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Abstract

Harmoinen, Aleksi
Inclusive and semi-inclusive deeply inelastic lepton-hadron scattering in next-to-
leading order perturbative QCD
Master’s Thesis
Department of Physics, University of Jyväskylä, 2023, 79 pages.

The structure functions and cross sections of inclusive and semi-inclusive deeply
inelastic lepton-hadron scattering are calculated at next-to leading order perturba-
tive Quantum Chromodynamics (QCD). Calculations are done using dimensional
regularization and renormalization in the MS scheme. These cross sections are then
used along with several available experimentally determined parton density func-
tion sets and fragmentation function sets to numerically calculate multiplicities for
charged pions produced in electron-proton scattering. These numerical multiplicities
are compared with those measured at the HERMES experiment. The calculated
multiplicities of the different fragmentation function sets agree with the HERMES
results to a varying degree.

Keywords: DIS, SIDIS, NLO pQCD, PDF, FF, dimensional regularization
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Tiivistelmä

Harmoinen, Aleksi
Inklusiivinen ja semi-inklusiivinen syvä epäelastinen leptoni-hadroni sironta QCD:n
häiriöteorian alinta seuraavassa kertaluvussa
Pro Gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2023, 79 sivua

Työssä lasketaan rakennefunktiot ja vaikutusalat inklusiiviselle ja semi-inklusiiviselle
syvälle epäelastiselle sironnalle Kvanttiväridynamiikan (QCD) häiriöteorian alinta
seuraavassa kertaluvussa. Laskennassa käytetään dimensionaalista regularisoin-
tia ja renormalisaatio tehdään MS skeeman mukaan. Laskettuja vaikutusaloja ja
muutamaa saatavilla olevaa kokeellisesti määritettyä partonitiheysfunktio- ja frag-
mentaatiofunktiokokoelmaa käytetään sitten elektroni-protoni sironnassa syntyvien
varattujen pionien multiplisiteettien numeeriseen laskemiseen. Saatuja tuloksia ver-
rataan HERMES-kokeen tuloksiin. Eri fragmentaatiofunktiokokoelmille lasketut
multiplisiteetit vastaavat vaihtelevalla menestyksellä HERMES-kokeen tuloksia.

Avainsanat: DIS, SIDIS, NLO pQCD, PDF, FF, dimensionaalinen regularisointi
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1 Introduction

Quantum Chromodynamics (QCD) is a theory of the strong interaction. Phenomena
described by the theory are rich and colorful, but in many occasions non-perturbative
by nature. However, thanks to the asymptotic freedom of QCD [1, 2], processes with
interactions happening at high energy scales, larger than 1 GeV, or over sufficiently
small distances become perturbative, as the strong interactions become effectively
weaker [3]. This makes it possible to do perturbative QCD (pQCD), at least to some
extent.

Another analytically simplifying property is the existence of factorization theo-
rems for high energy QCD processes [4–10]. Factorization theorems state that the
non-perturbative and the perturbative parts separate. Ultimately they do so in
such a way that the singular terms in the perturbative part can be factored to the
non-perturbative part order by order [4]. For example, in the case of deeply inelastic
lepton-hadron scattering (DIS) ` + H → ` + X this factorization means that the
cross section of the whole process is a convolution of the part describing the inner
structure of the hadron H and the part describing the interaction between the lepton
` and one constituent particle of the hadron (parton). Factorization theorems provide
the factorization as a Taylor series of the inverse of the energy scale of the process.
Hence, they are applied mostly to high energy processes without the need for higher
twist corrections.

The idea behind factorization theorems was first introduced with the parton model
[11–13]. Partons are usually quarks, antiquarks and gluons. The non-perturbative
parts of the hadron-probing processes manifested into parton density functions
(PDFs). Shortly after, similar analysis lead to introduction of the parton fragmen-
tation functions (FFs) [14, 15]. PDFs are used to describe the inner structure of a
hadron as a sort of probability density function to find a certain type of particle
inside of the hadron. FFs on the other hand describe the hadronization process of
partons into hadrons as a sort of probability density to find a certain hadron from the
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jet produced by the parton. The inner structure of the hadron or the hadronization
of the parton should be intrinsic to the particle at hand and not depend on the
context it is observed in. Hence PDFs and FFs are considered to be universal in the
sense that the same function should be applicable for any high energy process.

Study of PDFs, FFs and their generalizations sheds light on the non-perturbative
properties of QCD. Some processes used for studying these functions are DIS
` + H → ` + X, Drell-Yan process H1 + H2 → ` + ¯̀ + X, single-inclusive an-
nihilation (SIA) ` + ¯̀ → h + X, semi-inclusive deeply inelastic scattering (SIDIS)
` + H → h + X and single-inclusive hadron production in hadron-hadron or hadron-
antihadron collisions. The first two are for studying PDFs and the last three mainly
for FFs.

In this thesis we focus only on DIS and SIDIS. We calculate the cross sections
for these processes in next-to-leading order (NLO) pQCD as was done in Reference
[16] for DIS and in Reference [17] for SIDIS. Calculations are done with massless
quarks and using dimensional regularization [18] with the MS scheme. The theoretical
background and the results for both calculations are summarized in Reference [10].
This thesis is a continuation to our review where the LO calculation and phenomena
of DIS and SIDIS was considered [19].

This thesis is organized as follows. In Section 2 we review the lowest order (LO)
pQCD results for DIS and SIDIS and describe the changes in the background of the
calculations when moving to NLO. In Section 3 we present the NLO calculation for
the DIS cross section and in Section 4 for SIDIS. In Section 5 we present the results
of the numerical calculation of multiplicities for pions π± done using the results
of the other sections and some available experimentally determined PDF and FF
sets. The numerical results are then compared with the multiplicity results of the
HERMES experiment [20].
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2 Inclusive and semi-inclusive deeply inelastic scat-
tering

In this chapter we review the deeply inelastic scattering (DIS) and semi-inclusive
deeply inelastic scattering (SIDIS) cross sections parametrized with structure func-
tions and calculate the structure functions in the lowest order (LO) perturbative
QCD (pQCD) parton model. The LO calculation is done with the dimensional
regularization procedure to illuminate the process even though no regularization or
renormalization is needed in the LO. In the last subsection we describe schematically
how the next-to-leading order (NLO) hadronic tensors are computed from the graphs
contributing in the DIS and SIDIS. This forms the basis for the NLO calculations
done in Sections 3 and 4.

The parametrization of the DIS cross section with structure functions, the method
for calculating structure functions using contractions of the hadronic tensor and the
LO parton model results are described for example in References [16, 17, 21, 22]. We
also reviewed the LO DIS and SIDIS in Reference [19].

2.1 LO DIS

The Feynman graph of the fully inclusive photon mediated DIS H(P ) + `(p`) →
`(p′

`) + X is given in Figure 1. Note the momentum assignments given here in the
parentheses. The inclusive differential cross section of this process is

d2σ

dxdQ2 = M

S

α2
em

Q4
2πy

x
LµνWµν (1)

= 4πα2
em

xQ4

(
xy2F1

(
x, Q2

)
+ (1 − y) F2

(
x, Q2

))
. (2)

Here M is the mass of the hadron, S = (P + p`)2 a Mandelstam variable of the
process, Lµν the leptonic tensor, Wµν the hadronic tensor and αem the electromagnetic
coupling constant. Leptonic and hadronic tensors represent the lepton and hadron
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`

`

γ

XH

`
`

σ̂a

fa/H

a
X

H

Figure 1. Feynman diagram of the inclusive DIS (left) and schematic represen-
tation of the parton model cross section factorization (right). Parton a is either
a quark, an antiquark or a gluon. Here σ̂a is the cross section of the parton-level
subprocess.

currents on the cross section. The three DIS variables are

Q2 = −q2, x = Q2

2P · q
, and y = P · q

P · p`

, (3)

where q is the photon 4-momentum. These three are not fully independent, but
Q2 = Sxy.

The most general form of the (electromagnetic) hadronic tensor Wµν relates to
the structure functions Fj of the hadron H as

Wµν = −F1

M

(
gµν − qµqν

q2

)
+ F2

MP · q

(
Pµ − P · q

q2 qµ

)(
Pν − P · q

q2 qν

)
. (4)

In parton model calculations we aim to find the structure functions given by the
model. Because of this we will next present a way to calculate these straight out of
some contractions of the hadronic tensor. We will do this in N spacetime dimensions
similarly to the NLO calculation. In this LO calculation N = 4 suffices but with
NLO some terms need to be regularized with N 6= 4 to get finite results after the
renormalization. Details of the implications that this choice of dimensions has to our
calculations are given in the appendices. Most of the implications needed here are
covered in Appendix C.
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First the contraction by the metric tensor:

gµνMWµν = −F1 (N − 1) + F2

P · q

(
P 2 − (P · q)2

q2

)
(5)

= −F1 (N − 1) + 1
2x

F2. (6)

On the second equality we discarded the hadron mass P 2 and substituted the variable
x. Next we contract the hadronic tensor twice by hadron N -momentum P . This
operation gives us

P µP νMWµν = −F1

(
P 2 − (P · q)2

q2

)
+ F2

P · q

(
P 2 − (P · q)2

q2

)2

(7)

= Q2

4x2

(
−F1 + 1

2x
F2

)
. (8)

Here again P 2 was discarded and the variables x and Q2 = −q2 were substituted.
From Equations (6) and (8) we can then solve

1
x

F2 = 2
N − 2

(
−gµνMWµν + (N − 1) 4x2

Q2 P µP νMWµν

)
(9)

F1 = 1
2x

F2 − 4x2

Q2 P µP νMWµν . (10)

Next we will demonstrate how these results are used to calculate the structure
functions in the LO parton model.

