last
line vanishes for anyQ and Aμ due to the cyclic property of
the trace.

APPENDIX B: PROPERTIES OF CLASSICAL
COLOR CHARGES

Here we provide some additional mathematical details
regarding classical color charges such as the choice of
Casimir invariants and the integration measure.

1. Casimir invariants for generators Ta and classical
color charges Qa

Let fTag with a ∈ f1; 2;…DAg be the generators of
SUðNcÞ with DA ¼ N2

c − 1. Common choices for gener-
ators in the fundamental (quark) representation are Ta ¼
σa=2 for SU(2) and Ta ¼ λa=2 for SU(3), with Pauli
matrices σa and Gell-Mann matrices λa. Regardless of a
particular representation, the generators satisfy ½Ta; Tb� ¼
ifabcTc, where fabc are the totally antisymmetric structure

constants of the group. For SU(2) these constants are given
by fabc ¼ ϵabc. For SU(3) the nonvanishing structure con-
stants are listed in Table I. The other representation that we
are interested in is the adjoint (gluon) representation, whose
generators are given by

ðTaÞbc ¼ −ifabc: ðB1Þ

The dimensions of the fundamental (F) and adjoint (A)
representations are

DR ¼
�
Nc; R ¼ F

N2
c − 1; R ¼ A

: ðB2Þ

The generators are orthonormal in the sense that

Tr½TaTb�R ¼ TRδ
ab; ðB3Þ

where the Dynkin index TR depends on the chosen
representation R. For the fundamental and adjoint repre-
sentations it is given by

TR ¼
� 1

2
; R ¼ F

Nc; R ¼ A
: ðB4Þ

The representations of the algebra suð2Þ are uniquely
labeled by the value of the quadratic Casimir

X
a

TaTa ¼ 1DR
C2ðRÞ; ðB5Þ

with DR the dimension of the representation. For the ðsuÞ3
algebra, representations are additionally labeled by the
cubic Casimir

X
abc

dabcTaTbTc ¼ 1DR
C3ðRÞ; ðB6Þ

where dabc denote the symmetric structure constants (see
Table II). For SU(2), dabc can be taken as zero. The values
of the quadratic and cubic Casimirs are (see [84])

C2ðRÞ ¼
(

N2
c−1
2Nc

; R ¼ F

Nc; R ¼ A
; ðB7aÞ

TABLE I. Antisymmetric structure constants for SU(3).

fabc f123 f147 f156 f246 f257 f345 f367 f458 f678

1 1
2

− 1
2

1
2

1
2

1
2

− 1
2

ffiffi
3

p
2

ffiffi
3

p
2

DANA AVRAMESCU et al. PHYS. REV. D 107, 114021 (2023)

114021-22



C3ðRÞ ¼
( ðN2

c−4ÞðN2
c−1Þ

4N2
c

; R ¼ F

0; R ¼ A
: ðB7bÞ

Classical color chargesQa can be understood as the limit
of high-dimensional representations of suðNcÞ. By anal-
ogy, it is then possible to also define Casimir invariants
similar to the finite-dimensional case in Eqs. (B5) and (B6).
Thus, the quadratic and cubic Casimirs of Qa are given byX

a

QaQa ≡ q2ðRÞ; ðB8Þ

and similarly

X
abc

dabcQaQbQc ≡ q3ðRÞ: ðB9Þ

The color chargesQa are real-valued numbers and there are
DA ¼ N2

c − 1 components for a given SUðNcÞ group. The
Casimir invariants in Eqs. (B8) and (B9) may be viewed as
constraints on the set of possible color charges. Evidently,
the manifold of admissible color charge vectors depends on
the number of colors. For example, in SU(2) only the
quadratic Casimir invariant applies because dabc ¼ 0.
Thus, due to DA ¼ 3, the classical color charges are
three-dimensional vectors constrained to a 2-sphere with
radius q2. The manifold of SU(2) color charges is therefore
two-dimensional. For SU(3), the manifold becomes more
complicated: Firstly, due to DA ¼ 8 for SU(3), the quad-
ratic invariant constrains the possible choices of color
charges to a 7-sphere with radius q2. Secondly, the cubic
Casimir invariant further constrains the color charge
manifold to a six-dimensional submanifold of R8. It turns
out that not all choices of q2 and q3 are admissible. In
contrast to SU(2), where the color charge manifold exists
for any value q2 > 0, the SU(3) color charge manifold only
exists for certain values of q2 and q3. We address this at the
end of Appendix B 2.

