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Tämän tutkielman tarkoituksena on tarkastella erästä versiota stokastisen integ-
roinnin avaintuloksesta nimeltään Itôn kaava, jolla on tärkeä rooli niin stokastiikan
teorian kuin sen erinäisten sovellusten kannalta. Itôn kaavoja voidaan johtaa pe-
rustuen useille eri oletuksille sekä tilanteille. Tässä tutkimuksessa oletamme pää-
tuloksena esittettävän Itôn kaavassa käytettävän stokastisen prosessin olevan Lévy-
prosessi, joka toteuttaa rajallisen vaihtelun ehdon ja vastaavasti kaavassa käytettävän
funtion oletamme jatkuvaksi ja heikosti derivoituvaksi.

Tulemme käsittelemään oleellisimmat stokastiikan sekä analyysin esitiedot päätu-
loksena olevaa Itôn kaavan todistamista varten. Stokastisten prosessien osalta käsit-
telemme yleisimpiä esimerkkejä Lévy-prosesseista sekä esittelemme niiden tärkeimpiä
perusominaisuuksia. Määrittelemme myös Poisson satunnaismitan, jonka tärkeänä
erikoistapauksena on muun muuassa hyppymitta. Lisäksi esittelemme joitain kuu-
luisia stokastiikan tuloksia kuten Lévy-Itô-hajotelma sekä Lévy-Khintchine-kaava.

Lisäksi tärkeänä osana Itôn kaavaa määrittelemme ja konstruoimme tarkasti stokas-
tisen integraalin alkaen yksinkertaisista prosesseista ja lopulta yleistäen sen koske-
maan laajempaa osaa prosesseista. Jatkona stokastiseen integrointiin tarkastelemme
vielä lähemmin erästä stokastisen integraalin laajennusta Poisson satunnaismitan suh-
teen. Lopuksi esittelemme ja todistamme erään version Itôn kaavasta, joka käyt-
tää oletuksinaan rajallisen vaihtelun ehdon toteuttavaa prosessia, mutta päätulosesta
poiketen olettaa funktioiden olevan heikosti derivoituvuuden sijaan ainoastaa jatku-
vasti differentioituvia.

Johtuen erityisesti heikosti derivoituvuuden oletuksesta käymme lisäksi läpi joitain
reaali- ja funktionaalianalyysin perustuloksia. Erityisenä huomion kohteena ovat tu-
lokset koskien distribuutioteoriaa ja heikkoa derivoituvuutta. Lopuksi näitä esitietoja
käyttäen ja oletukset tarkasti määritellen todistamme yksityiskohtaisesti tutkielman
päätuloksena olevan version Itôn kaavasta tapauksessa, jossa dimensio on 1.



Abstract: Jimi Kotkajuuri, Itô’s formula for finite variation Lévy processes, Master’s
Thesis in Mathematics, 50 s., University of Jyväskylä, Department of Mathematics
and Statistics, Spring 2023.

In this thesis we examine a version of the integral result of stochastic integration
called Itô’s formula which plays an important role both in terms of theory of stochastic
and also its various applications. Itô’s formulas can be derived based on several
different circumstances and situations. In this thesis, we assume that the stochastic
process used in Itô’s formula presented as the main result is a Lévy process, which
fulfills the condition of finite variation, and in addition to this we assume the function
used in the formula to be continuous and weakly differentiable.

We will introduce the most essential stochastic and analysis prerequisites for prov-
ing the Itô formula as the main result. Regarding stochastic processes, we discuss
the most common examples of Lévy processes and present their most important basic
properties. We also define the Poisson random measure, whose important special case
is jump measure. In addition, we present some famous stochastic results such as the
Lévy-Itô decomposition and the Lévy-Khintchine formula.

Furthermore, as an important part of Itô’s formula, we precisely define and con-
struct the stochastic integral starting from simple processes and finally generalizing
it into a wider range of processes. As a continuation of stochastic integration, we will
take a closer look at an extension of the stochastic integral in terms of the Poisson
random measure. Finally, we present and prove a version of Itô’s formula, which uses
as its assumptions a process fulfilling the finite variation condition, but, in contrast to
the main result, assumes that the functions are weakly differentiable instead of only
continuously differentiable.

Due to the assumption of weak differentiability, we also review some of the basic
results of real and functional analysis. Particularly important for the main result are
the results regarding distribution theory and weak differentiability. Finally, using this
preliminary information and precisely specifying the assumptions, we prove in detail
the version of Itô’s formula, which is the main result of the thesis, in the case where
the dimension is 1.
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1. Introduction

Itô’s formula which is named after Japanese mathematician Kiyosi Itô (1915-2008)
is a fundamental part of stochastic integration. There exists several extensions of the
Itô’s formula to different kind of stochastic processes.

Our aim is to work with version of Itô’s formula which assume finite variation Lévy
process and functions that are both continuous and admits weak derivatives. Lévy
processes are a class of stochastic processes named after famous french mathematician
Paul Lévy (1886-1971) who was especially productive and respected in the area of
probability theory. Most famous examples of Lévy processes are the Brownian motion,
Poisson process and Wiener process.

First in section 2 we introduce some basic topics and properties of both probability
theory and stochastic processes, especially in the case of Lèvy processes. Moreover we
discuss important topics related to the our main result for example Poisson random
measure, one of its special cases called jump measure JX and also widely used Lévy-
Itô-decomposition and Levy-Khintchine reprensetation.

Section 3 is mainly dedicated to the construction of stochastic integral with re-
spected martingale-valued measure M , which we are going to do thoroughly. After
the introduction of general stochastic integral we will concentrate on integration with
respect Poisson random measure and especially jump measure. We are also going to
introduce and prove one of the Itô’s formula needed later during the proof of the main
result.

Section 4 covers various collection of analysis tools. We recall for example some of
the well know fundamental theorems like Lebesgue dominated convergence, Lebesgue
differentiation theorem and fundamental theorem of Lebesgue integral calculus. We
also discussed about important distribution theory topics like convolution, mollifier
and weak derivatives and proves a few important results we will use later.

Last section is all about the main result. We are going to discuss profoundly about
assumptions of the main theorem and when they holds. Proof of this Itô formula is
going to perform detailedly and it use comprehensively previously proven results from
this thesis.

2. Stochastic processes

2.1. Random variables.

Definition 2.1. Let X be an Rd-valued random variable defined on (Ω,F ,P). The law
of X is the probability measure defined by

µX(A) = P(X ∈ A)

and therefore the characteristic function ϕX : Rd → C of the X is defined by

ϕX(u) = E
[
ei(u,X)

]
=

∫
Rd

ei(u,x) dµX(x)

for each u ∈ Rd.

Next we will introduce another useful concept of probability theory called condi-
tional expectation and some of its key properties.
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Theorem 2.2 (Definition and existence of conditional expectation). Let (Ω,F ,P) be
a probability space, X a random variable such that E[|X|] < ∞ and G ⊂ F be a
sub-σ-algebra. Then there exists a random variable Y such that

(i) Y is G measurable.
(ii) E[|Y |] < ∞.
(iii) For every set A ∈ G we have

E[X1A] = E[Y 1A].

A random variable Y with the properties (i)−(iii) is called the conditional expectation
E[X|G] of X given G, and we write Y = E[X|G] almost surely.

Proof. See chapter 9.5 of [13]. □

Proposition 2.3. Let X,X1, X2, ... be integrable random variables and H ⊆ G ⊆ F be
a sub-σ-algebras of F . Then the following assertions are true:

(i) If µ, λ ∈ R, then

E[λX1 + µX2|G] = λE[X1|G] + µE[X2|G]

almost surely.
(ii) If X1 ≤ X2 almost surely, then E[X1|G] ≤ E[X2|G] almost surely.
(iii) If X ≥ 0 almost surely, then E[X|G] ≥ 0 almost surely.
(iv) One has that |E[X|G]| ≤ E[|X||G] almost surely.
(v) If X is G-measurable, then E[X|G] = X almost surely.
(vi) Let H be measurable and a sub σ-algebra of G, then

E[E[X|G]|H] = E[E[X|H]|G] = E[X|H]

almost surely.
(vii) If Z : Ω → R is G-measurable and E[|ZX|] < ∞,then

E[ZX|G] = ZE[X|G]

almost surely.
(viii) If G = {∅,Ω}, then E[X|G] = E[X].
(ix) If for all B ∈ B(R) and all A ∈ G, one has that

P({X ∈ B} ∩ A) = P(X ∈ B)P(A),

i.e. if X is independent from G, then E[X|G] = E[X] almost surely.
(x) Assume X ≥ 0 almost surely and random variables 0 ≤ Xn ↑ X almost surely.

then

lim
n→∞

E[Xn|G] = E[X|G]

almost surely.

Proof. See Chapter 9.7 of [13] □
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2.2. Stochastic processes.

Definition 2.4. Let (Ω,F ,P) be a probability space.

(i) A stochastic process is a family of random variables X = (Xt)t≥0 defined on
the same probability space and indexed by a continuous time parameter t.

(ii) Two stochastic processes X and Y are said to be independent if, for all m,n ∈
N, all 0 ≤ t1 < · · · < tn < ∞ and all 0 ≤ s1 < · · · < sm < ∞, the σ-algebras
σ(Xt1 , Xt2 , . . . , Xtn) and σ(Ys1 , Ys2 , . . . , Ysm) are independent.

(iii) Similarly a stochastic process X and a sub-σ-algebra G are independent if G
and σ(Xt1 , Xt2 , . . . , Xtn) are independent for all n ∈ N, 0 ≤ t1 < · · · < tn < ∞.

Next we are going to spend some time to get familiar with the most important
concepts related to the stochastic processes.

Definition 2.5 (Stopping times). Let T : Ω → [0,∞]. Then T is called stopping time
if the event {T ≤ t} ∈ Ft for each t ≥ 0.

Definition 2.6 (Filtration). An increasing family of σ-algebras F = (Ft)t≥0 is called a
filtration on (Ω,F ,P) if

Fs ⊆ Ft ⊆ F , whenever 0 ≤ s ≤ t.

A probability space (Ω,F ,P) that comes equipped with such a family F is said to
be filtered. A stochastic process X is said to be F -adapted if the random variable Xt

is Ft- measurable for each t ≥ 0.
Any process X is adapted to its own filtration FX given by Ft = σ{Xs : 0 ≤ s ≤ t},

and this FX is called the natural filtration of X.

Definition 2.7 (Martingale). A processM is said to be a martingale ifM is F-adapted,
E[|Mt|] < ∞ for any t ≥ 0 and for all s < t it holds that

E[Mt|Fs] = Ms almost surely.

We can define a supermartingale and a submartingale by replacing the above equa-
tion by

E[Mt|Fs] ≤ Ms and E[Mt|Fs] ≥ Ms.

respectively. A martingale M = (Mt)t≥0 is said to be square-integrable if E[|M2
t |] < ∞

for each t ≥ 0 and continuous if it has almost surely continuous sample paths.

Definition 2.8. Let M be an adapted process. We call M a local martingale, if there
exists a sequence of stopping times τ1 ≤ · · · ≤ τn → ∞, such that each of the processes
(Mt∧τn)t≥0 is a martingale.

A local martingale is a useful generalization of the martingale concept. Note that
any martingale is always also a local martingale.

Definition 2.9. A function f : [0,∞) → Rd is said to be càdlàg if it is right-continuous
with left limits and for each t ∈ (0,∞) the limits

f(t−) = lim
s↗t

f(s), f(t+) = lim
s↘t

f(s)

exist and f(t) = f(t+). Moreover if t is a discontinuity point we denote the jump of
f at t by

∆f(t) = f(t)− f(t−).
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A stochastic process X is said to be càdlàg if it almost surely has sample paths which
are right continuous, with left limits.

It is easy to see that any continuous function and process is always also càdlàg but
càdlàg functions do not have to be continuous. Next we define classes of stochastic
processes generated by adapted left and right continuous processes called predictable
and optional processes respectively.

Definition 2.10 (Predictable process). Let (Ω,F ,P,F) be a filtered probability space.

(i) The predictable σ-algebra is the σ-algebra P generated on [0,∞) × Ω by all
adapted left-continuous processes.

(ii) A process X : [0,∞)×Ω → Rd which is measurable with respect to P is called
a predictable process.

Definition 2.11 (Optional process). Let (Ω,F ,P,F) be a filtered probability space.

(i) The optional σ-algebra is the σ-algebra O generated on [0,∞) × Ω by all
adapted càdlàg processes.

(ii) A process X : [0,∞)×Ω → Rd which is measurable with respect to O is called
optional process.

Note that even though every adapted process with left continuous sample paths is
a predictable process there exists predictable processes which are not left continuous
(see Chapter 2.4 of [4]).

2.3. Lèvy processes. Next we are going to define one of the key assumptions of our
main result, which is a general class of stochastic processes called Lévy processes.

Definition 2.12 (Lévy process). A process X = (Xt)t≥0 with Xt : Ω → Rd defined on
a probability space (Ω,F ,P) is said to be a Lèvy process if it possesses the following
properties:

(i) The paths of X are P-almost surely right-continuous with left limits.
(ii) P(X0 = 0) = 1.
(iii) For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.
(iv) For 0 ≤ s ≤ t, Xt −Xs is independent of σ{Xu : u ≤ s}.

In the above definition conditions (iii) and (iv) imply the stationary and the in-
dependent increments properties, respectively. Stationary increments means that the
distribution of any increments Xt −Xs depends only on the lenght t− s. For exam-
ple for the Poisson process defined in Definition 2.14 the probability distribution of
increment Xt −Xs is a Poisson distribution with expected value µ(t − s). Indepen-
dency of increments implies that increments of a Lèvy process are always independent
whenever their time interval does not overlap.

The most popular and useful examples of the Lévy processes are the so called
Brownian motion and the Poisson process which are defined below.

Definition 2.13 (Brownian Motion). A Rd-valued process B = (Bt)t≥0 defined on
a probability space (Ω,F ,P) is said to be a d-dimensional Brownian motion if the
following holds:

(i) The paths of B are P-almost surely continuous.
(ii) P(B0 = 0) = 1.
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(iii) For 0 ≤ s ≤ t, Bt −Bs is equal in distribution to Bt−s.
(iv) For 0 ≤ s ≤ t, Bt −Bs is independent of σ{Bu, u ≤ s}.
(v) For each t > 0, Bt is equal in distribution to a normal random variable with

a covariance matrix A and mean vector 0.

Definition 2.14 (Poisson process). A process valued on the non-negative integers N =
(Nt)t≥0, defined on a probability space (Ω,F ,P), is said to be a Poisson process with
intensity µ > 0 if the following holds:

(i) The paths of N are P-almost surely right-continuous with left limits.
(ii) P(N0 = 0) = 1.
(iii) For 0 ≤ s ≤ t, Nt −Ns is equal in distribution to Nt−s.
(iv) For 0 ≤ s ≤ t, Nt −Ns is independent of σ{Nu, u ≤ s}.
(v) For each t > 0, Nt is equal in distribution to a Poisson random variable with

parameter µt.

Despite Brownian motion and Poisson process are both Lévy processes they have
a lot of differences. For example Brownian motion has continuous paths whereas
the Poisson process does not. On the other hand the Poisson process has the finite
variation property as we find out later, whereas the total variation (see Definition
2.32) of paths of the Brownian motion is almost surely infinite.

We give one more example of Lévy processes called a compound Poisson process
that is a natural extension of the Poisson process, where the jump size Yi is random
instead of constant 1.