In the parton model the cross section (2) is factorized as

σ =
∑

a

∫ 1

0
dξfa/H(ξ)σ̂a, (11)

where the summation goes over every possible parton of H (in LO over quarks and anti-
quarks), fa/H is the process independent parton density function (PDF) of parton a in
H and σ̂a is the cross section of the parton-level subprocess a(p)+`(p`) → a(p′)+`(p′

`).
Note that the momentum assignments are shown in the parentheses. This factoriza-
tion is visualized on the right side of Figure 1. In the parton-level subprocess the
4-momentum of the parton a is taken to be p = ξP . [4, 10]
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We already introduce here the parameter

w = x

ξ
= Q2

2p · q
, (12)

which is more convenient than ξ in the NLO calculation. Note that w is the analog
of x for the parton-level subprocess and

dξ

ξ
= dw

w
. (13)

The leptonic tensors on both σ and σ̂a are equal and the parton-level cross section
also separates similarly to Equation (1). Due to this the factorization (11) can be
written in terms of the hadronic tensor

Wµν =
∑

a

∫ 1

x

dξ

ξ
fa/H(ξ)W a

µν . (14)

The division by ξ is a consequence of both σ and σ̂a being inversely proportional to
their Mandelstam variable s with ŝ = ξS. The lower limit of the integration is due
to the conservation of the 4-momentum on the subprocess and p = ξP . Note that
on with these values of ξ we also have w ∈ [x,1]. Equation (14) shows that the effect
of a parton a to the hadronic tensor is defined by the parton density function fa/H

and the parton’s contribution W a
µν to the hadronic tensor.

The hadronic tensor contribution for the parton a is defined in LO as

4πMW a
µν =

∫ dN−1~p′

2(2π)N−1p′0 (2π)N δ(N) (p + q − p′) C2
aWµν , (15)

with δ(N) the N -dimensional Dirac delta function, Ca the fractional charge of the
parton a and

Wµν = 1
2tr

(
/pγµ /p′γν

)
(16)

= 2
(
pµp′

ν + pνp′
µ − p · p′gµν

)
. (17)

The second equality follows from the N -dimensional results for gamma matrices
given in C. Because p = ξP we see that P µP νWµν is proportional to P 2 and hence
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is zero. We also find that

gµνWµν = (2 − N) 2p · p′ (18)

= (N − 2) q2, (19)

because q = p′ − p and the partons are considered to be massless. The phase space
integral in Equation (15) can be simplified as described in Appendix F and we get

4πMW a
µν = 2πC2

a

Q2 δ

(
1 − ξ

x

)
Wµν

∣∣∣∣∣
p′=p+q

. (20)

Using the contraction given in Equation (19)

−gµνMWµν = N − 2
2

∑
a

∫ 1

x

dξ

ξ
fa/H(ξ)C2

aδ

(
1 − ξ

x

)
(21)

= N − 2
2

∑
a

C2
afa/H(x), (22)

and as was deducted before Equation (19) ,

P µP νWµν = 0. (23)

Using the solutions for the structure functions (9) and (10) we conclude with the
classical LO results

1
x

F2 =
∑

a

C2
afa/H(x) (24)

F1 = 1
2x

F2. (25)

2.2 LO SIDIS

The Feynman graph of the SIDIS H(P ) + `(p`) → `(p′
`) + h(ph) + X is given in

Figure 2. Note the momentum assingments shown here in the parentheses. Note the
momentum assignments in the parentheses of the equation describing the process.
The results given in Equations (1) through (10) apply here with just a little tweaking.
The structure functions F h

j and the hadronic tensor are now also functions of the
SIDIS variable z and depend on the tracked outgoing hadron h. The SIDIS cross
section σh is then also made differential with respect to z too. The SIDIS variable z
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`

`

hγ

XH

`

`

h
σ̂ab

fa/H

a

Dh
b

b

X
H

Figure 2. Feynman diagram of the SIDIS (left) and schematic representation
of the parton level factorization (right). Here a and b are quarks, antiquarks or
gluons and σ̂ab is the cross section of the parton-level subprocess.

is defined as

z = P · ph

P · q
, (26)

which is the Lorentz invariant version of the fraction of photon energy that the
hadron h carries in the Target Rest Frame (TRF).

The factorization applied here is [10]

σh =
∑
a,b

∫ 1

0
dξ
∫ 1

0
dζfa/H (ξ) Dh

b (ζ) σ̂ab (27)

and it is visualized in Figure 2. The summation in the equation above goes over
every possible parton a in H and over every possible elementary particle b that
can produce the hadron h. In our calculations the possible particles are quarks,
antiquarks and gluons. The function Dh

b is the process-independent fragmentation
function (FF) that gives the number of hadrons h produced out of parton b with
4-momentum ph being ζ times that of parton b. The cross section σ̂ab is that of
the subprocess a(p) + `(p`) → b(p′) + `(p′

`). Here in the parentheses are shown the
momentum assignments.

Similarly to Section 2.1 the factorization (27) can be written in terms of the hadronic
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tensor as

W h
µν =

∑
a,b

∫ 1

x

dξ

ξ

∫ 1

z
dζfa/H (ξ) Dh

b (ζ) W ab
µν . (28)

The lower limits of both the ζ and the ξ integrals are again a consequence of the
conservation of the 4-momentum. Comparing to the DIS calculation the LO N-
dimensional calculation proceeds with SIDIS almost identically. The differences
appearing mainly concern the definition of W ab

µν by Wµν . As the hadronic tensor has
an additional degree of freedom z so should have W ab

µν . In the definition of Wµν that
degree of freedom is from the phase space integral of ph and hence in W ab

µν the degree
of freedom should be extracted from the phase space integral of the outgoing parton
b. Because of this, in W ab

µν there is a delta function

δ (z − ζ) (29)

in the phase space integral with respect to p′, as the definition of z can be written
here

z = p · ph

p · q
= ζ

p · p′

p · q
= ζ

p · (p + q)
p · q

= ζ. (30)

Note that the partons are taken to be massless. In LO the subprocess can only have
a = b so there is also a Kronecker delta δab in W ab

µν . Consequently

4πMW ab
µν = 2πC2

a

Q2 δ

(
1 − ξ

x

)
δ (z − ζ) δabWµν

∣∣∣∣∣
p′=p+q

, (31)

where Wµν is the same as in Section 2.1. Therefore

P µP νWµν = 0 (32)

and

−gµνMWµν = N − 2
2

∑
a

∫ 1

x

dξ

ξ

∫ 1

z
dζfa/H(ξ)Dh

a (ζ) C2
aδ

(
1 − ξ

x

)
δ (z − ζ) (33)

= N − 2
2

∑
a

C2
afa/H(x)Dh

a (z) . (34)
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This gives us the LO SIDIS structure functions

1
x

F h
2 =

∑
a

C2
afa/H(x)Dh

a (z) (35)

F h
1 = 1

2x
F2. (36)

2.3 NLO DIS and SIDIS

In Figure 3 are shown the possible NLO graphs contributing in DIS and SIDIS at the
parton-level. It happens, however, that the quark self-energy correction graphs AS1

and AS2 do not contribute to the total cross section in our calculations in the end.
This phenomenon is further addressed in Section 3.2. We will next describe how to
calculate from these graphs the hadronic tensors in NLO for DIS and SIDIS. Note
that when calculating the hadronic tensor in parton-level from these graphs the initial
state photon (DIS virtual photon) and the elementary charge of the quark-photon
vertex are left out as they are already included into the total cross section as can be
seen in Equation (1).

In the DIS process the six contributing graphs form three indistinguishable pairs:
LO+Vertex correction, two gluon radiation (final state gluon) graphs and the two
initial gluon graphs. For each quark and antiquark a the graphs combine into the
relevant squared amplitude of the parton subprocess cross section schematically as

∣∣∣Aa(LO)

∣∣∣2 + 2Re
(

Aa(LO)
(
Aa(V )

)†
)

+
∣∣∣Aa(C1) + Aa(C2)

∣∣∣2 . (37)

Note that the terms of the form A2
a(V ) would be of the order 2 in the powers of the

strong coupling constant and hence they are not included into the NLO calculation.
The matrix element of the initial state gluon is of the form

∑
a

∣∣∣Aig1(a) + Aig2(a)

∣∣∣2 , (38)

where the summing goes over quarks.
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ALO = a

γ

a

AV = a

γ

a

AS1 = a

γ

a

AS2 = a

γ

a

AC1 =

aγ

a

AC2 =

γ

a a

Aig1 =

aγ

ā

Aig2 =

āγ

a

Figure 3. The graphs contributing into the parton-level NLO cross section. On
the first row, from left to right, are LO, virtual vertex correction and two quark
self-energy correction graphs. On the second row, from left to right, are two
gluon radiation (final state gluon) and two initial state gluon graphs.

