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Abstract

Background: Measures of biological aging range from DNA methylation (DNAm)-based estimates to measures of physical abilities. The 
purpose of this study was to compare DNAm- and physical functioning-based measures of biological aging in predicting mortality.
Methods: We studied 63- to 76-year-old women (N  =  395) from the Finnish Twin Study on Aging (FITSA). Participants’ biological age 
(epigenetic clocks DNAm GrimAge and DunedinPACE) was estimated using blood DNAm data. Tests of physical functioning conducted under 
standardized laboratory conditions included the Timed Up and Go (TUG) test and 10-m walk test. Mortality hazard ratios were calculated 
per every 1 standard deviation (SD) increase in the predictor. Cox regression models were conducted for individuals and twin pairs, the latter 
controlling for underlying genetic effects. The models were adjusted for known lifestyle predictors of mortality.
Results: During the follow-up period (mean 17.0 years, range 0.2–20.3), 187 participants died. In both the individual-based and pairwise 
analyses, GrimAge and both functional biomarkers of aging were associated with mortality independent of family relatedness, chronological 
age, physical activity, body mass index, smoking, education, or chronic diseases. In a model including both the DNAm-based measures and 
functional biomarkers of aging, GrimAge and TUG remained predictive.
Conclusions: The findings suggest that DNAm GrimAge and the TUG test are strong predictors of mortality independent of each others and 
genetic influences. DNAm-based measures and functional tests capture different aspects of the aging process and thus complement each other 
as measures of biological aging in predicting mortality.

Keywords:  Epigenetic clock, Timed Up and Go test, Twins, Walking speed

Background

While chronological age is a major risk factor for functional impair-
ments, chronic diseases, and mortality, there is a great degree of hetero-
geneity among older individuals in terms of their health and physical 
functioning (1). Thus, chronological age is not a sufficient marker for 
understanding and measuring healthy aging, and the search for add-
itional reliable markers of biological age has been ongoing for decades 

(2). Biological aging includes physiological processes at the molecular, 
cellular, organ, and system levels, and it may predict those at the 
greatest risk of age-related diseases and disabilities as well as prema-
ture mortality. Measures of biological aging range from DNA-based 
estimates to measures of physical abilities (3–6).

Epigenetic clocks are based on changes in the DNA methylation 
(DNAm attachment of a methyl group to C-5 of cytosine bases in 
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the context of cytosine–phosphate–guanine [CpG] dinucleotide in 
a DNA strand) levels over time. Epigenetic mechanisms—of which 
DNAm is the most studied—regulate gene expression and help 
us adapt to different environments and lifestyles. Thus, epigen-
etics forms a fundamental link between genetics and environment/
lifestyle. The epigenetic clock DNAm GrimAge, a combination of 
DNAm-based surrogate biomarkers for health-related plasma pro-
teins and smoking pack-years as well as sex and chronological age, 
was developed to predict mortality (7), and has been shown to out-
perform previous clocks in this regard (8,9). It is associated with the 
key hallmarks of aging, such as mitochondrial dysfunction and cel-
lular senescence (10,11). A next-generation DNAm-based biomarker 
of the pace of aging, DunedinPACE (Pace of Aging Calculated from 
the Epigenome), is associated with mortality and may add incre-
mental prediction beyond that of GrimAge (12,13).

Measures of physical functioning mirror the physiological 
changes that occur with aging (14). On the other hand, if DNAm-
based measures of aging require blood chemistries and access to 
genotyping, functional measurements are inexpensive and easy to 
accomplish, as they require little more than a stopwatch in terms 
of equipment. For instance, short-distance walking tests and com-
posite measures of physical functioning, such as the Timed Up and 
Go (TUG) test, can be performed in a limited space without special 
equipment, thus making them simple and safe to accomplish. The 
TUG test includes transfer tasks (standing up and sitting down), 
walking, and turning, incorporating neuromuscular components 
such as balance, power, and agility (15). Both walking speed (16–18) 
and the TUG test (17–23) have been shown to predict the risk of 
mortality.