Definition 2.15 (Compound Poisson process). Suppose that (Yi)i≥1 is a an i.i.d. se-
quence of random variables with values in Rd and N = (Nt)t≥0 is Poisson process
with intensity µ > 0, independent of (Yi)i≥1. Then the process X = (Xt)t≥0 defined
by

Xt =
Nt∑
i=1

Yi,

for each t ≥ 0, is said to be a compound Poisson process with intensity µ > 0.

Poisson processes can indeed be seen as compound Poisson process on R with jump
size Yi ≡ 1. It is not obvious that compound Poisson processes are Lévy processes.
The proof can be found for example in Section 3.2 of [4]. In addition, there exists
plenty of other Lévy processes for example hyberbolic Lévy processes and Variance
Gamma Lévy processes (see Section 4 of [5]).

Definition 2.16. We define the compensated Poisson process Ñ = (Ñt)t≥0, where each

Ñt = Nt − µt and N is a Poisson process with intensity µ.

Lemma 2.17. Let Ñ be a compensated Poisson process. Then,

E[Ñt] = 0 and Var[Ñt] = µt,

for each t ≥ 0.
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Proof. By (v) of Definition 2.14 for each t > 0, the random variable Nt is Poisson
distributed with parameter µt. Thus

E[Ñt] = E[Nt − µt]

= E[Nt]− µt

= µt− µt

= 0.

By using the moment generating function MN(θ) = eµt(e
θ−1) of the Poisson distri-

bution with parameter µt we get

E[N2
t ] =

∂2MN(θ)

∂θ2

∣∣∣∣
θ=0

= µteθ+µt(eθ−1) + (µt)2e2θ+µt(eθ−1)
∣∣∣
θ=0

= µt+ (µt)2.

By using the above result and the previously calculated expectation E[Ñt] = 0 we
obtain that

Var(Ñt) = E[Ñ2
t ]− E[Ñt]

2

= E[(Nt − µt)2]

= E[N2
t ]− 2µtE[Nt] + (µt)2

= µt+ (µt)2 − 2(µt)2 + (µt)2

= µt.

□

Proposition 2.18. The compensated Poisson process Ñt is a martingale with respect

to the filtration Fs = σ{Ñu : u ≤ s}.

Proof. By definition Ñt is F-adapted and E[|Ñt|] ≤ ENt + µt < ∞. To conclude the

martingale property of Ñ we obtain that linearity of the conditional expectation gives
us

E
[
Ñt|Fs

]
= E

[
Ñt − Ñs + Ñs|Fs

]
= E

[
Ñt − Ñs|Fs

]
+ E

[
Ñs|Fs

]
= E [Nt − µt−Ns + µs|Fs] + E

[
Ñs|Fs

]
= E [Nt −Ns|Fs]− E [µ(t− s)|Fs] + E

[
Ñs|Fs

]
a.s.

By definition we have that Ñs is measurable with respect to Fs and therefore by (v)
of the Proposition 2.3

E
[
Ñs|Fs

]
= Ñs a.s.
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Moreover by (iv) of Definition 2.14 Nt−Ns is independent of Fs and by (ix) of the
Proposition 2.3 and (iii) of Definition 2.14 it holds that

E [Nt −Ns|Fs] = E [Nt −Ns]

= E [Nt−s]

= µ(t− s) a.s.

Finally, by the above equations we obtain that

E
[
Ñt|Fs

]
= µ(t− s)− µ(t− s) + Ñs

= Ñs a.s.

and therefore Ñs is a martingale with respect to the filtration Fs. □

Next we introduce a couple of general properties of Lévy processes.

Proposition 2.19. Let X and Y be two independent Lévy processes. Then the sum
X + Y = (Xt + Yt)t≥0 is again a Lévy process.

Proof. (i) Since the paths of the processes X and Y are P-almost surely right-
continuous with the left limits then the paths of X + Y are clearly P-almost
surely right-continuous with left limits.

(ii) By using independency of X and Y we get

P(X0 + Y0 = 0) = P(X0 = 0, Y0 = 0)

= P(X0 = 0)P(Y0 = 0)

= 1

(iii) By (iii) of Definition 2.12 we obtain that for 0 ≤ s ≤ t,

Xt + Yt − (Xs + Ys) = Xt −Xs + Yt − Ys

d
= Xt−s + Yt−s

Therefore the process Xt + Yt − (Xs + Ys) is equal in distribution to Xt−s +
Yt−s.

(iv) A proof for the last condition can be found in Chapter 1 of [8].
□

Note that if we replace X + Y by the process

X =

(
n∑

i=1

X
(i)
t

)
t≥0

where the X(i) = (X
(i)
t )t≥0 are independent Lévy processes, it is possible to conclude

that actually sum of any finite number of independent Lévy processes is also Lévy
process.

Definition 2.20. Let ξ be a random variable taking values in Rd with law µξ. We
say that ξ is infinitely divisible if, for all n ∈ N, there exists i.i.d. random variables
Y (1,n), Y (2,n), . . . , Y (n,n) such that

ξ
d
= Y (1,n) + · · ·+ Y (n,n).
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Proposition 2.21. If X is a Lévy process, then Xt is infinitely divisible for each t ≥ 0.

Proof. For each n ∈ N we can write

X t
n
= X kt−kt+t

n

d
= X kt

n
−X (k−1)t

n

= Y
(k,n)
t ,

Y
(k,n)
t are i.i.d by (ii) of Definition 2.12. Therefore we can express Xt by using Y (k,n)

such that

Xt = X t−tn−t
n

= X t
n
−X t(n−1)

n

= Y
(1,n)
t + · · ·+ Y

(n,n)
t ,

and thus for the Lévy process X each Xt is infinitely divisible for each t ≥ 0. □

2.4. Poisson random measure. The Poisson random measure will later be our way
to describe the jump structure of Lévy processes. First we define a general class of
measures called random measures and then use this to define Poisson random measure.

Definition 2.22 (Random measure). Let (E, E) be a measurable space and (Ω,F ,P)
be a probability space. A random measure M on (E, E) is a collection of random
variables {M(A), A ∈ E} such that

(i) M(∅) = 0.
(ii) Given any sequence (An)

∞
n=1 of mutually disjoint sets in E

M

(⋃
n∈N

An

)
=
∑
n∈N

M(An),

almost surely.
(iii) For each disjoint family (A1, . . . , An) in E , the random variables

M(A1), . . . ,M(An) are independent.

Definition 2.23 (Poisson random measure). Let (E, E , µ) be a µ-σ-finite measure
space and (Ω,F ,P) be a probability space. A random measure N is said to be a
Poisson random measure on (E, E , µ),with σ-finite measure µ if for each measurable
set A ⊂ E, with finite intensity measure µ(A) < ∞ it holds that N(A) is a Poisson
random variable with parameter µ(A). In other words for all k ∈ N it holds

P(N(A) = k) = e−µ(A) (µ(A))
k

k!
.

Let A be such that µ(A) < ∞. We define the compensated Poisson random measure
by setting

Ñ(A) = N(A)− µ(A).

It is important to notice that Poisson random measures really exist, which is de-
duced in the following theorem. The construction itself is irrelevant in our case and
can be found in section 2.6.1 of [4].
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Theorem 2.24 (Existence of the Poisson random measure). Let µ be a σ-finite measure
on a measurable space (E, E). Then there exists a Poisson random measure N on a
probability space (Ω,F ,P) such that µ(A) = E[N(A)] for all A ∈ E.

Lemma 2.25. Let N be a Poisson random measure and Ñ a compensated Poisson
random measure. For disjoint compact sets A1, . . . , An ∈ E, the variables

Ñ(A1), . . . Ñ(An) are independent and verify

E[Ñ(Ai)] = 0, Var[Ñ(Ai)] = µ(Ai).

Proof. Similar to the proof of Lemma 2.17. □

Definition 2.26 (Jump measure of a Lévy process). Assume that X = (Xt)t≥0 is a
Lévy process with values in Rd and A ∈ B(Rd). Then we can define a Jump measure
of X by setting

JX(ω, .) =

∆Xt(ω)̸=0∑
t≥0

δ(t,∆Xt(ω)),

where δ(t,∆Xt) is a Dirac measure. Moreover for A it holds that

JX([0, t]× A) := #{(s,Xs −Xs−) ∈ [0, t]× A}.

Thus for every A ∈ B(Rd), the jump measure JX([t1, t2]×A) counts the number of
jump times of the càdlàg process X between t1 and t2 such that their jump sizes are
in A. Note that it is possible to derive the jump measure explicitly for certain Lévy
processes.

Example 2.27 (Jump measure of a Poisson process). One can see that the jump
measure of a Poisson process N is given by

JN(ω, .) =

∆Nt ̸=0∑
t≥0

δ(t,∆Nt) =
∑
n≥1

δ(Tn,1),

where T = (Tn)n≥1 is a sequence of adapted random times that describes the jump
times of a Poisson process N and jump-sizes are always 1. Thus for measurable
A ⊂ Rd it holds that

JN([0, t)× A) =

{
#{i ≥ 1, Ti ∈ [0, t]}, if 1 ∈ A

0, if 1 ̸∈ A.

Next we define a measure that counts the average number of jumps of a Lévy
process, called Lévy measure.

Definition 2.28 (Lévy measure). Let X be a Lévy process on Rd and A ∈ B(Rd) such
that 0 ̸∈ A. The measure ν on Rd defined by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt ̸= 0,∆Xt ∈ A}],
is called the Lévy measure of the process X. Therefore ν(A) is the expected number,
per unit time, of jumps whose size belongs to A.

Definition 2.29. A Lévy process X ∈ Rd is of infinite activity, if there are infinite
number of jumps on any finite time interval i.e. ν(Rd) = ∞, where ν is a Lévy
measure of X.
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Next we introduce two essential theorems associated to Lévy processes called Lévy-
Khinchin formula and Lévy-Itô decomposition. First we are going to give a character-
ization for the characteristic function of a Lévy process called Lévy-Khinchin formula.

Theorem 2.30 (Lévy-Khinchin formula). Let X be a Lévy process on Rd. If there
exists a vector γ ∈ Rd, a positive definite symmetric d × d-matrix A and a Lévy
measure ν on Rd\{0} given by Definition 2.28 such that∫

|x|≤1

|x|2 ν(dx) < ∞ and

∫
|x|≥1

ν(dx) < ∞.

Then the characteristic function of the process X can be written in form

ϕXt(u) = E
[
ei⟨u,Xt⟩

]
= exp

t

i⟨γ, u⟩ − 1

2
⟨u,Au⟩+

∫
Rd\{0}

[
ei⟨u,x⟩ − 1− i⟨u, x⟩,1{|x|≤1}

]
ν(dx)


 ,

for all u ∈ Rd .

Proof. See Section 3.4 [4]. □

Theorem 2.31 (Lévy-Itô decomposition). Let X be a Lévy process on Rd and ν its
Lévy measure concentrated on Rd\{0} given by Definition 2.28 such that∫

|x|≤1

|x|2 ν(dx) < ∞ and

∫
|x|≥1

ν(dx) < ∞

and let the jump measure of the process X be denoted by JX be a Poisson random
measure on [0,∞) × Rd with intensity measure ν(dx)dt. Then there exists a vector
γ ∈ Rd and a d-dimensional Brownian motion B with a covariance matrix A such
that

Xt = γt+Bt +

∫∫
|x|≥1,s∈[0,t]

x JX(ds× dx) + lim
ϵ↓0

∫∫
ϵ≤|x|<1,s∈[0,t]

x J̃X(ds× dx).

Note that terms in the previous equation are independent and the convergence in the
last term is almost sure and uniform on [0,∞).

Proof. See Section 2.4 of [1]. □

We called the triplet (A, ν, γ) from the Theorem 2.30 and 2.31 the Lévy triplet of
the process X, where A is positive definite matrix, ν a measure and γ a vector. The
drift terms γ and covariance matrix A from Lèvy triplet defines a Brownian motion
with drift γt+Bt, which is a continuous part of the above decomposition.

The meaning of the other two terms of the Lévy-Itô decomposition described by
the Lévy measure ν is describe the jumps of the Lévy process X. The condition
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|x|≥1

ν(dx) < ∞ implies that every Lévy process has finite number of ”large” jumps.

By [4] every compound Poisson process can be written as

(2.1) Xt =

∫∫
[0,t]×Rd

x JX(ds× dx),

and therefore the term ∫∫
|x|≥1,s∈[0,t]

x JX(ds× dx)

is a compound Poisson process. Similary the last term∫∫
ϵ≤|x|<1,s∈[0,t]

x J̃X(ds× dx)

describe the ”small” jumps of the Lèvy process X and is as well a compound Poisson
process. However in this case there can be infinitely many jumps and their sum not
necessarily convergence. Hence we fix this by using the compensated version J̃X of
the jump measure JX in the sense of the Definition 2.23.

2.5. The processes of finite variation. Next we are going to introduce a class of
functions and a class of processes defined by their variation.

Definition 2.32. (i) The total variation of a function f : [a, b] → Rd is defined by

VP(f) = sup

{
n∑

i=1

|f(ti)− f(ti−1)|

}
,

where the supremum is taken over all finite partitions P = {a = t0 < t1 <
· · · < tn−1 < tn = b} of the interval [a, b].

(ii) A stochastic process X is said to be of finite variation if the paths X(ω) :
[0,∞) → Rd are of finite variation for almost all ω ∈ Ω on finite interval [a, b].

Functions of finite variation have lot of useful applications in stochastics and anal-
ysis for example in integration. The following two theorems give us a examples of
processes with finite variation.

Theorem 2.33. We define a subordinator T = (Tt)t≥0 to be a one-dimensional Lévy
process that is non-decreasing almost surely. Then every subordinator is of finite
variation.

Proof. Let T be a subordinator defined on fixed interval [a, b] and P = {a = t0 <
t1 < · · · < tn−1 < tn = b} a finite partition of [a, b]. The total variation of the paths
T (ω) : [0,∞) → Rd on [a, b] is

VP(Tt(ω)) =
n∑

j=1

|Ttj − Ttj−1
|

=
n∑

j=1

Ttj − Ttj−1

= Ttn − Tt0

≤ Tb

< ∞.
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Therefore every subordinator is of finite variation. □

Theorem 2.34. A continuous martingale is of finite variation if and only if it is
constant almost surely.

Proof. See Chapter 4 of [11]. □

Proposition 2.35. A necessary and sufficient condition for a Lévy process to be of
finite variation is that there is no Brownian part i.e A = 0 in the Lévy-Khinchine
formula and that

∫
|x|≤1

|x| ν(dx) < ∞.

Proof. See Section 3.5 of [4] □

The finite variation assumption simplify the behavior of Lévy processes. Thus we
can cut out the continuous Brownian motion part in Lévy-Itô decomposition and
Lévy-Khintchin formula that are presented in the case of general Lévy processes in
previous section. Moreover the term

∫∫
ϵ≤|x|<1,s∈[0,t] x J̃X(ds×dx) in Theorem 2.31 that

describes the small jumps of the original Lévy process is not anymore needed since
sum of them might have been infinity and thus does not satisfy the finite variation
assumption.