The full hadronic tensor factorizes as in Equation (14), but with more subprocesses
as in the LO:

Wµν =
∑

a

∫ 1

x

dw

w
fa/H

(
x

w

)((
Wa(LO)

)
µν

+
(
Wa(V )

)
µν

+
(
Wa(C)

)
µν

)

+
∫ 1

x

dw

w
fg/H

(
x

w

)
(Wig)µν . (39)

The variable w was defined in Equation (12). The LO contribution to the hadronic
tensor is given in the previous section 2.1 and

4πM
(
Wa(V )

)
µν

= PSp′

[
C2

a

(
Wa(V )

)
µν

]
, (40)

4πM
(
Wa(C)

)
µν

= PSp′,k

[
C2

a

(
Wa(C)

)
µν

]
, (41)

4πM (Wig)µν = PSp′,k

[
(Wig)µν

]
. (42)

Here PS(pj) [f ] denotes the N -dimensional phase space integral over the 4-momenta
(pj) of the function f with the appropriate 4-momentum conserving delta functions.
In the case of the vertex correction and the gluon radiation p′ is the 4-momentum of
the outgoing quark, for the gluon radiation k is the 4-momentum of the outgoing
gluon and for the initial state gluon p′ and k are the 4-momenta of the outgoing
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quark and antiquark. The phase space integrals are processed in Appendix F. The
terms in Equations (37) and (38) form the “partonic tensors” W after averaging over
initial quantum numbers and summing over the final state quantum numbers as

2Re
(

Aa(LO)
(
Aa(V )

)†
)

→ C2
a

(
Wa(V )

)
µν

, (43)∣∣∣Aa(C1) + Aa(C2)

∣∣∣2 → C2
a

(
Wa(C)

)
µν

, (44)∑
a

∣∣∣Aig1(a) + Aig2(a)

∣∣∣2 → (Wig)µν , (45)

where again the sum in the gluon partonic tensor goes over each quark.

Next, we will consider the SIDIS hadronic tensor. The relevant subprocess graphs are
the same as in DIS. Difference to DIS was the extra degree of freedom in hadronic
tensor and that the outgoing partons are also subject to the factorization in the
process. In the factorization (27) the outgoing parton indexing tells us from which
parton b we take the hadron h to appear.

Now for a quark or an antiquark a the subprocess graphs combine schematically into
the squared amplitude in σ̂ab as

∣∣∣Aa(LO)

∣∣∣2 δab + 2Re
(

Aa(LO)
(
Aa(V )

)†
)

δab +
∣∣∣Aa(C1) + Aa(C2)

∣∣∣2 (δab + δbg) (46)

and for the gluon a as

∣∣∣Aig1(b) + Aig2(b)

∣∣∣2 (δbq + δbq̄) . (47)

Here we use notation δbq = 1 when b is a quark, δbq̄ = 1 when b is an antiquark
and both are zero otherwise. These terms define the SIDIS versions of the partonic
tensors Wab(V ), Wab(C) and Wig(b) similarly to Equations (43) to (45). Note that the
Kronecker deltas in these terms are to be included into the definitions and that now
the initial state gluon partonic tensor does not include the summation over the quark
flavors.

With these graphs and the SIDIS hadronic tensor factorization (28) our hadronic
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tensor can be written as

W h
µν =

∑
a,b

∫ 1

x

dξ

ξ

∫ 1

z
dζfa/H (ξ) Dh

b (ζ)
((

Wab(LO)
)

µν
+
(
Wab(V )

)
µν

+
(
Wab(C)

)
µν

)

+
∑

b

∫ 1

x

dξ

ξ

∫ 1

z
dζfg/H (ξ) Dh

b (ζ)
(
Wig(b)

)
µν

, (48)

where the a sum goes over all quarks and antiquarks and b over quarks, antiquarks
and the gluon. Each graph contribution here is defined similarly to Equations
(40)-(42) but with SIDIS versions of the partonic tensors. Also, the SIDIS hadronic
tensor has an extra degree of freedom in the form of the variable z when comparing
to the DIS tensor. This degree of freedom is realized as a delta function

δ

(
z − p · ph

p · q

)
(49)

in the phase space integrals in the definitions of the SIDIS hadronic tensor contribu-
tions for each graph. The definition of the variable z inside of the delta function can
be a little different with different processes and different particles b. We will finish
this chapter by explaining how each situation is handled.

In LO and vertex correction graphs we have only one outgoing parton-level particle
with 4-momentum p′ = p + q. Therefore, we can only have ph = ζp′ and

p · ph

p · q
= ζ. (50)

In the gluon radiation and initial state gluon graphs the hadron h can be produced
from either of the outgoing particles: the one with 4-momentum p′ or the one with
4-momentum k. Hence we can have either ph = ζp′ or ph = ζk while p + q = k + p′.
The arguments of the delta functions can in these cases be simplified with the variable

1 − v = p · k

p · q
(51)

that is used to parametrize the phase space integrals of these two processes in
Appendix F. In the first case we have

p · ph

p · q
= ζ

p · (q − k)
p · q

= ζv (52)
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and in the second case

p · ph

p · q
= ζ

p · k

p · q
= ζ (1 − v) . (53)

From these relations the restriction ζ ≥ z can be easily seen as v ∈ [0,1].

So there is a delta function

δ (z − ζ) (54)

in LO and the vertex correction phase space integrals. In the gluon radiation and
initial state gluon phase space integrals there is

δ (z − ζv) (55)

in those terms that describe h produced from the particle with 4-momentum p′ and

δ (z − ζ (1 − v)) (56)

in those where h is produced from the particle with 4-momentum k.
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3 NLO DIS calculation

In this section we present the calculations for NLO structure functions with the
hadronic tensor projection method described in 2.1. The NLO calculations are done
with dimensional regularization [18] with spacetime dimensions N . The regulariza-
tion prescription uses N = 4 − 2ε to regularize the divergences on the limit N → 4.
Regulated divergences are renormalized according to the MS scheme.

The parton-level graphs that contribute to the NLO cross section and how they
combine into the DIS hadronic tensor were presented in Section 2.3. We calculate
here in distinct subsections the contributions of the virtual vertex correction, gluon
radiation (final state gluon) and initial state gluon graphs to projections gµνWµν and
P µP νWµν . In Section 3.2 we consider briefly why the quark self-energy corrections
do not contribute into our results. In Section 3.5 we combine the results of the
preceding sections into full structure functions Fj, renormalize our parton density
functions and present the differential NLO DIS cross section.

The calculation of this section bases on Reference [16], but with different renormal-
ization scheme. I was introduced into the calculation by Reference [23]. Summary of
the theoretical background, the MS scheme and the results can be found in Reference
[10]. DIS and the NLO calculation with details are also covered in many books, for
example in References [21, 22, 24]. The Section 3.2 is based on books [21, 25].

3.1 Vertex correction

The graph Aa(V ) of the vertex correction and the notation used in this subsection
are presented in Figure 4. When a is a quark the Feynman rules in N -dimensions



22

a

γ

a
p,s,j

pa,i′

pb,i′ p′,s′,j

q

k,c

Figure 4. Virtual vertex correction graph Aa(V ). For the incoming and outgoing
quark the triplet of symbols next to the momentum arrow denote 4-momentum,
spin component and color. For the virtual quarks and the gluon the two symbols
denote 4-momentum and color.

given in Appendix A imply that

e(N)
(
Aa(V )

)s′sj

ν
=
∫ dNk

(2π)N u (p′,s′)
(
−ig

(N)
S (tc)ji′ γβ

) i/pb

p2
b + iε

(
−iCae(N)γν

)
×

i/pa

p2
a + iε

(
−ig

(N)
S (tc)i′j γα

)
u (p,s) −i

k2 + iε

(
gαβ + η

kαkβ

k2

)
. (57)

Note that the repeated indices j, i′, c, α and β are summed over and the quarks are
considered massless. The incoming photon propagator is excluded and the elementary
charge is separated from the rest of the graph as they are not included in the hadronic
tensor or the partonic tensor definitions. The ε prescription of the propagators is in
this section left explicit to see how it affects the loop integral sign in the end. To
calculate the vertex correction we also need [19]

e(N)
(
Aa(LO)

)s′sj

µ
= −ie(N)Cau (p′,s′) γµu (p,s) . (58)

As described in Section 2.3

C2
a

(
Wa(V )

)
µν

= 1
2

1
3
∑

s,s′,j,c

2Re
((

Aa(LO)
)s′sj

µ

((
Aa(V )

)s′sj

ν

)†
)

, (59)
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where the average is taken over the two spin states s and three colors j. With spinor
completeness relations and the fact that ∑c tr (tctc) = 4 (see Appendix A) we get

C2
a

(
Wa(V )

)
µν

= 4C2
a

3
(
g

(N)
S

)2
Re

i
∫ dNk

(2π)N

tr
(
/p′γµ/pγα/pa

γν/pb
γβ

)
(p2

a − iε) (p2
b − iε) (k2 − iε)


×
(

gαβ + η
kαkβ

k2

)
. (60)

Here we can note two points. First, this expression would be the same with antiquarks.
Through similar steps the trace would read

tr
(
/pγµ/p

′γβ/pb
γν/pa

γα

)
. (61)

But with square matrices A,B tr (AB) = tr (BA) and when computing the trace
of a sequence of gamma matrices one can invert the order of the matrices without
changing the value of the trace. Hence

tr
(
/pγµ/p

′γα/pb
γν/pa

γβ

)
= tr

(
/p

′γµ/pγβ/pa
γν/pb

γα

)
. (62)

The trace is only different from that of Equation (60) by the change of indices α ↔ β

and those indices are contracted by a symmetric tensor.