Biological aging process is a complex phenomenon shaped by 
genetic inheritance as well as environmental and lifestyle factors. 
Twin study designs are ideal for examining the associations between 
complex traits, where multiple factors influence the exposure (e.g., 
biological aging) and outcome (e.g., mortality) being studied. Twin 
pairs share the same sex and age, all (monozygotic [MZ] pairs) or half 
(dizygotic [DZ] pairs) of their segregating genetic polymorphisms, 
and mostly the same intrauterine and childhood environment, thus 
allowing for the better control of lifestyle and genetic factors in 
studies examining the association of epigenetic aging and physical 
functioning with mortality. The purpose of this study was to inves-
tigate the association of 2 DNAm-based measures—epigenetic clock 
GrimAge and DunedinPACE—and physical functioning-based meas-
ures—the TUG and 10-m walk tests—with mortality while acknow-
ledging the effect of education and several lifestyle factors. Based on 
the current literature, we hypothesized that all these measures pre-
dict mortality. However, to the best of our knowledge, no previous 
study has investigated these specific predictors of mortality within 
the same cohort. Therefore, little is known about how these 2 sets 
of physiological aging measures interact as well as whether they are 
associated with mortality independently of each other.

Method

Participants and Study Design
The female participants in the present study participated in the 
Finnish Twin Study on Aging (FITSA). The participants in the 
FITSA were recruited from the Older Finnish Twin Cohort, which 
is comprised of all same-sex twin pairs born before 1958 with both 
co-twins alive in 1975 (24). The FITSA was set up to investigate gen-
etic and environmental effects on the disablement process in older 

female twins. An invitation to participate in the FITSA was sent to 
414 female twin pairs. The final sample included 114 DZ and 103 
MZ twin pairs (434 individuals) aged 63–76 years. The participants 
were informed about the study and signed a written consent form 
prior to the laboratory examinations, which took place from 2000 
to 2001. The recruitment process for the FITSA has been described 
in detail previously (25,26). Participants with available DNAm and 
physical functioning (TUG and 10-m walk) data were included in 
the present study (N = 395).

Biological Aging
DNAm age
In our previous paper, we described the generation, preprocessing, 
and normalization of the DNAm data (27). Briefly, we determined 
genome-wide DNAm from blood samples using an Illumina EPIC 
BeadChip, and the data were preprocessed with the R package minfi. 
Detection p values comparing the total signal for each probe to the 
background signal level were calculated to evaluate the quality of 
the samples (28). Further analysis excluded samples of poor quality 
(mean detection p > .01). To normalize the data, a single-sample 
Noob normalization method was used (29).

The epigenetic age estimate, DNAm GrimAge, was calculated 
using an online calculator (https://dnamage.genetics.ucla.edu/new). 
For this measure, in the analysis, we used the age acceleration 
measure, which describes the difference between chronological age 
and epigenetic age estimates. Age acceleration was defined as the 
residual from regressing the estimated epigenetic age on the chrono-
logical age. The DunedinPACE estimator gives an estimate for the 
pace of biological aging in years per calendar year (12,13). It was 
calculated using a publicly available R package (https://github.com/
danbelsky/DunedinPACE).

Physical functioning
The participants took part in baseline laboratory measurements. 
Before the measurements of physical functioning, participants’ health 
status, chronic conditions, and medications were carefully evaluated 
by a physician during a 30-minute clinical examination. Standardized 
laboratory measurements of physical functioning, including the TUG 
test and 10-m walk test, were conducted by trained staff, most of 
whom were physiotherapists. The participants wore walking shoes 
or sneakers, and the use of any walking aids they would normally 
require was allowed in the tests. Both tests were done twice, with the 
faster performance (in seconds) selected for the analyses.

The TUG test was used to assess the participants’ mobility, 
balance, and walking ability (30). The participants were verbally and 
visually instructed to rise from a chair, walk 3 m, turn around, walk 
back to the chair, and sit down.

In the 10-m walk test with a flying start, 3 m was allowed for 
acceleration, and participants’ walking time (in seconds) over 10 m 
was recorded in the laboratory corridor using photocells for timing 
(26). The participants were instructed to walk as fast as possible 
without compromising their safety.