Corollary 2.36 (Lévy-Itô decomposition and Lévy-Khinchin representation in the
finite-variation case). Let X be a Lévy process of finite variation thus its Lévy triple
is now given by (0, ν, γ), where ν is a Lévy measure of process X, γ ∈ Rd and the
covariance matrix of Brownian motion is A = 0. Then X can be expressed as the
sum of its jumps between 0 and t and linear drift term γt by

Xt = γt+

∫∫
[0,t]×Rd

x JX(ds× dx),

and its characteristic function can be expressed as

E
[
ei⟨u,Xt⟩

]
= exp

(
t

{
i⟨γ, u⟩+

∫
Rd

(ei⟨u,x⟩ − 1− i⟨u, x⟩1{|x|≤1}) ν(dx)

})
,

for all u ∈ Rd.

Theorem 2.37. Let X be a Lévy process of finite variation. Then it can be written as
the difference of two independent subordinators.

Proof. A Lévy process of finite variation can be written and decomposed in the form

Xt = γt+

∫∫
[0,t]×R

x JX(ds× dx)

=

{
(γ ∨ 0)t+

∫∫
[0,t]×(0,∞)

x JX(ds× dx)

}
−
{
|γ ∧ 0|t+

∫∫
[0,t]×(−∞,0)

|x| JX(ds× dx)

}
= X

(1)
t −X

(2)
t ,
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where t ≥ 0, γ is the drift coefficent and JX is the jump measure. Both integrals are
finite (see Section 2.3 of [8]) and since X is of finite variation by Proposition 2.35 we
obtain that ∫

(0,∞)

(1 ∧ x) ν(dx) < ∞ and

∫
(−∞,0)

(1 ∧ |x|) ν(x) < ∞.

As JX has independent counts on disjoint domains (see Section 2 of [8]), it follows

that the integrals in X
(1)
t and X

(2)
t are independent. Finally by obtaining that the

processes

X
(1)
t = (γ ∨ 0)t+

∫∫
[0,t]×(0,∞)

x JX(ds× dx),

and

X
(2)
t = |γ ∧ 0|t+

∫∫
[0,t]×(−∞,0)

|x| JX(ds× dx),

have monotone paths, the desired result follows. □

More properties of the finite variation functions are later introduced in Section 5.2.

2.6. Modification of a process. There are multiple approaches to the concept of equal-
ity of stochastic processes.

Definition 2.38. For 0 ≤ t1 < · · · < tn the distribution of Xt1 , . . . Xtn is a finite-
dimensional distribution of a process (Xt)t≥0. If for the processes X and Y all finite-
dimensional distributions conincide, they have the same distribution.

Definition 2.39. Let X and Y be two stochastic processes defined on the same
probability space (Ω,F ,P). The process Y is said to be a modifications of X if
P(Xt = Yt) = 1, for each t ≥ 0. Two processes X and Y are indistinguishable if
P(Xt = Yt, t ≥ 0) = 1.

Note that if the process X is a modification of Y then their has the same finite-
dimensional distributions. Moreover indistinguishable processes are also modification
of each other. Next theorem gives us another relation between modification and
indistinguishable process.

Theorem 2.40. Let X and Y be two stochastic processes, such that X is a modification
of Y . If X and Y have right continuous paths almost surely, then X and Y are
indistinguishable.

Proof. Let A and B be two null sets where X and Y are not right-continuous re-
spectively. Let Nt = {ω : Xt(ω) ̸= Yt(ω)}, and N =

⋃
t∈Q∩[0,∞) Nt. We define a set

M = A ∪B ∪N and it follows that P(M) ≤ P(A) + P(B) + P(N) = 0.
Assume t ≥ 0 and let (tn)

∞
n=1 be a sequence such that tn decreases to t through Q.

Since X and Y are modifications, it holds for all ω ̸∈ M that

Xtn(ω) = Ytn(ω).
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Therefore also for all irrationals we have

Xt(ω) = lim
n→∞

Xtn(ω) = lim
n→∞

Ytn(ω) = Yt(ω).

Since P(M) = 0, the processes X and Y are indistinguishable. □

3. Stochastic integration

3.1. H2-space. In this section our aim is to define the stochastic integral for T ≥ 0
fixed denoted by

IT (F ) =

∫ T

0

∫
E

F (t, x)M(dt× dx).

We start our construction by defining the measure M , which we are going to use as
a integrator.

Definition 3.1. Let M be a random measure on [0,∞] × E, where E is a topolog-
ical space and let B(E) be a Borel σ-algebra of E. For each A ∈ B(E), we de-
fine a process MA = (MA

t )t≥0 by setting MA
t = M([0, t] × A). We say that M is

martingale-valued measure if there exist V ∈ B(E) such that MA is a martingale
whenever A ∩ V = ∅. Furthermore we will denote

M((s, t]× A) = M((0, t]× A)−M((0, s]× A),

where s < t.

Definition 3.2. A martingale-valued measure M is said to be type (2, ρ) if it satisfies
the following conditions

(i) M({0} × A) = 0 almost surely for all A ∈ B(E).
(ii) M((s, t]× A) is independent of Fs.
(iii) If E ∈ B(Rd) there exists a σ-finite measure ρ on [0,∞]× E for which

E[M((0, t]× A)2] = ρ((0, t]× A),

for all 0 ≤ s < t < ∞ and A ∈ B(E).

Definition 3.3. Let M be a (2, ρ)-type martingale-valued measure. For fixed T > 0,
we define H2(T,E) to be the linear space of all mappings F : [0, T ] × E × Ω −→ R
which coincide almost everywhere with respect to ρ×P and which satisfy the following
conditions:

(i) F is P ⊗ B(E)-measurable, where P is the predictable sigma-algebra in the
sense of Definition 2.10.

(ii) F is left-continuous.

(iii)
∫ T

0

∫
E
E[|F (t, x)|2 ρ(dt× dx) < ∞.

We may now also define the inner product on H2(T,E) by

⟨F,G⟩ =
∫∫

[0,T ]×E

E[F (t, x)G(t, x)] ρ(dt× dx),

for each F,G ∈ H2(T,E), and we obtain a norm || · ||T,ρ defined by
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(3.1) ||F ||2T,ρ =
∫∫

[0,T ]×E

E[|F (t, x)|2] ρ(dt× dx) = E
[∫∫

[0,T ]×E

|F (t, x)|2 ρ(dt× dx)

]
.

Note that the latter equality in the above equation is possible by the Fubini-Tonelli
theorem (see Theorem 4.9).

Definition 3.4. A process F : [0, T ] × E × Ω → R is simple if, for some m,n ∈ N,
there exists 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm+1 = T and disjoint Borel subsets A1, A2, . . . , An

of E with each µ(Ai) < ∞ such that

F =
m∑
j=1

n∑
k=1

ckFtj1((tj ,tj+1]×Ak) :=

m,n∑
j,k=1

F
(k)
tj 1((tj ,tj+1]×Ak).

In the above equation each ck ∈ R and each Ftj is a bounded Ftj -measurable random
variable. Moreover µ is some σ-finite measure on E. We also define S(T,E) to be
the linear space of all simple predictable processes.

We notice that H2(T,E) is a real Hilbert space (see Lemma 4.1.3 of [1]) and that
simple processes S(T,E) are dense in H2(T,E) (see Lemma 4.1.4 of [1]).

3.2. Construction of the stochastic integral. Similarly to the classical integral we
begin our construction for simple processes. Let F ∈ S(T,E), for which we can write

F =

m,n∑
j,k=1

F
(k)
tj 1(tj ,tj+1]×Ak).

We can then define the stochastic integral for the simple process F by setting

I[0,T ](F ) =

m,n∑
j,k=1

F
(k)
tj M((tj, tj+1]× Ak).

We deduce for I[0,T ] the following linearity and isometry properties.

Lemma 3.5. Let F,G ∈ S(T,E) and α, β ∈ R then

(i) αF + βG ∈ S(T,E) and

I[0,T ](αF + βG) = αI[0,T ](F ) + βI[0,T ](G).

(ii) For each T ≥ 0,

E[I[0,T ](F )] = 0, E
[
I[0,T ](F )2

]
=

∫∫
[0,T ]×E

E[|F (t, x)|2] ρ(dt× dx).

Proof. (i) Nevertheless F might have different tj and Ak than G, by taking
intersection we can always find them such that the following holds. For
F,G ∈ S(T,E), there exist 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm+1 = T and disjoint
Borel subsets A1, A2, . . . , An of E with each µ(Ai) < ∞ such that

F =

m,n∑
j,k=1

F
(k)
tj 1(tj ,tj+1]×Ak

and G =

m,n∑
j,k=1

G
(k)
tj 1(tj ,tj+1]×Ak

.
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Thus

αF + βG = α

m,n∑
j,k=1

[
F

(k)
tj 1(tj ,tj+1]×Ak

]
+ β

m,n∑
j,k=1

[
G

(k)
tj 1(tj ,tj+1]×Ak

]
=

m,n∑
j,k=1

[
αF

(k)
tj 1(tj ,tj+1]×Ak

+ βG
(k)
tj 1(tj ,tj+1]×Ak

]
=

m,n∑
j,k=1

[
(αF

(k)
tj + βG

(k)
tj )1(tj ,tj+1]×Ak

]
=

m,n∑
j,k=1

[
(αF + βG)

(k)
tj 1(tj ,tj+1]×Ak

]
,

and therefore αF + βG ∈ S(T,E). Furthermore we can see that

I[0,T ](αF + βG) =

m,n∑
j,k=1

[
(αF + βG)

(k)
tj M((tj, tj+1]× Ak)

]
=

m,n∑
j,k=1

[
αF

(k)
tj M((tj, tj+1]× Ak) + βG

(k)
tj M((tj, tj+1]× Ak)

]
= α

m,n∑
j,k=1

[
F

(k)
tj M((tj, tj+1]× Ak)

]
+ β

m,n∑
j,k=1

[
G

(k)
tj M((tj, tj+1]× Ak)

]
= αI[0,T ](F ) + βI[0,T ](G).

(ii) Note that for each time interval [tj, tj+1] the process F
(k)
tj is Ftj -adapted. By

linearity of the expectation and (vi) of Proposition 2.3 we have

E[I[0,T ](F )] = E

[
m,n∑
j,k=1

F
(k)
tj M((tj, tj+1]× Ak)

]

=

m,n∑
j,k=1

E
[
F

(k)
tj M((tj, tj+1]× Ak)

]
=

m,n∑
j,k=1

E
[
E
[
F

(k)
tj M((tj, tj+1]× Ak)|Ftj

]]
.

Since for the each time interval [tj, tj+1] the process F
(k)
tj is Ftj -measurable

and M((tj, tj+1]×Ak) is independent of Ftj by (ii) of Definition 3.2, we obtain
by (vii) and (ix) of Proposition 2.3 that

E[I[0,T ](F )] =

m,n∑
j,k=1

E[F (k)
tj ]E [M((tj, tj+1]× Ak)] .

Furthermore by the martingale property, for each 1 ≤ j ≤ m and 1 ≤ k ≤ n,
we have
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E[M((tj, tj+1]× Ak)] = E[M((0, tj+1]× Ak)]− E[M((0, tj]× Ak)]

= E[E[M((0, tj+1]× Ak)|Ftj ]]− E[M((0, tj]× Ak)]

= E[M((0, tj]× Ak)]− E[M((0, tj]× Ak)]

= 0

(3.2)

and therefore it follows that

(3.3) E[I[0,T ](F )] = 0.

By linearity of the expectation again and splitting the sum into three pieces
we find that

E[IT (F )2] =

m,n∑
j,k=1

m,n∑
l,p=1

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ap)
]

=

m,n∑
j,k=1

n∑
l,p=1

∑
l<p

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ap)
]

+

m,n∑
j,k=1

n∑
p=1

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ap)
]

+

m,n∑
j,k=1

n∑
l,p=1

∑
l>p

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ap)
]

We can apply similar procedure as in case of E[I[0,T ](F )] to each of the
three term above. First we note that when l < j we have that M((tj, tj+1]×
Ak) is independent of Ftj by (ii) of Definition 3.2. Moreover F

(k)
tj , F

(p)
tl

and

M((tl, tl+1]×Ap) are Ftj -measurable. Hence by (vi), (iiv) and (ix) of Propo-
sition 2.3

m,n∑
j,k=1

n∑
l,p=1

∑
l<p

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ak)
]

=

m,n∑
j,k=1

n∑
l,p=1

∑
l<p

EE
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tl

M((tl, tl+1]× Ak)|Ftj

]
=

m,n∑
j,k=1

n∑
l,p=1

∑
l<p

E
[
F

(k)
tj M((tl, tl+1]× Ak)F

(p)
tl

]
E [M((tj, tj+1]× Ak)]

= 0,

where the last equality holds by Equation (3.2). Note that similar argument
holds in the case l > j.

In the last case where l = j it holds thatM((tj, tj+1], Ak) andM((tj, tj+1], Ap)

are independent of Ftj by (ii) of Definition 3.2. Moreover since F
(k)
tj and F

(p)
tj

are Ftj -measurable we have again by (vi), (vii) and (ix) of Proposition 2.3
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that
m,n∑
j,k=1

n∑
p=1

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tj M((tj, tj+1]× Ap)

]
=

m,n∑
j,k=1

n∑
p=1

EE
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tj M((tj, tj+1]× Ap)|Ftj

]
=

m,n∑
j,k=1

n∑
p=1

E
[
F

(k)
tj F

(p)
tj

]
E [M((tj, tj+1]× Ak)M((tj, tj+1]× Ap)] .

We can split the sum into two pieces where k = p and k ̸= p. Hence by (iii)
of Definition 2.22 and Equation (3.3) we obtain that

m,n∑
j,k=1

n∑
p=1

E
[
F

(k)
tj M((tj, tj+1]× Ak)F

(p)
tj M((tj, tj+1]× Ap)

]
=

m,n∑
j,k=1

∑
k=p

E
[
F

(k)
tj F

(p)
tj

]
E [M((tj, tj+1]× Ak)M((tj, tj+1]× Ak)]

+

m,n∑
j,k=1

∑
k ̸=p

E
[
F

(k)
tj M(tj, tj+1]× Ak

]
E
[
F

(p)
tj M((tj, tj+1]× Ap)

]
=

m,n∑
j,k=1

E
[(

F
(k)
tj

)2]
E
[
M((tj, tj+1]× Ak)

2
]
.

By (iii) of Definition 3.2 there exists a σ-finite measure ρ on [0, t] × E for
which

E
[
M((0, tj+1]× Ak)

2
]
= ρ((0, tj+1]× Ak).

Therefore by the martingale property and the above equation we obtain that
m,n∑
j,k=1

E
[(

F
(k)
tj

)2]
E
[
M((tj, tj+1]× Ak)

2
]

=

m,n∑
j,k=1

E
[(

F
(k)
tj

)2] (
E
[
M((0, tj+1]× Ak)

2
]
− E

[
M((0, tj]× Ak)

2
])

=

m,n∑
j,k=1

E
[(

F
(k)
tj

)2]
(ρ((0, tj+1]× Ak)− ρ((0, tj]× Ak))

=

m,n∑
j,k=1

E
[(

F
(k)
tj

)2]
ρ((tj, tj+1]× Ak).

Since the sums in cases l < j and l > j were 0 we conclude that

E
[
I[0,T ](F )2

]
=

n∑
j=1

E
[(

F
(k)
tj

)2
ρ((tj, tj+1]× Ak

]
=

∫∫
[0,T ]×E

E[|F (t, x)|2] ρ(dt× dx),

which is the desired result.
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□

Theorem 3.6. I[0,T ] is a linear isometry from S(T,E) into L2(Ω,F ,P), and it extends
to an isometric embedding of the whole of H2(T,E) into L2(Ω,F ,P).