The second point is that the loop integral part proportional to η is

∫ dNk

(2π)N

tr
(
/p′γµ/p/k/pa

γν/pb
/k
)

(p2
a − iε) (p2

b − iε) (k2 − iε)2 =
∫ dNk

(2π)N

tr
(
/p′γµ/p/pa/pa

γν/pb/pb

)
(p2

a − iε) (p2
b − iε) (k2 − iε)2 (63)

=
∫ dNk

(2π)N

p2
ap2

btr
(
/p′γµ/pγν

)
(p2

a − iε) (p2
b − iε) (k2 − iε)2 (64)

= tr
(
/p

′γµ/pγν

) ∫ dNk

(2π)N

1
(k2 − iε)2 . (65)

This is achieved by gamma matrix properties given in Appendix C and with pa = p−k

and pb = p′ − k. In dimensional regularization it is consistent to set the remaining
integral to zero [25]. Therefore, the partonic tensor of Equation (60) is independent
of the used gauge parameter η.

Next we substitute Equation (60) without the η term into Equation (40) and use
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the phase space integral results of Appendix F to get

4πM
(
Wa(V )

)
µν

= 2π

Q2 δ (1 − w) 4C2
a

3
(
g

(N)
S

)2

× Re
i
∫ dNk

(2π)N

tr
(
/p′γµ/pγα/pa

γν/pb
γα

)
(p2

a − iε) (p2
b − iε) (k2 − iε)

 . (66)

The contraction of the hadronic tensor contribution (66) by P µP ν = ξ−2pµpν is zero
as the quarks are considered massless and with gamma matrix results given in A we
have

tr
(
/p

′
/p/pγα

/pa/p/pb
γα

)
= p2tr

(
/p

′γα
/pa/p/pb

γα

)
= 0. (67)

For the contraction with the metric tensor, we need the value of the fully contracted
trace and then we need to perform the loop integration. The trace is given in
Appendix C and it is

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
= −2q2 (N − 2) N , (68)

where

N = 2q2 + 4 (p + p′) · k + 8
q2 p · k p′ · k − (4 − N) k2. (69)

We can then write

gµνM
(
Wa(V )

)
µν

= 4C2
a

3 (N − 2) δ

(
1 − ξ

x

)(
g

(N)
S

)2
Re (iI) (70)

and the loop integral to be evaluated is

I ≡
∫ dNk

(2π)N

N
(p2

a − iε) (p2
b − iε) (k2 − iε) . (71)

First we introduce a Feynman parametrization for the integrand using the general
formula presented in Appendix B:

I =
∫ dNk

(2π)N

1∫
0

dx′
1∫

0

dy′
1∫

0

dz′ 2δ (x′ + y′ + z′ − 1) N
(x′p2

a + y′p2
b + z′k2 − iε)3 . (72)
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The delta function can be integrated right away with the z′ integral:

I =
∫ dNk

(2π)N

1∫
0

dx′
1−x′∫
0

dy′ 2N
(x′p2

a + y′p2
b + (1 − x′ − y′) k2 − iε)3 . (73)

Note that the delta function also restricts the upper limit of y integral as z′ =
1 − x′ − y′ ∈ [0,1]. Substituting pa = p − k and pb = p′ − k one can rearrange the
integrand as

I =
∫ dNk

(2π)N

1∫
0

dx′
1−x′∫
0

dy′ 2N
(`2 − ∆ − iε)3 , (74)

where

` ≡ k − x′p − y′p′ and ∆ ≡ 2x′y′p · p′ = −x′y′q2 > 0. (75)

We then want to perform a change of variables in the loop integral from k to `. As k

is a linear function of ` the Jacobian is unity. The numerator changes to

N = 8
q2 p · ` p′ · ` + (4 − N) `2 + 2q2

(
1 − x′ − y′ + 1

2 (N − 2) x′y′
)

+ g · `. (76)

Here g = g(p,p′,q2,x′,y′,N) is some (auxiliary) N -vector. Its exact form is not relevant
as in the loop integration the terms proportional to odd number of components of `

produce zero due to the domain of integration being symmetric respect to zero and
the denominator being an even function of ` [26]. Due to this symmetry, we also
have an equivalence

`µ`ν ⇔ 1
N

gµν`2 (77)

for the terms inside the loop integral [26]. In our numerator N we can thus change

8
q2 p · ` p′ · ` =⇒ 8

Nq2 p · p′`2 = − 4
N

`2. (78)
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After the change of variables from k to ` is done we also change the order of the
integrals from (k,x′,y′) to (x′,y′,k). To evaluate the loop integrals, we use the identity

∫ dN`

(2π)N

(`2)R

(`2 − ∆ ± iε)m = ±i (−1)m+R

(4π)
N
2

∆N
2 +R−m

Γ
(

N
2

) Γ
(
m − N

2 − R
)

Γ
(

N
2 + R

)
Γ (m) (79)

given in Appendix B. This identity is well defined when ∆ > 0 and N
2 < m − R.

Idea of the dimensional regularization is that given N
2 < m − R for some dimension

N the right-hand side can be taken to present the left-hand side in the sense of
analytical continuation. The Gamma function allows us then to continuously vary
N for different values as long as the arguments of the Gamma functions stay inside
the domain of Gamma function C \ (−N0) (see Appendix B for more details).

With the above identity and the product property of the Gamma function Γ (x + 1) =
xΓ (x) we are left with

I = i

(4π)
N
2

1∫
0

dx′
1−x′∫
0

dy′
( 4

N
+ N − 4

)
∆N

2 −2 N

2 Γ
(

2 − N

2

)
(80)

+ 2q2∆N
2 −3Γ

(
3 − N

2

)(
1 − x′ − y′ + 1

2 (N − 2) x′y′
)

. (81)

To evaluate the integrals over Feynman parameters we use the identity (see Appendix
B)

1∫
0

dx′
1−x′∫
0

dy′ (bx′ + by′ + c) (x′y′)a = (Γ (a + 1))2

Γ (2a + 3)

(
c + 2b

a + 1
2a + 3

)
, (82)

where b, c ∈ R, c 6= 0 and a > −1. Here the evaluation is again done with N for
which a > −1 and then it can be varied according to the domain of Gamma function.
After some rearrangement and simplification, we arrive at

I = −i

(4π)
N
2

(
−q2

)N
2 −2 Γ

(
3 − N

2

)
N − 3

(
Γ
(

N
2 − 1

))2

Γ (N − 3)

×
(

4
(N − 4) (N − 2) + 2N − 2

N − 2 + 8
(N − 4)2

)
. (83)
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The arguments of the Gamma function in the prefactor are chosen in such a way
that with N = 4 the argument is 1 so that they do not diverge when N → 4. We
then proceed to substitute N = 4 − 2ε and expand the rational functions of N in
powers of ε and discard powers of order 1 or higher. Expansion can be done using
geometric series

1
1 − x

=
∞∑

k=0
xk, when |x| < 1, (84)

and the result is

I = −i

(4π)2−ε

(
−q2

)−ε
Γ (1 + ε) (Γ (1 − ε))2

Γ (1 − 2ε)

( 2
ε2 + 3

ε
+ 8

)
+ O (ε) . (85)

We use O (ε) to emphasize that the equation holds up to some finite terms of the
order at least one in powers of ε. We then substituted this result back to Equation
(70) with (see Appendix A and E)

(
g

(N)
S

)2
= 4παS

(
m2

D

)ε
, (86)

Γ (1 + ε) Γ (1 − ε) = 1 + π2

6 ε2 + O
(
ε4
)

(87)

and conclude that

gµνM
(
Wa(V )

)
µν

= 4C2
a

3
αS

2π

(
4πm2

D

Q2

)ε

δ (1 − w) (1 − ε)

× Γ (1 − ε)
Γ (1 − 2ε)

(
2
ε2 + 3

ε
+ 8 + π2

3

)
. (88)

3.2 Quark self-energy correction

In this subsection we examine the subgraph of Figure 5 and why the self-energy
corrections it defines can be discarded in our calculation. We discuss the arising
self-energy integral Σ(p) without the color factors as the needed properties do not
depend on them. We also take quarks to be massless, but do not assume at first that
the incoming quark in the amplitude is on its mass shell. Without the color factors,
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Σ(p) =
p p − k p

k

Figure 5. Graph of the one loop self-energy correction with incoming 4-
momentum p.

the integral Σ(p) becomes

Σ(p) =
∫ dNk

(2π)N

γα

(
/p − /k

)
γβ

(p − k)2 k2

(
gµν + η

kαkβ

k2

)
. (89)

With the anticommutation relations of the gamma matrices given in Appendix A

/k/p/k = 2p · k/k − k2
/p = k2

(
/k − /p

)
+
(
p2 − (p − k)2

)
/k (90)

and

Σ(p) =
∫ dNk

(2π)N

 (2 − N) /p − /k

(p − k)2 k2
+ η

(
−/p

(p − k)2 k2
+ p2/k

(p − k)2 k4
−

/k

k4

).