Covariates
Information regarding the known predictors of mortality (e.g., 
length of education, cigarette smoking, alcohol consumption, phys-
ical activity, body mass index [BMI], and chronic diseases) was 
obtained from the participants’ interviews, questionnaire data, and 
anthropometric measurements at baseline. The length of educa-
tion (years) was self-reported. Smoking and alcohol consumption 
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were assessed via a standardized questionnaire. Based on the par-
ticipants’ responses to a detailed smoking behavior and history 
questionnaire, smoking status (current, former, or never) was de-
termined, and the lifelong history of exposure to smoking was 
calculated in pack-years (equivalent to smoking 1 pack [20 cig-
arettes] per day for a year). Alcohol use was measured with bev-
erage type-specific items in regard to frequency and quantity and 
converted into the number of grams of absolute ethanol per day. 
For descriptive purposes, participants were further categorized as 
abstainers, light drinkers (3 or fewer drinks per week), moderate 
drinkers (more than 3 but no more than 7 drinks per week), and 
heavy drinkers (on average, more than 1 drink per day). With slight 
modifications, the scale developed by Grimby (31) was used as a 
measure of self-reported physical activity. For descriptive purposes, 
the participants were further divided into 3 groups accordingly: 
mainly sedentary (groups 0–1), light physical activity (group 2), 
and moderate to vigorous physical activity (groups 3–6). BMI 
values were determined based on weight and height (weight in 
kilograms divided by the square of height in meters) and measured 
by trained research staff. Chronic diseases were first self-reported 
and then confirmed during a medical examination conducted by a 
physician. The chronic diseases considered here included chronic 
cardiovascular, pulmonary, neurological, musculoskeletal diseases, 
type 2 diabetes, and all cancers. These are reported more precisely 
in our previous papers (9,32).

Mortality Follow-up and Statistical Analyses
The mortality follow-up began on the date the participant partici-
pated in the laboratory measurements and the blood sampling for 
the genome-wide DNAm analysis was conducted (from 2000 to 
2001). Follow-up continued through December 31, 2020, with the 
all-cause mortality analyzed during this period. The all-cause mor-
tality data—with exact death dates, causes of death, and emigration 
from Finland status—were available from Statistics Finland.

Individual-Based Analyses
First, using a Cox proportional hazard model adjusted for family 
relatedness and age, we conducted an individual-based (i.e., twins 
within a pair and single co-twins were studied as individuals) mor-
tality analysis. We calculated hazard ratios (HRs) for 1 standard 
deviation (SD) increase in GrimAge, DunedinPACE, TUG test, and 
10-m walk test with their 95% confidence intervals (95% CI) for the 
395 study participants (Model 1). Further, we adjusted Model 1 for 
education years, smoking (i.e., smoking status and pack-years), BMI, 
and physical activity by adding 1 covariate at a time to the model. 
We also carried out the analyses with multivariable adjustments. 
The full model (Model 1 + lifestyle factors) included adjustments for 
family relatedness, age, smoking, BMI, physical activity, and alcohol 
consumption. Following this, we included an adjustment for educa-
tion years on top of the lifestyle factor-adjusted Model 1 (Model 2). 
Finally, we included adjustments for the presence of selected chronic 
diseases in Model 2. To further assess the association, survival curves 
were plotted according to the age acceleration/physical functioning 
tertiles of all 4 predictors, and all-cause mortality was investigated 
by calculating the HRs during follow-up based on these tertiles. 
Finally, to investigate whether GrimAge, DunedinPACE, the TUG 
test, and the 10-m walk test contributed to mortality risk independ-
ently of each other, we included all the measures in the same model. 
For a valid comparison of the selected predictors in terms of the 
strength of their association with mortality, we used a standardized 

approach to show the per-SD increment of mortality HR among the 
same number and groups of participants.

Pairwise Analyses
Using the “strata” option for the Stata procedure stcox (StataIC16, 
StataCorp, Inc., College Station, TX), pairwise analyses were per-
formed with the same models. These analyses were restricted to twin 
pairs with nonmissing data for both twins. This compares the haz-
ards within pairs rather than to the overall reference category as in 
standard Cox regression models. Models were generated for all twin 
pairs and separately for the MZ pairs with an identical genomic se-
quence and DZ pairs sharing half of their segregating genes. For all 
the predictors, the effect of zygosity was tested using an interaction 
term between the predictor and zygosity and then comparing the fit 
between the models with and without the interaction term.