Proof. By (i) of Lemma 3.5 the integral I[0,T ] is linear for simple processes F ∈ S(T,E)
and by (ii) of Lemma 3.5 and Equation (3.1)

||I[0,T ](F )||22 = E[|I[0,T ](F )|2] =
∫∫

[0,T ]×E

E[|F (t, x)|2] ρ(dt× dx) = ||F ||2T,ρ.

Therefore I[0,T ] is a linear isometry from S(T,E) into L2(Ω,F ,P).
Moreover the space S(T,E) is dense inH2(T,E) and therefore for any F ∈ H2(T,E)

we can find a sequence (Fn)
∞
n=1 ∈ S(T,E) such that

(3.4) lim
n→∞

||Fn − F ||T,ρ = lim
n→∞

E
[∫∫

[0,T ]×E

|Fn(t, x)− F (t, x)| ρ(dt× dx)

]
= 0.

Hence by isometry formula of Lemma 3.5 and Equation (3.4) it holds that

lim
n→∞

E[|I[0,T ](Fn)− I[0,T ](Fm))|2] = lim
n→∞

E[|I[0,T ](Fn − Fm)|2]

= lim
n→∞

∫∫
[0,T ]×E

E[|Fn(t, x)− Fm(t, x)|2] ρ(dt× dx)

= 0.

Therefore we define I[0,T ](F ) as limit in L2(P) of I[0,T ](Fn). Furthermore I[0,T ] extends
to an isometric embedding of the whole of H2(T,E) into L2(Ω,F ,P). □

Definition 3.7. We called extension I[0,T ](F ) in Theorem 3.6 the stochastic integral of
a process F ∈ H2(T,E) and denote

I[0,T ](F ) =

∫∫
[0,T ]×E

F (t, x)M(dt× dx).

By Theorem 3.6 we have also the following equality

||IT (F )||22 = E[|IT (F )|2] = ||F ||2T,ρ,
for all F ∈ H2(T,E) called Ito’s isometry.

Finally we can define the stochastic integral for more general sets by replacing a
set [0, T ]×E by (a, b)×A, where 0 ≤ a ≤ b ≤ T and A ∈ B(E). If F ∈ H2(T,E) we
can see that F1(a,b)×A ∈ H2(T,E) and we may define

I(a,b)×A(F ) = I[0,T ](F1(a,b)×A) =

∫∫
[a,b]×A

F (t, x)M(dt× dx) = IT (F1(a,b)×A).

We will also write I(a,b) = I(a,b)×E. Note that if ||F ||t,ρ < ∞ for all t ≥ 0 the integral
I(F ) = (It(F ))t≥0 itself is a stochastic process. The following theorem contains some
of the basic properties of stochastic integral.

Theorem 3.8. If F,G ∈ H2(T,E) and α, β ∈ R then:
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(i) I[0,T ](αF + βG) = αI[0,T ](F ) + βI[0,T ](G).
(ii) E[I[0,T ](F )] = 0 and E[I[0,T ](F )2] =

∫∫
[0,T ]×E

E[|F (t, x)|2] ρ(dt× dx).

(iii) It(F ) is Ft-adapted.
(iv) It(F ) is a square-integrable martingale.

Proof. See Section 4.2 of [1]. □

3.3. Poisson stochastic integrals. Previous construction of stochastic integration al-
lows us to integrate with respect to various different integrators. One of the most
common case is when we have Poisson random measure N introduced in Chapter 2.4.
Until we can properly define the stochastic integral with respect to Poisson random
measure we have to extend the set of mapping H2(T,E) to more general case.

Similarly to H2(T,E) we assume that P2(T,E) includes all mappings F : [0, T ] ×
E × Ω → R which coincide almost everywhere with respect to the ρ × P and which
satisfies the following condition.

(i) F is predictable.

(ii) P
(∫ T

0

∫
E
|F (t, x)|2 ρ(dt× dx) < ∞

)
= 1.

Note that indeed the only difference to definition of H2(T,E) is the condition (ii).
Now by using previous construction one can derive (see section 4.2.2 of [1]) the

extended stochastic integral denoted by Î[0,T ](F ) = (Ît(F ))t≥0, where

Î[0,T ](F ) =

∫ T

0

∫
E

F (t, x)M(dt× dx).

The above integral is the limit of the sequence that satisfy the following equation∫ T

0

∫
E

F (t, x)M(dt× dx) = lim
n→∞

∫ T

0

∫
E

Fn(t, x)M(dt× dx),

in probability. Furthermore we consider Î[0,T ] as a process for all t ≥ 0 that provided
the condition

P
(∫ t

0

∫
E

|F (t, x)|2 ρ(dt× dx) < ∞
)

= 1.

Assume next N to be a Poisson random measure on [0, T ] × E with intensity
ρ(dt× dx). Then by [1] for any predictable random function F : [0, T ]×E×Ω −→ R
verifying

P
(∫ t

0

∫
E

|F (t, x)|2 µ(dt× dx) < ∞
)

= 1.

we can define a stochastic integral, where integrator is Poisson random measure by
setting

I[0,T ] =

∫∫
[0,T ]×E

F (t, x)M(dt× dx) =

n,m∑
j,k=1

Fk(tj)N((tj, tj+1]× Ak).

Similarly the compensated integral is defined by

I[0,T ] =

∫∫
[0,T ]×E

F (t, x)Ñ(dt× dx) =

n,m∑
j,k

Fk(tj)N((tj, tj+1]× Ak)− ρ((tj, tj+1]× Ak).
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There exists a special case later where the integrator of Poisson stochastic integral
is jump measure JX defined in Section 2.4. We deduce earlier that for Lévy processes
X with Lévy measure ν the JX is a Poisson random measure with intensity ν(dx)dt.
Then for predictable random function F ∈ P(T,E) the stochastic Poisson integral
with respect to jump measure JX can be written as a sum of terms involving jump
times and jump sizes of X. By using properties of Dirac measure δ(t,∆St) it holds that

∫∫
[0,T ]×Rd

F (s, x) JX(ds× dx) =

∫∫
[0,T ]×Rd

F (s, x)

∆Xt ̸=0∑
t∈[0,T ]

δ(t,∆St)

=

∆Xt ̸=0∑
t∈[0,T ]

∫∫
[0,T ]×Rd

F (s, x) δ(t,∆St)

=

∆Xt ̸=0∑
t∈[0,T ]

F (t,∆Xt).

(3.5)

3.4. Itô’s formula. Next we will introduce one of the change of the variable formula
called Itô formula which is in key position in our aim to prove the the main result
of the thesis. Note that similar Itô formulas can be formulated also in much more
general form, for example for Lévy processes without finite variation assumption (see
Theorem 4.3 of [8]).

Theorem 3.9. Assume that X is a Lévy process of finite variation when by Lèvy-Itô-
decomposition from Corollary 2.36 the process X can be represented (in case d = 1)
as

Xt = γt+

∫
[0,t]×R

x JX(ds× dx)

where γ ∈ R is drift coefficient and JX is a Jump measure of the process X in the sense
of Definition 2.26. Let C1,1([0,∞)×R) be the space of functions f : [0,∞)×R −→ R
which are continuously differentiable in each variable (in the case of the derivative in
the first variable at the origin a right derivative is understood). If f ∈ C1,1([0,∞)×R)
then

f(t,Xt) = f(0, X0) +

t∫
0

∂f

∂s
(s,Xs) ds+ γ

t∫
0

∂f

∂x
(s,Xs) ds

+

∫∫
[0,t]×R

(f(s,Xs− + x)− f(s,Xs−)) JX(ds× dx),

Proof. We define for all ϵ > 0, and t ≤ 0 a random variable

Xϵ
t = γt+

∫∫
[0,t]×{|x|≥ϵ}

x JX(ds× dx),

where by equation 2.1 the process Xϵ = (Xϵ)t≥0 is a compound Poisson process with
a drift term γt. By properties of Levy measure, ν(R\(−ϵ, ϵ)) < ∞ and it follows that
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JX counts an almost surely finite numbers of jumps over [0, t]×{R\(−ϵ, ϵ)}. Suppose
that the sequence (Ti, Yi)

N
i=1 described jumps of the process X up to time t, where

N = JX([0, t]× {R\(−ϵ, ϵ)}) and T0 = 0. Then by using telescopic sum we get

f(t,Xϵ
t ) = f(t,Xϵ

t ) + f(0, Xϵ
0)− f(0, Xϵ

0) + f(XN , X
ϵ
TN

)− f(XN , X
ϵ
TN

)

= f(0, Xϵ
0) +

N∑
i=1

(f(Ti, X
ϵ
Ti
)− f(Ti−1, X

ϵ
Ti−1

)) + (f(t,Xϵ
t )− f(TN , X

ϵ
TN

).

Noting that Xϵ is piece-wise linear and function f is smooth we can now decompose
f(t,Xϵ

t ) by the following way

f(t,Xϵ
t ) = f(0, Xϵ

0) +
N∑
i=1

(f(Ti, X
ϵ
Ti
)− f(Ti−1, X

ϵ
Ti−1

)) + (f(t,Xϵ
t )− f(TN , X

ϵ
TN

))

= f(0, Xϵ
0)

+
N∑
i=1

(∫ Ti

Ti−1

[
∂f

∂s
(s,Xϵ

s) + γ
∂f

∂s
(s,Xϵ

s)

]
ds+ (f(Ti, X

ϵ
Ti− + Yi)− f(Ti, X

ϵ
Ti−))

)

+

∫ t

TN

[
∂f

∂s
(s,Xϵ

s) + γ
∂f

∂x
(s,Xϵ

s)

]
ds

= f(0, Xϵ
0) +

∫ t

0

[
∂f

∂s
(s,Xϵ

s) + γ
∂f

∂x
(s,Xϵ

s)

]
ds

+

∫∫
[0,t]×{R\{0}}

(f(s,Xϵ
s− + x)− f(x,Xϵ

s−))1(|x|≥ϵ) JX(ds× dx).

To complete the proof we have to consider limiting behaviour of the terms in above
decomposition as ϵ → ∞. By Theorem 2.37 every finite variation Lévy process may
be written by the difference of two subordinator. In that spirit let us decompose the

process X in two terms by Xt = X
(1)
t −X

(2)
t , where

X
(1)
t = (γ ∨ 0)t+

∫∫
[0,t]×[0,∞)

x JX(ds× dx), t ≥ 0,

and

X
(2)
t = |γ ∧ 0|t−

∫∫
[0,t]×(−∞,0)

x JX(ds× dx), t ≥ 0.

Therefore X(1) = (X
(1)
t )t≥0 and X(2) = (X

(2)
t )t≥0 are desired subordinators. Similarly

we can now define subordinators

X
(1,ϵ)
t = (γ ∨ 0)t+

∫∫
[0,t]×[ϵ,∞)

x JX(ds× dx), t ≥ 0,

and

X
(2,ϵ)
t = |γ ∧ 0|t+

∫∫
[0,t]×(−∞,ϵ)

x JX(ds× dx), t ≥ 0,
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such that Xϵ
t = X

(1,ϵ)
t −X

(2,ϵ)
t . Hence for each fixed t > 0 we have that X

(1,ϵ)
t ↑ X

(1)
t ,

X
(2,ϵ)
t ↑ X

(2)
t and by almost sure monotone convergence (see Theorem 4.1) it holds

that

lim
ϵ↓0

Xϵ
t = lim

ϵ↓0
[X

(1,ϵ)
t −X

(2,ϵ)
t ]

= X
(1)
t −X

(2)
t

= Xt,

almost surely. Note that in above equation we can replace [0, t] by [0, t) such that for
each fixed t > 0, we there exists a limit limϵ↓0X

ϵ
t− = Xt− almost surely.

Next we define a almost surely bounded random region B = {0 ≤ x ≤ |Xϵ
s| : s ≤

t and ϵ > 0} in R such that

B ⊂ {0 ≤ x ≤ X(1)
s : s ≤ t} ∪ {0 ≥ x ≥ −X(2)

s : s ≤ t}.

The latter two sets are almost surely bounded on account of right-continuity of paths

of X
(1)
s and X

(2)
s . Since we assumed that f ∈ C1,1([0,∞) × R) both ∂f

∂s
and ∂f

∂x
are

uniformly bounded on [0, t]×B, where B is the closure of a set B. Hence by dominated
convergence theorem (see Theorem 4.3) it holds that

lim
ϵ↓0

∫ t

0

∂f

∂s
(s,Xϵ

s) + γ
∂f

∂x
(s,Xϵ

s) ds =

∫ t

0

∂f

∂s
(s,Xs) + γ

∂f

∂x
(s,Xs) ds.

The derivative ∂f
∂x

is uniformly bounded also in set [0, t] × {x + B : |x| ≤ 1} and
therefore by using Mean Value Theorem we can deduce the following upper bound

|(f(s,Xϵ
s− + x)− f(s,Xϵ

s−))1ϵ≤|x|<1| ≤ C|x|1(|x|<1),

where C is a random variable independent of s, ϵ and x. The process X is of finite
variation by assumption when∫∫

[0,t]×(−1,1)

C|x| JX(ds× dx) < ∞,

and therefore the function C|x|1(|x|<1) integrates againts JX on [0, t]× (−1, 1). Sim-
ilarly we can find a upperbound, when the delimiters of above integrals are replaced
by [0, t]×{R \ (−1, 1)}. We can now again apply almost sure dominated convergence
to obtain that

lim
ϵ↓0

∫∫
[0,t]×R\{0}

(f(s,Xϵ
s− + x)− f(x,Xϵ

s−))1(|x|≥ϵ) JX(ds× dx)

=

∫∫
[0,t]×(−1,1)

lim
ϵ↓0

(f(s,Xϵ
s− + x)− f(x,Xϵ

s−))1(|x|≥ϵ) JX(ds× dx)
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+

∫∫
[0,t]×{R\(−1,1)}

lim
ϵ↓0

(f(s,Xϵ
s− + x)− f(x,Xϵ

s−))1(|x|≥ϵ) JX(ds× dx)

=

∫∫
[0,t]×R\{0}

(f(s,Xs− + x)− f(x,Xs−)) JX(ds× dx).

Finally by combining above results together we have

f(t,Xt) = lim
ϵ↓0

f(t,Xϵ
t )

= f(0, X0) +

t∫
0

∂f

∂s
(s,Xs) ds+ γ

t∫
0

∂f

∂x
(s,Xs) ds

+

∫∫
[0,t]×R

(f(s,Xs− + x)− f(s,Xs−)) JX(ds× dx),

which is the desired result.
□

4. Distribution theory

First we consider three basic theorems dealing with the limit properties of integral.
Proofs for monotone convergence theorem and Fatou’s Lemma and also some more
properties of integral can be found in section 5.3 of [3].

4.1. Measures and Integration.

Theorem 4.1 (Monotone convergence theorem). Let (X,F , µ) a measure space. If
(fn)

∞
n=1 is a sequence of non-negative measurable functions fn : X → R that is mono-

tone increasing and converging pointwise to f almost everywhere, then

lim
n→∞

∫
X

fn(x) dµ =

∫
X

f(x) dµ.

Corollary 4.2 (Fatou’s lemma). Let (X,F , µ) a measure space. If (fn)
∞
n=1 is a sequence

of non-negative measurable functions fn : X → R such that f(x) = lim inf
n→∞

fn(x)

almost everywhere, then ∫
X

f(x) dµ ≤ lim inf
n→∞

∫
X

fn(x) dµ.

