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Abstract

Gimeno Estivill, Patricia
Pair Production in Color Glass Condensate Background
Master’s thesis
Department of Physics, University of Jyväskylä, 2023, 57 pages.

At high energy, the density of gluons in hadrons strongly increases until saturation,
leading to a state of condensed gluon matter. In high energy collisions, the interaction
of partons with this dense gluonic state is represented through Wilson Lines in the
Color Glass Condensate theory, which describes the properties of small-x gluons in the
saturated regime. In relativistic proton-nucleus collisions, the proton can be treated
as a dilute system where a gluon fluctuates into a quark-antiquark pair. In this thesis,
the interaction of these gluon and quark/antiquark partons with the condensed gluon
matter in the nucleus is studied. Concretely, the quark pair production amplitude is
calculated using the dilute-dense approximation in the covariant and in the Light
Cone Perturbation theories. Firstly, in covariant theory the proton and nucleus are
described as classical fields originating from color sources. As another approach, the
initial gluon and the final quark-antiquark states are expanded in terms of the Fock
state basis in Light Cone Perturbation Theory. A comparison of the two results is
made at the end.

Keywords: Color Glass Condensate, gluon saturation, classical color fields, Wilson
Lines, light cone quantization



4



5

Preface

Throughout the eight months that I have been developing this thesis, there has not
been any moment where intellectual enrichment was not present. I would like to
thank Professor Tuomas Lappi for putting the color in my master’s thesis.

Jyväskylä June 16, 2023

Patricia Gimeno Estivill



6



7

Contents

Abstract 3

Preface 5

1 Introduction 9

2 The Color Glass Condensate 11
2.1 Light cone coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Parton densities of a proton at high energies . . . . . . . . . . . . . . 12
2.3 Dilute-dense approximation . . . . . . . . . . . . . . . . . . . . . . . 14

3 Pair Production in Covariant Theory 17
3.1 Classical color fields from Yang-Mills equations . . . . . . . . . . . . 17
3.2 Quark-antiquark production amplitude . . . . . . . . . . . . . . . . . 21

3.2.1 Regular terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Singular term . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Complete time-ordered amplitude . . . . . . . . . . . . . . . . 33

4 Pair production in Light Cone Perturbation Theory 35
4.1 Perturbative Fock state expansion . . . . . . . . . . . . . . . . . . . . 35
4.2 Initial and final Fock states in mixed space . . . . . . . . . . . . . . . 38
4.3 Light cone wave function . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Pair production amplitude . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Comparison of the results 47

6 Conclusions 53

References 54



8



9

1 Introduction

Hadrons are made of quarks that are bound together by the exchange of gluons.
Strong interactions between these partons and their properties are described by the
Quantum Chromodynamics (QCD) field theory. QCD attributes the forces among
partons (quarks and gluons) to the color charge that they carry and it predicts that
gluons exchanged between quarks can temporally fluctuate into quark-antiquarks
pairs that can produce further gluon emissions and splittings [1]. A prominent feature
of the quark and gluon content in hadrons at the high energy (or small-x) regime
is the strong increase of the gluon distribution over the quark distribution, which
was experimentally observed at HERA electron-proton collider [2]. This growth in
the gluon distribution generates a saturation momentum scale Qs which measures
the strength of the gluon recombination processes. Any process involving momenta
smaller than Qs may be affected by gluon saturation [1].

The Color Glass Condensate (CGC) theory describes the behavior of this satu-
rated gluon matter which appears in high energy scatterings such as Deep Inelastic
Scattering (DIS) at HERA, nucleus-nucleus or proton-nucleus collisions at the Large
Hadron Collider (LHC), as well as lepton-ion collisions in the future Electron Ion
Collider (EIC). This thesis is focused on proton-nucleus collisions where a gluon
from the proton splits into a quark-antiquark (qq̄) pair. The interaction of these
partons (both quarks and gluon) with the gluon condensate in the nucleus is described
through Wilson Lines in the Eikonal approximation. The main point of this work
is the calculation of the pair production amplitude at lowest order in the strong
coupling constant. This calculation is performed in two different theories, separately.
In section 3, the qq̄-pair production amplitude is obtained by modelling the partons
as classical color fields in covariant theory. In this approach, the valence quarks
act as large-x color sources for the classical fields, which can be solved from the
Yang-Mills equations of motion [3]. Another approach is considered in section 4,
where Light Cone Perturbation Theory (LCPT) is used to expand the initial gluon
and final qq̄–states in terms of the Fock state basis and Light Cone Wavefunctions
(LCWF). The production amplitude is then calculated from the scattering matrix



10

element between the initial and final states. Finally, the amplitudes obtained in
covariant and LCPT theories are compared in section 5.
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2 The Color Glass Condensate

2.1 Light cone coordinates

Throughout this thesis, the high-energy proton-nucleus collision is described using
light cone coordinates [4, 5] whose components are defined in terms of an arbitrary
4-vector vµ = (v0, v1, v2, v3) as

v+ = v0 + v3
√

2
, v− = v0 − v3

√
2

, v⊥ = (v1, v2) . (1)

The non-zero elements of the metric tensor gµν are

g+− = g−+ = 1 , g11 = g22 = −1 , (2)

which implies that

v+ = g+νvν = v− , v− = g−νvν = v+ . (3)

The light-like variable x+ = 1√
2(t+z) is usually referred to the “time” coordinate1

and x− = 1√
2(t − z) to the longitudinal “spatial” coordinate.

The scalar product between two vectors is defined as

x · p = gµνxµpν = x+p− + x−p+ − x⊥p⊥ , (4)

which suggests that p− should be interpreted as the light cone energy, because
time and energy are conjugate variables. Then, p+ is interpreted as the light cone
longitudinal momentum.

Both coordinates are positive definite (p± > 0) for particles propagating in the
direction of increasing x+, while p± < 0 for antiparticles moving in the direction of

1 The x+–coordinate should not be interpreted as the usual time t = x0. In covariant theory,
one can make a continuous transformation and boost to any coordinate system moving at velocity
v < 0, where the physics will look the same with a different coordinate time. However, it is not
possible to boost to exactly light velocity v = 0. For high energy scattering problems one has to
define a coordinate “time” that is a light-like variable [6].
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decreasing x−.

2.2 Parton densities of a proton at high energies

Nucleons are made of three valence quarks bound by gluons. However, these quarks
can temporarily fluctuate into states that have additional gluons and sea quarks-
antiquarks pairs. These fluctuations are short lived, with a lifetime that is inversely
proportional to their energy [1].

In DIS experiments, one probes the proton structure with a lepton, which
interacts with the proton by exchanging a photon with virtuality Q2. This resolution
power Q2 of the probe sets the characteristic time scale of the reaction and only the
fluctuations that are longer lived than the resolution in time of the probe can be
seen in the process. Hence, to be able to “see” these fluctuations it is necessary to
study a high energy nucleon whose internal scales are time dilated by the Lorentz
factor [1].

The experimental data on DIS collected at HERA hadron collider [2] allows to
determine the parton distribution functions (PDFs), which give the probability to
find partons (quarks and gluons) in a hadron as a function of Bjorken-x. This x is
the momentum fraction of the parton on which the photon scatters and it is defined
as x ≈ Q2/W 2, with W 2 the invariant energy squared of the photon-proton system
[7]. Therefore, scatterings at high energy (large W 2 at fixed Q2) corresponds to small
values of x.

An interesting phenomenon occurs at small-x, when the density of gluons inside
a proton or nucleus strongly increases until saturation, outnumbering the valence
and sea parton distributions. This trend can be observed in Figure 1 where the
gluon PDF denoted by g clearly dominates the structure of the proton over the sea
s, c, ū, d̄ and valence uv, dv quarks when x < 0.1. This dense state of gluon matter
inside a proton or nucleus at small-x is referred to as Color Glass Condensate and it
plays a major role in interactions at high energy.

Theoretically, the parton content in hadrons can be studied in perturbative
QCD theory with evolution equations that allow to determine the PDFs at some
point (x, Q2) if an initial value at (x0, Q2

0) is known [7]. Figure 2 illustrates different
evolution equations whose region of validity depends on the momentum scale Q2.
At high x, the DGLAP evolution equation can be applied to describe a “dilute”
hadron or nucleus while the linear BFKL equation [8, 9] predicts the growth of gluon
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Figure 1. The bands are x times the parton distribution functions of the valence
quarks f = uv,dv, sea quarks f = ū, d̄, s, c, b, and gluons f = g, as functions of
Bjorken x for fixed scales Q2 = 10 GeV2 (left) and Q2 = 104 GeV2 (right). The
uncertainties are represented by the bands. Note that the gluon PDF xg is scaled
by a factor 1/10. Figure from NNLO MSHT20 global analysis [2].

distribution towards small x.
Although there is no strict bound on the number density of gluons in QCD,

scattering cross sections cannot grow faster than ln2s with s the centre of mass energy
squared, which is known as the Froissart-Martin bound [10]. This limit in the cross
section leads to a limit in the gluon density and therefore, the BFKL equation which
predicts a growth in the number of partons as N ∼ (1/x)λ, with λ > 0, is not valid
at high energy [7]. In this region, it is necessary to consider the recombination of
partons (gg → g) on top of the splitting (g → gg), which restricts the growth of the
gluon density and leads to saturation [1, 11–13]. This transition until saturation is
described by the non-linear BK and JIMWLK evolution equations at Q2

s ≫ Λ2
QCD,

with ΛQCD ≈ 200 − 300 MeV the fundamental scale of QCD [14]. The saturation
scale Qs which characterize the onset of saturation effects induced by the medium
grows with decreasing x and increasing mass number of a nucleus A as [14]

Q2
s(x, A) ∼ A1/3x−λ , (5)

with λ ≈ 0.2 . . . 0.3. The power A1/3 comes from the radius of the nucleus R ∼ A1/3

and the λ parameter is obtained from DIS measurements.
Since the running of the strong-coupling αS(Qs) is controlled by the saturation
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scale Qs, high energy processes can be described using weak coupling techniques
(αS(Qs) ≪ 1) as in perturbation theory.

Figure 2. In the perturbative region (Q2 ≫ Λ2
QCD), the saturation scale Qs

separates the dilute region, where few partons (colored balls) compose the hadron,
from the saturation region, where the number of gluons increases. Different
evolution equations are used to describe the partonic content depending on the
momentum scale Q2 of the process. Figure from [7].

2.3 Dilute-dense approximation

The kinematic notation for the proton-nucleus scattering is

p(pp) + A(pA) → q(q)q̄(p) + X . (6)

As it is shown in Figure 3, the proton moving in the (+z)–direction is defined
with momentum pp = (p+

p , 0−, 0⊥) while the nucleus moving in the (−z)–direction is
defined with momentum pA = (0+, p−

A, 0⊥).
In this collision, the nucleus is approximated as a dense system in the saturation

region while the proton is considered to be a dilute system. In the latter, a valence
quark emits a gluon with momentum k1 = (xpp+

p , 0, k1⊥) which can fluctuate into
a massive quark and antiquark with momentum q and p, respectively. Then, these
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partons eikonally interact with the Color Glass Condensate in the nucleus. In
the eikonal approximation, the partons do not deviate their trajectory during the
interaction, which is represented by a path ordered exponential known as Wilson
Line [12, 14].