2. Integration measure and n-point functions

The generators of SUðNcÞ satisfy the following trace
relations

Tr½Ta� ¼ 0; ðB10aÞ

Tr½TaTb� ¼ TRδ
ab; ðB10bÞ

Tr½TaTbTc� ¼ AR

4
ðdabc þ ifabcÞ; ðB10cÞ

where the anomaly coefficient AR is given by

AR ¼
�
1; R ¼ F

0; R ¼ A
: ðB11Þ

Similarly to Eq. (B10), one may impose that the averages
performed over classical color charge configurations must
satisfy

hQai≡
Z

dQQa ¼ 0; ðB12aÞ

hQaQbi≡
Z

dQQaQb ¼ TRδ
ab; ðB12bÞ

hQaQbQci≡
Z

dQQaQbQc ¼ AR

4
dabc; ðB12cÞ

where, in the three-point function, the imaginary part was
discarded since the classical color charges are real valued
and are also symmetric under color indices, while fabc is
antisymmetric.
The integration measure dQ used in the definition of the

n-point functions is constrained by the Casimir invariants.
For SU(2) it reads

dQ ¼ cRd3QδðQaQa − q2Þ; ðB13Þ

and similarly for SU(3)

dQ ¼ cRd8QδðQaQa − q2ÞδðdabcQaQbQc − q3Þ: ðB14Þ

The normalization constant cR is chosen such that the color
charge distributions are normalized to unityZ

dQ ¼ 1: ðB15Þ

Once a normalization for the integration measure is chosen,
the values for the classical Casimirs q2 and q3 are fixed
according to Eqs. (B12). Contracting the two-point func-
tion in Eq. (B12b) with δab immediately yields q2 ¼ TRDA,
which, by virtue of TRDA ¼ DRC2ðRÞ, yields

q2ðRÞ ¼ DRC2ðRÞ: ðB16Þ

TABLE II. Symmetric structure constants for SU(3).

dabc d118 d146 d157 d228 d247 d256 d338 d344 d355 d366 d377 d448 d558 d668 d778 d888
1ffiffi
3

p 1
2

1
2

1ffiffi
3

p − 1
2

1
2

1ffiffi
3

p 1
2

1
2

− 1
2

− 1
2

− 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1ffiffi
3

p
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In an analogous manner, contracting the three-point func-
tion of Eq. (B12c) with dabc yields

q3ðRÞ ¼ DRC3ðRÞ; ðB17Þ

which is analogous to Eq. (B16). Thus, according to
Eqs. (B2) and (B7), the classical Casimirs are given by

q2ðRÞ ¼
(

N2
c−1
2

; R ¼ F

NcðN2
c − 1Þ; R ¼ A

; ðB18aÞ

q3ðRÞ ¼
( ðN2

c−4ÞðN2
c−1Þ

4Nc
; R ¼ F

0; R ¼ A
: ðB18bÞ

Similar relationships for the Casimirs of the classical color
charges were established in [20–22,53]. In [85,86] within a
transport theory, it is argued that a classical description of the
color charges holds only for large representations. From this
perspective, it is not suitable to assign Casimirs only for a
single classical quark or gluon, but rather to work with
higher-order representations and introduce them for the
whole ensemble. It is within this context that the choices
in Eqs. (B16) and (B17) for the classical Casimirs q2 and q3
are the product of the dimension of the representation DR
and the group-theoretical Casimirs C2 and C3.
Different choices for the two- and three-point functions

would yield other classical quadratic and cubic Casimirs.
For example, an elegant choice would be to set q2 ¼ C2

and q3 ¼ C3, i.e. match the classical and the group-
theoretical Casimirs directly. This would allows us to avoid
the matching procedure of Sec. VI, where we showed that
observables such as momentum broadening hδp2i must be
divided by a factor of DR in order to reproduce a similar
calculation in perturbative QCD. However, we found that
this choice is generally not admissible. Using numerical
solution methods, we were not able to find a single color
charge vector Qa for SU(3) quarks that satisfies both q2 ¼
C2 and q3 ¼ C3 in the fundamental representation. On the
other hand, we found possible solutions in the case of
SU(3) gluons and for both SU(2) quarks and gluons. It
appears that in the case of SU(3) quarks, the color charge
manifold embedded in R8 and constrained by the two
Casimir invariants does not exist. On the other hand, the
choices in Eqs. (B16) and (B17) are admissible in the sense
that there are valid solution vectors Qa for both quarks and
gluons in SU(2) and SU(3). We require these solution
vectors because our color charge sampling method (see
Sec. IV B) is based on randomly rotating initial color
charge vectors. For SU(3) gluons, which reside in the
adjoint representation, the initial color vector is fixed by
q2ðAÞ ¼ 24 and q3ðAÞ ¼ 0 while SU(3) quarks in funda-
mental representation are labeled by q2ðFÞ ¼ 4 and
q3ðFÞ ¼ 10=3. In our numerical simulations, we use the
initial color vectors