Theorem 4.3 (Lebesgue’s dominated convergence theorem). Let (X,F , µ) a measure
space. If (fn)

∞
n=1 is a sequence of measurable functions fn : X 7−→ Rd converg-

ing pointwise to f almost everywhere and there exists a function g ∈ L1 such that
|fn(x)| ≤ g(x) almost everywhere for all n ∈ N and x ∈ X, then f ∈ L1, and

lim
n→∞

∫
X

fn(x) dµ =

∫
X

f(x) dµ.

Proof. First we notice that f ∈ L1, since |f(x)| ≤ g(x) for almost every x ∈ X and
g ∈ L1. Applying Fatou’s lemma to the nonnegative functions g− fn, we obtain that
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∫
X

g(x) dµ−
∫
X

f(x) dµ =

∫
X

(g − f)(x) dµ

≤ lim inf
n→∞

∫
X

(g − fn)(x) dµ

=

∫
X

g(x) dµ− lim sup
n→∞

∫
X

fn(x) dµ.

It now follows that

(4.1)

∫
X

f(x) dµ ≥ lim sup
n→∞

∫
X

fn(x) dµ.

Similar way appylying Fatou’s lemma to the nonnegative functions g + fn we obtain∫
X

g(x) dµ+

∫
X

f(x) dµ =

∫
X

(g + f)(x) dµ

≤ lim inf
n→∞

∫
X

(g + fn)(x) dµ

=

∫
X

g(x) dµ+ lim inf
n→∞

∫
X

fn(x) dµ.

and

(4.2)

∫
X

f(x) dµ ≤ lim inf
n→∞

∫
X

fn(x) dµ.

It follows from equation 4.1 and 4.2 that

lim
n→∞

∫
X

fn(x) dµ =

∫
X

f(x) dµ.

□

Definition 4.4. Let (X,M, µ) and (Y,N , ν) be measure spaces. If E ⊂ X × Y , for
x ∈ X and y ∈ Y we define the x-section Ex and the y-section Ey of E by

Ex = {y ∈ Y : (x, y) ∈ E} and Ey = {x ∈ X : (x, y) ∈ E}.
Also, if f is a function on X ×Y we define the x-section fx and the y-section f y of

f by
fx(y) = f y(x) = f(x, y)

Lemma 4.5. Let (X,M) be a measurable space. If f : X → [0,∞] is measurable,
there is a sequence (ϕn)

∞
n=1 of simple functions such that 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f , and

ϕn → f pointwise. Moreover ϕn → f uniformly on any set on which f is bounded.

Proof. See Section 2.1 of [6]. □

Definition 4.6. Subset C of the power set P(X) is called a monotone class on a space
X if the following conditions holds

(i) If Ej ∈ C and E1 ⊂ E2 ⊂ . . . , then
⋃∞

j=1Ej ∈ C.
(ii) If Ej ∈ C and E1 ⊃ E2 ⊃ . . . , then

⋂∞
j=1Ej ∈ C.
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Let E ⊂ P(X). Then there is a unique smallest monotone class containing E , called
the monotone class generated by E .

Lemma 4.7. If A is an algebra of sets, then the monotone class C generated by A
coincides with the σ-algebra M generated by A.

Proof. See section 2.5 of [6]. □

Theorem 4.8 (Theorem 2.36 of Folland). Suppose that (X,M, µ) and (Y,N , ν) are
σ-finite measure spaces. If E = A× B, where A ⊂ X and B ⊂ Y and E ∈ M⊗N ,
then the functions f(x) = ν(Ex) and f(y) = µ(Ey) are measurable on X and Y ,
respectively, and

(4.3) (µ× ν)(E) =

∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y).

Proof. Suppose that measures µ and ν are finite. Thus by Lemma 4.7 it is suffice to
show that the set C of all E ∈ M⊗N , for which conclusions of the theorem are true
is monotone class generated of some algebra of sets. If E = A×B, then

(µ× ν)(E) =

∫∫
X×Y

1A×B d(µ× ν) =

∫
Y

ν(B)1A(x) dµ(x) =

∫
X

µ(A)1B(y) dν(y),

where ν(Ex) = ν(B)1A(x) and µ(Ey) = µ(A)1B(y). Therefore E ∈ C and by ad-

ditivity it follows that also the finite union
⋃k

n=1 En ∈ C so C is a algebra of sets.
If (En)

∞
n=1 is an increasing sequence in C and E =

⋃∞
n=1, then the each of func-

tions fn(y) = µ((En)
y) and fn(x) = ν((En)x) are measurable and fn(y) −→ f(y)

and fn(x) −→ f(x) pointwise. Hence f is measurable and by monotone convergence
theorem,

(µ× ν)(E) = lim
n→∞

(µ× ν)(En) = lim
n→∞

∫
X

µ((En)
y) dν(y) =

∫
X

µ(Ey) dν(y).

Similary

(µ× ν)(E) = lim
n→∞

(µ× ν)(En) = lim
n→∞

∫
Y

ν((En)x) dµ(x) =

∫
Y

ν(Ex) dµ(x),

so E ∈ C.
Next if (En)

∞
n=1 is decreasing sequence in C and E =

⋃∞
n=1En. By finitness of

measures µ and ν we obtain that µ((E1)
y) ≤ µ(X) < ∞ and µ((E1)x) ≤ ν(Y ) < ∞,

so by the dominated convergence theorem

(µ× ν)(E) =

∫
X

µ(Ey) dν(y) and (µ× ν)(E) =

∫
Y

ν(Ex) dµ(x).

Thus E ∈ C and the theorem holds in finite measures spaces.
Finally we suppose that µ and ν are σ-finite measures, when X×Y can be written

as the union of an increasing sequence (Xj × Yj)
∞
j=1 of rectangles of finite measure. If

E ∈ M⊗N , for each j the above result for finite measures gives us



27

(µ× ν)(E ∩ (Xj × Yj)) =

∫
1Xj

(x)ν(Ex ∩ Yj) dµ(x)

=

∫
1Yj

(x)µ(Ey ∩Xj) dν(x).

By the monotone convergence theorem

(µ× ν)(E) = lim
j→∞

(µ× ν)(E ∩ (Xj × Yj))

= lim
j→∞

∫
1Xj

(x)ν(Ex ∩ Yj) dµ(x)

=

∫
1X(x)ν(Ex ∩ Y ) dµ(x)

=

∫
X

ν(Ex) dµ(x).

Similary

(µ× ν)(E) =

∫
Y

µ(Ey) dν(y),

and the desired result follows. □

Theorem 4.9 (Fubini-Tonelli Theorem; Theorem 2.37 of Folland). Let L+ be the space
of all measurable functions from X to [0,∞] and suppose that (X,M, µ) and (Y,N , ν)
are σ-finite measure spaces.

(i) (Tonelli) If f ∈ L+(X×Y ), then the functions g(x) =
∫
Y
fx dν(y) and h(y) =∫

X
f y dµ(x) are in L+(X) and L+(Y ), respectively, and

∫
X×Y

f(x, y)d(µ× ν) =

∫
X

[∫
Y

f(x, y)dν(y)

]
dµ(x)

=

∫
Y

[∫
X

f(x, y)dµ(x)

]
dν(y).

(4.4)

(ii) (Fubini) If f ∈ L1(µ × ν), then fx ∈ L1(ν) for almost every x ∈ X, f y ∈
L1(µ) for almost every y ∈ Y , the almost everywhere-defined functions g(x) =∫
fx dν and h(x) =

∫
f y dν are in L1(µ) and L1(ν), respectively, and equation

4.4 holds.

Proof. (i) In the case f is indicator function, let E = A × B, where A ⊂ X and
B ⊂ Y . Then by Theorem 4.8
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∫
X×Y

1E d(µ× ν) =

∫
E

d(µ× ν)

= (µ× ν)(E)

=

∫
X

1A(x)ν(B) dµ(x)

=

∫
Y

1B(y)µ(A) dν(y)),

thus

∫
X×Y

1E d(µ× ν) =

∫
X

[∫
Y

1A×B dν(y)

]
dµ(x)

=

∫
Y

[∫
X

1A×B dµ(x)

]
dν(y).

Therefore Tonelli’s Theorem holds for nonnegative simple functions by linear-
ity.

If f ∈ L+(X × Y ), let (fn)
∞
n=1 be a sequence of simple functions which

incresase pointwise to f as in Lemma 4.5. The monotone convergence theorem
implies first that

gn(x) =

∫
X×Y

fn(x, y) dν(y)
n → ∞−−−−→

∫
X×Y

f(x, y) dν(y) = g(x)

and

hn(y) =

∫
X×Y

fn(x, y) dµ(x)
n → ∞−−−−→

∫
X×Y

f(x, y) dµ(x) = h(y),

respectively so that g and h are measurable. By the monotone convergence
theorem we can also obtain that

∫
X×Y

f(x, y) d(µ× ν) = lim
n→∞

∫
X×Y

fn(x, y) d(µ× ν)

= lim
n→∞

∫
X

gn(x) dµ(x)

=

∫
X

g(x) dµ(x)

=

∫
X

[∫
Y

f(x, y) dν(y)

]
dµ(x)



29

and ∫
X×Y

f(x, y)d(µ× ν) = lim
n→∞

∫
X×Y

fn(x, y) d(µ× ν)

= lim
n→∞

∫
Y

hn(y) dν(y)

=

∫
Y

h(y) dν(y)

=

∫
Y

[∫
X

f(x, y) dµ(x)

]
dν(y),

which proves Tonelli’s theorem.
(ii) If f ∈ L+(X × Y ) and

∫
X×Y

f(x, y)d(µ× ν) < ∞, then by last two equations

above g < ∞ and h < ∞ almost everywhere. Therefore fx ∈ L1(ν) for almost
every x and f y ∈ L1(µ) for almost every y. If f ∈ L1(µ× ν) then by applying
these results to the positive and negative part of real and imaginary parts of
f it follows that g ∈ L1(µ) and h ∈ L1(ν) and 4.4 holds.

□

4.2. Finite variation of function.

Definition 4.10. Let U ⊂ Rd be a open set and f continuous function. The support
of function f , denoted by supp(f), is the smallest closed set outside of which f
vanishes, that is closure of {x : f(x) ̸= 0}. If supp(f). is compact, we say that f is
compactly supported, and define

Cc(U) = {f ∈ C(U) : supp(f) is compact}.
Morover, if f ∈ C(U), we say that function f vanishes at infinity if for every ϵ > 0

the set {x : |f(x)| ≥ ϵ} is compact, and define

C0(U) = {f ∈ C(U) : f vanishes at infinity}.
Since for f ∈ C0(U) the image of the set {x : |f(x)| ≥ ϵ} is compact, and |f | < ϵ

on its complement, Cc(U) ⊂ C0(U). We also define,

C∞
c (U) = C∞(U) ∩ Cc(U) = ∩∞

k=1C
k(U) ∩ Cc(U)

where Ck(U) is the space of functions k times continuously differentiable on U .

Theorem 4.11. The space Cc(Rd) is dense in Lp(Rd) for any p ∈ [1,∞).

Proof. See Section 4.3 of [2] □

Definition 4.12. Let (X,F , µ) be an arbitrary measure space. A measure ν on (X,F)
is said to be absolutely continuous with respect to µ if for any set A ∈ F , ν(A) = 0
whenever µ(A) = 0. We then write ν ≪ µ. A function f : R → C is called
absolutely continuous if for every ϵ > 0 there exists δ > 0 such that for any finite set
of disjoint intervals (a1, b1), . . . , (an, bn),

(4.5)
n∑

i=1

(bj − aj) < δ implies
n∑

i=1

|f(bj)− f(aj)| < ϵ.
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More generally, f is said to be absolutely continuous on [a, b] if this condition holds
when the intervals (aj, bj) are restricted to lie in [a, b].

Remark 4.13. If n = 1 in equation 4.5, it holds that

(bj − aj) < δ implies |f(bj)− f(aj)| < ϵ,

and so we obtain that f is uniformly continuous if it is absolutely continuous.

Recall that we call function f to be of finite variation if its total variation denoted
by V (f) is finite. Next we consider a few important result, using the finite variation
of a function, that we are going to eventually use to proof the fundamental theorem
of Lebesgue integral calculus.

Proposition 4.14. Suppose that total variation of f on [a, b] is finite such that f(−∞) =
0 and f is right-continuous. Then f is absolutely continuous if and only if µf ≪ m,
where µf is a unique complex measure such that F (x) = µf ((−∞, x]) and |µf | = µV (f).

Corollary 4.15. If f ∈ L1(m), then the total variation of function F (x) =
∫ x

−∞ f(t) dt
on [a, b] is finite such that F (−∞) = 0, F is absolutely continuous and f = F ′ almost
everywhere. Conversely, if the total variation of function f is finite such that f(−∞) =
0 and and F is absolutely continuous, then F ′ ∈ L1(m) and F (x) =

∫ x

−∞ F ′(t) dt.

Proof of Proposition 4.14 and Corollary 4.15 can be found in section 3.5 of [6].

Lemma 4.16. If f is absolutely continuous on [a, b], then its total variation on [a, b]
is finite.

Proof. Let δ be as in the definition 4.12. If a = x0 < · · · < xn = b, we collect the
intervals (xj−1, xj) into at most N groups, where N < b−a

δ
+ 1 and the sum of the

lengths in each group is less than δ. By choosing ϵ = 1 we get

V (f) ≤
n∑

j=1

|f(xj)− f(xj−1)| < Nϵ = N,

and it follows that the total variation of f on [a, b] is finite. □

Theorem 4.17 (Fundamental theorem of Lebesgue integral calculus). If −∞ < a <
b < ∞ and F : [a, b] → C, the following are equivalent:

(i) F is absolutely continuous on [a, b].
(ii) F (x)− F (a) =

∫ x

a
f(t) dt for some f ∈ L1([a, b],m).

(iii) F is differentiable almost everywhere on [a, b], F ′ ∈ L1([a, b],m), and

F (x)− F (a) =

∫ x

a

F ′(t) dt.

Proof. Assume first that F is absolutely continuous on [a, b] and F (a) = 0. If we set

F̃ =


0, x < a

F (x), a ≤ x ≤ b

F (b), x > b

then F̃ is of finite variation by Lemma 4.16. Since F̃ (−∞) = 0 and the func-
tion is right-continuous, (iii) holds by Corollary 4.15. By choosing f(t) = F ′(t) ∈
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L1([a, b],m) we get F (x) − F (a) =
∫ b

a
F ′(t)dt =

∫ x

a
f(t)dt and thus (ii) holds. Next

let f be a function such that F (x)−F (a) =
∫ x

a
f(x) dt and f ∈ L1([a, b],m). We can

define a extension f̃ of function f by

f̃ =

{
f, if t ∈ [a, b]

0, if t ̸∈ [a, b].

Clearly f̃ ∈ L1 and

F (x) =

∫ x

−∞
f̃(t)d t =

∫ x

a

f(t)dt

is absolutely continuous by Corollary 4.15 and the desired result follows.
□

4.3. Lebesgue differentiation Theorem.

Definition 4.18. A point x ∈ U ⊂ Rd is a Lebesgue point of a function f : U 7−→ R if

lim
r→0+

1

m((B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

where B(x, r) = {y ∈ Rd : |y−x| < r} and the limit is taken for those r small enough
to guarantee that B(x, r) is a subset of U .

Definition 4.19. The set of all Lebesgue points of f : U 7−→ R is denoted by Lf and
it is called the Lebesgue set.