In the following section 3, the pair production amplitude is calculated in
Lorenz/covariant gauge (∂µAµ = 0) and in section 4, the probability amplitude
describing the same process is calculated in light cone gauge (A+ = 0).

Figure 3. Relativistic p-A collision and quark pair production in light cone
coordinates. Both nucleus and proton appear as two dimensional thin sheets due
to the Lorentz contraction at relativistic energies. The Wilson lines are illustrated
as black dots and represent the multiple scatterings of the corresponding parton
off the saturated gluonic region in the nucleus.
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3 Pair Production in Covariant Theory

3.1 Classical color fields from Yang-Mills equations

In the CGC effective field theory, the proton-nucleus scattering is described as a
collision between two classical fields created by random color sources which represent
the valence partons with small momentum (large-x) in each projectile [14, 15]. As a
result of Lorentz time dilatation, these color sources are static over the timescale of
the collision and treated as a shockwave due to Lorentz contraction [14].

The classical fields are obtained by solving the Yang-Mills equations coupled to
a color current [3] [

Dµ, F µν
]

= Jν , (7)

where the field tensor F µν is defined as

F µν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c . (8)

The covariant derivative Dµ is

Dµ = ∂µ − igAa
µT a, (9)

where T a are the generator matrices of the adjoint SU(Nc) algebra. The color current
Jν of the two valence sources is [16]

Jν,a = gδν+δ(x−)ρa
p(x⊥) + gδν−δ(x+)ρa

A(x⊥) , (10)

where the Eikonal sources ρp and ρA are Lorentz contracted to delta functions δ(x±)
due to the relativistic velocities and independent of the light cone time x+, reflecting
their staticity during the time scale of the collision [6].

In Lorenz gauge ∂µAµ = 0, the classical field separately created by ρp in the
proton and ρA in the nucleus before the collision can be analytically solved to leading
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order in the color sources from eq. (7). The results in coordinate space are [16]

Aµ
p(x) = −gδµ+δ(x−) 1

∇2
⊥

ρp(x⊥) , (11)

Aµ
A(x) = −gδµ−δ(x+) 1

∇2
⊥

ρA(x⊥) , (12)

and their Fourier transform in momentum space results in

Aµ
p(l) = 2πgδµ+δ(l−)ρp(l⊥)

l2
⊥

, (13)

Aµ
A(l) = 2πgδµ−δ(l+)ρA(l⊥)

l2
⊥

. (14)

However, the color orientation of the parton in the proton can change after the
collision, that is, the color density of the proton can undergo a local rotation in the
non-abelian gauge theory of SU(Nc), produced by its interaction with the CGC in
the nucleus,

eiαa(x)ta

ρae−iαa(x)ta → ρ′
a . (15)

This implies that higher order corrections in the current in eq. (10) are needed to
guarantee its covariant conservation, which is expressed as

[
Dν , Jν

]
= 0 . (16)

In this way, the total gauge field Aµ emerges from the interaction of the proton
source with the gauge field of the nucleus Aµ

A during the collision. Then, the quark
pair production can be calculated in the presence of these classical fields without the
partonic description of point-like particles.

The analytical solution of eqs. (7) and (16) has been rigorously derived in [3].
This correction, denoted as Aµ, contains singular terms, which are proportional to a
δ(x+)–function in coordinate space, and regular terms (see section 3.5 of [3]). Thus,
this total gauge field is decomposed as

Aµ(l) = Aµ
reg(l) + Aµ

sing(l) . (17)
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The regular term Aµ
reg is

Aµ
reg(l) = Aµ

p(l) + ig

l2 + il+ϵ

∫
d2k1⊥

(2π)2

{
Cµ

U(l,k1⊥)
[
UA(k2⊥) − (2π)2δ(k2⊥)

]
+ Cµ

V,reg(l)
[
V (k2⊥) − (2π)2δ(k2⊥)

]}ρp(k1⊥)
k2

1⊥
, (18)

where Aµ,a
reg(l) = Aµ,a

reg(l)T a.
The regular field in eq. (18) is linear in the proton source ρp. This is consistent

with the analytical description of a dilute-dense collision, where all the expressions
expanded in the small parameter ρp are truncated to first order. It can also be seen
that eq. (18) is expressed as the Fourier transform in eq. (13) of the proton gauge
field plus a term that contains the off-shell gluon propagator with momentum l.
This second term is originated from the interaction of a gluon with momentum k1⊥

with the CGC in the nucleus, with momentum k2⊥ ≡ l⊥ − k1⊥. The 4-vectors Cµ
U

and Cµ
V,reg in eq. (18) gather the momentum dependence of the integral and their

components are

C+
U (l,k1⊥) ≡ − k2

1⊥
l− + iϵ

, C−
U (l,k1⊥) ≡ k2

2⊥ − l2
⊥

l+ , Ci
U(l,k1⊥) ≡ −2ki

1 , (19)

C+
V,reg(l) ≡ 2l+ , C−

V,reg(l) ≡ 2l− − l2

l+ , Ci
V,reg(l) ≡ 2li . (20)

The U and V terms in eq. (18) are the Fourier transforms of Wilson lines in the
adjoint representation of SU(N),

UA(x⊥) = P+exp
(

ig

∫ +∞

−∞
dz+A−

A(z+, x⊥) · T

)
, (21)

V (x⊥) = P+exp
(

i
g

2

∫ +∞

−∞
dz+A−

A(z+, x⊥) · T

)
, (22)

where P+ is the path-ordering operator along the z+–axis. The above exponentials
contain the A−

A gauge field of the nucleus (12) next to the group generators T . As it
is discussed in section 2.2 in [3], the nucleus field in eq. (12) is not modified by any
correction to higher orders in ρA.

The path ordered exponential in eq. (21) sums all powers of gA− which represents
all the scatterings of a particle propagating through the target along the z+–axis
at a fixed transverse coordinate x⊥. Since the generator T belongs to the adjoint
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representation, the eikonal particle is a gluon. If the particle is a quark, the Wilson
line is denoted by UF and contains the generator t in the fundamental representation.
The propagation of an eikonal antiquark is expressed with the conjugate Wilson line
U †

F . Therefore, this phase acquired by the particle is the result of its interaction with
the CGC. The unusual Wilson line V with a factor of 1/2 in eq. (22) is obtained
during the calculation of gluon production in the Lorenz gauge [3], but it does not
appear in other gauge calculations, e.g. in [17]. Thus, it is expected that the final
quark pair production amplitude does not depend on it.

The relationship between Cµ
V,reg and the vector Cµ

V is [3]

Cµ
V = Cµ

V,reg(l) − δµ− l2

l+ . (23)

It is possible to see that the singular field appears from the second term in eq. (23),
where the l2 term cancels the 1/l2 pole in eq. (18) and thus, it is the only term that
survives in the limit l− → ∞. Therefore, the singular field is

A−
sing(l) = − ig

l+

∫
d2k1⊥

(2π)2

[
V (k2⊥) − (2π)2δ(k2⊥)

]ρp(k1⊥)
k2

1⊥
. (24)

In contrast with the regular field expressionin eq. (18), eq. (24) does not include the
field of the proton alone Aµ

p(l) since its minus component is zero. The integration
over l− in eq. (24) leads to a δ(x+)–function which imposes the gluon production
within the nucleus. The Fourier transform of this singular field is

A−
sing(x) = ig2

2 (A−
A(x) · T )V (x+, −∞; x⊥)θ(x−) 1

∇2
⊥

ρp(x⊥) , (25)

where V (x+, −∞; x⊥) denotes the incomplete Wilson line

V (x+, − ∞; x⊥) = P+exp
(

i
g

2

∫ x+

−∞
dz+A−

A(z+, x⊥) · T

)
. (26)

Here x+ is the point where the gluon splitting is produced inside the nucleus. This
longitudinal extension in V (x) (nucleus extension) will be regularized in section
(3.2.2). On the other hand, the regular field Aµ

reg(l) in eq. (18) represents the gluon
splitting outside the nucleus.

In this classical field formalism, the quark pair production amplitude in the
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Lorenz gauge is calculated in the next section, following [16].

3.2 Quark-antiquark production amplitude

In concordance with the decomposition of the total gauge field Aµ in eq. (17), the
calculation of the pair production amplitude is organized in two stages:
1. Regular diagrams, where the qq̄ pair is created from the regular field (18) outside
the nucleus.
2. Singular diagrams, where the pair is produced from the singular field (25) inside
the nucleus.
At the end of the calculation, the two contributions are added to obtain the full
covariant amplitude Mcov = Mreg + Msing in sec. (3.2.3).

To approximate the proton as a dilute system, the Feynman diagrams are drawn
with only one insertion of the regular (18) and singular (25) fields on the quark
propagator so that the pair production amplitude is calculated to first order in the
proton source ρp. However, the nuclear field (12) can be added multiple times in
the quark and antiquark propagators since it does not change the power counting in
the proton source2. These multiple interactions are expressed through the following
effective vertex3 T (k, p) symbolized as a single black dot in the diagrams,

= 2πδ(k+)γ+sign(p+)
∫

d2x⊥eik⊥x⊥
[
U

sign(p+)
F (x⊥) − 1

]
.

(27)
Here p is the quark momentum and k is the net momentum transmitted by the
multiple gluon “kicks” to the quark. The sign of p+ depends on whether the gluon
insertions are placed in quark (p+ > 0) or antiquark (p+ < 0) lines, where the Wilson
Lines (21) in the fundamental representation are respectively denoted by UF and U †

F .
The free Feynman propagator for intermediate off-shell quark particles with

2 The detailed proof of this statement can be read in [3].
3 The effective vertex is derived in [11, 18] from the Coulomb interaction of a fermion particle

with an electromagnetic vector potential created by a nucleus in heavy ion collisions. Although the
derivation was performed in Quantum Electrodynamics (QED) to study the e+e− pair production
in ultra-relativistic nuclear collisions, the analogy with QCD made in this work by replacing the
electromagnetic vector potential with the gauge potential leaves the expression of the effective
vertex unchanged.
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momentum p and mass m is

S0(p) ≡
i(/p + m)

p2 − m2 + iϵ
. (28)

Gluon polarization is not considered in the following calculations.

3.2.1 Regular terms

The regular terms in eq. (17) which contribute to the amplitude are represented by
the four diagrams in Figure 4.

Areg Areg Areg Areg

AAAA AA

(c)(b) (d)(a)

Figure 4. Regular diagrams contributing to the pair production amplitude. The
gluon line connected with a cross denotes a classical field insertion. The multiple
insertions of the field AA are represented by a black dot which symbolizes the
effective vertex defined in eq. (27).