(91)

The last term here is an odd function of the components of the k so it produces a
zero. The calculation of the loop integral proceeds as in Section 3.1. We introduce a
Feynman parametrization and change the loop integral variable into ` = k − x′p. By
defining ∆ = −p2x′(1 − x′) we get

Σ(p) =
1∫

0

dx′
∫ dN`

(2π)N

 (2 − N)
(1 − x′) /p

(`2 − ∆)2 − η/p

(
1

(`2 − ∆)2 + 2∆
(`2 − ∆)3

). (92)

Note that the terms with odd number of components of ` produced only zeros. Again
the identity (79) (given in Appendix B) is used to evaluate the loop integrals. The
integrals with respect to x′ fit straight into the definition of the Beta function and
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after that we arrive at

Σ(p) =
i/p

(4π)
N
2

Γ
(

2 − N

2

) (
−p2

)N
2 −2 Γ

(
N
2 − 1

)
Γ
(

N
2

)
Γ (N − 2) (1 − η) . (93)

Here we can see two things. First Σ(p) = 0 if we use gauge with η = 1 (Lan-
dau gauge). Only the vertex correction term in our cross section could have been
dependent of the chosen gluon gauge, but as we showed in the previous section
(after Equation (65)) the η dependent part is zero. So, we can select the right
gauge and after that graphs with self-energy corrections have a value of zero indepen-
dent of the value of p2 and the gauge choice does not affect the rest of the calculations.

On the other hand, the on shell version of Σ(p) would be regularized with N > 4.
Then

(
−p2

)N
2 −2

= 0 (94)

and the value of the self-energy correction graphs is again zero. In dimensional
regularization it is hence consistent to set Σ(p) = 0 when considering massless quarks
on mass shell with any gauge η [21].

3.3 Gluon radiation

The graphs Aa(C) for a quark a are given in Figure 6. With the Feynman rules given
in Appendix A we can evaluate the sum of these graphs as

e(N)
(
Aa(C)

)s′si′jcλ

µ
= u (p′,s′)

(
−ie(N)Caγµ

) i/pa

p2
a

(
−ig

(N)
S γα (tc)i′j

)
u (p,s) (ε∗)α (k,λ)

+ u (p′,s′)
(
−ig

(N)
S γα (tc)i′j

) i/pb

p2
b

(
−ie(N)Caγµ

)
u (p,s) (ε∗)α (k,λ)

= −ie(N)Cag
(N)
S (tc)i′j u (p′,s′) Λαµu (p,s) (ε∗)α (k,λ) . (95)

Here ε is the polarization 4-vector of the outgoing gluon. We also introduced an
auxiliary tensor

Λαµ = 1
p2

a

γµ/pa
γα + 1

p2
b

γα/pb
γµ (96)
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aγ

a

p,s,j

pa,i′

p′,s′,i′

q

k,λ,c

γ

a a

p,s,j
pb,j

p′,s′,i′

q

k,λ,c

Figure 6. Gluon radiation (final state gluon) graphs Aa(C). For the incoming
and outgoing quarks the triplet of symbols next to the momentum arrow denote 4-
momentum, spin component and color. For the gluon the triplet is 4-momentum,
polarization and color. For the virtual quark the two symbols are 4-momentum
and color.

to simplify the expression. As described in Section 2.3 we have

C2
a

(
Wa(C)

)
µν

= 1
2

1
3

∑
s,s′,i′,j,c,λ

(
Aa(C)

)s′si′jcλ

µ

((
Aa(C)

)s′si′jcλ

ν

)†
, (97)

where the average is taken over the incoming spin index s (two states) and the
incoming color j (three states). With the color matrix trace sum result from
Appendix A and the polarization sum result [21, 26]

∑
λ

εα (k,λ) (ε∗)β (k,λ) = −gαβ + kαk̄β + kβk̄α

k · k
, (98)

where k is the same as k but with spatial components negated, we get

C2
a

(
Wa(C)

)
µν

= 2C2
a

3
(
g

(N)
S

)2
tr
(
/p

′Λαµ/pΛνβ

)(
−gαβ + kαk̄β + kβk̄α

k · k

)
. (99)

If the above process was done for the antiquark ā the result here would be the
same with similar reasoning as was described in the Chapter 3.1. We included the k

dependent part of the gluon polarization sum into this expression, but in the end it
produces only p2, p′2 and k2 dependent terms, which are set to zero. This property
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can be seen by noting that

/p
′Λαµ/pkα = /p

′
(

1
p2

a

γµ/pa
/k + 1

p2
b

/k/pb
γµ

)
/p (100)

= /p
′
(

1
p2

a

γµ/p/k + 1
p2

b

/k/p
′γµ

)
/p + O

(
k2
)

(101)

= 2/p
′γµ/p

(
p · k

p2
a

+ p′ · k

p2
b

)
+ O

(
p2,p′2,k2

)
(102)

= 0 + O
(
p2,p′2,k2

)
, (103)

as pa = p − k and pb = p′ + k. By (γµ)† = γ0γµγ0 we also have

(
/pΛµα/p

′kα
)†

= γ0
/p

′Λαµ/pkαγ0 (104)

= 0 + O
(
p2,p′2,k2

)
. (105)

Hence the contractions with k produce zero, when the masses p2, p′2 and k2 are set
to zero. So, we need only to consider the contractions by P µP ν and metric tensor
for the trace

tr
(
/p

′Λαµ/pΛνβ

)
gαβ. (106)

First of these is with results from Appendix C

pµpνgαβtr
(
/p

′Λαµ/pΛνβ

)
= −16N − 2

p4
a

(k · p)2 p · p′ (107)

= −4 (N − 2) p · p′. (108)

The calculation of the second contraction of the trace is given in Appendix C and
the result reads

tr
(
/p

′Λαµ/pΛµα
)

= −2 (N − 2)
(

(N − 2)
(

p2
a

p2
b

+ p2
b

p2
a

)

− 4
p2

ap2
b

q2p · p′ + 2 (N − 4)
)

. (109)
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With (99) we then get

C2
aP µP νWµν = 2C2

a

3ξ2

(
g

(N)
S

)2
4 (N − 2) p · p′, (110)

C2
agµνWµν = 4C2

a

3
(
g

(N)
S

)2
(N − 2)

(
(N − 2)

(
p2

a

p2
b

+ p2
b

p2
a

)

− 4q2

p2
ap2

b

p · p′ + 2 (N − 4)
)

. (111)

Next we will need to transform this expression into a function of the variable v used
in the two dimensional phase space integral result given in Appendix F to get the
hadronic tensor contribution of the gluon radiation. The other variables used are
the photon virtuality Q2 and w given in Equation (12). Variable v is defined in
Appendix F and the most relevant version is the Lorentz invariant form

1 − v = k · p

p · q
. (112)

With these variables

p2
a = −2k · p = −Q2

w
(1 − v) , (113)

p2
b = 2p · q + q2 = Q2

w
(1 − w) , (114)

2p · p′ = 2p · (p + q − k) = Q2

w
− Q2

w
(1 − v) = Q2

w
v. (115)

Using the above three identities Equations (110) and (111) transform into

C2
aP µP νWµν = 4C2

a

3ξ2

(
g

(N)
S

)2
(N − 2) Q2

w
v, (116)

C2
agµνWµν = −4C2

a

3
(
g

(N)
S

)2
(N − 2)

 (N − 2)
( 1 − v

1 − w
+ 1 − w

1 − v

)

+ 4wv

(1 − w) (1 − v) − 2 (N − 4)
. (117)

These equations give the contractions of the hadronic tensor contribution (41) together
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with phase space integral (302) and Mandelstam variable ŝ = p2
b :

P µP νM
(
Wa(C)

)
µν

= 2C2
a

3ξ2

(
g

(N)
S

)2

(4π)
N
2

N − 2
Γ
(

N
2 − 1

) (Q2

w

)N
2 −1

(1 − w)
N
2 −2

×
∫ 1

0
dv (v)

N
2 −1 (1 − v)

N
2 −2 , (118)

−gµνM
(
Wa(C)

)
µν

= 2C2
a

3

(
g

(N)
S

)2

(4π)
N
2

N − 2
Γ
(

N
2 − 1

) (Q2

w
(1 − w)

)N
2 −2

×
∫ 1

0
dvv

N
2 −2 (1 − v)

N
2 −2

 (N − 2)
( 1 − v

1 − w
+ 1 − w

1 − v

)

+ 4wv

(1 − w) (1 − v) − 2 (N − 4)
. (119)

Now the v integrals can be evaluated with the Beta function identity

1∫
0

ta (1 − t)b dt = Γ (a + 1) Γ (b + 1)
Γ (a + b + 2) (120)

given in Appendix B. We then substitute the definition of αS and expand the parts
with N = 4 − 2ε in powers of ε in a similar manner as in the end of the Chapter 3.1.
This leaves us with

P µP νM
(
Wa(C)

)
µν

= 4C2
a

3
αS

2π

(
4πm2

D

Q2

)ε

(1 − ε)
(

w

1 − w

)ε Γ (1 − ε)
Γ (1 − 2ε)

Q2

4x2 w, (121)

−gµνM
(
Wa(C)