Definition 4.20. Let U ⊂ Rd be a open set and 1 ≤ p ≤ ∞. We say that a function
f : U → R is locally integrable with respect to Lebesgue measure and denoted it
f ∈ Lp

loc(U) if f1K ∈ Lp(U) for every compact set K contained in U . Note that if
f ∈ Lp

loc(U), then f ∈ L1
loc(U).

We start the concept of the Lebesgue diferentiation theorem by defining avarage
value of function and useful sharper version of the fundamental differentiation the-
orem. Note that following theorem does not yet utilize Lebesgue point or set of
functions.

Theorem 4.21. Let f ∈ L1
loc, x ∈ Rd, r > 0 and let Arf(x) to be the avarage value of

f on B(x, r) such that

Arf(x) =
1

m(B(x, r))

∫
B(x,r)

f(y) dy.

Then limr→0Arf(x) = f(x) for almost every x ∈ Rd.

Proof. See section 3.4 of [6]. □

We can however be more general by replacing balls with the families {Er}r>0 of
Borel subset of Rd which are shrink nicely. This leads to the final version of the dif-
ferentiation theorem and one that we desire, called Lebesgue differentiation theorem.

Definition 4.22. A family {Er}r>0 of a Borel subsets of U is said to shrink nicely to
x ∈ U if the following two conditions hold
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(i) Er ⊂ B(x, r) ⊂ U for each r.
(ii) There is a constant α > 0, independent of r, such that m(Er) > αm(B(x, r)).

Theorem 4.23 (The Lebesgue differentiation theorem). Suppose that f ∈ L1
loc(U) and

supp(f) ⊂ U . Then we have

(i) m(U \ Lf ) = 0
(ii) For every x in the Lebesgue set of f , in particular for almost every x in U ,

we have

lim
r→0+

1

m(Er)

∫
Er

|f(y)− f(x)| dy = 0

and

lim
r→0+

1

m(Er)

∫
Er

f(y) dy = f(x),

where {Er}r>0 is a family of Borel subsets of U ⊂ Rd that shrinks nicely to x

Proof. We first proof the case U = Rd.

(i) Let c ∈ C and g(x) = |f(x)− c|. Therefore by Theorem 4.21 we have

lim
r→0

Arg(x) = lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− c| dy = |f(x)− c|.

Next let R ⊂ C be a countable dense set. If we define E =
⋃

c∈R Ec, where
m(Ec) = 0, then m(E) = 0 and if x ̸∈ E we can choose c ∈ R such that
|f(x)− c| < ϵ. Thus

|f(y)− f(x)| ≤ |f(y)− c|+ |f(x)− c| < |f(y)− c|+ ϵ.

Therefore

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy

≤ lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− c|+ ϵ dy

= |f(x)− c|+ ϵ

< 2ϵ,

and since ϵ is arbitrary it follows that m((Lf )
c) = 0.

(ii) By Definition 4.22 Er ⊂ B(x, r) and for some α > 0 we have m(Er) >
αm(B(x, r)). Therefore it holds

1

m(Er)

∫
Er

|f(y)− f(x)| dy ≤ 1

m(Er)

∫
B(x,r)

|f(y)− f(x)| dy

<
1

αm(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy

< 2ϵ,
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for some α > 0. By (i) of Theorem 4.23, taking limit both sides of above
inequality as r → 0+ the desired result follows.

To proof the latter part of the (ii) we obtain that by Theorem 4.21 for
almost every x it holds that

lim
r→∞

1

m(B(x, r))

∫
B(x,r)

[f(x)− f(y)] dy = 0.

Therefore by using again Definition 4.22 and above equation we have

lim
r→0

[
1

m(Er)

∫
Er

f(y) dy

]
− f(x) = lim

r→0

[
1

m(Er)

∫
Er

f(y) dy − 1

m(Er)

∫
Er

f(x) dy

]
= lim

r→0

[
1

m(Er)

∫
Er

f(y)− f(x) dy

]
≤ lim

r→0

[
1

αm(B(y, r))

∫
B(y,r)

f(y)− f(x) dy

]
= 0,

for almost every x. This proves the latter part of the theorem. Next if we suppose that
f ∈ L1

loc(U) and supp(f) ⊂ U then f1U ∈ L1
loc(Rd) and supp(f1U) ⊂ Rd. Therefore

the Lebesgue differentiation theorem in the special case U = Rd apply and we have
desired generalization to open set U . □

Following lemma gives us one possible way to determine the Lebesgue point of a
function.

Lemma 4.24. If f ∈ L1
loc(U), U ⊂ Rd, and f is continuous at x ∈ U , then x ∈ Lf .

Proof. By continuity of f we can find for every given ϵ > 0 a ball with radius r > 0
such that |y − x| < r implies |f(y)− f(x)| < ϵ. Therefore

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x) | dy <
ϵ

m(B(x, r))

∫
B(x,r)

dy = ϵ.

Since ϵ is arbitrary

lim
r→0+

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0,

and x is a Lebesgue point of function f . □

4.4. Convolution and mollifier.

Definition 4.25. If f : Rd 7−→ R and g : Rd 7−→ R, are measurable functions, then the
convolution f ∗ g : Rd 7−→ R is defined by (f ∗ g)(x) :=

∫
Rd f(x− y)g(y) dy, provided

that for every x ∈ Rd, the integral is well defined.

The following proposition introduce us some basic properties of convolution.

Proposition 4.26. Assuming that all integrals in question exist, we have

(i) f ∗ g = g ∗ f
(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h)



34

(iii) (f ∗ g)(x− z) = f(x− z) ∗ g = f ∗ g(x− z)

Proof. (i) Let z = x− y, then we have

(f ∗ g)(x) =
∫
Rd

f(x− y)g(y) dy

=

∫
Rd

f(z)g(x− z) dz

= (g ∗ f)(x).
(ii) By using (i) and Fubini theorem we get

(f ∗ g) ∗ h =

∫
Rd

(g ∗ f)(x− y)h(y) dy

=

∫∫
Rd

g(x− y − z)f(z)h(y) dz dy

=

∫∫
Rd

g(x− z − y)h(y)f(z) dy dz

=

∫
Rd

(g ∗ h)(x− z)f(z) dz

= f ∗ (g ∗ h).
(iii) We note that

(f ∗ g)(x− z) =

∫
Rd

f(x− z − y)g(y) dy = f(x− z) ∗ g

and by (i)

(f ∗ g)(x− z) =

∫
Rd

f(y)g(x− z − y) dy = f ∗ g(x− z).

□

Lemma 4.27. Let f ∈ Lp
loc(U), p ≥ 1, and supp(f) ⊂ U . Suppose that g : Rd 7−→ R

is bounded and compactly supported. Then g ∗ f1U , where

f1U(x) =

{
f(x), x ∈ U

0, x ̸∈ U

is well defined on R, i.e. the integral
∫
U
g(x− y)f(y) dy is finite for all x ∈ Rd.

Proof. The function g is bounded so there exits a constant C < ∞ such that |g(x)| ≤
C. By choosing p = 1 and f ∈ L1

loc(U) we obtain that for all x ∈ Rd

|(g ∗ f1U)(x)| =
∣∣∣∣∫

Rd

g(x− y)f1U(y) dy

∣∣∣∣
≤
∫
U

|g(x− y)||f(y)| dy

≤ C

∫
U

|f(y)| dy

< ∞.
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Therefore g ∗ f1U is well defined. □

Proposition 4.28. Let f ∈ L1(R) and g ∈ Lp(Rd) with 1 ≤ p ≤ ∞. Then

supp(f ∗ g) ⊂ supp(f) + supp(g).

Proof. Fix x ∈ Rd such that the function y 7−→ f(x − y)g(y) is integrable. If x ̸∈
supp(f) + supp(g), then (x− supp(f)) ∩ supp(g) = ∅ and so

(f ∗ g)(x) =
∫
Rd

f(x− y)g(y) dy

=

∫
(x−supp(f))∩supp(g)

f(x− y)g(y) dy = 0.

Thus (f ∗ g)(x) = 0 almost everywhere on int[(supp(f) + supp(g))c)] and therefore

supp(f ∗ g) ⊂ supp(f) + supp(g).

□

Theorem 4.29 (Young). Let f ∈ L1(Rd) and let g ∈ Lp(Rd) with 1 ≤ p ≤ ∞. Then
for almost every x, f ∗ g ∈ Lp(Rd) and

||f ∗ g||p ≤ ||f ||1||g||p
Proof. We can consider three cases;

(i) p = 1
(ii) 1 < p < ∞
(iii) p = ∞.

Case (i): For almost everyone y ∈ Rd we have∫
Rd

|f(x− y)g(y)| dx = |g(y)|
∫
Rd

|f(x− y)| dx = |g(y)|||f ||1 < ∞

and∫
Rd

dy

∫
Rd

|f(x− y)g(y)| dx =

∫
Rd

|g(y)|dy
∫
Rd

|f(x− y)| dx = ||g||1||f ||1 < ∞.

Therefore by setting F (x, y) = f(x, y)g(y) we deduce from Tonelli’s theorem and
Fubini’s theorem for measurable functions from X × Y to R, given in section 4.1 of
[2] that F ∈ L1(Rd × Rd) and∫

Rd

|f(x− y)g(y)| dy < ∞ for a.e. x ∈ Rd

respectively. Thus (f ∗ g)(x) ∈ Lp(Rd) and moreover

||(f ∗ g)(x)||1 ≤
∫
Rd

∫
Rd

|f(x− y)||g(y)| dy dx

=

∫
Rd

|g(y)|dy
∫
Rd

|f(x− y)| dx

= ||g||1||f ||1
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Case (ii) Let p, q ∈ R be the conjugate exponent such that 1 < p < ∞ and
1
p
+ 1

q
= 1. By Case (i) we know that for almost every fixed x ∈ Rd

|f(x− y)|1/p|g(y)| ∈ Lp
y(Rd) and |f(x− y)|1/q ∈ Lq

y(Rd).

Therefore by Hölder inequality

|f(x− y)||g(y)| = |f(x− y)|1/q|f(x− y)|1/p|g(y)| ∈ L1
y(Rd)

and

|(f ∗ g)(x)| ≤
∫
Rd

|f(x− y)||g(y)| dy

=

∫
Rd

|f(x− y)|1/q|f(x− y)|1/p|g(y)| dy

≤ ||f ||1/q1

(∫
Rd

|f(x− y)||g(y)|p dy
)1/p

= ||f ||1/q1 (|f | ∗ |g|p)1/p.

By using Young’s inequality in case p = 1 to the function |||f | ∗ |g|p||1 we obtain
that f ∗ g ∈ Lp(Rd) and

||f ∗ g||p =
(∫

Rd

|(f ∗ g)(x)|p dx
)1/p

≤ ||f ||p/p1 || |f | ∗ |g|p||1
≤ ||f ||p/q1 ||f ||1/p1 ||g||p
= ||f ||1||g||p

Case (iii) Let p = ∞. Therefore when g ∈ L∞(Rd) we have

|g(y)| ≤ ||g||∞,

almost everywhere in Rd. By using above inequality we obtain that

|f ∗ g| ≤
∫
Rd

|f(x− y)||g(y)| dy

≤
∫
Rd

|f(x− y)|||g||∞ dy

≤ ||g||∞
∫
Rd

|f(x− y)| dy

≤ ||f ||1||g||∞,

and therefore

||f ∗ g||∞ ≤ ||f ||1||g||∞.

□
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Definition 4.30. (i) Let η be any function η : Rd → R ∈ C∞
c (Rd) such that it

satisfies the following conditions

η ≥ 0,

∫
η(x)d x = 1, supp(η) = B(0, 1).

Then η is called a mollifier.
(ii) Let x be a point on Rd and ϵ > 0. We define a modifed mollifier ηϵ by

ηϵ(x) =
1

ϵd
η
(x
ϵ

)
,

when we clearly have

ηϵ ∈ C∞
c (Rd),

∫
Rd

ηϵ(x)d x = 1, supp(ηϵ) = B(0, ϵ).

(iii) Let

η(x) =

{
ce

−1

1−||x||2
d , ||x||d < 1

0, ||x||d ≥ 1

and take c such that
∫
Rd η(x)d x = 1. Then ηϵ is called the standard mollifier.

Note that standard mollifier is a example of modifed mollifier.
(iv) Suppose that f ∈ Lp

loc(U), p ≥ 1 and ϵ > 0. We define a mollified function f ϵ :
Rd → R by

f ϵ(x) := (ηϵ ∗ f1U)(x) =
∫
U

ηϵ(x− y)f(y) dy

For fixed x and ϵ small enough, B(x, ϵ) ⊂ U and so f ϵ(x) exists. However, if
supp(f) ⊂ U and since f ∈ Lp

loc(U), p ≥ 1, by Lemma 4.27, f ϵ is well defined on Rd

for all ϵ > 0.

Theorem 4.31. Assume that f ∈ Lp
loc(U), p ≥ 1, supp(f) ⊂ U and ϵ > 0. Then

(i) f ϵ ∈ C∞(Rd) and ∂αf ϵ = ∂αηϵ ∗ f1U ,
(ii) f ϵ −→ f1U uniformly as ϵ → 0+,
(iii) f ϵ −→ f1U in Lp

loc(Rd) as ϵ → 0+,
(iv) f ϵ −→ f1U pointwise on Lf1U as ϵ → 0+, hence f ϵ −→ f pointwise on Lf as

ϵ → 0+

Proof. For simplicity we proof this theorem first in the special case U = Rd by sup-
posing that f ∈ Lp

loc(Rd) and supp(f) ⊂ U . After that the generalization to an open
set U ⊂ Rd follows easily.

(i) Let K be a fixed compact set in Rd large enough that x+B(0, 1)−supp(ηϵ) ⊂
K. We have for all y ̸∈ K and h ∈ B(0, 1).

ηϵ(x+ h− y)− ηϵ(x− y)− h · ∂ηϵ(x− y) = 0
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|(ηϵ ∗ f)(x+ h)− ηϵ ∗ f)(x)− h(∂ηϵ ∗ f)(x)|

≤
∫
Rd

|f(y)||ηϵ(x+ h− y)− ηϵ(x− y)− hηϵ(x− y)|dy

=

∫
Rd

|f(y)|
∣∣∣∣∫ 1

0

h · ∂ηϵ(x+ sh− y)− h · ηϵ(x− y)ds

∣∣∣∣ dy
≤
∫
Rd

|f(y)|
∫ 1

0

|h|| · ∂ηϵ(x+ sh− y)− h · ηϵ(x− y)|ds dy

≤
∫
Rd

|f(y)|(|h|ϵ(|h|)1K(y) + |h|ϵ(|h|)1Kc(y))dy

≤ |h|ϵ(|h|)
∫
Rd

|f(y)|dy

It follows that f ϵ is diffentiable, ∂f ϵ = ∂ηϵ ∗ f and inductively for α ≤ 1 that

f ϵ ∈ C∞(Rd) and ∂αf ϵ = ∂αηϵ ∗ f1U .