Results

Individual-Based Analysis
Of the 395 individuals in this study, 187 died (47.3%) during the 
mean follow-up time of 17.1 years (range 0.2–20.3). The baseline 
characteristics of the participants are presented for all participants 
as well as according to vital status (alive/dead) at the end of the 
follow-up (Table 1). Those who died were older as determined 
by chronological age (mean  =  69.6, SD  =  3.4 vs mean  =  67.6, 
SD = 3.2 years), DNAm-based age (GrimAge mean = 61.2, SD = 4.4 
vs mean  =  58.4, SD  =  3.8  years), and age acceleration (GrimAge 
mean = 0.51, SD = 3.40 vs mean = −0.64, SD = 2.86, DunedinPACE 
mean = 0.99, SD = 0.11 vs mean = 0.95, SD = 0.11). Additionally, 
they performed worse on the tests of physical functioning (TUG 
mean = 9.9, SD = 2.2 vs mean = 8.7, SD = 1.5 seconds, 10-m walk 
mean = 6.4, SD = 1.5 vs mean = 5.7, SD = 1.0 seconds). Furthermore, 
those who died had lower levels of education (in years) and physical 
activity as well as more chronic diseases (cardiovascular and type 2 
diabetes) compared to those who were alive at the end of follow-up. 
With regard to smoking, BMI, and alcohol consumption at baseline, 
no significant differences were found according to the subsequent 
vital status of the participants.

GrimAge was found to be correlated with the TUG test (r = 0.145) 
and DunedinPACE (r = 0.578). DunedinPACE was found to be cor-
related with both functional biomarkers of aging (TUG r = 0.202; 
10-m walk r = 0.143). Additionally, the TUG test correlated with the 
10-m walk test (r = 0.742). There was no interaction between these 
measures as predictors of mortality (test for interaction GrimAge × 
TUG p = .599, GrimAge × DunedinPACE p = .652, DunedinPACE 
× TUG p = .778, DunedinPACE × 10-m walk p = .865, TUG × 10-m 
walk p = .133).

Both biological aging and functional biomarkers of aging were as-
sociated with mortality. In Model 1, including adjustments for family 
relatedness and chronological age, the mortality HR per every 1-SD 
increase in the predictor variable was 1.36 for GrimAge (95% CI: 
1.18–1.57), 1.23 for DunedinPACE (95% CI: 1.05–1.44), 1.45 for 
the TUG test (95% CI: 1.32–1.59), and 1.45 for the 10-m walk test 
(95% CI: 1.31–1.59; Figure 1). In Model 2, including adjustments 
for family relatedness, age, education, all studied lifestyle factors, 
and chronic diseases, these estimates using GrimAge (HR 1.39; 95% 
CI: 1.11–1.74), the TUG test (HR 1.43; 95% CI: 1.27–1.60), and the 
10-m walk test (HR 1.44; 95% CI: 1.26–1.63) were only margin-
ally affected. The corresponding estimate using DunedinPACE was 
attenuated to 1.15 (95% CI: 0.96–1.37) (Supplementary Table 1). 
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When all predictors used were analyzed simultaneously in the same 
model, both GrimAge (HR 1.33; 95% CI: 1.12–1.59) and the TUG 
test (HR 1.28; 95% CI: 1.04–1.57) remained significantly associated 
with mortality (Table 2).

To further assess the association, survival curves were plotted 
according to the tertiles of all 4 predictors (Figure 2). Kaplan–
Meier survival curves were tested unequal (p =  .005 for GrimAge, 
p = .018 for DunedinPACE, p < .001 for TUG, p < .001 for 10-m 
walk) with a log-rank test. In Model 1, participants in the highest 
GrimAge tertile (“fast agers”) compared to those in the lowest tertile 
(“slow agers”) were at a higher risk for mortality (HR 1.68; 95% 
CI: 1.15–2.46). Likewise, participants in the highest TUG and 10-m 
walk test tertiles (“low physical functioning”) compared to those 
in the lowest tertiles (“high physical functioning”) were at a higher 
risk for mortality (HR 2.48; 95% CI: 1.71–3.59, HR 1.62; 95% 
CI: 1.10–2.40, respectively). For DunedinPACE, the comparison of 
the highest tertile with the lowest tertile yielded nonsignificant re-
sults (HR 1.29; 95% CI: 0.87–1.91). In Model 2, these estimates 
using GrimAge (HR 1.51; 95% CI: 1.00–2.26), the TUG test (HR 
2.46; 95% CI: 1.65–3.66), and the 10-m walk test (HR 1.68; 95% 

CI: 1.03–2.75) were only marginally affected. However, in Model 2 
including adjustment for chronic diseases, these estimates attenuated 
and yielded nonsignificant results, except for the TUG test (HR 2.26; 
95% CI: 1.50–3.41) (Supplementary Table 2). The variable-specific 
characteristics and number of deceased participants according to the 
tertiles of the variable are presented in Supplementary Table 3.