The contribution of diagram (a) can be written using Feynman rules as

M(a) =
∫

d4k1

(2π)4 ū(q)
[

− ig /Areg(k1) · t
]
v(p)(2π)4δ4(p + q − k1) . (29)

This expression can be integrated over the internal momenta k1 with the four-
dimensional delta function. The regular field Areg(k1) has been defined in eq. (18),
where now l = k1 = p + q ,

Aµ
reg(p + q) = Aµ

p(p + q) + ig

(p + q)2 + i(p+ + q+)ϵ

∫
d2k1⊥

(2π)2

{
Cµ

U(p + q,k1⊥)

×
[
UA(k2⊥) − (2π)2δ(k2⊥)

]
+ Cµ

V,reg(p + q)
[
V (k2⊥) − (2π)2δ(k2⊥)

]}ρp(k1⊥)
k2

1⊥
.

(30)
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Since the proton field Aµ
p(p + q) defined in eq. (13) contains a delta function

in the form δ(p− + q−), it needs to be discarded since it would not represent the
production of two quarks on-shell, for which p− > 0 and q− > 0. In this diagram (a),
this term would mean the production of a pair from the proton alone, which is
impossible due to kinematics [16]. Then, the contribution of the first diagram is

M(a) = g2
∫

d2k1⊥

(2π)2
ρp(k1⊥)

k2
1⊥

∫
d2x⊥ei(p⊥+q⊥−k1⊥)x⊥

×
{

ū(q) /CU(p + q, k1⊥)tbv(p)
(p + q)2

[
UA(x⊥) − 1

]
ba

− ū(q)γ+tbv(p)
p+ + q+

[
V (x⊥) − 1

]
ba

}
.

(31)

In this expression, the Wilson Lines are Fourier transformed to coordinate space
using the momentum conservation k2⊥ + k1⊥ = p⊥ + q⊥. Furthermore, the second
term in eq. (31) has been obtained using the Dirac equation ū(q)(/p + /q)v(p) = 0 to
set to zero the first term of the Cµ

V,reg coefficient (20):

1
(p + q)2 ū(q)γµCµ

V,reg(p + q)tbv(p) =

= 1
(p + q)2 ū(q)γµ

(
2(pµ + qµ) − δµ− (p + q)2

p+ + q+

)
tbv(p)

= 1
(p + q)2 2ū(q)(/p + /q)v(p)tb − 1

(p + q)2 ū(q)γµ

(
δµ− (p + q)2

p+ + q+

)
tbv(p)

= − ū(q)γ+tbv(p)
p+ + q+ .

(32)
The second diagram in Figure 4 shows the eikonal interaction antiquark-nucleus

with the effective vertex T (k, −p) (27) drawn on the antiquark line. The momentum
direction of the intermediate off-shell propagator is defined according to an antiparticle
moving backwards in time and thus carrying −p < 0 momentum in the direction of
the antiquark line. In contrast, the physical/on-shell antiquark has a positive defined
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momentum p > 0. The amplitude (b) is then written as

M(b) =
∫

d4k1

(2π)4
d4k2

(2π)4 ū(q)
[

− ig /Areg(k1) · t
]
S0(−p + k2)T (k2, −p)v(p)

× (2π)4δ4(p + q − k1 − k2)

= −
∫

dk+
2

2π
2πδ(k+

2 )

×
∫

dk−
2

2π

[
− igγµAµa

reg(p + q − k2)ta
]
S0(−p + k2)

×
∫

d2k2⊥

(2π)2 d2x⊥eik2⊥x⊥ū(q)γ+[U †
F (x⊥) − 1

]
v(p) .

(33)

In the second equality, the 4-dimensional delta function has been integrated over k1.
Also, the effective vertex T (k2, −p) (27) has been explicitly written, which brings a
minus sign since it is added in the antiquark propagator.

Equation (33) can be further solved by integrating over k+
2 with the delta function.

Then, the k+
2 –momentum is set to zero, which is compatible with the physical picture

of the target nucleus moving in the x−–direction in the light cone. Subsequently,
the k−

2 –integral in eq. (33) is solved by the theorem of residues. The terms which
contain the singularities are the intermediate propagator S0(−p + k2) (28) and the
regular field Aµ

reg(p + q − k2) (18). The singularity in the antiquark propagator is

(−p + k2)2 − m2 + iϵ = 0

2(−p+ + k+
2 )(−p− + k−

2 ) − (−p⊥ + k2⊥)2 − m2 + iϵ = 0

2(−p+)(−p− + k−
2 ) − (−p⊥ + k2⊥)2 − m2 + iϵ = 0

⇒ k−
2 = p− + (−p⊥ + k2⊥)2 + m2

2(−p+) − iϵ

2(−p+) ,

(34)

which is located in the upper half plane of k−
2 . In this calculation, the off-shell

propagator is transformed to on-shell, since the isolated pole is located at the square
of the particle mass, p2 = m2.

The first singularity in the regular field Aµ
reg(p + q − k2) (18) is found in the
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gluon propagator:

→ (p + q − k2)2 + (p+ + q+ − k+
2 )iϵ = 0

2(p+ + q+ − k+
2 )(p− + q−− k−

2 ) − (p⊥ + q⊥ − k2⊥)2 + (p+ + q+ − k+
2 )iϵ = 0

(p− + q− − k−
2 ) = (p⊥ + q⊥ − k2⊥)2 − (p+ + q+)iϵ

2(p+ + q+)

⇒ k−
2 = p− + q− − (p⊥ + q⊥ + k2⊥)2

2(p+ + q+) + iϵ

2 .

(35)

The second singularity is carried by the C+
U coefficient (19):

→ p− + q− − k−
2 + iϵ = 0

⇒ k−
2 = p− + q− + iϵ .

(36)

The poles in eqs. (35) and (36) are located above the real axis in the k−
2 plane.

The last calculation cannot be understood as the procedure of putting a propaga-
tor on-shell. Instead, the singularity in the C+

U component defined in eq. (19) can be
explained in the CGC theory: the proton source traveling in the x+–direction, can
only interact with the classical field of the nucleus at x+ > 0, once it has “seen” the
nuclear source, which is moving in the x−–direction. The Fourier integral of the C+

U

component is the integral representation of the Heaviside step function, which leads
to an interaction between the color sources over the x+–axis in the light cone [6].

Since the integrand of eq. (33) is strongly suppressed in the limit |k⃗2| → ∞, it
is possible to apply the residue’s theorem either in the upper or lower semicircle in
the k−

2 complex plane. Thus, the k−
2 –integral vanishes when the lower half plane is

chosen, since the three poles in eqs. (34), (35) and (36) are located inside the upper
semicircle.

Therefore, the only contribution from the regular field Aµ
reg(p + q − k2) (18) to

the k−–integral in eq. (33) is the proton field Aµ
p(p + q − k2) (13). The latter can

be integrated over k− with the delta function, which imposes p− + q− − k−
2 = 0.

Physically, this result can be interpreted as the creation of the qq̄-pair in the proton
and the subsequent interaction of the antiquark with the gluon shock wave of the
nucleus.

The final expression of amplitude (b) is written by conveniently replacing the
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integration variable over the transverse momentum k2⊥ to k1⊥ = p⊥ + q⊥ − k2⊥,

M(b) = +g2
∫

d2k1⊥

(2π)2
ρp(k1⊥)

k2
1

∫
dx⊥ei(p⊥+q⊥−k1⊥)x⊥

×
ū(q)γ−tb(/q − /k1 + m)γ+[U †

F (x⊥) − 1
]
v(p)

2p+p− + (q⊥ − k1⊥)2 + m2 , (37)

where the γ− factor results from the dot product γµ · A+
p → γ−. Furthermore, to

obtain eq. (37), the propagator S0(−p + k2) (28) has been rewritten as

i
−/p + /k2 + m

(p − k2)2 − m2 + iϵ
= i

−/p + /k2 + m

2(p+ − k+
2 )(p− − k−

2 ) − (p⊥ − k2⊥)2 − m2 + iϵ

= i
/q − /k1 + m

2(p+)(−q−) − (q⊥ − k1⊥)2 − m2 + iϵ

= −i
/q − /k1 + m

2p+q− + (q⊥ − k1⊥)2 + m2 − iϵ
,

(38)

where k+
2 = 0, p− + q− = k−

2 and p⊥ + q⊥ = k1⊥ + k2⊥. The minus sign written
in eq. (33) is cancelled by the minus sign obtained in eq. (38), which results in a
positive sign in the final amplitude (b) (37).

The contribution of diagram c in Figure (4) is

M(c) =
∫

d4k1

(2π)4

∫
d4k2

(2π)4 ū(q)T (k2, q)S0(q − k2)
[

− igγµAµa
reg(k1)ta

]
v(p)

× (2π)4δ4(p + q − k1 − k2)

= +
∫

dk+
2

2π
2πδ(k+

2 )

×
∫

dk−
2

2π
S0(q − k2)

[
− igγµAµa

reg(p + q − k2)ta
]

×
∫

d2k2⊥

(2π)2 d2x⊥eik2⊥x⊥ū(q)γ+[UF (x⊥) − 1
]
v(p) .

(39)

In comparison with amplitude (b) (33), the above expression does not include
a negative sign since the effective vertex T (k2, q) (27) is inserted into the quark
propagator, where q+ > 0. However, both amplitudes are structured in the same way,
so eq. (39) is solved following the same procedure as in the previous diagram. After
performing the integration over k1 with the four dimensional delta function, eq. (39)
can be integrated over k+

2 with the δ(k+
2 )-function and later over the momentum k−

2
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using the theorem of residues. It can be predictable that the only contribution from
the regular field Aµ

reg(p + q − k2) (18) is the proton field Aµ
p(p + q − k2) (11), since

diagram (c) is a reflection of diagram (b). This means that the two poles coming
from the regular field Aµ

reg(p + q − k2) (18) are located in the same upper plane of
k−

2 , as well as the singularity of the quark propagator S0(q − k2) (28), which is

(q − k2)2 − m2 + iϵ = 0

2(q+ − k+
2 )(q− − k−

2 ) − (q⊥ − k2⊥)2 − m2 + iϵ = 0

2q+(q− − k−
2 ) − (q⊥ − k2⊥)2 − m2 + iϵ = 0

⇒ k−
2 = q− − (q⊥ − k2⊥)2 + m2

2q+ + iϵ

2q+ .

(40)

Therefore, the integration of the second term of the regular field Aµ
reg(p + q − k2) (18)

over k−
2 vanishes by the theorem of residues and the only non-zero contribution is

the first term, that is, the proton field Aµ
p(p + q − k2) (13) whose delta function in

the form δ(p− + q− − k−
2 ) can be used to solve the k−

2 –integral.
In order to conveniently sum the four diagrams at the end, the propagator

S0(q − k2) in eq. (39) is written as

i
/q − /k2 + m

(q − k2)2 − m2 + iϵ
= i

/q − /k2 + m

2(q+ − k+
2 )(q− − k−

2 ) − (q⊥ − k2⊥)2 − m2 + iϵ

= i
−/p + /k1 + m

2(q+)(q− − k−
2 ) − (−p⊥ + k1⊥)2 − m2 + iϵ

= −i
−/p + /k1 + m

2q+p− + (q⊥ − k2⊥)2 + m2 − iϵ
.