)
µν

= 4C2
a

3
αS

2π

(
4πm2

D

Q2

)ε

(1 − ε) Γ (1 − ε)
Γ (1 − 2ε) g̃(w,ε), (122)

where we introduced an auxiliary function

g̃(w,ε) =
(

w

1 − w

)ε
(

1 − ε

2 (1 − w) (1 − 2ε) − 1 − ε

ε

(
1 − w + 2w

1 − w

1
1 − 2ε

)

+ 2ε

1 − 2ε

)
(123)

to simplify the presentation. It is defined to include terms that are divergent in the
limit ε → 0 and w → 1. We want to expand P µP νM

(
Wa(C)

)
µν

and g̃ so that the
divergent functions of w and ε can be seen explicitly. To achieve that we use the
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series expansion

rε =
∞∑

k=0

εk

k! (ln (r))k (124)

and the distributional identities

1
(1 − x)1+ε =

( 1
1 − x

)
+

− 1
ε
δ (1 − x) (125)

1
ε (1 − x)1+ε = 1

ε

( 1
1 − x

)
+

− 1
ε2 δ (1 − x) −

(
ln (1 − x)

1 − x

)
+

(126)

with the plus-distributions introduced in Appendix D. This leaves us with

P µP νM
(
Wa(C)

)
µν

= 4C2
a

3
αS

2π

(
4πm2

D

Q2

)ε

(1 − ε) Γ (1 − ε)
Γ (1 − 2ε)

Q2

4x2 w + O (ε) (127)

g̃(w,ε) =
(

w

1 − w

)ε
(

−1
ε

1 + w2

1 − w
+ 3 − w − 3 + 7ε

2 (1 − w) + O (ε)
)

(128)

= δ (1 − w)
( 2

ε2 + 3
2ε

+ 7
2

)
−
(1

ε
+ ln w

) 1 + w2

(1 − w)+

+
(
1 + w2

)( ln (1 − w)
1 − w

)
+

− 3
2

( 1
1 − w

)
+

+ 3 − w + O (ε) . (129)

In the first term of the function g̃ we have substituted (1 + w2) = 2 due to it being
multiplied by a delta function with argument zero at w = 1. Note also that O (ε)
includes only terms that are integrable with finite integrals respect to w over every
subinterval [a,b] ⊂ [0,1]. That is to say only terms that are sure to be finite in our
results after the limit ε → 0.

3.4 Initial state gluon

All the initial gluon graphs are of the types given in Figure 7 with different quarks a.
We see that for each quark a one gets the two graphs from the graphs of the gluon
radiation (Figure 6) by interchanging the initial state parton and final state gluon
legs. This crossing symmetry allows us to find the modulus of Aig(a) for each quark
a from that of Aa(C) by changing k → −p, p → −k and the overall sign from + to −
[26]. The last change is due to only one of the changed lines being fermion and the
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aγ

g āk,s,j

pa,i′

p′,s′,i′

q

p,λ,c

āγ

g a

k,s,j

pb,j

p′,s′,i′

q

p,λ,c

Figure 7. Initial state gluon graphs Aig(a). For the incoming gluon the triplet
of symbols next to the momentum arrow denote 4-momentum, polarization and
color. For the outgoing quark and antiquark the triplet is 4-momentum, spin
component and color. For the virtual quark the two symbols are 4-momentum
and color.

other a boson. Note that the crossing symmetry accounts here only for the change of
the sign in k and p. The change of their places is due to us renaming the 4-momenta
of the gluon and quark legs. This is done so that k is outgoing and p is incoming
4-momentum similarly to other graphs in the calculation. Also this ensures that the
4-momenta pa and pb can be left as they were in the results of Section 3.3.

As described in Section 2.3 we have

(Wig)µν = 1
8

1
N − 2

∑
a

∑
s,s′,i′,j,c,λ

(
Aig(a)

)s′si′jcλ

µ

((
Aig(a)

)s′si′jcλ

ν

)†
, (130)

where the average is over all the initial polarizations λ and colors c. There are 8 dif-
ferent colors and in N = 4−2ε dimensions N −2 = 2 (1 − ε) gluon polarization states.

Using the crossing symmetry for graphs corresponding to each quark a as explained
above we get with the results given in Section 3.3

(Wig)µν = −1
8

1
N − 2 · 2 · 3 ·

∑
a

C2
a

(
Wa(C)

)
µν

∣∣∣∣∣
k↔−p

(131)

= −
∑

a C2
a

2 (N − 2)
(
g

(N)
S

)2
tr
(
/p

′Λαµ/kΛνβ

)
gαβ. (132)
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Note that the quark summation acts here only into the squares of the fractional
charges. To keep each a summation similar between graphs we change from here on
the summation to go over the antiquarks as well as quarks and add a multiplier 1

2 .
This is done to avoid confusion as the other summations over a appearing in this
thesis go over both quarks and antiquarks.

Now the contraction of the partonic tensor with metric tensor can be deduced
from that of in Section 3.3. The simplification process for

tr
(
/p

′Λαµ/pΛµα
)

(133)

presented in Appendix C does not change if we interchange p and −k in the whole
trace including pa and pb. Hence, we get through that interchange

gµν (Wig)µν =
∑

a C2
a

2
(
g

(N)
S

)2
(

(N − 2)
(

p2
a

p2
b

+ p2
b

p2
a

)

+ 8q2

p2
ap2

b

k · p′ + 2 (N − 4)
)

. (134)

The other contraction needs to be calculated from the beginning, as the contraction
is still done by p but the trace has p and −k switched. Using the gamma matrix
properties given in Appendix C we get

pµpνgαβtr
(
/p

′Λαµ/kΛνβ

)
= −16k · p′. (135)

Therefore

P µP ν (Wig)µν =
∑

a C2
a

ξ2 (N − 2)
(
g

(N)
S

)2
4k · p′. (136)

Next we will change this into the same variables w, v and Q2 that were used in
Chapter 3.3 and are used in the phase space results in Appendix F. Here

p2
a = −2p · k = −Q2

w
(1 − v) , (137)

p2
b = −2p · p′ = −Q2

w
v, (138)

2k · p′ = (p + q)2 = Q2

w
(1 − w) . (139)
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Using these identities

P µP ν (Wig)µν = 2∑a C2
a

x2 (N − 2)
(
g

(N)
S

)2
Q2w (1 − w) (140)

gµν (Wig)µν =
∑

a C2
a

2
(
g

(N)
S

)2
(

(N − 2)
(1 − v

v
+ v

1 − v

)

− 4w (1 − w)
v (1 − v) + 2 (N − 4)

)
. (141)

We get the contractions of the hadronic tensor contributions as defined in Equation
(42) by result (302). Here ŝ = 2k · p′. The remaining integrals are simplified by the
Beta function identity (120)

P µP νM (Wig)µν =
∑

a C2
a

(
g

(N)
S

)2

(4π)
N
2 x2 (N − 2)

Γ
(

N
2 − 1

)
Γ (N − 2) w2

(
Q2

w
(1 − w)

)N
2 −1

(142)

gµνM (Wig)µν =
∑

a C2
a

(4π)
N
2

(
g

(N)
S

)2
(

Q2

w
(1 − w)

)N−4
2 Γ

(
N
2 − 1

)
Γ (N − 2)

×
(

(N − 2)2

2 (N − 4) − 4w (1 − w) N − 3
N − 4 + 1

2 (N − 4)
)

. (143)

As the final step these contractions are expanded in powers of ε, and terms of at
least linear in ε are discarded as was done to form Equations (127) and (129). We
also substitute αS in the place of g

(N)
S as in the previous sections. We arrive at

P µP νM (Wig)µν =
∑

a C2
a

2
αS

2π

(
4πm2

D

Q2

)ε Γ (1 − ε)
Γ (1 − 2ε)

Q2

2x2 w (1 − w) + O (ε) (144)

−gµνM (Wig)µν = −
∑

a C2
a

2
αS

2π

(
4πm2

D

Q2

)ε Γ (1 − ε)
Γ (1 − 2ε)

×
(1

ε
+ ln

(
w

1 − w

)) (
w2 + (1 − w)2

)
+ O (ε) . (145)
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3.5 Structure functions and cross section

We can now sum the contractions for the full hadronic tensor (39) and after that
the structure functions (9) and (10) and the DIS NLO cross section (2). The gluon
radiation result (127) and the initial state gluon result (144) combine into

4x2

Q2 P µP νM (W)µν = αS

2π

(
4πm2

D

Q2

)ε Γ (1 − ε)
Γ (1 − 2ε)

∑
a

C2
a

(∫ 1

x

dw

w
fa/H

(
x

w

)
(1 − ε) 4w

3

+
∫ 1

x

dw

w
fg/H

(
x

w

)
w (1 − w)

)
(146)

and when the rest of the terms are expanded in powers of ε

4x2

Q2 P µP νM (W)µν = αS

2π

∑
a

C2
a

(∫ 1

x

dw

w
fa/H

(
x

w

) 4w

3

+
∫ 1

x

dw

w
fg/H

(
x

w

)
w (1 − w)

)
+ O (ε) . (147)

Note that there are no divergent terms in this contraction when ε → 0. The metric
tensor contractions of LO contribution (22), vertex correction (88), gluon radiation
(122) and (129) and initial state gluon (145) combine into