Pairwise Analysis
To control for genetic and environmental factors shared within a twin 
pair, pairwise mortality analyses were conducted. Of the 186 twin 
pairs, at least 1 twin died in 122 pairs during the follow-up period; 
both twins died in 51 pairs. Among MZ/DZ pairs, at least 1 twin died 
in 55/67 pairs and both twins died in 24/27 pairs. The within-pair 
Cox regression, conducted for all twin pairs and separately for the 
MZ pairs and DZ pairs, accounted for such differences in survival 
by comparing the co-twins to each other. Except for DunedinPACE, 
all the measures predicted mortality. In Model 1, the mortality HR 
per every 1-SD increase in the predictor variable was 1.92 (95% CI: 
1.30–2.85) for GrimAge, 2.14 (95% CI: 1.40–3.27) for the TUG test, 
and 2.27 (95% CI: 1.38–3.74) for the 10-m walk test (Figure 1). 

Table 1. Baseline Characteristics of the Female Participants From the Finnish Twin Study on Aging (N = 395, age range 63–76 years) Overall 
and by Vital Status Over a 20-Year Follow-up Period

  Vital Status at the End of the Follow-up pa 

Characteristic All (N = 395) Alive (N = 208) Dead (N = 187) 

Age at baseline, y 68.5 (3.4) 67.6 (3.2) 69.6 (3.4) <.001
DNAm age     
 DNAm GrimAge, y 59.7 (4.4) 58.4 (3.8) 61.2 (4.4) <.001
 GrimAge age acceleration −0.09 (3.18) −0.64 (2.86) 0.51 (3.40) .001
 DunedinPACE 0.97 (0.11) 0.95 (0.11) 0.99 (0.11) .001
Timed Up and Go test (s) 9.3 (1.9) 8.7 (1.5) 9.9 (2.2) <.001
10-m walk test (s) 6.0 (1.3) 5.7 (1.0) 6.4 (1.5) <.001
Education, y 8.7 (3.1) 9.1 (3.1) 8.3 (2.9) .013
Cigarette smoking, N (%) of participants    .222
 Never smokers 345 (87.6) 187 (90.3) 158 (84.5)  
 Former smokers 29 (7.4) 13 (6.3) 16 (8.6)  
 Current smokers 20 (5.1) 7 (3.4) 13 (7.0)  
Lifetime smoking pack-years     
 Former smokers 10.4 (12.9) 12.2 (16.3) 8.9 (9.6) .532
 Current smokers 25.0 (14.7) 22.6 (12.8) 26.2 (16.0) .612
Body mass index, kg/m2 27.9 (4.7) 28.1 (4.9) 27.6 (4.5) .349
Physical activity group (0–6) 2.3 (1.3) 2.4 (1.2) 2.1 (1.3) .029
Physical activity group, N (%) of participants    .154
 Mainly sedentary 106 (26.8) 48 (23.1) 58 (31.0)  
 Light physical activity 132 (33.4) 69 (33.2) 63 (33.7)  
 Moderate to vigorous physical activity 157 (39.7) 91 (43.8) 66 (35.3)  
Alcohol consumption, g/d 3.2 (5.8) 3.5 (6.0) 2.9 (5.6) .382
Alcohol consumption, N (%) of participants    .318
 Abstainer 131 (33.2) 60 (28.8) 71 (38.2)  
 Light drinker 192 (48.7) 108 (51.9) 84 (45.2)  
 Moderate drinker 52 (13.2) 29 (13.9) 23 (12.4)  
 Heavy drinker 19 (4.8) 11 (5.3) 8 (4.3)  
Selected diseases, N (%) of participants     
 Cardiovascular 218 (55.2) 104 (50.0) 114 (61.0) .038
 Pulmonary 60 (15.2) 28 (13.5) 32 (17.1) .305
 Neurological 6 (1.5) 1 (0.5) 5 (2.7) .086
 Musculoskeletal 218 (55.2) 152 (73.1) 142 (75.9) .520
 Type 2 diabetes 20 (5.1) 5 (2.4) 15 (8.0) .029
 Cancer 49 (12.4) 23 (11.1) 26 (13.9) .418

Note: DNAm = DNA methylation.
aDifference between groups according to vital status (alive/dead). Values are means and standard deviations unless otherwise stated.
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These estimates were only marginally affected after further adjust-
ments (Supplementary Table 1). Using GrimAge and TUG test, the 
HRs were systematically but nonsignificantly higher among the MZ 
pairs in comparison to the DZ pairs (test for interaction in Model 1 
GrimAge × zygosity p = .982 and TUG × zygosity p = .771). The 10-m 
walk test showed no systematic differences between the MZ and DZ 
pairs in the pairwise analysis (Supplementary Table 1).