Q⃗ðAÞ ¼ ð4.89898; 0; 0; 0; 0; 0; 0; 0Þ;
Q⃗ðFÞ ¼ ð0; 0; 0; 0;−1.69469; 0; 0;−1.06209Þ; ðB19Þ

where we use the notation Q⃗≡ ðQ1;…; Q8Þ. The case of
SU(2) is much simpler, because only the quadratic Casimir
invariant applies. Possible color charges Qa are vectors on
2-sphere with radius q2.

APPENDIX C: SAMPLING CLASSICAL COLOR
CHARGES VIA THE HAAR MEASURE

This appendix contains an analytical proof for the
matching from Eq. (56) of the one-, two- and three-point
functions of the classical color charges computed via the
Haar measure, as given in Eq. (55a), to the desired values
provided in Eq. (42). For example, the aim is to derive that
the one-point function extracted by integrating over the
manifold of SUðNcÞ

hQaiU ¼ Qa0
0

Z
dUUaa0

where Qa0
0 is the initial color vector fixed by the quadratic

and cubic Casimirs from Eqs. (44a) and (44b), does indeed
give the expected value

hQaiU ↦ hQai ¼ 0:

To this end, we need to perform the integral over matrix
elements of U ∈ SUðNcÞ matrices, as can be seen by using
Eq. (54) to further writeZ

dUUaa0 ¼
Z

dU
1

TR
Tr½TaUTa0U†�

¼ 1

TR
Ta
liT

a0
jk

Z
dUUijU

†
kl

and similarly for the two- and three-point functions. This
matching requires the evaluation of certain integrals over
SUðNcÞ. In what follows, we calculate them symbolically,4

in the fundamental representation, and quote the main steps
in the derivation.

1. Revising some relevant SUðNcÞ integrals
According to [88], integrals over U ∈ SUðNcÞ of

the type Z
dUUi1j1…UipjpU

†
k1l1

…U†
knln

; ðC1Þ

4A Python notebook using SymPy [87] where these calcu-
lations are carried out explicitly is publicly available at https://
github.com/avramescudana/sun_integrals.
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where Uij denotes the matrix elements of U (in the
fundamental representation), may be evaluated from the
generating function

Zp;nðJ;KÞ ¼
Z

dUðTr½KU�ÞpðTr½JU†�Þn: ðC2Þ

We are particularly interested in Z1;1, Z2;2 and Z3;3 and their
derivatives with respect to J and K. For each of these cases,
let us see how we may generate our integrals of interest and
how to evaluate them, using already computed expressions
from [88–90], for Nc ¼ 3.

a. Integral involving one pair of conjugate
matrix elements

For p ¼ n ¼ 1, the generating function

Z1;1ðJ; KÞ ¼
Z

dUTr½KU�Tr½JU†�; ðC3Þ

generates, via differentiation, the integral

∂
2

∂Kji∂Jlk
Z1;1ðJ; KÞ ¼

Z
dUUijU

†
kl: ðC4Þ

On the other hand, following [88], the generating function
Eq. (C3) is given by

Z1;1ðJ; KÞ ¼
1

Nc
Tr½JK�; ðC5Þ

which yields

∂
2

∂Kji∂Jlk
Z1;1ðJ;KÞ ¼ 1

Nc
δilδjk: ðC6Þ

Collecting Eqs. (C4) and (C6) immediately givesZ
dUUijU

†
kl ¼

1

Nc
δilδjk: ðC7Þ

b. Integral involving two pairs of conjugate
matrix elements

In the case p ¼ n ¼ 2, the generating function reads

Z1;1ðJ;KÞ ¼
Z

dUðTr½KU�Þ2ðTr½JU†�Þ2: ðC8Þ

Let us introduce the following simplifying notation

∂
4
ijklmnop ≡ ∂

4

∂Kji∂Jlk∂Knm∂Jpo
: ðC9Þ

Using similar computations as before, this leads to the
following integral over SUðNcÞ