−gµνM (W)µν =
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w

) (1 − ε) δ (1 − w) + 4
3

αS

2π

(
4πm2

D

Q2

)ε

× (1 − ε) Γ (1 − ε)
Γ (1 − 2ε)

− δ (1 − w)
(

2
ε2 + 3

ε
+ 8 + π2

3

)

+ δ (1 − w)
( 2

ε2 + 3
2ε

+ 7
2

)
−
(1

ε
+ ln w

) 1 + w2

(1 − w)+

+
(
1 + w2

)( ln (1 − w)
1 − w

)
+

− 3
2

( 1
1 − w

)
+

+ 3 − w


−
∑

a

C2
a

2

∫ 1

x

dw

w
fg/H

(
x

w

)
αS

2π

(
4πm2

D

Q2

)ε Γ (1 − ε)
Γ (1 − 2ε)

×
(1

ε
+ ln

(
w

1 − w

)) (
w2 + (1 − w)2

)
. (148)

Here we notice that the ε−2 poles of the vertex correction and the gluon radiation
cancel each other and we are left only with simple poles. We then do rest of the
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expansions respect to ε using results of Appendix E:

−gµνM (W)µν = (1 − ε)
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w

)δ (1 − w) + 4
3

αS

2π

×
(

−
(

1
ε̂

− ln
(

Q2

m2
D

))(
δ (1 − w) + 1 + w2

(1 − w)+

)

− δ (1 − w)
(

9
2 + π2

3

)
− ln w

1 + w2

(1 − w)+

+
(
1 + w2

)( ln (1 − w)
1 − w

)
+

− 3
2

( 1
1 − w

)
+

+ 3 − w

)
− (1 − ε)

∑
a

C2
a

2

∫ 1

x

dw

w
fg/H

(
x

w

)
αS

2π

×
(

1
ε̂

− ln
(

Q2

m2
D

)
+ 1 + ln

(
w

1 − w

))(
w2 + (1 − w)2

)
. (149)

These contractions determine the structure functions as

1
x

F2
(
x, Q2

)
=
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w

)δ (1 − w)

+ αS

2π

(
Cq,2 (w) +

(
ln
(

Q2

m2
D

)
− 1

ε̂

)
Pqq (w)

)
+
∑

a

C2
a

∫ 1

x

dw

w
fg/H

(
x

w

)
αS

2π

Cg,2 (w)

+
(

ln
(

Q2

m2
D

)
− 1

ε̂

)
Pqg (w)

 (150)

2F1
(
x, Q2

)
= 1

x
F2
(
x, Q2

)
−
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w

) 4
3 · 2w

−
∑

a

C2
a

∫ 1

x

dw

w
fg/H

(
x

w

)
αS

2π
2w (1 − w) , (151)

where we introduced Altarelli-Parisi splitting functions [27]

Pqq (w) = 4
3

δ (1 − w) + 1 + w2

(1 − w)+

 (152)

Pqg (w) = 1
2
(
w2 + (1 − w)2

)
, (153)
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and coefficient functions

Cq,2 (w) = 4
3

 (1 + w2
)( ln (1 − w)

1 − w

)
+

− 3
2

( 1
1 − w

)
+

− 1 + w2

(1 − w)+
ln w

+ 3 + 2w − δ (1 − w)
(

9
2 + π2

3

) (154)

Cg,2 (w) = ln
(1 − w

w

)
Pqg (w) + 1

2 (8w (1 − w) − 1) . (155)

Now we renormalize the parton density functions according to the MS scheme. The
renormalized density functions are [10]

fa/H

(
x,Q2

f

)
=
∫ 1

x

dw

w
fa/H

(
x

w

)δ (1 − w) + αS

2π

(
ln
(

Q2
f

m2
D

)
− 1

ε̂

)
Pqq (w)


+
∫ 1

x

dw

w
fg/H

(
x

w

)
αS

2π

(
ln
(

Q2
f

m2
D

)
− 1

ε̂

)
Pqg (w) (156)

fg/H

(
x,Q2

f

)
= fg/H (x) + O (αS) . (157)

We choose here the factorization scale to be Q2
f = Q2. This leaves the expressions

of the structure functions with no explicit logarithmic scale dependence, but still
logarithmic Q2 dependence is left into the density functions after this absorption.

Note also that we are doing the calculation only in the first order of the αS and
the gluon density function in Equations (150) and (151) appear in the first order
correction terms. Because of this the exact redefinition of the gluon density could
be determined only by going into the next-to-next-to leading order of αS. Here we
merely recognize that the gluon density has a scale dependence similarly to the quark
and antiquark densities.

Using the renormalized parton densities we get our NLO structure functions in
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the MS scheme:

1
x

F2
(
x, Q2

)
=
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w
,Q2

)(
δ (1 − w) + αS

2π
Cq,2 (w)

)

+
∑

a

C2
a

∫ 1

x

dw

w
fg/H

(
x

w
,Q2

)
αS

2π
Cg,2 (w) (158)

2F1
(
x, Q2

)
= 1

x
F2
(
x, Q2

)
−
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w
,Q2

) 4
3 · 2w

−
∑

a

C2
a

∫ 1

x

dw

w
fg/H

(
x

w
,Q2

)
αS

2π
2w (1 − w) . (159)

These structure functions coincide with those given in References [10, 16]. We
conclude this section with the NLO cross section determined by the above structure
functions:

d2σ

dxdQ2 = 4πα2
em

Q4

∑
a

C2
afa/H

(
x,Q2

) (1 − y)2 + 1
2 (160)

+
∑

a

C2
a

∫ 1

x

dw

w
fa/H

(
x

w
,Q2

)
αS

2π

Cq,2 (w) (1 − y)2 + 1
2 − 4

3wy2


+
∑

a

C2
a

∫ 1

x

dw

w
fg/H

(
x

w
,Q2

)
αS

2π

Cg,2 (w) (1 − y)2 + 1
2 − y2w (1 − w)

.

Here again the sum a runs over quarks and antiquarks and the coefficient functions
Cq,2 (w) and Cg,2 (w) are given in Equations (154) and (155).
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4 NLO SIDIS calculation

In this section we present the calculation of the SIDIS structure functions and the
cross section in NLO. The calculation proceeds similarly to DIS NLO calculation
given in Section 3 with the differences described in Section 2.3.

Virtual vertex correction, gluon radiation and initial state gluon graphs are considered
on their own separate subsections. In those subsections we calculate the contractions
of hadronic tensor contribution W ab

µν with the metric tensor and P µP ν for each sub-
process. In the last subsection we combine the results of the preceding subsections
into full SIDIS structure functions F h

j , renormalize the parton density functions
and the fragmentation functions and present the differential NLO SIDIS cross section.

We calculate here the SIDIS results given in Reference [17]. We use a different
renormalization scheme as in Reference [17], though they provide information needed
to compare the results in the MS scheme. A summary of the MS scheme results can
also be found in Reference [10].

4.1 Vertex correction

As described in Section 2.3, the virtual correction contributes to the hadronic tensor
for the initial state quark or antiquark a as

(
Wab(V )

)
µν

=
(
Wa(V )

)
µν

δabδ (z − ζ) . (161)

Here
(
Wa(V )

)
µν

is the DIS virtual correction given in Section 3.1. Using the results
derived there we get

P µP νM
(
Wab(V )

)
µν

= 0 (162)
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gµνM
(
Wab(V )

)
µν

= 4C2
a

3
αS

2π

(
4πm2

D

Q2

)ε

δ (1 − w) (1 − ε) 1
Γ (1 − ε)

×
( 2

ε2 + 3
ε

+ 8
)

δabδ (z − ζ) . (163)

Here we used the relation

1
Γ (1 − ε) = Γ (1 + ε) Γ (1 − ε)2

Γ (1 − 2ε) + O
(
ε3
)

(164)

presented in Appendix E. The metric contraction can be further expanded into

gµνM
(
Wab(V )

)
µν

= 4C2
a

3
αS

2π
(1 − ε) δ (1 − w) δ (z − ζ) δab

×

 2
ε2

(
4πm2

D

Q2

)ε

Γ (1 − ε) + 3
ε̂

− 3 ln
(

Q2

m2
D

)
+ 8

 . (165)

where (see Appendix E)

1
ε̂

= 1
ε

(4π)ε

Γ (1 − ε) . (166)

Note that the second order pole in Equation (165) is not expanded further as it will
sum to zero with a similar term from the gluon radiation contraction similarly to
the DIS calculation.