Sensitivity Analysis
We conducted individual-based sensitivity analyses among the par-
ticipants with no reported chronic diseases (N  =  57). In Model 1, 
the mortality HR per every 1-SD increase in the predictor variable 
was 1.52 for GrimAge (95% CI: 1.19–1.95), 1.34 for DunedinPACE 
(95% CI: 0.97–1.87), 2.08 for the TUG test (95% CI: 1.06–4.09), and 
1.29 for the 10-m walk test (95% CI: 0.69–2.42; data not shown).

Discussion

There has been consensus that no single measure—or single com-
posite measure—will capture all aspects of the aging process (3,33). 
In the present study, we investigated 4 potential predictors of 

mortality, including 2 DNAm-based measures of biological aging 
and 2 functional biomarkers of aging, among older home-dwelling 
women. We were able to take into account the effect of genetics, edu-
cation, and several lifestyle factors. The main findings suggest that 
physical functioning may be an even stronger predictor of mortality 
than DNAm-based measures of biological aging. The novelty of this 
study was its use of the newest epigenetic predictors of biological 
aging and comparison of how different types of physiological meas-
ures differ in their predictive power and how they interact.

We found that DNAm GrimAge, which was developed to predict 
life span and health span (10,34), and both measures of physical 
functioning showed robust associations with mortality independent 
of genetic influences. More specifically, faster aging pace—measured 
using the GrimAge algorithm—and lower physical functioning were 
associated with a higher risk of all-cause mortality. The standardized 
measurements allowed us to compare the predictive abilities of the 
DNAm-based and functional biomarkers of aging. The TUG test ef-
fect sizes were similar to those of the 10-m walk test, and both of 
these were slightly higher when compared with GrimAge—which 
showed effect sizes similar to our previous study (9) (which had a 
shorter follow-up period). DunedinPACE showed the lowest effect 
size in the individual analysis, with attenuated and nonsignificant 
HRs in the pairwise analysis. To assess whether these variables pre-
dicted mortality independently of each other, they were analyzed 
simultaneously in the same model. GrimAge, which had the largest 
effect size, and the TUG test were found to be independent pre-
dictors of all-cause mortality.

TUG and 10-m walk tests are easy to conduct, as they are safe 
to administer, can be performed in a small space, and are cheap tests 
requiring no special equipment. Previous studies have found both 
walking speed (16–18) and the TUG test (17–23) to be associated 
with mortality. Our results are in line with these previous studies (16–
23), showing that participants who performed worse in the TUG and 
10-m walk tests were at a higher risk for mortality compared to those 
who accomplished the tests in a shorter amount of time (indicating 
better physical function). We found that the TUG test was a stronger 
predictor of mortality compared to the 10-m walk test. In previous 
research, comfortable walking speed has been found to be a stronger 
predictor of mortality than the TUG among community-dwelling 
women (17). However, the present study is not quite comparable 
to previous research. While, in the present study, participants were 
asked to accomplish the tests as quickly as possible, other studies 
have also utilized comfortable/usual walking speed (17,35) and, in 
the most widely used version of the TUG, participants are asked to 
complete the task at a comfortable walking speed (15). Additionally, 
previous studies differ according to their study population and the 

Figure 1. Risks of all-cause mortality per 1-SD increase in DNAm GrimAge 
age acceleration, DunedinPACE, Timed Up and Go test, and 10-m walk test 
among female participants from the Finnish Twin Study on Aging (N = 395, age 
range = 63–76 years) over a 20-year follow-up period. (A) Individual analyses. 
(B) Pairwise analyses among all (N = 186) twin pairs. (C) Pairwise analyses 
among monozygotic (N  =  91) twin pairs. (D) Pairwise analyses among 
dizygotic (N = 95) twin pairs. Notes: AAGrimAge = GrimAge age acceleration; 
CI = confidence interval; DNAm = DNA methylation; SD = standard deviation; 
TUG = Timed Up and Go test.