(41)

In contrast with the amplitude (b) in eq. (37), the minus sign of the propagator is
kept in the final expression of the amplitude (c), which, after the change of variables
k2⊥ = p⊥ + q⊥ − k1⊥, reads

M(c) = −g2
∫

d2k1⊥

(2π)2
ρp(k1⊥)

k2
1

∫
d2x⊥ei(p⊥+q⊥−k1⊥)x⊥

×
ū(q)γ+[UF (x⊥) − 1

]
(−/p + /k1 + m)γ−tbv(p)

2q+p− + (−p⊥ + k1⊥)2 + m2 . (42)

Finally, diagram (d) contains two Wilson lines, UF (x⊥) and U †
F (y⊥), in the quark

and antiquark propagator, respectively. The contribution of this diagram can be
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written as

M(d) =
∫

d4k2

(2π)4

∫
d4k

(2π)4

∫
d4k1

(2π)4 (2π)4δ4(k1 + k2 − p − q)ū(q)T (k, q)S0(q − k)

×
[

− ig /Areg(k1) · t
]
S0(−p + (k2 − k))T (k2 − k, −p)v(p). (43)

Here, the momentum k2 −k transferred to the antiquark line is renamed as k3, to con-
veniently make an analogy between this amplitude and the (b) and (c) contributions
later on.

Equation (43) can be solved first with the four dimensional delta function
integrated over k1, where now the momentum conservation is k1 = −k − k3 + p + q.
Then, the amplitude (d) in eq. (43) can be written as

M(d) = −
∫

dk+
3

2π
(2π)δ(k+

3 )
∫

dk+

2π
(2π)δ(k+)

×
∫

dk−

2π

∫
dk−

3
2π

S0(q − k)
[

− ig /Areg(−k − k3 + p + q) · t
]
S0(−p + k3)

×
∫

dk⊥

(2π)2
dk3⊥

(2π)2 d2x⊥eik⊥x⊥d2y⊥eik3⊥y⊥

× ū(q)γ+[UF (x⊥) − 1
]
γ+[U †

F (y⊥) − 1
]
v(p).

(44)

Following the same procedure so far, eq. (44) can be solved starting with the
integration over k+ and k+

3 . After that, the residue theorem can be applied to
integrate over the minus component of the momentum considering the second term
within the regular field Aµ

reg(−k − k3 + p + q) (18). The latter contains the following
poles:

− k− − k−
3 + p− + q− + iϵ = 0

⇒ k−
3 = −k− + p− + q− + iϵ.

(45)

(−k − k3 + p + q)2 + (−k+ − k+
3 + p+ + q+)iϵ

⇒ k−
3 = −k− + p−+q− − (−k⊥ − k3⊥ + p⊥ + q⊥)2

2(−k+ − k+
3 + p+ + q+)

+ iϵ

2 .
(46)

Here it can be seen that both singularities have the +iϵ-prescription. The pole of the
intermediate propagator S0(−p + k3) in eq. (44) has already been found in eq. (34),
exchanging k2 momentum for k3. Thus, the k−

3 –integral vanishes by the residue
theorem, since it is possible to close the contour of integration in the lower half plane
of k−

3 , where there are no singularities.
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The same result is valid in the integration over k− because both cases are
symmetric. To apply the residue theorem, the singularities within the regular field
can be read by isolating the k momentum in eqs. (45) and (46). The pole of the
intermediate propagator S0(q − k) in eq. (44) is the same as in eq. (40), exchanging
the k2 momentum for k.

As in the previous diagrams, only the proton field Aµ
p(k1) (13) of the regular field

Aµ
reg(k1) (18) contributes to the integration over k−

3 and k− in eq. (44). At this point,
the change of variables is reverted and p + q − k1 − k is considered the momentum
flowing from the nucleus to the antiquark line. Then, returning to expression (43),
only one insertion of the proton field is considered,

M(d) = −
∫

d4k

(2π)4

∫
d4k2

(2π)4

∫
d4k1

(2π)4 δ(k1 + k2 − p − q)δ(k+)δ(p+ + q+ − k+ − k+
1 )

×
∫

d2x⊥eik⊥x⊥

∫
d2y⊥ei(p⊥+q⊥−k⊥−k1⊥)y⊥ū(q)γ+[UF (x⊥) − 1

]
S0(q − k)

×
[

− ig /A
µ
p(k1) · t

]
S0(−p + (p + q − k − k1))γ+[U †

F (y⊥) − 1
]
v(p). (47)

This expression can be solved by integrating first over k2 with the delta-function
in the form δ(k1 + k2 − p − q). Then, the integrals over k+ and k+

1 are solved with
respectively the δ(k+) and δ(p+ + q+ − k+ − k+

1 ) functions from the effective vertices
T (k, p) and T (k2 −k, −p), which are defined in eq. (27). The integration over k−

1 can
be performed with the δ(k−

1 ) function from the proton field. Finally, the k−–integral
is solved using the residue theorem.

The poles in the intermediate propagators S0(q − k) and S0(q − k − k1) defined
in eq. (28), respectively are

k− = q− − (q⊥ − k⊥)2 + m2

2q+ + iϵ

2q+ , (48)

k′− = q− + (q⊥ − k⊥ − k1⊥)2 + m2

2p+ − iϵ

2p+ . (49)

The integration over k− can then be solved by choosing the contour of integration in
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the lower half plane, which encloses the k′− singularity in eq. (49),

∫
dk−

2π

/q − /k + m

(q − k)2 − m2
/q − /k − /k1 + m

(q − k − k1)2 − m2

= −2πi
[
Res
(
k− = q− + ((q⊥ − k⊥ − k1⊥)2 + m2 − iϵ)/2p+)] . (50)

Excluding the numerators of the integrand in eq. (50), the residue is

Res
(
k− = q− + ((q⊥ − k⊥ − k1⊥)2 + m2 − iϵ)/2p+)
= lim

k−→k′−

k− −
{

q− + (q⊥−k⊥−k1⊥)2+m2−iϵ
2p+

}[
(q − k)2 − m2

][
2p+
(
k− −

{
q− + (q⊥−k⊥−k1⊥)2+m2−iϵ

2p+

})]
= lim

k−→k′−

1[
2(q+)(q− − k−) − (q⊥ − k⊥)2 − m2

]
2p+

= 1[
2(q+)

(
q− − q− − (q⊥−k⊥−k1⊥)2+m2

2p+

)
− (q⊥ − k⊥)2 − m2

]
2p+

= 1
−2q+(q⊥ − k⊥ − k1⊥)2 + m2 − 2p+((q⊥ − k⊥)2 + m2)

= 1
−2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

]
− 2p+

[
(q⊥ − k⊥)2 + m2

] .

(51)

With the result in eq. (51), the solution of the k−–integral is

∫
dk−

2π

/q − /k + m

(q − k)2 − m2
/q − /k − /k1 + m

(q − k − k1)2 − m2

= −i
(/q − /k + m)(/q − /k − /k1 + m)

2q+
[
(q⊥ − k⊥ − k1⊥)2 + m2

]
+ 2p+

[
(q⊥ − k⊥)2 + m2

] . (52)

Including this result in the final expression of amplitude (d), this reads,

M(d) = g2
∫

d2k1⊥

(2π)2
d2k⊥

(2π)2
ρp,a(k1⊥)

k2
1⊥

∫
d2x⊥d2y⊥eik⊥x⊥ei(p⊥+q⊥−k⊥−k1⊥)y⊥

×
ū(q)γ+[UF (x⊥) − 1

]
(/q − /k + m)γ−ta(/q − /k − /k1 + m)γ+[U †

F (y⊥) − 1
]
v(p)

2q+
[
(q⊥ − k⊥ − k1⊥)2 + m2

]
+ 2p+

[
(q⊥ − k⊥)2 + m2

] .

(53)
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Figure 5. Diagram (a) represents the pair production from the singular term.
Diagram (b) shows the regularized region, where the interaction in the x+

coordinate is extended from 0 to ϵ. The gluon line ended with a cross denotes a
classical field insertion. The black dot represents the effective vertex in eq. (27).

3.2.2 Singular term

The production of a qq̄-pair from the singular term in eq. (17) is represented by
diagram (a) in Figure 5. The production amplitude is calculated in coordinate
space, where the singular field (25) is proportional to δ(x+), and thus, the physical
interpretation of this amplitude is the production of the quark pair inside the nucleus.
Without regularization, the contribution of the singular amplitude would be the
same as the regular amplitude (a) in eq. (29), exchanging the regular field Aµ

reg(k1)
(18) for the singular field Aµ

sing(k1) (25). However, the δ(x+) function is regularized
by giving a small width to the nucleus,

δ(x+) → δϵ(x+) . (54)

Here δϵ(x+) is a regular function whose support is [0, ϵ] and it becomes a δ(x+) when
ϵ goes to zero. This allows the qq̄-pair to undergo multiple gluon scatterings between
the “time” x+, when the field Aµ

sing is inserted into the quark line, and ϵ (diagram
(b) in Figure 5).

Therefore, the scattering of the quark-antiquark pair has to be treated differently
than the regular contribution since it occurs inside the regularized region. In this
case, it is necessary to use the incomplete Wilson lines of eq. (26). Then, the singular
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amplitude in coordinate space is

Msing =
∫

d4xei(p+q)xū(q)UF (+∞, x+; x⊥)

×
[
ig /Asing(x) · t

]
U †

F (+∞, x+; x⊥)v(p) . (55)

As in the previous regular amplitude, the above expression results from summing
four possible singular contributions by replacing UF − 1 by UF and U †

F − 1 by U †
F . It

can be seen in eq. (55) that the singular field insertion and the rescattering occur in
the same transverse plane x⊥ inside a heavily boosted nucleus. This is because of
the vanishing duration of the interaction in the ϵ → 0 limit [16].

With the following identity,

UF (+∞, x+; x⊥)taU †
F (+∞, x+; x⊥) = tbU ba

A (+∞, x+; x⊥) , (56)

and the explicit form of the singular field A−
sing(x) (25), the singular amplitude (55)

can be written as

Msing =ig2
∫

dx−d2x⊥ei(p++q+)x−
e−i(p⊥+q⊥)x⊥

×
{

i
g

2

∫ ∞

−∞
dx+[UA(+∞, x+; x⊥)A−

A(x) · TV (x+, −∞; x⊥)
]

ab

}
× ū(q)γ+taθ(x−) 1

∇2
⊥

ρp,b(x⊥)v(p) .