∂
4
ijklmnopZ2;2ðJ; KÞ ¼ 4

Z
dUUijU

†
klUmnU

†
op: ðC10Þ

Alternatively, the generating function is given by [88]

Z2;2ðJ;KÞ ¼ 2

�
1

N2
c−1

Tr½ðJKÞ2�− 1

NcðN2
c−1ÞðTr½JK�Þ

2

	
:

ðC11Þ

Differentiating the terms gives

∂
4
ijklmnopðTr½JK�Þ2 ¼ 2ðδilδjkδmpδno þ δipδjoδlmδknÞ;
∂
4
ijklmnopTr½ðJKÞ2� ¼ 2ðδilδjoδknδmp þ δipδjkδlmδnoÞ:

ðC12Þ

Collecting all these results yields the desired integralZ
dUUijU

†
klUmnU

†
op

¼ 1

N2
c − 1

ðδilδjkδmpδno þ δipδjoδlmδknÞ

−
1

NcðN2
c − 1Þ ðδilδjoδknδmp þ δipδjkδlmδnoÞ: ðC13Þ

c. Integral involving three pairs of conjugate
matrix elements

Taking p ¼ n ¼ 3 gives the generating function

Z3;3ðJ; KÞ ¼
Z

dUðTr½KU�Þ3ðTr½JU†�Þ3: ðC14Þ

As before, we use the shorthand

∂
6
ijklmnopqrst ≡ ∂

6

∂Kji∂Jlk∂Knm∂Jpo∂Krq∂Jts
: ðC15Þ

This then leads to the following integral over SUðNcÞ:

∂
6
ijklmnopqrstZ3;3ðJ; KÞ ¼ 36

Z
dUUijU

†
klUmnU

†
opUqrU

†
st:

ðC16Þ

According to [88], this generating functional is given by
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Z3;3ðJ; KÞ ¼ 6

�
N2

c − 2

ðN2
c − 4ÞðN2

c − 1ÞNc
ðTr½JK�Þ3 − 3

ðN2
c − 4ÞðN2

c − 1ÞTr½JK�Tr½ðJKÞ2� þ 4

ðN2
c − 4ÞðN2

c − 1ÞNc
Tr½ðJKÞ3�

	
:

ðC17Þ

Performing differentiation for each of these terms yields

∂
6
ijklmnopqrstðTr½JK�Þ3 ¼ 6



δilδjkδmpδnoδqtδrs þ δilδjkδmtδnsδorδpq þ δipδjoδknδlmδqtδrs þ δipδjoδkrδlqδmtδns

þ δitδjsδknδlmδorδpq þ δitδjsδkrδlqδmpδno
�
; ðC18Þ

∂
6
ijklmnopqrstTr½JK�Tr½ðJKÞ2� ¼ 2



δilδjkδmpδnsδorδqt þ δilδjkδmtδnoδpqδrs þ δilδjoδknδmpδqtδrs þ δilδjoδkrδmtδnsδpq

þ δilδjsδknδmtδorδpq þ δilδjsδkrδmpδnoδqt þ δipδjkδlmδnoδqtδrs þ δipδjkδlqδmtδnsδor

þ δipδjoδknδlqδmtδrs þ δipδjoδkrδlmδnsδqt þ δipδjsδknδlmδorδqt þ δipδjsδkrδlqδmtδno

þ δitδjkδlmδnsδorδpq þ δitδjkδlqδmpδnoδrs þ δitδjoδknδlmδpqδrs þ δitδjoδkrδlqδmpδns

þ δitδjsδknδlqδmpδor þ δitδjsδkrδlmδnoδpq
�
; ðC19Þ

∂
6
ijklmnopqrstTr½ðJKÞ3� ¼ 3



δilδjoδknδmtδpqδrs þ δilδjoδkrδmpδnsδqt þ δilδjsδknδmpδorδqt þ δilδjsδkrδmtδnoδpq

þδipδjkδlmδnsδorδqt þ δipδjkδlqδmtδnoδrs þ δipδjsδknδlqδmtδor þ δipδjsδkrδlmδnoδqt

þδitδjkδlmδnoδpqδrs þ δitδjkδlqδmpδnsδor þ δitδjoδknδlqδmpδrs þ δitδjoδkrδlmδnsδpq
�
: ðC20Þ