Table 2. Risks of All-Cause Mortality Per 1-SD Increase in DNAm GrimAge Age Acceleration, DunedinPACE, Timed Up and Go Test, and 10-m 
Walk Test

 

Individual Analysesa  
(N = 395) 

Pairwise Analyses Among Twins

All (N = 186)  
Twin Pairs 

Monozygotic  
(N = 91) Twin Pairs 

Dizygotic (N = 95)  
Twin Pairs 

AAGrimAge 1.33 (1.12–1.59) 2.39 (1.40–4.07) 2.77 (1.13–6.76) 2.14 (1.10–4.19)
DunedinPACE 1.00 (0.82–1.21) 0.66 (0.38–1.16) 0.41 (0.15–1.07) 0.85 (0.43–1.69)
TUG 1.28 (1.04–1.57) 1.81 (1.08–3.04) 2.16 (0.87–5.38) 1.78 (0.90–3.52)
10-m walk 1.16 (0.92–1.47) 1.52 (0.85–2.69) 1.19 (0.43–3.31) 1.61 (0.77–3.39)

Notes: AAGrimAge = GrimAge age acceleration; DNAm = DNA methylation; SD = standard deviation; TUG = Timed Up and Go test. Hazard ratios and 95% 
confidence intervals are presented in the table. Statistically significant values are bolded.

aAdjusted for family relatedness and age.
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length of the follow-up period. For instance, some studies have util-
ized community-dwelling populations while others—such as the 
present study—have utilized home-dwellers. Additionally, the mor-
tality follow-up period exceeded 10 years in only 3 of the studies 
(17,19,20). To our knowledge, no previous studies have shown the 
association between these functional biomarkers of aging and mor-
tality over a follow-up period exceeding 20 years. Additionally, to 
our knowledge, this is the first study suggesting that the TUG test 
and walking speed are associated with mortality independent of gen-
etic inheritance and early childhood environmental factors as when 
we examined the associations within the twin pairs by conducting 
pairwise analyses, these associations remained significant. However, 
it is noteworthy that functional biomarkers of aging may be particu-
larly useful, and better than epigenetic clocks, in predicting mortality 
in older adults. Though, this is less clear for young and middle-aged 
adults as the changes that occur with aging at the molecular, cellular, 
and intercellular levels take many years before deteriorating into de-
creases in physical function (36).

The present study is one of the first to include both DNAm 
GrimAge and DunedinPACE. The equal test–retest reliability of 
GrimAge and DunedinPACE has been reported to be higher in com-
parison to the other epigenetic clocks (12). The next-generation 
DNAm-based biomarker of the pace of aging, DunedinPACE, has 
been reported to show effect sizes similar to those of GrimAge in terms 
of mortality. The results of this study suggest that DunedinPACE, 
which was developed using DNAm data from 45-year olds and 
functional data from 26- to 45-year olds, may have limited usability 
among older populations. The present study found lower effect sizes 
of DunedinPACE for mortality compared to GrimAge. Further, the 
attenuated results from the pairwise analysis indicate that the as-
sociation of DunedinPACE with mortality was partly explained by 
genetic and early childhood environmental influences. The present 
study is unique in that it included both DNAm-based measures and 
functional biomarkers of aging. Thus, we were interested to inves-
tigate whether physical functioning reflects the association between 

DNAm-based biological aging and mortality. Previously, DNAm 
GrimAge has been found to be associated with decline in physical 
functioning over a 16-year follow-up period (37). Additionally, our 
previous study found DNAm GrimAge to be associated with a de-
cline in physical functioning over a 3-year follow-up period among 
the study group of the present study (32). Also, DunedinPACE has 
been suggested to be associated with functional decline in midlife 
adults (12). However, even though GrimAge correlated with the 
TUG test and DunedinPACE correlated with both the TUG test and 
10-m walk test, we did not find an interaction between these meas-
ures as predictors of mortality. Thus, the present findings suggest 
that DNAm-based biological aging is not related to the association 
between physical function and mortality.