(57)

Here the approximation ei(p−+q−)x+ ≈ 1 has been made because of the extension of
the regularized region (0 < x+ < ϵ) in the x+–integral. The Heaviside function in
eq. (57) can be Fourier transformed with the x−–integral,

θ̃(p+ + q+) = − 1
i(p+ + q+) +

√
2π

√
π

2 δ(p+ + q+) . (58)

Furthermore, the following formula [16] can be used to simplify eq. (57),

i
g

2

∫ ∞

−∞
dx+[UA(+∞, x+; x⊥)A−

A(x) · TV (x+, −∞; x⊥)
]

= UA(x⊥) − V (x) . (59)

Lastly, the color density of the proton ρp(x⊥) can be Fourier transformed and with
the Green’s function of the Laplacian in momentum space, the singular amplitude
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can be written as

Msing = g2
∫

d2k1⊥

(2π)2
ρp,a(k1⊥)

k2
1⊥

d2x⊥ei(p⊥+q⊥−k1⊥)x⊥

× ū(q)γ+tbv(p)
p+ + q+

(
[V (x⊥) − 1]ba − [UA(x⊥) − 1]ba

)
. (60)

3.2.3 Complete time-ordered amplitude

The complete amplitude of qq̄–production is obtained by summing the regular and
singular contributions in eqs. (31), (37), (42), (53) and (60). In this sum, the
Wilson Line V (x⊥) is cancelled by the contributions (31) and (60). The (b) and
(c) amplitudes in eqs. (37) and (42) respectively cancel with the [U †

F (x⊥) − 1] and
[UF (x⊥) − 1] terms of the amplitude (d) (53) after using the identities [16]

ū(q)γ− = 1
2q+ ū(q)γ+(/q + m)γ− ,

γ−v(p) = 1
2p+ γ−(/p − m)γ+v(p) .

(61)

Lastly, there is also a cancellation among the first term without the Wilson Line
UA(x⊥) in amplitude (a) (31), the singular amplitude (60) and the term without the
Wilson Lines UF (x⊥) and U †

F (y⊥) in amplitude (d) (53).
The terms that survive the above mentioned cancellations give the complete

quark pair production amplitude in covariant gauge, which is written as

Mcov
g→qq̄ = g

∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
gρp,a(k1⊥)

k2
1⊥

∫
d2x⊥d2y⊥eik⊥x⊥ei(p⊥+q⊥−k⊥−k1⊥)y⊥

×

{
ū(q)γ+(/q − /k + m)γ−(/q − /k − /k1 + m)γ+[UF (x⊥)taU †

F (y⊥)
]
v(p)

2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

]
+ū(q)

[
/CU(p + q, k1⊥)

(p + q)2 − γ+

p+ + q+

]
tbU ba

A (x⊥)v(p)
}

.

(62)

In this expression, it is possible to interpret the first term as the splitting of a gluon
into a qq̄–pair and the subsequent interaction of the qq̄–state with the nucleus, which
is expressed with the two Wilson Lines in the fundamental representation at two
different transverse coordinates, UF (x⊥) and U †

F (y⊥).
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The second term in eq. (62) can be rewritten as [16],

ū(q)
[

/CU(p + q, k1⊥)
(p + q)2 − γ+

p+ + q+

]
tbv(p) = ū(q)

/CL(p + q, k1⊥)
(p + q)2 tbv(p) , (63)

where /CL(p + q, k1⊥) is the effective Lipatov vertex [19, 20] which resumms all the
diagrams that contribute to the production of a gluon with momentum p + q via the
fusion of two gluons with momenta k1 and p + q − k1 in the high energy limit. Its
components are

C+
L (p + q, k1⊥) = (p+ + q+) − k2

1⊥
p− + q+ + iϵ

, (64)

C−
L (p + q, k1⊥) = (p⊥ + q⊥ − k1⊥)2

p+ + q+ − (p− + q−) , (65)

CL⊥(p + q, k1⊥) = p⊥ + q⊥ − 2k1⊥ . (66)

Thus, the second term in eq. (62) can be physically interpreted as a valence quark
in the proton emitting a gluon that interacts first with the gluon condensate in the
nucleus and emits the quark pair afterwards, outside the nucleus. The interaction is
represented by the adjoint Wilson Line UA(x⊥).

Finally, the covariant amplitude can be written as

Mcov
g→qq̄ = g

∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
gρp,a(k1⊥)

k2
1⊥

∫
d2x⊥d2yeik⊥x⊥ei(p⊥+q⊥−k⊥−k1⊥)y⊥

×ū(q)
{

Tqq̄(k1⊥,k⊥)
[
UF (x⊥)taU †

F (y⊥)
]

+ Tg(k1⊥)
[
tbU ba

A (x⊥)
]}

v(p) ,

(67)

where

Tqq̄(k1⊥,k⊥) ≡
γ+(/q − /k + m)γ−(/q − /k − /k1 + m)γ+

2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

] , (68)

Tg(k1⊥) ≡
/CL(p + q, k1⊥)

(p + q)2 . (69)



35

4 Pair production in Light Cone Perturbation The-
ory

In light cone perturbation theory the incoming gluon emitted from a valence quark
in the dilute proton and the outgoing quark pair are defined as a perturbative series
of Fock states. These bare states eikonally interact with the classical color field of
the nucleus and this interaction is represented by Wilson lines in mixed space, where
the kinematics of a particle is described by its light cone longitudinal momentum k+

and transverse position x⊥.
In this second part of the thesis, the pair production amplitude Mg→qq̄ is

calculated from the matrix elements of the initial and final dressed states using light
cone quantization [21]

D

〈
q(k2)q̄(k3)

∣∣ŜE − 1
∣∣g(k1)

〉
D

= 2k+
1 (2π)δ(k+

1 − k+
2 − k+

3 )iMg→qq̄ , (70)

where ŜE is the eikonal scattering operator describing a color rotation of a parton
(quarks and gluons) in the target color field. In contrast with the previous calculation,
the polarization of the incoming gluon is considered explicitly.

4.1 Perturbative Fock state expansion

In interacting field theory, the light cone Hamiltonian P̂ − can be split into the
kinetic and interacting terms P̂ − = T̂ + V̂I [22]. In the interaction picture, the free
Hamiltonian T̂ generates the x+–evolution of operators,

ÔI(x+) = eiT̂ x+ ÔI(0) e−iT̂ x+
, (71)

and the states evolve with the interacting Hamiltonian V̂I :

∣∣i(x+
2 )
〉

I
= P exp

(
− i

∫ x+
2

x+
1

dx+V̂I(x+)
)∣∣iI(x+

1 )
〉

, (72)
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where P indicates the ordering of the operators V̂I(x+) along the x+–coordinate. By
convention, states in the interaction picture are defined in such a way that they
coincide at x+ = 0 with the corresponding states in the Heisenberg picture, i.e.
|i(0)⟩I ≡ |i⟩H . Thus, the evolution of the interaction state from x+

1 = −∞ to x+
2 = 0

can be written as [23]

∣∣i〉
H

= P exp
(

− i

∫ 0

−∞
dx+V̂I(x+)

)∣∣i(−∞)
〉

I
. (73)

In perturbation theory, the state |i(−∞)⟩I can be considered as a free state since
it comes before any insertion of the interaction operator V̂I(x+). This free state is
called bare or asymptotic state whereas the physical state |i⟩H is known as dressed
state.

When the dressed state is one-particle state, it can be expanded over a basis of
Fock states |F⟩ [6],

∣∣i〉
H

=
√

Zi

[∣∣i(−∞)
〉

I
+
∑
F̸=i

∣∣F〉 Ψi→F

]
, (74)

where the sum contains the quantum numbers of each parton in the Fock state and
a phase space integration, ∫ ∞

0

dk+

2k+(2π)

∫
d2k⊥

(2π)2 . (75)

However, the sum in eq. (74) excludes the state |i(−∞)⟩I proportional to the
physical state |i⟩H . The

√
Zi factor in eq. (74) is the wave-function renormalization

constant and the coefficients of the expansion are light cone wave functions (LCWFs)
Ψi→F defined as

Ψi→F =
〈
F
∣∣i〉

H
=
〈
F
∣∣P exp

(
− i

∫ 0

−∞
dx+V̂I(x+)

)∣∣i(−∞)
〉

I
. (76)

The above expression can be rewritten using eq. (71) to extract the x+ dependence
from V̂I(x+) and then expanding the exponentials [23]. Further, inserting various
times the decomposition of the identity

1 =
∑

F

∣∣F〉〈F∣∣ , (77)
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the LCWFs can be written in the form of the following perturbative expansion [23],

Ψi→F =
〈
F|V̂I(0)|i(−∞)⟩I

Ti − TF + iϵ

+
∞∑

n=2

∑
Fn−1 ̸=i

· · ·
∑
F1 ̸=i

1
Ti − TF + iϵ

〈
F|V̂I(0)|Fn−1⟩

1
Ti − TFn−1 + iϵ

. . .

· · · 1
Ti − TF1 + iϵ

〈
F|V̂I(0)|i(−∞)⟩I ,

(78)

where Ti = k−
i ≡ (k2

i⊥ + m2
i )/(2k+

i ) is the eigenvalue of T̂ corresponding to the state
|i(−∞)⟩I .

Hence, the Fock state expansion for the physical states in the interaction picture
has the form of the quantum mechanical expansion in perturbation theory [21],

|Ψ⟩I =
√

ZΨ

[
|Ψ⟩+

∑
n1

′

〈
n1|H ′|Ψ⟩
EΨ − E1

|n1⟩+
∑
n1,n2

′ ⟨n2|H ′|n1⟩⟨n1|H ′|Ψ⟩
(EΨ − E2)(EΨ − E1)

|n2⟩+ ...

]
, (79)

where the prime in the sum symbol
∑′

indicates that the intermediate state propor-
tional to |Ψ⟩ is excluded of the sum.

The wave function renormalization ZΨ contains ultraviolet divergences appearing
in loop diagrams and it can be calculated either by calculating the incoming particle
propagator correction diagrams or from the normalization requirement [24]

I⟨Ψ|Ψ⟩I = ⟨Ψ(q,s)|Ψ(p,s)⟩ = 2p+(2π)3δ(p+ − q+)δ2(p − q)δss′ , (80)

so that,
Z−1

Ψ = 1 + 1
⟨Ψ|Ψ⟩

∑
n

′ |⟨n|H|Ψ⟩|2

(EΨ − En)2 + ... (81)

However, the pair production amplitude at LO in the strong coupling constant does
not include any loop contributions so that the renormalization constant is one.
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4.2 Initial and final Fock states in mixed space

In the high energy scattering of a dense target, the most convenient representation
is the mixed state coordinates (k+, x⊥) where states and operators are obtained
from the full momentum-space representation (k+, k⊥) by a transverse Fourier
transform. For example, the mixed-space Fock state |̃F⟩ is obtained from its analog
in momentum space |F⟩ as [23]

|̃F⟩ =
∫ [∏

l∈F

dkl⊥

(2π)2 e−ikl⊥xl⊥

]
|F⟩ , (82)

where the product is over each parton l present in |F⟩.
To calculate the qq̄ production amplitude in eq. (70), it is necessary to decompose

the dressed gluon state |g⟩D corresponding to one physical particle state in the
interaction picture in terms of the free/bare states |...⟩0, as it is presented in eq. (74).
In mixed space, this expansion is given by

∣̃∣g1
〉

D
=
√

Zg

[ ∣̃∣g1
〉

0 +
∑̃
q2q̄3

Ψ̃g→q2q̄3

∣̃∣q2q̄3
〉

0 + . . .