Combining all of these results gives usZ
dUUijU

†
klUmnU

†
opUqrU

†
st ¼

1

6

�
N2

c − 2

ðN2
c − 4ÞðN2

c − 1ÞNc
∂
6
ijklmnopqrstðTr½JK�Þ3

−
3

ðN2
c − 4ÞðN2

c − 1Þ ∂
6
ijklmnopqrstTr½JK�Tr½ðJKÞ2�

þ 4

ðN2
c − 4ÞðN2

c − 1ÞNc
∂
6
ijklmnopqrstTr½ðJKÞ3�

	
: ðC21Þ

2. Matching the one-, two- and three-point functions

Equipped with the SUðNcÞ integrals from Eqs. (C7), (C13) and (C21), we now show that Eq. (56) holds for the one-, two-
and three-point functions.

a. Matching the one-point functions

The lhs of Eq. (56a) should be fixed by Eq. (42a) as hQai ¼ 0. On the other hand, the rhs contains the termZ
dUTr½TaUTa0U†� ¼ Ta

liT
a0
jk

Z
dUUijU

†
kl; ðC22Þ

multiplied by 1=TF, see Eq. (54). Employing the integral from Eq. (C7) immediately givesZ
dUTr½TaUTa0U†� ¼ Ta

liT
a0
jk

1

Nc
δilδjk

¼ 1

Nc
Ta
iiT

a0
jj ¼

1

Nc
Tr½Ta�Tr½Ta0 � ¼ 0; ðC23Þ

since Tr½Ta� ¼ 0, see Eq. (B10a), thus hQaiU ¼ 0.
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b. Matching the two-point functions

Similarly, we want the lhs of Eq. (56b) to be expressible as in Eq. (42b). Besides a factor of 1=T2
F from Eq. (54), the rhs is

proportional to

Z
dUTr½TaUTa0U†�Tr½TbUTb0U†� ¼ Ta

liT
a0
jkT

b
pmTb0

no

Z
dUUijU

†
klUmnU

†
op; ðC24Þ

in which the integral involving SUðNcÞ matrices may be evaluated from Eq. (C13). Inserting this relation back into
Eq. (C24) yields

Z
dUTr½TaUTa0U†�Tr½TbUTb0U†�

¼ 1

N2
c − 1



Ta
iiT

a0
kkT

b
mmTb0

oo þ Ta
liT

b
ilT

a0
jkT

b0
kj

�
−

1

NcðN2
c − 1Þ



Ta
iiT

a0
jkT

b
mmTb0

kj þ Ta
liT

a0
kkT

b
ilT

b0
oo

�
¼ 1

N2
c − 1



Tr½Ta�Tr½Ta0 �Tr½Tb�Tr½Tb0 � þ Tr½TaTb�Tr�Ta0Tb0 �

�
−

1

NcðN2
c − 1Þ



Tr½Ta�Tr½Tb�Tr½Ta0Tb0 � þ Tr½TaTb�Tr½Ta0 �Tr½Tb0 �

�
¼ 1

N2
c − 1

T2
Fδ

abδa
0b0 ; ðC25Þ

where in the last step Eqs. (B10a) and (B10b) were used.
This finally gives the rhs of Eq. (56b) as

hQaQbiU ¼ 1

T2
F
Qa0

0 Q
b0
0

1

N2
c − 1

T2
Fδ

abδa
0b0 : ðC26Þ

Using the classical Casimir of Eq. (B8) gives
Qa0

0 Q
a0
0 ¼ DFC2ðFÞ ¼ ðN2

c − 1ÞTF, which finally yields
the desired two-point function

hQaQbiU ¼ TFδ
ab; ðC27Þ

exactly the two-point function from Eq. (42b).

c. Matching the three-point functions

The lhs of Eq. (56c) should be given by Eq. (42c), while
the rhs contains the term

Z
dUTr½TaUTa0U†�Tr½TbUTb0U†�Tr½TcUTc0U†� ¼ Ta

liT
a0
jkT

b
pmTb0

noTc
tqTc0

rs

Z
dUUijU

†
klUmnU

†
opUqrU

†
st ðC28Þ

multiplied by 1=T3
F ¼ 8 coming from Eq. (54). When the integral over SUðNcÞ is evaluated according to Eq. (C21) and

using Eq. (B10a) along with Eq. (B10c), one may show that the only nonvanishing terms are given byZ
dUTr½TaUTa0U†�Tr½TbUTb0U†�Tr½TcUTc0U†�

¼
�

N2
c − 2

ðN2
c − 4ÞðN2

c − 1ÞNc
þ 2

ðN2
c − 4ÞðN2

c − 1ÞNc

�

Tr½TaTbTc�Tr½Ta0Tb0Tc0 � þ Tr½TaTcTb�Tr½Ta0Tc0Tb0 �

�
¼ Nc

ðN2
c − 4ÞðN2

c − 1Þ
1

16
½ðdabc þ ifabcÞðda0b0c0 þ ifa0b0c0 Þ þ ðdabc − ifabcÞðda0b0c0 − ifa0b0c0 Þ�

¼ 1

8

Nc

ðN2
c − 4ÞðN2

c − 1Þ ðdabcda0b0c0 − fabcfa0b0c0 Þ; ðC29Þ

where we used the fact that dabc is symmetric with respect to a, b, c, whereas fabc is antisymmetric. This then yields
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hQaQbQciU ¼ 8
X
a0b0c0

Qa0
0 Q

b0
0 Q

c0
0

Z
dUTr½TaUTa0U†�Tr½TbUTb0U†�Tr½TcUTc0U†�

¼ Nc

ðN2
c − 4ÞðN2

c − 1Þ ðdabcda0b0c0Q
a0
0 Q

b0
0 Q

c0
0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

q3ðFÞ

− fabcfa0b0c0Qa0
0 Q

b0
0 Q

c0
0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

0

Þ; ðC30Þ

in which the antisymmetry of fa0b0c0 was used. The further
replacement of q3ðFÞ ¼ DFC3ðFÞ ¼ ðN2

c − 4ÞðN2
c − 1Þ=

ð4NcÞ gives exactly the three-point function from Eq. (42c)

hQaQbQciU ¼ AR

4
dabc: ðC31Þ

APPENDIX D: NUMERICAL CHECKS

1. Casimir scaling and SU(2) versus SU(3) comparison

Our publicly available simulation code [63] was subject
to various numerical checks. All of them were done for
very massive quarks with vanishing transverse momentum,
but hold irrespective of particle type or initial momentum.
Firstly, we verified that the Casimirs of the classical color

charges are perfectly conserved throughout the evolution,
up to numerical precision. This requirement is automatically

satisfied by the numerical method used to solve the
evolution of the color charge, namely the color rotation
with Wilson lines constructed on the lattice, as in Eq. (38).
Secondly, we checked that the Casimir scaling

expressed in Eq. (81) is satisfied at all proper times. For
this purpose, we initialized classical color charges in both
fundamental and adjoint representations, for SU(2) and
SU(3), by appropriately choosing the corresponding
Casimir invariants from Eq. (44). We emphasize that
classical momentum broadening components are mapped
to quantum ones according to Eq. (77). Using Eq. (79) along
with Eq. (47), namely hδp2

μiA=hδp2
μiF ¼ 2N2

c=ðN2
c − 1Þ,

yields

hδp2
μiA

hδp2
μiF

����SUð2Þ ¼ 8

3
;
hδp2

μiA
hδp2

μiF

����SUð3Þ ¼ 9

4
: ðD1Þ

These are exactly the results obtained from the numerical
simulation, see Fig. 10 (upper panel).
Additionally, we compared SU(2) to SU(3) momentum

broadening components, see Fig. 10 (lower panel). We find
that, in the very early stages, there is no simple way to scale
the results of SU(2) to SU(3). At later proper times, when
the glasma enters the free-streaming regime and the fields
are dilute, there exists a simple scaling from SU(2) to SU(3)
momentum broadening, but the scaling factor differs for
adjoint and fundamental representations.

FIG. 10. (Upper) Transverse momentum broadening compo-
nents of very massive quarks, for SU(2) (dashed line) and SU(3)
(full line), adjoint (blue) and fundamental (green) representations.
Their ratio (violet) obeys the Casimir scaling property, as
expressed in Eq. (79). The band emphasizes the difference
between the SU(2) and SU(3) results. (Lower) Ratio between
SU(2) and SU(3) accumulated transverse momenta, as a function
of proper time. There is no trivial scaling at very early times,
namely δτ ≲ 0.5 fm=c.

FIG. 11. The relative difference, in percentage, between the
temporal component of the momentum pτ numerically extracted
from Eq. (A6) versus Eq. (32). The plot contains Ntp ¼ 100 test
particles (thin light blue lines) and their average (full blue line).
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2. Temporal constraint

Numerically, the temporal component of the momentum
is computed from Eq. (A6) but pτ may also be extracted
using Eq. (32). We denote by δpτ the difference between

these two distinct ways of computing the temporal com-
ponent and represent it in Fig. 11. The difference is on the
percent level and can be understood as an artifact of the
lattice discretization.
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