(ii) Let fn = (η
1
n ∗ f)∞n=1 be a sequence of mollified functions converging to f as

n → ∞ and let K ⊂ Rd be fixed compact set. For ϵ > 0 there exists δ > 0
such that

|f(x− y)− f(x)| < ϵ

for all x ∈ K and y ∈ B(0, δ). Therefore for x ∈ Rd, n > 1/δ and x ∈ K we
have

|fn − f | =
∣∣∣∣∫

Rd

f(x− y)η1/n(y) dy −
∫
Rd

f(x) η1/n(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

[f(x− y)− f(x)] η1/n(y) dy

∣∣∣∣
≤
∫
B(0, 1

n
)

|f(x− y)− f(x)| |η1/n(y)| dy

< ϵ

∫
B(0, 1

n
)

η1/n dy

= ϵ,

and the desired result follows.
(iii) Let fn = (η

1
n ∗ f)∞n=1 be a sequence of mollified functions converging to f as

n → ∞. By densiness of Cc(Rd) in Lp(Rd) we can choose a fixed function
g ∈ Cc(Rd) such that ||f − g||p < ϵ. By Proposition 4.28 we know that

supp(gn) = supp(η1/n ∗ g) ⊂ B(0, 1/n) + supp(g) ⊂ B(0, 1) + supp(g),

which is a fixed compact set and therefore by (ii) of Theorem 4.31

||fn − g||p
n→∞−−−→ 0.

Next by using Young’s inequality we conclude that
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||fn − g||p = ||[(η1/n ∗ g)]− [(η1/n ∗ g)− g]− [g − f ]||p
≤ ||(η1/n ∗ g)||p + ||(η1/n ∗ g)− g||p + ||g − f ||p
≤ 2||f − g||p + ||(η1/n ∗ g)− g||p.

Letting n → ∞ we obtain that for ϵ > 0

lim sup
n→∞

||fn − f ||p ≤ 2ϵ.

Therefore

lim
n→∞

||fn − f ||p = 0.

(iv)

lim
ϵ→0+

f ϵ(x) = f(x)

Therefore by the Lebesgue differentiation Theorem f ϵ → f , when r → 0+.

Finally we suppose that f ∈ Lp
loc(U), and supp(f) ⊂ U , when clearly f1U ∈

Lp
loc(Rd) and supp(f1U) ⊂ U . Thus above results apply and we get desired general-

ization.
□

4.5. Weak derivatives.

Definition 4.32. Suppose that α ∈ Nd
0 is a multi-index. We say that a function

f ∈ L1
loc(U), U ⊂ Rd, is weakly differentiable; and also its α th-weak derivative

denoted by ∂αf ∈ L1
loc(U), if∫

U

(∂αf(x))ϕ(x) dx = (−1)|α|
∫
U

f(x)(∂αϕ(x)) dx, for all ϕ ∈ C∞
c (U),

where |α| =
∑d

i=1 αi, and the functions ϕ ∈ C∞
c (U) are called test functions.

Theorem 4.33. Let f ∈ L1
loc(U) and supp(f) ⊂ U . We further assume that f admits

the weak derivative ∂αf ∈ L1
loc(U), then

(i) f ϵ ∈ C∞(Rd) and ∂α(f ϵ) = ηϵ ∗ (∂αf) on U.
(ii) ∂α(f ϵ) −→ ∂α in L1

loc(U) as ϵ → 0+

(iii) ∂α(f ϵ) −→ ∂α pointwise on L∂αf as ϵ → 0+

Proof. See Section 2 of [9] □

Remark 4.34. Note that part (i) of the Theorems 4.31 and 4.33 still holds if we replace
ηϵ by a test function.

Lemma 4.35. Assume that f ∈ l1loc(U) has the weak derivative ∂αf ∈ L1
loc(U). Suppose

that ϕ ∈ C∞
c (Rd) is a test function with properties

(4.6) supp(ϕ) = K, ϕ(x) ≥ 0,

∫
Rd

ϕ(x) dx = 1,

for all x ∈ Rd. Then every x ∈ Rd we have
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|∂α(f ∗ ϕ)(x)| ≤ sup
z∈U∩Λ(x)

|∂αf(z)|,

where Λ(x) = {y ∈ Rd : x− y ∈ K}

Proof. First we note that since properties of Equation 4.6 holds we can replace ηϵ by
a test function ϕ in the Theorem 4.35. Therefore by (i) of Theorem 4.35 we get a
equation

∂α(f ∗ ϕ)(x) = (ϕ ∗ 1U∂αf)(x)

=

∫
Rd

ϕ(x− y)1U∂
αf(y) dy

=

∫
U

ϕ(x− y)∂αf(y) dy

If x − y ̸∈ supp(ϕ) = K ⊂ U , then ∂α(f ∗ ϕ) = 0. Therefore we can define a set
Λ(x) = {y ∈ Rd : x− y ∈ K} and thus it holds that

∂α(f ∗ ϕ) =
∫
U∩Λ(x)

ϕ(x− y)∂αf(y) dy.

FInally by using above equation we get and properties of test function from Equa-
tion 4.6 we get

|∂α(f ∗ ϕ)(x)| ≤
∫

U∩Λ(x)

|ϕ(x− y)||∂αf(y)| dy

≤ sup
z∈U∩∆(x)

|∂αf(z)|
∫

U∩∆(x)

ϕ(x− y) dy

≤ sup
z∈U∩∆(x)

|∂αf(z)|
∫
Rd

ϕ(x) dx

= sup
z∈U∩∆(x)

|∂αf(z)|.

□

Remark 4.36. Note that the value of the right-hand side of the Lemma 4.35 can be
infinity.

5. The main result

5.1. Assumptions of the Main result. In this section we are going to introduce and
prove the Itô formula presented in Theorem 5.7. Though this Itô formula could be
extended to a general d, for simplicity we presented it and also all other result in this
chapter which are related to the Theorem 5.7 in the case d = 1. First we assume a
certain class of stochastic processes which are explained in the following assumption.

Assumption 5.1. Let (Ω,F ,P) be a complete probability space that means for all
B ∈ F and A ⊂ B with P(B) = 0 it holds that A ∈ F . Suppose moreover that
X : [0,∞) × Ω → U is a càdlàg stochastic process defined on (Ω,F ,P) such that
it satisfies the following condition: If A ⊂ U is a Borel measurable set such that
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m(A) = 0, where m is the Lebesgue measure, then for all s ∈ [0,∞) it holds that
P(Xs ∈ A) = 0. In other words, for all s ∈ [0,∞), the law µs of a random variable
Xs on U defined by µs(A) = P(Xs ∈ A), is absolutely continuous with respect to the
Lebesgue measure.

Let us next take a quick look at how the previous assumption restrict appropriate
processes. We first consider a few results about the continuity of the laws.

Theorem 5.2. Let X be a Lèvy process on R generated by (A, ν, γ) with ν(R) = ∞.
We define a measure ν̃ by

ν̃(B) =

∫
B

(|x|2 ∧ 1) ν(dx).

If (ν̃)n is absolutely continuous for some n ∈ N, then for every t > 0 and B ∈ B(Rd),
the law P(Xt ∈ B) of the random variable Xt is absolutely continuous with respect to
the Lebesgue measure.

Remark 5.3. If B ∈ B(Rd) and N is a compound Poisson process on Rd with Lèvy
measure ν. Then the law of the random variable Nt can be written as

P(Nt ∈ B) = e−tν(Rd)

∞∑
k=0

(k!)−1tkν(B)k,

which is not continuous as P(Nt = 0) > 0.

Proof. See section 27 of [12]. □

By Remark 5.3 we see that Assumption 5.1 is not valid for finite variation Lévy
processes in general since the law µs defined in Assumption 5.1 is not absolutely
continuous with respect to Lebesgue measure in the case of compound Poisson process
as P(Nt = 0) > 0 for t > 0. However by Theorem 5.2 we notice that Assumption
5.1 is always satisfied for a finite variation Lévy process with infinite activity, if
its Lévy measure is absolutely continuous with respect to Lebesgue measure. The
following proposition consider a bit more about the behaviour of the processes under
Assumption 5.1.

Proposition 5.4. Assume that the process X satisfies Assumption 5.1. Let A ⊂
[0,∞)×U be any Lebesgue measurable set such that m(A) = 0, then for all t ≥ 0 we
have

P({ω ∈ Ω : m({s ∈ [0, t] : (s,Xs(ω)) ∈ A}) = 0}) = 1.

In particular, this implicity implies that for almost all ω ∈ Ω, the set {s ∈ [0, t] :
(s,Xs(ω)) ∈ A} is Lebesgue measurable for all t ≥ 0.

Proof. First we are going to show that the set m({s ∈ [0, t] : (s,Xs(ω)) ∈ A}) is
well-defined for almost all ω ∈ Ω. Assume that A is a Borel measurable set. We
define a process Y : [0,∞)× Ω → [0,∞)× U by

Y (s, ω) = (s,Xs(ω)).

Since X is càdlàg process by Assumption 5.1, the process Y is also càdlàg and
B[0,∞) ⊗ F -measurable by Proposition 5.5, where B[0,∞) is the Borel σ-algebra on
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[0,∞) and F is σ -algebra on Ω. Hence when A ⊂ [0,∞)× Ω is a Borel set it holds
that

Y −1(A) ∈ B[0,∞) ⊗F
and so

([0, t]× Ω) ∩ Y −1(A) ∈ B[0,∞) ⊗F ⊂ L⊗ F ,

where L is Lebesgue σ-algebra on [0,∞). Therefore we can define function f :
[0,∞)× → R, f(t, ω) := 1([0,t]×Ω)∩Y −1(A) and hence f ∈ L1(m× P).

We define a function fω := (., ω) and by Fubini-Tonelli theorem 4.9 fω ∈ L1(m)
for almost all ω. Therefore the set ([0, t]×Ω)∩ Y −1(A) is Lebesgue measurable for a
fixed ω and hence m({s ∈ [0, t] : (s,Xs(ω)) ∈ A}) is well-defined for almost all ω ∈ Ω
that completes the first part of the proof.

Next let

Z(ω) :=

∫
R
fω dm = m({s ∈ [0, t] : (s,Xs(ω)) ∈ A}).

Again by Fubini-Tonelli theorem Z is a random variable and Z ∈ L1(P). Since Z is
non-negative random variable it is sufficient to show that E[Z] = 0.

E[Z] =
∫
Ω

∫
R
fω dmdP

=

∫ t

0

∫
Ω

fs dP ds

=

∫ t

0

E[1{(s,Xs)∈A}] ds.

=

∫ t

0

P(Xs ∈ As) ds,

where for fixed s, 1{(s,Xs)∈A} = 1{Xs∈As} and As = {y ∈ Rd : (s, y) ∈ A} is Borel
measurable. The A is a Borel measurable by assumption and hence Lebesgue mea-
surable as well. By Theorem 4.8 the function s 7−→ m(As) is Lebesgue measurable
and m(A) =

∫
[0,∞)

m(As) ds. On the other hand we assumed that m(A) = 0 and

hence m(As) = 0 for Lebesgue almost all s ≥ 0. In other words there exist a set
N ⊂ [0,∞) such that m(N) = 0 and for all s ∈ N c it holds that m(As) = 0. More-
over by Assumption 5.1 the measure µs(A) = P(Xs ∈ A) is absolutely continuous
with respect to the Lebesgue measure and therefore it holds that P(Xs ∈ A) = 0,
when s ∈ N c. Finally with the help of the above equations we can obtain that

E[Z] =
∫

[0,t]∩Nc

P(Xs ∈ As) ds+

∫
[0,t]∩N

P(Xs ∈ As) ds

=

∫
[0,t]∩{s:m(As)=0}

P(Xs ∈ As) ds

= 0.
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The expectation E[Z] = 0 implies that Z = 0, P-almost surely and hence m({s ∈
[0, t] : (s,Xs(ω)) ∈ A}) = 0 for almost all ω ∈ Ω, which completes the proof in the
case A is a Borel measurable set.

Finally suppose that A is Lebesgue measurable. We can write A = A′∪A′′, A′′ ⊂ B,
where A′ and B are Borel measurable sets such that m(B) = 0. Moreover A is a null
set by the assumption and therefore also m(A′) = 0. Since we assume the probability
space to be complete it holds that A′′ ∈ F and Y −1(A′ ∪A′′) ∈ B[0,∞) ⊗F . By using
similar procedure as in above case where A is Borel measurable we can deduce that
a set m({s ∈ [0, t] : (s,Xs(ω)) ∈ A′ ∪A′′}) is well defined for almost all ω ∈ Ω. Again
by using previous part of the proof to the Borel null sets A′ and B we obtain that

m({s ∈ [0, t] : (s,Xs(ω)) ∈ A′}) = 0 and m({s ∈ [0, t] : (s,Xs(ω)) ∈ B}) = 0.

Therefore

m({s ∈ [0, t] : (s,Xs(ω)) ∈ A}) = m({s ∈ [0, t] : (s,Xs(ω)) ∈ A′ ∪ A′′}) ≤ 0,

for almost all ω ∈ Ω and the desired result follows. □

Intuitively Proposition 5.4 tells about the amount of time a process X spends in
set U. For example if A = [0, t] × B, where B ⊂ Rd is a Borel set and {s ∈ [0, t] :
(s,Xs) ∈ A} is time X spends in B. Therefore under Assumption 5.1, Proposition
5.4 implies that the Lebesgue measure of the amount of time the process X spends
in any Borel measurable set B with m(B) = 0 is always zero.

5.2. Key tools.

Proposition 5.5. Let X be an optional process. When considered as a mapping on
[0,∞)×Ω, it is B[0,∞)⊗F -measurable, where B[0,∞) is Borel σ-algebra on [0,∞) and
F is σ-algebra on Ω.

Proof. By [7] it is suffiecient to show that every càdlàg adapted process X satisfies
claimed property. We define a new process X(n) for n, k ∈ N by setting

X(n) =
2n∑
k=1

Xk/2n1[ k−1
2n

, k
2n )

(t).

Since

{X(n) ∈ B} =
⋃
k∈N

[
{ω : Xk/2n(ω) ∈ B} ×

[
k − 1

2n
,
k

2n

)]
,

we have {X(n) ∈ B} ∈ B[0,∞) ⊗ F for all Borel sets B, hence X(n) is B[0,∞) ⊗ F -

measurable. Since the Process X is càdlàg by assumption the X(n) → X pointwise
as n → ∞ and therefore X is also F ⊗ B[0,∞)-measurable.

□

Before we introduce the main result of this section we have to define some elemen-
tary tools to help us. For any continuous function f : [0,∞)×U −→ R on [0,∞)×U

we can always continuously extend it to a new function f̃ : R× U −→ R:

f̃(t, x) =

{
f(t, x), (t, x) ∈ [0,∞)× U ;

f(−t, x), (t, x) ∈ [0,∞)× U.
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Since f ∈ L1
loc([0,∞)×U) then clearly f̃ ∈ L1

loc(R×U) and it is weakly differentiable
on the open set R×U in the sense of Definition 4.32 and therefore by applying chain
rule the weak derivatives of the function f̃ in one-dimensional case are

∂f̃

∂t
(t, x) =

{
∂f
∂t
(t, x), (t, x) ∈ [0,∞)× U ;

−∂f
∂t
(−t, x), (t, x) ∈ [0,∞)× U,

and

∂f̃

∂x
(t, x) =

{
∂f
∂x
(t, x), (t, x) ∈ [0,∞)× U ;

∂f
∂x
(−t, x), (t, x) ∈ [0,∞)× U,

where ∂f̃
∂t
(t, x) and ∂f̃

∂x
(t, x) are weak derivatives of f in the sense of Equation 5.1.