]
, (83)

where g1 = g(k+
1 ,x1⊥,λ,a), q2 = q(k+

2 ,x2⊥,h2,α2) and q̄3 = q̄(k+
3 ,x3⊥,h3,α3). Here, λ

and a are respectively the polarization and color of the gluon and hi and αi are the
helicities and colors of the quark (i = 2) and antiquark (i = 3).

In the expansion (83), the renormalization coefficient Zg = 1 + O(g2) will be
omitted as well as the next-to-leading order (NLO) Fock states denoted by (. . . ).
The symbol

∑̃
is the two particle phase space sum over the qq̄-Fock states in mixed

space. It is given by [25]

∑̃
q2q̄3

=
∑

h2,α2,f2

∑
h3,α3,f3

3∏
i=2

[∫ ∞

−∞

dk+
i

2π

θ(k+
i )

2k+
i

(2π)δ
(

k+
1 −

3∑
j=2

k+
j

)∫
d2xi⊥

]
. (84)

In the following calculations, the helicity h, color α and quark flavour f indices
are left implicit, summed over when appropriate. The light cone wavefunction Ψ̃g→qq̄

is calculated in the next subsection 4.3 using Light Cone Perturbation theory.
The bare states in eq. (83) are conveniently written using the creation operators

ã†
1 = a†(k+

1 ,x1⊥,λ1,a) for the gluon, b̃†
2 = b†(k+

2 ,x2⊥,h2,α2) for the quark, and d̃†
3 =
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d†(k+
3 ,x3⊥,h3,α3) for the antiquark:

∣̃∣g1
〉

D
=
√

Zg

[
ã†

1
∣∣0〉0 +

∑̃
q2q̄3 F. s.

Ψ̃g→q2q̄3 b̃†
2d̃

†
3
∣∣0〉0 + . . .

]
. (85)

These operators ã, b̃ and d̃ satisfy the following (anti-)commutation relations,[
ã(k+,x⊥,λ,a), ã†(q+,y⊥,σ,b)

]
= (2k+)(2π)δ(k+ − q+)δ(2)(x⊥ − y⊥)δλσδab ,{

b̃(k+,x⊥,h,α), b̃†(q+,y⊥,s,β)
}

= (2k+)(2π)δ(k+ − q+)δ(2)(x⊥ − y⊥)δhsδαβ ,{
d̃(k+,x⊥,h,α), d̃†(q+,y⊥,s,β)

}
= (2k+)(2π)δ(k+ − q+)δ(2)(x⊥ − y⊥)δhsδαβ .

(86)

Finally, the outgoing quark pair state is expanded in terms of the Fock state
basis as

D

〈̃
q2′ q̄3′

∣∣ =
√

Zq

√
Zq̄

[
0

〈̃
q2′ q̄3′

∣∣+
∑̃
g1′

0

〈̃
g1′
∣∣Ψ̃†

q2′ q̄3′ →g1′ + . . .

]
=
√

Zq

√
Zq̄

[
0

〈
0
∣∣d̃3′ b̃2′ +

∑̃
g1′

0

〈
0
∣∣ã1′Ψ̃†

q2′ q̄3′ →g1′ + . . .

]
, (87)

where ã†
1′ = a†(k+′

1 ,x′
1⊥,λ′

1,a
′), b̃†

2′ = b†(k+′

2 ,x′
2⊥,h′

2,α
′
2) and d̃†

3′ = d†(k+′

3 ,x′
3⊥,h′

3,α
′
3).

The symbol
∑̃

g1′ is the one particle phase space of the gluon.
The relation between the gluon splitting wave function and the quark-antiquark

merging wave function can be derived by the orthogonality of the Fock states in eqs.
(83) and (87),

˜
D

〈
q2′ q̄3′

∣∣g1
〉

D
= 0(

0

〈̃
q2′ q̄3′

∣∣+ 0

〈̃
g1′
∣∣Ψ̃†

q2′ q̄3′ →g1′

)(∣̃∣g1
〉

0 +
∑
q2q̄3

Ψ̃g→q2q̄3

∣∣q̃2q̄3
〉

0

)
= 0

⇒ Ψ̃†
q2′ q̄3′ →g1′ = −Ψ̃g1′ →q2′ q̄3′ .

(88)

The result above indicates that both waves functions corresponding to the splitting
and merging of partons are related by a minus sign in the time reversal transformation
at LO.
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4.3 Light cone wave function

The light cone wavefunction Ψ̃g1→q2q̄3 (78) can be calculated by determining the
interaction vertex ⟨qq̄|V̂I(0)|g⟩. One way to solve it is by calculating the interaction
operator V̂I(x+) in QCD [22], inserting in V̂I(0) the expressions of the free quantized
fields in terms of creation and anihilation operators (see Apendix A of ref. [23]) and
using commutation relations (86).

However, similarly as the procedure of applying Feynman rules for solving
scattering diagrams, the LCWF can be obtained with the following LCPT rules [14,
26]:

1. Draw the x+ ordered diagram at the desired order in the coupling g and assign
a four-momentum kµ to each line such that it is on mass shell (k2 = m2).

2. Similarly to the Feynman rules, the quark-gluon vertex is (i and j are quark
color indices):

= −gūσ′j(k + q)/ϵλ(q)(ta)jiuσi(k) , (89)

where the light cone time flows from left to right. This vertex also includes the
factors (2π)2δ(2)(k⊥initial − k⊥final) and (2π)δ(k+

initial − k+
final) since only the k+

and k⊥ components of the four-momentum are conserved in each vertex.

3. For each intermediate state include a LC energy denominator factor

1∑
inc k− −

∑
interm k− , (90)

where the sum
∑

inc runs over all incoming particles present in the initial state
and the sum

∑
interm over all the particles in the corresponding intermediate

state. Since the k− momentum component is not conserved at the vertices, the
light cone denominator is non-zero.
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4. For each independent momentum kµ integrate with the measure∫
dk+θ(k+)
2k+(2π)

d2k⊥

(2π)2 . (91)

5. Sum over all internal quark and gluon polarizations and colors.

The light cone wave function describes the vertex where the gluon splits into two
quarks, but it is not the complete scattering process. Thus, the external final state
of the quark pair is treated as an intermediate state since it undergoes subsequent
interactions with the CGC of the nucleus after the splitting [14].

Following the LCPT rules, the LCWF for the gluon splitting g(k1) → q(k2)q̄(k3)
in momentum space is

Ψg→qq̄ = 0⟨q2q̄3|V̂I(0)|g1⟩0

∆E

= −g

k−
1 − (k−

2 + k−
3 )

ūh2α2(k2)/ϵλ(ta)α2α3vh3α3(k3) .
(92)

The Fourier transformed wave function Ψ̃g→qq̄ in mixed space is

Ψ̃g→qq̄ =
∫

d2k2⊥

(2π)2

∫
d2k3⊥

(2π)2 e−ik2x2−ik3x3(2π)2δ2(k1⊥ − k2⊥ − k3⊥)Ψg→qq̄ . (93)

Note that the (+)–momentum integrals in rule 5, the delta functions imposing
(+)–momentum conservation in rule 2 and the sum over internal polarizations and
colors in rule 6 are considered in the phase space (84).

4.4 Pair production amplitude

In the eikonal approximation, the gluon and quark pair only pick up a rotation in
color phase space when they scatter off the color field of the nucleus [27]. In this
way, the Wilson line propagator of eq. (21) with the corresponding color generators
represents the effect of the interaction on the bare states. This is formulated using
the eikonal scattering operator ŜE present in the matrix element for qq̄ production4:

D

〈
q2′ q̄3′

∣∣ŜE − 1
∣∣g1
〉

D
= 2k+

1 (2π)δ(k+
1 − k+′

2 − k+′

3 )iMg→q′q̄′ . (94)
4 The qq̄ state can exist in a color singlet or color octet configuration so that in the calculation

of the cross section of this process, it would be necessary to add a color factor for both dressed
states in eq. (94).
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The scattering operator ŜE acts on the Fock states by color rotating each parton
with a Wilson line defined along the trajectory of the parton through the target [27],

ŜE ã†(k+,x⊥, λ, a) = UA(x⊥)ba ã†(k+, x⊥, λ, b) ŜE , (95)

ŜE b̃†(k+,x⊥, h, α) = UF (x⊥)βα b̃†(k+, x⊥, h, β) ŜE , (96)

ŜE d̃†(k+,x⊥, h, α) =
[
U †

F (x⊥)
]

αβ
d̃†(k+, x⊥, h, β) ŜE . (97)

Here α (a) is the quark (gluon) color before the interaction and β (b) after. The
UF (A) (x⊥) refers to the Wilson line at transverse coordinate x⊥ in the fundamental
(adjoint) representation. The Fock state vacuum is invariant under the action of the
eikonal scattering operator: ŜE|0⟩ = |0⟩.

Hence, discarding the identity representing the non-interacting process, the
matrix element in eq. (94) can be calculated with eqs. (95), (96), (97) and the
normalization conditions in eq. (86) as

D

〈
q2′ q̄3′

∣∣ŜE

∣∣g1
〉

D

=
√

Zq
2√

Zg

∫
d2x1⊥e−ik1⊥x1⊥

∫
d2x′

2⊥e+ik′
2⊥x′

2⊥

∫
d2x′

3⊥e+ik′
3⊥x′

3⊥

×
[

0

〈̃
q2′ q̄3′

∣∣+
∑̃
g1′

0

〈̃
g1′
∣∣Ψ̃†

q2′ q̄3′ →g1′

]∣∣ŜE

∣∣[∣̃∣g1
〉

0 +
∑̃
q2q̄3

Ψ̃g1→q2q̄3

∣̃∣q2q̄3
〉

0

]
=
∫

x1⊥

∫
x2′⊥

∫
x3′⊥

[〈
0
∣∣d̃3′ b̃2′ +

∑̃
g1′

〈
0
∣∣ã1′Ψ̃†

q2′ q̄3′ →g1′

]∣∣ŜE

∣∣[ã†
1
∣∣0〉+

∑̃
q2q̄3

Ψ̃g1→q2q̄3 b̃†
2d̃

†
3
∣∣0〉]

=
∫

x1⊥

∫
x2′⊥

∫
x3′⊥

(
(((((((((〈
0
∣∣d̃3′ b̃2′ŜE ã†

1
∣∣0〉+

∑̃
q2q̄3

Ψ̃g1→q2q̄3

〈
0
∣∣d̃3′ b̃2′ŜE b̃†

2d̃
†
3
∣∣0〉

+
∑̃
g1′

Ψ̃†
q2′ q̄3′ →g1′

〈
0
∣∣ã1′ŜE ã†

1
∣∣0〉+

∑̃
q2q̄3

∣∣Ψ̃g1→q2q̄3

∣∣2
(((((((((〈
0
∣∣ã1′ŜE b̃†

2d̃
†
3
∣∣0〉)

=
∫

x2′⊥

∫
x3′⊥

∑̃
q2q̄3

[UF (x2⊥)]β2α2 [U †
F (x3⊥)]α3β3Ψ̃g1→q2q̄3

〈
0
∣∣d̃3′ b̃2′ b̃†

2d̃
†
3
∣∣0〉

+
∫

x1⊥

∑̃
g1′

[UA(x1⊥)]baΨ̃†
q2′ q̄3′ →g1′

〈
0
∣∣ã1′ ã†

1
∣∣0〉 .