Several limitations of this study need to be considered. First, 
the present study included only women, which may limit the gen-
eralizability of the results. However, previous studies on TUG test–
mortality associations that have included both men and women 
have not reported gender differences. For example, during a mean 
11.8-year follow-up period, Bergland et  al. (20) found that the 
association between the TUG test and all-cause mortality was 
equally strong among male and female home-dwellers aged 65 
and above. In addition, participants in the present study were 
epigenetically younger compared to their chronological age, and 
very few of them were current or even former smokers. Smoking 
is one of the most detrimental lifestyle factors and is associated 
with an increased risk for several diseases (38), accelerated cel-
lular aging (39), and mortality (40). Therefore, smoking behavior 
had to be acknowledged in the analyses. Additionally, it is note-
worthy that smoking was taken into account in the development 
of DNAm GrimAge, the estimates of which represent combined in-
formation on chronological age, sex, and DNAm-based surrogate 
biomarkers for 7 plasma proteins and smoking pack-years (7). 
Previous studies have revealed that smoking behavior is a signifi-
cantly stronger predictor of DNAm age than other lifestyle factors 
when GrimAge algorithm is used in estimation (9,41). Because our 
sample included relatively few smokers, the association of DNAm 
GrimAge age acceleration with mortality may be weaker than in 
populations with more smokers. The present study showed that 
65% of the participants who were current smokers at the baseline 
level died during follow-up. However, due to the limited number 
of smokers (current smokers at baseline, N  = 20), there was no 
statistically significant difference in the smoking status of the par-
ticipants according to their vital status at the end of the follow-up 
period. Additionally, the participants in the present study were 
willing and able to travel to the laboratory and participate in tests 
of physical functioning. Thus, a selection bias of the participants 
could be considered another weakness of the study. On the other 
hand, it can be speculated that the present results are understated, 
and a more heterogeneous study group including more partici-
pants with unhealthy lifestyles, higher biological aging speed, and 
lower physical functioning could have strengthened the associ-
ations found in the present study.

Due to the limited size of the FITSA cohort, we were unable to 
conduct cause-specific mortality analyses, and thus only examined 
all-cause mortality. We conducted the analyses taking into account 
the effect of chronic diseases that were selected on the basis of 
their expected effect on epigenetic aging, physical functioning, 
and mortality. Further, we conducted sensitivity analyses among 
the participants with no reported chronic diseases, with the results 
supporting our main finding that both GrimAge and the TUG test 

Figure 2. Risks of all-cause mortality per 1-SD increase in DNAm GrimAge 
age acceleration, DunedinPACE, Timed Up and Go test and 10-m walk test 
according to the tertiles of the predictors. The follow-up period for the female 
participants from the Finnish Twin Study on Aging (N  =  395, age range 
63–76 years) was 2000–2020. Notes: AAGrimAge = GrimAge age acceleration; 
DNAm = DNA methylation; SD = standard deviation; TUG = Timed Up and 
Go test. For AAGrimAge and DunedinPACE, the highest tertile refers to “fast 
agers”; for the TUG and 10-m walk tests, it refers to “low physical functioning”.

6 Journals of Gerontology: MEDICAL SCIENCES, 2023, Vol. XX, No. XX

Copyedited by: AS

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad026/6995433 by Jyvaskylan yliopisto / Kirjasto - kausijulkaisut user on 12 July 2023



were significant predictors of mortality. We consider the twin de-
sign as a major strength of the present study. Variations in both 
DNAm age (27,42) and physical function at older ages (25,26) are 
suggested to be influenced by genetic inheritance. We performed all 
individual-based analyses with adjustments for family relatedness. 
Being a MZ versus DZ twin was not associated with any outcomes 
in the individual analyses, indicating that twinship status is not af-
fecting our individual-based results. In addition to individual-based 
analyses, we were able to conduct pairwise analyses. The power 
of this kind of within-pair analysis is that it controls for all un-
observed factors constant within twin pairs (i.e., age, sex, cohort, 
and all genetic and shared environmental familial factors shared 
by the co-twins) (43). However, concern has been raised about the 
generalizability of twin findings to singleton populations due to the 
higher occurrence of, for example, reduced intrauterine growth and 
shorter gestation in twins compared to singletons (44). According 
to Barker’s hypothesis, low birth weight or low prenatal energy in-
take may lead to epigenetic modifications (45–47). Thus, one might 
think that the epigenetic profile and further morbidity and mor-
tality of twins differ from that of singletons due to their prenatal 
conditions. However, large registry samples have shown that twins 
do not differ in morbidity or mortality from the rest of the popula-
tion (48,49), supporting the generalizability of findings from twin 
studies. However, in the future, the association of the difference in 
birth weight and epigenetic aging of co-twins should be studied in 
more detail. Finally, a strength of the present study is the length of 
the follow-up period.

Conclusion

This study supports earlier findings showing that accelerated epi-
genetic aging and lower physical functioning are associated with a 
higher risk of all-cause mortality. Further, the present findings sug-
gest that DNAm GrimAge and the TUG test are strong predictors of 
mortality independent of each other and genetic influences among 
female twin pairs. DNAm-based measures and functional tests cap-
ture different aspects of the aging process and thus complement each 
other as measures of biological aging in predicting mortality. Further 
study is needed to determine how different physiological mechan-
isms interact to accelerate or delay aging.
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