By using an extension f̃ of the function f −→ R×U we can now define a sequence
of mollified functions by

fn(t, x) = (ϕn ∗ f̃1R×U)(t, x),

where (t, x) ∈ R2, n ≥ 1 and ϕn = η
1
n is a standard mollifier in the sense of Definition

4.30. The following proposition summarizes some limiting properties of the sequence
fn.

Proposition 5.6. Assume that f : [0,∞) × U −→ R is a continuous function on
[0,∞) × U such that f ∈ L1

loc([0,∞) × U), supp(f) ⊂ [0,∞) × U and U ⊂ R is an
open set. Let the weak derivatives ∂f

∂s
, ∂f
∂x

∈ L1
loc([0,∞) × U) be locally bounded and

defined by equation

(5.1)

∫
[0,∞)×U

(∂αf(x))ϕ(x) dx = (−1)|α|
∫

[0,∞)×U

f(x)(∂αϕ(x)) dx,

for all ϕ ∈ C∞
c ([0,∞)×U). Finally suppose that X is a finite variation Lévy process

satisfying Assumption 5.1 such that for all t ≥ 0, Xt and Xt− are in U . Then the
following are true:

(i) lim
n→∞

fn(0, X0) = f(0, X0).

(ii) lim
n→∞

∫ t

0
∂fn
∂s

(s,Xs) ds =
∫ t

0
∂f
∂s
(s,Xs) ds, P-almost surely.

(iii) lim
n→∞

∫ t

0
∂fn
∂x

(s,Xs) ds =
∫ t

0
∂f
∂x
(s,Xs) ds, P-almost surely.

(iv) lim
n→∞

∫∫
[0,t]×R(fn(s,Xs− + x)− fn(s,Xs−)) JX(ds× dx)

=
∫∫

[0,t]×R(f(s,Xs− + x)− f(s,Xs−)) JX(ds× dx).

Proof. (i) Since f̃ is a continuous function, Lf̃ = R× U by Lemma 4.24. On the
other hand for all t ≥ 0, Xt is in U and so by (iii) of Theorem 4.31

fn(0, X0) −→ f̃(0, X0),

for all ω ∈ Ω and t ∈ R. It also holds for all t ≥ 0 that, f̃(t,Xt) = f(t,Xt) by

the definition of f̃ .
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(ii) From Theorem 4.33, if (s,Xs) ∈ L ∂f̃
∂s

, then we have

∂fn
∂s

(s,Xs) −→
∂f̃

∂s
(s,Xs).

Let L1 = R×
(
U \ L ∂f̃

∂s

)
be a Lebesgue set, then

∫ t

0

∂fn
∂s

(s,Xs) ds =

∫ t

0

∂fn
∂s

(s,Xs)1{(s,Xs )̸∈L1} ds

+

∫ t

0

∂fn
∂s

(s,Xs)1{(s,Xs)∈L1} ds.

By Lebesgue differentiation theorem m(L1) = 0 and therefore by Proposition
5.4 it holds that m([0, t] ∩ {s ∈ [0, t] : (s,Xs) ∈ L1}) = 0, P-almost surely.
Moreover for fixed t we have∫ t

0

∂fn
∂s

(s,Xs)1{(s,Xs)∈L1} ds =

∫
[0,t]∩{s:(s,Xs)∈L1}

∂fn
∂s

(s,Xs) ds = 0,

and therefore

(5.2)

∫ t

0

∂fn
∂s

(s,Xs) ds =

∫ t

0

∂fn
∂s

(s,Xs)1{(s,Xs) ̸∈L1} ds,

P-almost surely.
By Lemma 4.35, for all (s, x) ∈ R2∣∣∣∣∂fn∂s

(s, x)

∣∣∣∣ ≤ sup
z∈(R×U)∩Λ(s,x)

∣∣∣∣∣∂f̃∂s (z)
∣∣∣∣∣

≤ sup
z∈Λ(s,x)

∣∣∣∣∣∂f̃∂s (z)
∣∣∣∣∣ ,

(5.3)

where Λ(s,Xs) = {y ∈ R2 : (s,Xs)− y ∈ K}, and K = supp(ϕn) = B(0, 1
n
) ⊂

B(0, 1). Therefore for 0 ≤ s ≤ t, it holds that∣∣∣∣∂fn∂s
(s,Xs)

∣∣∣∣ ≤ sup
z∈Λ(s,Xs)

∣∣∣∣∣∂f̃∂s (z)
∣∣∣∣∣ .

Since a càdlàg process is bounded on [0, t], for fixed ω ∈ Ω the set Λ(s,Xs) is
bounded. Therefore for a fixed ω ∈ Ω and s ∈ [0, t] we can find a upper bound
for
∣∣∂fn
∂s

(s,Xs)
∣∣ that depends only on ω, t and the minimum and maximum

of ∂f̃
∂s
(s,Xs) on [0, t]. Since we assumed the weak derivatives of function f be

locally bounded, the upper bound of
∣∣∂fn
∂s

(s,Xs)
∣∣ is finite and hence also weak

derivatives of f̃ are locally bounded too. Therefore we can apply Lebesgue
Dominated convergence theorem, Equation 5.2 and Theorem 4.33 to obtaining
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lim
n→∞

∫ t

0

∂fn
∂s

(s,Xs) ds =

∫ t

0

lim
n→∞

∂fn
∂s

(s,Xs)1{(s,Xs )̸∈L1} ds

=

∫ t

0

∂f̃

∂s
(s,Xs)1{(s,Xs) ̸∈L1} ds,

P-almost surely. Since m{s ∈ [0, t] : (s,Xs) ∈ L1} = 0, P-almost surely it
holds that ∫ t

0

∂f̃

∂s
(s,Xs) ds =

∫ t

0

∂f̃

∂s
(s,Xs)1{(s,Xs)∈L1} ds,

P-almost surely. Finally by definition of extension f̃ , for each s ∈ [0, t], it

holds that ∂f̃
∂s
(s,Xs) =

∂f
∂s
(s,Xs) and we obtain

lim
n→∞

∫ t

0

∂fn
∂s

(s,Xs) ds =

∫ t

0

∂f̃

∂s
(s,Xs) ds =

∫ t

0

∂f

∂s
(s,Xs) ds.

(iii) Similar arguments holds if we replace ∂fn
∂s

(s,Xs) by ∂fn
∂x

(s,Xs) and therefore
we can apply previous procedure from (ii) to conclude that

lim
n→∞

∫ t

0

∂fn
∂x

(s,Xs) ds

= lim
n→∞

[∫ t

0

∂fn
∂x

(s,Xs)1{(s,Xs )̸∈L1} ds+

∫ t

0

∂fn
∂x

(s,Xs)1{(s,Xs)∈L1} ds

]
= lim

n→∞

∫ t

0

∂fn
∂x

(s,Xs)1{(s,Xs )̸∈L1} ds

=

∫ t

0

lim
n→∞

∂fn
∂x

(s,Xs)1{(s,Xs )̸∈L1} ds

=

∫ t

0

∂f̃

∂x
(s,Xs)1{(s,Xs )̸∈L1} ds

=

∫ t

0

∂f̃

∂x
(s,Xs)1{(s,Xs )̸∈L1} ds+

∫ t

0

∂f̃

∂x
(s,Xs)1{(s,Xs)∈L1} ds

= lim
n→∞

∫ t

0

∂fn
∂x

(s,Xs) ds,

P-almost surely.
(iv) Let In =

∫∫
[0,t]×R fn(s,Xs−+x)−fn(s,Xs−) JX(ds×dx). By using mean-value

theorem we have

|fn(s,Xs− + x)− fn(s,Xs−)| =
∣∣∣∣∂fn∂x

(s, C)

∣∣∣∣ |x|,
where C is a random variable between Xs and Xs− + x. By Lemma 4.35 and
the same procedure in Equation 5.3 we conclude that
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|fn(s,Xs− + x)− fn(s,Xs−)| =
∣∣∣∣∂fn∂s

(s, C)

∣∣∣∣ |x|
≤ sup

z∈(R×U)∩Λ(s,C)

∣∣∣∣∣∂f̃∂s (z)
∣∣∣∣∣ |x|

≤ sup
z∈Λ(s,C)

∣∣∣∣∣∂f̃∂s (z)
∣∣∣∣∣ |x|

≤ C ′|x|,

where Λ(s, C) = {y ∈ R2 : (s, C) − y ∈ K}, K = supp(ϕn) = B(0, 1
n
) ⊂

B(0, 1). Again for fixed ω ∈ Ω the set Λ(s, C) is bounded on [0, t], since C is
between bounded random variables Xs− and Xs− + x. Hence for fixed ω ∈ Ω
and s ∈ [0, t] there exists a upper bound C ′ that doesn’t depend on s, t or n.
Finiteness of C ′ follows by obtaining that the weak derivatives of f are locally
bounded that implies also the boundness of derivatives of f̃ .
On the other hand X is finite variation Lévy process when we have by

Proposition 2.35 that

In ≤
∫∫

[0,t]×R

C ′|x| JX(ds× dx)

= C ′
∫∫

[0,t]×R

|x| JX(ds× dx)

< ∞,

and therefore we can apply Lebesgue dominated convergence theorem to in-
terchange the limit and the integral in expression In as n goes infinity. Fur-
thermore since [0, t] × U ⊂ R × U = Lf̃ by (iv) of Theorem 4.31 we obtain

that fn −→ f̃ pointwise as n → ∞ on [0, t]× U and thus

lim
n→∞

In =

∫∫
[0,t]×R

lim
n→∞

(fn(s,Xs− + x)− fn(s,Xs−)) JX(ds× dx)

=

∫∫
[0,t]×R

f̃(s,Xs− + x)− f̃(s,Xs−) JX(ds× dx)

=

∫∫
[0,t]×R

f(s,Xs− + x)− f(s,Xs−) JX(ds× dx).

□

Now we are ready to state and prove our main result.
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5.3. Itô’s formula for finite variation Lévy processes.

Theorem 5.7. Assume that f : [0,∞)×U 7−→ R is a continuous function on [0,∞)×U
such that f ∈ L1

loc([0,∞) × U), supp(f) ⊂ [0,∞) × U and U is an open set of R.
Let the weak derivatives ∂f

∂s
, ∂f
∂x

∈ L1
loc([0,∞) × U) be locally bounded and defined by

equation 5.1. Suppose that X is a finite variation Lévy process satisfying Assumption
5.1 such that for all t ≥ 0, Xt and Xt− are in U . Then

f(t,Xt) = f(0, X0) +

t∫
0

∂f

∂s
(s,Xs) ds+ γ

t∫
0

∂f

∂s
(s,Xs) ds

+

∫∫
[0,t]×R

(f(s,Xs− + x)− f(s,Xs−)) JX(ds× dx),

where JX and γ are respectively the Jump measure and the drift coefficient of the
process X admitting the following representation from Theorem 2.36 : Xt = γt +∫
[0,t]×R x JX(ds× dx).

Proof. Let f̃ and fn be defined like in Proposition 5.6. Since we assumed f ∈
L1
loc([0,∞) × U) it follows that f̃ ∈ L1

loc(R × U) and by (i) of Theorem 4.33, fn ∈
C∞(R × R) for all n ≥ 1. Hence by using Ito formula presented in Theorem 3.9, we
have

fn(t,Xt) =fn(0, X0) +

t∫
0

∂fn
∂s

(s,Xs) ds+ γ

t∫
0

∂fn
∂s

(s,Xs) ds

+

∫∫
[0,t]×R

(fn(s,Xs− + x)− fn(s,Xs−)) JX(ds× dx),

and by Proposition 5.6, for fixed t ≥ 0 it holds for P-almost surely that;

f(t,Xt) =f(0, X0) +

t∫
0

∂f

∂s
(s,Xs) ds+ γ

t∫
0

∂f

∂s
(s,Xs) ds

+

∫∫
[0,t]×R

(f(s,Xs− + x)− f(s,Xs−)) JX(ds× dx).

(5.4)

The process X is càdlàg by Assumption 5.1, so the left-hand side and the right-
hand side of the above equality are well-defined processes and also modifications of
each other in the sense of Definition 2.39. To show that these two sides of Equation
5.4 are actually indistinguishable we obtain that by Theorem 2.40 it is sufficient to
show that the processes of the both side of the equation 5.4 are right-continuous.

First we note that since the process X : [0,∞)×Ω −→ U is càdlàg and the function
f is continuous then (f(t,Xt))t≥0 is also càdlàg. Moreover (f(0, X0))t≥0 is càdlàg as
well.

The functions ∂f
∂s

and ∂f
∂x

are Borel measurable and for fixed ω ∈ Ω, the process

(Xs)0≤s≤t is also Borel measurable. Hence for a fixed ω, ∂f
∂s
(s,Xs) and

∂f
∂x
(s,Xs) are
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Borel measurable and hence Lebesgue measurable. Furthermore by Fundamental
theorem of Lebesgue integral calculus it holds that

t 7−→
∫ t

0

∂f

∂s
(s,Xs) ds and t 7−→

∫ t

0

∂f

∂x
(s,Xs) ds,

are absolutely continuous and therefore by remark 4.13 also uniformly continuous in
t.

Let

Zt :=

∫∫
[0,t]×R

(f(s,Xs)− f(s,Xs−)) JX(ds× dx).

Since f is not necessarily smooth, to show the right-continuity of the process Z =
(Zt)t≥0 we have to deduce that limh→0+ |Zt+h − Zt| = 0. For all s ≥ 0, Xs and Xs−
are in U , therefore by equation 3.5 it holds that

Zt =
∑
0≤s≤t

(f(s,Xs)− f(s,Xs−)).

By using above equation we obtain that

lim
h→0+

|Zt+h − Zt| = lim
h→0+

∣∣∣∣∣ ∑
0≤s≤t+h

(f(s,Xs)− f(s,Xs−))−
∑
0≤s≤t

(f(s,Xs)− f(s,Xs−))

∣∣∣∣∣
= lim

h→0+

∣∣∣∣∣ ∑
t≤s≤t+h

(f(s,Xs)− f(s,Xs−))

∣∣∣∣∣
≤ lim

h→0+

∑
t≤s≤t+h

|(f(s,Xs)− f(s,Xs−)|

= lim
h→0+

∑
t≤s≤t+h

| lim
n→∞

[(fn(s,Xs)− fn(s,Xs−)]|

= lim
h→0+

∑
t≤s≤t+h

lim
n→∞

|((fn(s,Xs− +∆Xs)− fn(s,Xs−))|

Similarly to (iv) of Proposition 5.6 by using mean-value theorem we can find C ′

such that

|((fn(s,Xs− +∆Xs)− fn(s,Xs−))| =
∑
0≤s≤t

∣∣∣∣∂fn∂s
(s, C)

∣∣∣∣ |∆Xs|,

where C is a random variable between Xs− and Xs−+∆Xs. By Equation 5.3 we have
that

|((fn(s,Xs− +∆Xs)− fn(s,Xs−))| ≤ C ′′|∆Xs|,

where C ′′ is a upper bound for that doesn’s depends on s, x or n on [0, t]. Furthermore
C ′′ is finite because the weak derivatives of f are locally bounded that implies also
boundness of derivatives of f̃ . Hence we obtain that
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lim
h→0+

|Zt+h − Zt| ≤ lim
h→0+

∑
t≤s≤t+h

lim
n→∞

|(fn(s,Xs)− fn(s,Xs−))|

≤ lim
h→0+

∑
t≤s≤t+h

lim
n→∞

C ′′|∆Xs|

≤ C ′′ lim
h→0+

∑
t<s≤+h

∆Xs = 0, P-almost surely.

This shows that the process Z is right-continuous and thus the conclusion of the
theorem holds. □
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