(98)
Here the renormalization coefficients

√
Z ∝ 1 + O(g2) as well as the states that

are zero by orthogonality have been discarded. The integration over the transverse
coordinates

∫
x⊥

= d2x⊥e±ik⊥x⊥ is introduced to Fourier transform the dressed states
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from momentum space to mixed space.
The vacuum expectation values in eq. (98) are calculated using the commutation

relations in eq. (86) and the explicit expression of the phase space in eq. (84), where
the polarization, helicity and color sums are left implicit:

∑̃
q2q̄3

〈
0
∣∣d̃3′ b̃2′ b̃†

2d̃
†
3
∣∣0〉 (99)

=
∫

dk+
2 θ(k+

2 )
2k+

2 (2π)

∫
dk+

3 θ(k+
3 )

2k+
3 (2π)

(2π)δ(k+
1 − k+

2 − k+
3 )
∫

d2x2⊥

∫
d2x3⊥

× (2k
′+
2 )(2π)δ(k′+

2 − k+
2 )δ2(x′

2⊥ − x2⊥)δh′
2h2δα′

2β2

〈
0
∣∣d̃′

3d̃
†
3
∣∣0〉

=
∫

dk+
2 θ(k+

2 )
2k+

2 (2π)

∫
dk+

3 θ(k+
3 )

2k+
3 (2π)

(2π)δ(k+
1 − k+

2 − k+
3 )
∫

d2x2⊥

∫
d2x3⊥

× (2k
′+
2 )(2k

′+
3 )(2π)2δ(k′+

2 − k+
2 )δ(k′+

3 − k+
3 )δ2(x′

2⊥ − x2⊥)

× δ2(x′
3⊥ − x3⊥)δh′

2h2δh′
3h3δα′

2β2δα′
3β3

= (2π)δ(k+
1 − k

′+
2 − k

′+
3 )δh′

2h2δh′
3h3δα′

2β2δα′
3β3 ,∑̃

g1′

〈
0
∣∣ã1′ ã†

1
∣∣0〉 (100)

=
∫

dk
′+
1 θ(k′+

1 )
2k

′+
1 (2π)

(2π)δ(k′+
2 + k

′+
3 − k

′+
1 )
∫

d2x′
1⊥

× (2k
′+
1 )(2π)δ(k′+

1 − k+
1 )δ(2)(x′

1⊥ − x1⊥)δλ′λδa′b

= (2π)δ(k′+
2 + k

′+
3 − k+

1 )δλ′λδa′b .

After performing the integration over the position coordinates and applying the
Kronecker delta functions of color indices in eqs. (99) and (100), the color structure
in eq. (98) results in

[UF (x′
2⊥)]β2α2 [U †

F (x′
3⊥)]α3β3(ta)α2α3δα′

2β2δα′
3β3 + [UA(x1⊥)]ba(ta′)†

α2′ α3′ δa′b

= [UF (x′
2⊥)]α2′ α2(ta)α2α3 [U †

F (x′
3⊥)]α3α3′ + (tb)α3′ α2′ [UA(x1⊥)]ba

= UF (x′
2⊥)taU †

F (x′
3⊥) + tbU ba

A (x1⊥) .

(101)

Here the color generators (ta)α2α3 belong to the wave function (92).
The result in eq. (101) matches the color structure of the pair production

amplitude (67) in the Lorenz gauge. At the cross section level, this color structure
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contains a trace over the color indices due to the color factors of the dressed states.
The scattering amplitude (98) can be further solved using expressions (99), (100),

(101) and the LCWF in eq. (93):

D

〈
q2′ q̄3′

∣∣ŜE

∣∣g1
〉

D

=
∫

d2x1⊥e−ik1⊥x1⊥

∫
d2x′

2⊥e+ik′
2⊥x′

2⊥

∫
d2x′

3⊥e+ik′
3⊥x′

3⊥

×
{

(2π)δ(k+
1 − k

′+
2 − k

′+
3 )Ψ̃g1→q2q̄3

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]

+ (2π)δ(k′+
2 + k

′+
3 − k+

1 )Ψ̃†
q2′ q̄3′ →g1′

[
tbU ba

A (x1⊥)
]}

= (2π)δ(k+
1 − k

′+
2 − k

′+
3 )
∫

d2x1⊥e−ik1⊥x1⊥

∫
d2x′

2⊥e+ik′
2⊥x′

2⊥

∫
d2x′

3⊥e+ik′
3⊥x′

3⊥

×

{
− g

∫
d2k2⊥

(2π)2

∫
d2k3⊥

(2π)2 e−ik2⊥x′
2⊥−ik3⊥x′

3⊥(2π)2δ2(k1⊥ − k2⊥ − k3⊥)

×
ū(k′+

2 ,k2⊥)
{

/ϵλ

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]}

v(k′+
3 ,k3⊥)[

k2
1⊥

2k+
1

− k2
2⊥+m2

2k
′+
2

− k2
3⊥+m2

2k
′+
3

]
+ g

∫
d2k′

1⊥
(2π)2 e+ik′

1⊥x1⊥(2π)2δ2(k′
1⊥ − k′

2⊥ − k′
3⊥)

×
ū(k′+

2 ,k′
2⊥)
{

/ϵλ

[
tbU ba

A (x1⊥)
]}

v(k′+
3 ,k′

3⊥)[
k

′2
1⊥

2k+
1

− k
′2
2⊥+m2

2k
′+
2

− k
′2
3⊥+m2

2k
′+
3

] }

= (2π)δ(k+
1 − k

′+
2 − k

′+
3 )
(

− g

∫
d2k2⊥

(2π)2

∫
d2x′

2⊥e+i(k′
2⊥−k2⊥)x′

2⊥

×
∫

d2x′
3⊥e+i(k′

3⊥+k2⊥)x′
3⊥

ū(k′+
2 ,k2⊥)

{
/ϵλ

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]}

v(k′+
3 , − k2⊥)[

− k2
2⊥+m2

2k
′+
2

− (−k2⊥)2+m2

2k
′+
3

]

−
∫

d2x1⊥e+i(k′
2⊥+k′

3⊥)x1⊥
ū(k′+

2 ,k′
2⊥)
{

/ϵλ

[
tbU ba

A (x1⊥)
]}

v(k′+
3 ,k′

3⊥)[
(k′

2⊥+k′
3⊥)2

2k+
1

− k
′2
2⊥+m2

2k
′+
2

− k
′2
3⊥+m2

2k
′+
3

] )
.

(102)
Here the orthogonality condition Ψ† = −Ψ (88) has been applied and the integration
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over k3⊥ and k′
1⊥ has been solved with the delta functions. The momentum k1⊥

has been set to zero since the incoming gluon has zero transverse momentum before
interacting with the CGC.

The result in eq. (102) allows to write eq. (94) as

2k+
1 (2π)δ(k+

1 − k+′

2 − k+′

3 )iMg→q′q̄′

= (2π)δ(k+
1 − k

′+
2 − k

′+
3 )
(

g

∫
d2k2⊥

(2π)2

∫
d2x′

2⊥e+i(k′
2⊥−k2⊥)x′

2⊥

×
∫

d2x′
3⊥e+i(k′

3⊥+k2⊥)x′
3⊥

ū(k′+
2 ,k2⊥)

{
/ϵλ

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]}

v(k′+
3 , − k2⊥)[

k2
2⊥+m2

2k
′+
2

+ (−k2⊥)2+m2

2k
′+
3

]
+
∫

d2x1⊥e+i(k′
2⊥+k′

3⊥)x1⊥
ū(k′+

2 ,k′
2⊥)
{

/ϵλ

[
tbU ba

A (x1⊥)
]}

v(k′+
3 ,k′

3⊥)[
(k′

2⊥+k′
3⊥)2

2k+
1

− k
′2
2⊥+m2

2k
′+
2

− k
′2
3⊥+m2

2k
′+
3

] )
,

(103)
where the quark pair production amplitude in light cone quantization can be read
as5

iMLC
g→q′q̄′ = g

∫
d2k2⊥

(2π)2

∫
d2x′

2⊥e+i(k′
2⊥−k2⊥)x′

2⊥

∫
d2x′

3⊥e+i(k′
3⊥+k2⊥)x′

3⊥

×
ū(k′+

2 ,k2⊥)
{

/ϵλ

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]}

v(k′+
3 , − k2⊥)

2k+
1

[
k2

2⊥+m2

2k′+
2

+ (−k2⊥)2+m2

2k′+
3

]
+
∫

d2x1⊥e+i(k′
2⊥+k′

3⊥)x1⊥
ū(k′+

2 ,k′
2⊥)
{

/ϵλ

[
tbU ba

A (x1⊥)
]}

v(k′+
3 ,k′

3⊥)

2k+
1

[
(k′

2⊥+k′
3⊥)2

2k+
1

− k
′2
2⊥+m2

2k
′+
2

− k
′2
3⊥+m2

2k
′+
3

] .

(104)

5 For a better comparison of the covariant and light-cone amplitude, the result has not been
further simplified.
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5 Comparison of the results

In this section, the following amplitudes obtained in covariant theory (67) and in LC
quantization (104) are compared,

iMLC
g→q′q̄′ = g

∫
d2k2⊥

(2π)2

∫
d2x′

2⊥e+i(k′
2⊥−k2⊥)x′

2⊥

∫
d2x′

3⊥e+i(k′
3⊥+k2⊥)x′

3⊥

×
ū(k′+

2 ,k2⊥)
{

/ϵλ

[
UF (x′

2⊥)taU †
F (x′

3⊥)
]}

v(k′+
3 , − k2⊥)

2k+
1

[
k2

2⊥+m2

2k′+
2

+ (−k2⊥)2+m2

2k′+
3

]
+
∫

d2x1⊥e+i(k′
2⊥+k′

3⊥)x1⊥
ū(k′+

2 ,k′
2⊥)
{

/ϵλ

[
tbU ba

A (x1⊥)
]}

v(k′+
3 ,k′

3⊥)

2k+
1

[
(k′

2⊥+k′
3⊥)2

2k+
1

− k
′2
2⊥+m2

2k
′+
2

− k
′2
3⊥+m2

2k
′+
3

] ,

(105)

Mcov
g→qq̄ = g

∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
gρp,a(k1⊥)

k2
1⊥

∫
d2x⊥d2yeik⊥x⊥ei(p⊥+q⊥−k⊥−k1⊥)y⊥

×ū(q)
{

Tqq̄(k1⊥,k⊥)
[
UF (x⊥)taU †

F (y⊥)
]

+ Tg(k1⊥)
[
tbU ba

A (x⊥)
]}

v(p) ,

(106)

where

Tqq̄(k1⊥,k⊥) ≡
γ+(/q − /k + m)γ−(/q − /k − /k1 + m)γ+

2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

] , (107)

Tg(k1⊥) ≡
/CL(p + q, k1⊥)

(p + q)2 . (108)

The first difference between both amplitudes is that the covariant amplitude (106)
contains the incoming gluon density ρp integrated over the transverse momentum
k1⊥, while in the LC amplitude (105) this factor is missing. This is because in
covariant gauge, the proton is described as a classical field originated from the color
current of valence sources in eq. (10). Then, the covariant amplitude includes a color
charge density factor that when it is squared at the cross section level, it corresponds
to the gluon distribution xg(x,Q2) of the proton presented in Figure 1 [28],

g

∫
d2k1⊥

(2π)2
d2k′

1⊥
(2π)2

⟨ρp,a(k1⊥)ρp,a′(k′
1⊥)⟩

k2
1⊥

→ xg(x,Q2) , (109)
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where the expectation value ⟨. . . ⟩ indicates the average of color sources [29].
In contrast, in light cone quantization the collision is described between a single

gluon and a nucleus. To calculate the cross section of the proton-nucleus scattering,
a factor corresponding to the distribution of gluons in the proton needs to be added,
as it is already considered in covariant theory.

The gauge invariance can then be proved at the cross section level by taking the
collinear aproximation k1⊥ → 0 in the proton in covariant gauge. This limit is well
defined since the second line in the covariant amplitude in eq. (106) goes to zero in
the limit k1⊥ → 0 [16]. This can be proved by rewriting the terms in eqs. (107) and
(108) as

Tqq̄(k1⊥,k⊥) =
γ+(/q − /k + m)γ−(/q − /k − /k1 + m)γ+

2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

] , (110)

=
k1⊥→0

(/q⊥ − /k⊥ + m)γ+γ−γ+(/q⊥ − /k⊥ + m)
2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥)2 + m2

] ,

=
(/q⊥ − /k⊥ + m)2γ+(/q⊥ − /k⊥ + m)

2
[
(q⊥ − k⊥)2 + m2

]
(q+ + p+)

,

=
2(/q⊥ − /k⊥ + m)(−(/q⊥ − /k⊥) + m)γ+

2
[
(q⊥ − k⊥)2 + m2

]
(q+ + p+)

,

=
−[(/q⊥ − /k⊥)2 − m2]γ+[

(q⊥ − k⊥)2 + m2
]
(q+ + p+)

,

= −[−(q⊥ − k⊥)2 − m2]γ+[
(q⊥ − k⊥)2 + m2

]
(q+ + p+)

,

= γ+

(q+ + p+) ,

Tg(k1⊥,k⊥) =
[

/CU(p + q, k1⊥)
(p + q)2 − γ+

p+ + q+

]
=

k1⊥→0
− γ+

(q+ + p+) . (111)

Here the identities γ+γ−γ+ = 2γ+, (γ+)2 = (γ−)2 = 0 and {γi,γj} = −2δij have
been used in eq. (110). Equation (111) contains the Lipatov term in eq. (108)
rewritten using eq. (63). The CU(p + q,k1⊥) coefficient defined in eq. (19) is zero in
the collinear limit. Thus, the curly bracket in the covariant amplitude (106) becomes

ū(q)γ+[UF (x⊥)taU †
F (y⊥)

]
v(p)

p+ + q+ −
γ+ū(q)

[
tbU ba

A (x⊥)
]
v(p)

p+ + q+ . (112)

Since this expression does not depend on k⊥ anymore, the integration over k⊥ in eq.
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(106) produces a δ(x⊥ − y⊥). Therefore, the UF (x⊥)taU †
F (y⊥) factor can be replaced

by tbU ba
A (x⊥) using eq. (56) and the cancellation between the two terms is proved.

Then, the amplitude factorizes as

Mcov =
k1⊥→0

A · k1⊥ , (113)

where the vector A contains spinors and Dirac matrices [29]. Therefore, when the
amplitude in eq. (113) is squared, it cancels a factor k2

1⊥ in the denominator of the
unintegrated gluon distribution in eq. (106) and the gluon distribution in eq. (109)
is well defined in the collinear limit.

Another difference between the amplitudes (105) and (106) is the Dirac structure.
In the LC amplitude (105) the transverse polarization vector /ϵλ of the gluon is
explicitly written in the quark-gluon vertex in eq. (89), while in covariant theory,
the polarization of the incoming gluon is added at the cross section level. However,
the Dirac structure Tqq̄ in eq. (107) between the two Dirac spinors ū(q) and v(p) can
be rewritten using the completeness relation of the spinors [23]

∑
h

u(k, h)ū(k, h) = /k + m , (114)∑
h

v(k, h)v̄(k, h) = /k − m , (115)

and the following orthogonality relations

ū(k+, h)γ+u(q+, s) = v̄(k+, h)γ+v(q+, s) =
√

2k+
√

2q+δh,s , (116)

ū(k+, h)γ+v(q+, s) = v̄(k+, h)γ+u(q+, s) =
√

2k+
√

2q+δh,−s , (117)
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ū(q)Tqq̄(k1⊥,k⊥)v(p)

=
ū(q)γ+(/q − /k + m)γ−(/q − /k − /k1 + m)γ+v(p)

2p+
[
(q⊥ − k⊥)2 + m2

]
+ 2q+

[
(q⊥ − k⊥ − k1⊥)2 + m2

]
= −

ū(q)γ+(/q − /k + m)γ−(−/q + /k + /k1 − m)γ+v(p)
2p+2q+

[ (q⊥−k)2+m2

2q+

]
+ 2q+2(q+ − k+

1 )
[ (q⊥−k⊥−k1⊥)2+m2

2(q+−k+
1 )

]
= − ū(q)γ+u(q − k)ū(q − k)γ−v(k + k1 − q)v̄(k + k1 − q)γ+v(p)

4p+q+(q− − k−) + 4q+(−p+)(q− − k− − k−
1 )

= −(2
√

q+
√

q+ − k+)(2p+)ū(q − k)γ−v(k + k1 − q)
4p+q+(q− − k−) + 4q+(−p+)(q− − k− − k−

1 )

= − ū(q − k)γ−v(k + k1 − q)
(q− − k−) + (−q− + k− + k−

1 )
.

(118)

Here it has been set k+ = 0 since the nucleus is moving in the x−–direction. The
momentum conservation k + k1 − q = p has also been used.

The color current of the proton in eq. (10) has only a (+)–component, imposed
by the δν+, because the proton is moving in the (+)–axis in the LC. Since this
current only produces a (+)-component of the proton gauge field A+

p in eq. (11), the
only component of the polarization vector that would be relevant is ϵ+. If the latter
were considered in the calculations of the covariant amplitude, it would have been
contracted with a γ− factor, which is the factor obtained in eq. (118). Furthermore, in
eq. (118) the momenta of the spinors as well as the energy denominator, corresponds
to the intermediate propagator before the interaction with the shockwave. In this
way, the expression is equivalent, except for a factor of 2k+

1 , to the corresponding
term in the LC amplitude (105), where the intermediate momenta can be identified
as k2 = q − k and k3 = −q + k + k1.

The Dirac structure in eq. (108) contains the Lipatov vertex Cµ
L(p+q, k1⊥) defined

in eq. (64). It has not been obtained a clear expression of the above Lipatov vertex
compatible with the polarization vector in the numerator of the LC amplitude (105).
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However, the energy denominator in eq. (108) can be rewritten as

(p + q)2 = 2(p+ + q+)(p− + q−) − (p⊥ + q⊥)2

= 2k
′+
1

[p2
⊥ + m2

p+ + q2
⊥ + m2

q+

]
− k

′2
1⊥

= 2k
′+
1

[p2
⊥ + m2

p+ + q2
⊥ + m2

q+ − k
′2
1⊥

2k
′+
1

]
,

(119)

where the momentum conservation p⊥ + q⊥ = k′
1⊥ has been applied. By identifying

k′
1⊥ = k′

2⊥ + k′
3⊥, p⊥ = k′

2⊥ and q⊥ = k′
3⊥, the expression in eq. (119) has the same

structure as the energy denominator in the second term of eq. (105).
Although the modulus squared of the amplitudes is taken to calculate the cross

section, the LC amplitude (105) is imaginary whereas the covariant amplitude (106)
is real. The last difference observed between the two theories is that in light cone
quantization, all the particles are on-shell but the (−)–component of the momentum
is not conserved at the vertices of the diagrams. In covariant theory, particles are
off-shell, but the (−)–component of the momentum is conserved. Thus, at the end,
the calculation made in the two theories is equivalent.
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6 Conclusions

The aim of this thesis was getting the probability amplitude of a gluon splitting into
a quark-antiquark pair in proton-nucleus collisions at high-energy.

The first result is obtained in the Lorenz gauge, showed in eq. (67) in section 3,
where the proton-nucleus collision is described as an interaction between classical
color fields originated from color sources, following [3, 16]. The result is structured
into two terms representing the two possible time-ordered interactions in the light
cone. The first one corresponds to the splitting of a gluon into a qq̄–pair and the
subsequent interaction with the CGC in the nucleus. The second one describes the
multiple scatterings of a gluon off the saturated gluonic region before its splitting.
In both cases, the interaction is represented in the eikonal approximation by a
color rotation through Wilson Lines in the fundamental UF (x⊥) and adjoint UA(x⊥)
representations.

In section 4 the production amplitude describing the same process is calculated
in eq. (104) using light cone quantization. In this formalism, the Fock state basis in
terms of the bare states is used to expand the initial gluon and final quark-antiquark
dressed states. Similarly as the covariant amplitude (67), the interaction of each
parton with the CGC is represented by Wilson Lines in the LC amplitude (104). In
this calculation, the polarization of the incoming gluon is explicitly considered, in
contrast with the calculation made in covariant theory.

In section 5, a comparison of both results is made and the Dirac structure as
well as the energy denominators in the covariant amplitude (67) are rewritten to
show their equivalence with the LC amplitude (104).

To completely prove the gauge invariance of the results, it is necessary to
complete the cross section calculation by squaring the amplitudes in the collinear limit
k1⊥ → 0 for the gluon momentum in the proton. Before taking this approximation,
the amplitudes in the LCPT and covariant theory contain factors that can not
be compared, such as the unintegrated gluon distribution (109) or the Lipatov
factor (108).

The result of this work can be used to calculate the cross section of pair production
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that can be compared to experimental data in proton-nucleus collisions at the LHC.
The aim is to better understand the structure of the proton at the high-energy
regime.
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