4.2 Gluon radiation

As explained in Section 2.3 we get the gluon radiation contribution to the hadronic
tensor as

4πM
(
Wab(C)

)
µν

= PSp′,k

[
C2

a

(
Wa(C)

)
µν

(
δabδ (z − ζv) + δbgδ (z − ζ (1 − v))

)]
(167)
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and with the phase space result (302)

4πM
(
Wab(C)

)
µν

= (4π)1− N
2

C2
a

Γ
(

N
2 − 1

) (ŝ)
N−4

2

2

∫ 1

0
dvv

N
2 −2 (1 − v)

N
2 −2

×
(
Wa(C)

)
µν

(
δabδ (z − ζv) + δbgδ (z − ζ (1 − v))

)
(168)

= (4π)1− N
2

C2
a

Γ
(

N
2 − 1

) (ŝ)
N−4

2

2ζ
(v)

N
2 −2 (1 − v)

N
2 −2

×
(

δab

(
Wa(C)

)
µν

∣∣∣∣
v=v

+ δbg

(
Wa(C)

)
µν

∣∣∣∣
1−v=v

)
. (169)

Here
(
Wa(C)

)
µν

is the same as in Section 3.3, ŝ = Q2 (1 − w) /w and we introduced
a new variable

v ≡ z

ζ
, (170)

convenient to the NLO SIDIS calculation. We get from Equations (116) and (117)

P µP νM
(
Wab(C)

)
µν

= 4C2
a

3x2

(
g

(N)
S

)2

(4π)
N
2

(N − 2)
Γ
(

N
2 − 1

) 1
2ζ

(
Q2 (1 − w)

w
v (1 − v)

)N−4
2

× Q2w
(
δabv + δbg (1 − v)

)
(171)

−gµνM
(
Wab(C)

)
µν

= 4C2
a

3

(
g

(N)
S

)2

(4π)
N
2

(N − 2)
Γ
(

N
2 − 1

) 1
2ζ

(
Q2 (1 − w)

w
v (1 − v)

)N−4
2

×

δab

(
(N − 4)

( 1 − v
1 − w

+ 1 − w

1 − v

)
+ 2 w2 + v2

(1 − w) (1 − v)

+ 2 (6 − N)
)

+ δbg

(
(N − 2)

( v
1 − w

+ 1 − w

v

)

+ 4w (1 − v)
v (1 − w) − 2 (N − 4)

) (172)

= 4C2
a

3

(
g

(N)
S

)2

(4π)
N
2

(N − 2)
Γ
(

N
2 − 1

) (Q2)
N−4

2

4ζ

δabg̃q(w,v) + δbgg̃g(w,v)
. (173)

The functions g̃q and g̃g are auxiliary functions defined to simplify the presentation
of the next steps.
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Now we expand these contractions in powers of ε in N = 4 − 2ε using the results
given in Appendices D and E. The P µP ν contraction is

P µP νM
(
Wab(C)

)
µν

= 4C2
a

3x2ζ

αS

4π
(1 − ε) Q2w

(
δabv + δbg (1 − v)

)
(174)

and the contraction with the metric tensor

−gµνM
(
Wab(C)

)
µν

= 4C2
a

3ζ

αS

2π

1 − ε

Γ (1 − ε)

(
4πm2

D

Q2

)ε
δabg̃q(w,v) + δbgg̃g(w,v)

. (175)

Then the auxiliary functions g̃q and g̃g. With the results of Appendix D we get

(w2 + v2)
(

w
v

)ε

(1 − w)1+ε (1 − v)1+ε = w2 + v2

(1 − w)+ (1 − v)+
+ 1

ε2 δ (1 − w) δ (1 − v)

+ δ (1 − w)
 (1 + v2

)( ln (1 − v)
1 − v

)
+

−
( 1

1 − v

)
+

(
1 + v2

)(1
ε

− ln v
)

+ δ (1 − v)
 (1 + w2

)( ln (1 − w)
1 − w

)
+

−
( 1

1 − w

)
+

(
1 + w2

) (1
ε

+ ln w
) (176)

and hence

g̃q = (1 − v) δ (1 − w) + (1 − w) δ (1 − v) +
(w2 + v2)

(
w
v

)ε

(1 − w)1+ε (1 − v)1+ε + 2 (177)
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becomes

g̃q = w2 + v2

(1 − w)+ (1 − v)+
+ 1

ε2 δ (1 − w) δ (1 − v) + 2

+ δ (1 − w)
 (1 + v2

)( ln (1 − v)
1 − v

)
+

−
( 1

1 − v

)
+

(
1 + v2

) (1
ε

− ln v
)

+ 1 − v


+ δ (1 − v)
 (1 + w2

)( ln (1 − w)
1 − w

)
+

−
( 1

1 − w

)
+

(
1 + w2

)(1
ε

+ ln w
)

+ 1 − w

. (178)

Similarly

g̃g = v
( 1

1 − w

)
+

+ vδ (1 − w)
(

1 − 1
ε

+ ln (v (1 − v))
)

+ 1 − w

v + 2w (1 − v)
v

(( 1
1 − w

)
+

+ δ (1 − w)
(

ln (v (1 − v)) − 1
ε

))
(179)

=
( 1

1 − w

)
+

2 − 2v + v2

v − 1 + w − 2v
v

+ δ (1 − w)
(

v + 2 − 2v + v2

v

(
ln (v (1 − v)) − 1

ε

))
. (180)

Note that on the second equality we used the plus-distribution property (see Appendix
D)

( 1
1 − x

)
+

(1 − x) f(x) = f(x). (181)

The expansion of the coefficient

1
Γ (1 − ε)

(
4πm2

D

Q2

)ε

(182)

in the metric tensor contraction is achieved by changing in functions g̃q and g̃g

a + b
1
ε

+ c
1
ε2 → a + b

(
1
ε̂

− ln
(

Q2

m2
D

))
+ c

1
ε2

(
4πm2

D

Q2

)ε

Γ (1 − ε) . (183)
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4.3 Initial state gluon

As described in Section 2.3 we get the initial state gluon contribution to hadronic
tensor as

4πM
(
Wig(b)

)
µν

= PSp′,k

[(
Wig(b)

)
µν

(
δbqδ (z − ζv) + δbq̄δ (z − ζ (1 − v))

)]
, (184)

where
(
Wig(b)

)
µν

is similar to that in Equation (132) but with summation over quark
flavors dropped. Each graph indexed by the outgoing quark will contribute the same
amount up to the square of the fractional charge C2

b . Because of this

(
Wig(b)

)
µν

= C2
b∑

a=q C2
a

(Wig)µν = 2C2
b∑

a=q,q̄ C2
a

(Wig)µν . (185)

The latter version is the one we will use here as in Section 3.4 the sum was changed
for the calculational reasons to go over both quarks and antiquarks.

By simplifying the phase space integral with identity (302) we get

4πM
(
Wgb(ig)

)
µν

= (4π)1− N
2

Γ
(

N
2 − 1

) (ŝ)
N−4

2

2ζ
(v)

N
2 −2 (1 − v)

N
2 −2 (186)

×
(

δbq

(
Wig(b)

)
µν

∣∣∣∣
v=v

+ δbq̄

(
Wig(b)

)
µν

∣∣∣∣
1−v=v

)
, (187)

where again v = z/ζ and ŝ = Q2 (1 − w) /w. With Equations (140) and (141) we get

P µP νM
(
Wgb(ig)

)
µν

= C2
b

(N − 2)

(
g

(N)
S

)2

(4π)
N
2

1
Γ
(

N
2 − 1

) 1
2ζ

(
Q2

w
(1 − w) v (1 − v)

)N−4
2

× 4Q2

x2 w (1 − w) (δbq + δbq̄) (188)

gµνM
(
Wgb(ig)

)
µν

= C2
b

(
g

(N)
S

)2

(4π)
N
2

1
Γ
(

N
2 − 1

) 1
2ζ

(
Q2

w
(1 − w) v (1 − v)

)N−4
2

× (δbq + δbq̄)
(

(N − 2)
(1 − v

v + v
1 − v

)

− 4w (1 − w)
v (1 − v) + 2 (N − 4)

)
. (189)
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Again the contractions are expanded in powers of ε using the results given in
Appendices D and E. The first contraction is

P µP νM
(
Wgb(ig)

)
µν

= C2
b

αS

2π

1
ζ

Q2

2x2 w (1 − w) (δbq + δbq̄) . (190)

And the second contraction

gµνM
(
Wgb(ig)

)
µν

= C2
b

αS

4π

1
Γ (1 − ε)

1
ζ

(
4πm2

D

Q2

)ε

(δbq + δbq̄)
1 − v

v − 1 + v
v

+
( 1

1 − v

)
+

1 − 2w (1 − w)
v

+ δ (1 − v) (1 − 2w (1 − w)) ln
(1 − w

w

)

+ δ (1 − v)
(

1 − 1
ε

(1 − 2w (1 − w))
) (191)

= C2
b

ζ

αS

2π

1
Γ (1 − ε)

(
4πm2

D

Q2

)ε

(δbq + δbq̄)
− 1

+
( 1

1 − v

)
+

Pqg (w)
v

+ δ (1 − v) Pqg (w) ln
(1 − w

w

)

+ δ (1 − v)
(1

2 − 1
ε
Pqg (w)

). (192)

Here we substituted the splitting function Pqg (w) defined in Equation (153) and the
plus-distribution property (181). We further expand the prefactors and arrive at

gµνM
(
Wgb(ig)

)
µν

= C2
b

ζ

αS

2π
(1 − ε) (δbq + δbq̄)

− 1 +
( 1

1 − v

)
+

Pqg (w)
v

+ δ (1 − v) Pqg (w) ln
(1 − w

w

)

− δ (1 − v)
(

Pqg (w)
(

1
ε̂

− ln
(

Q2

m2
D

))
+ w (1 − w)

). (193)
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4.4 SIDIS structure functions and cross section

We can now sum the contractions of the full hadronic tensor (48) from the results of
the preceding subsections. First we get from the gluon radiation result (174) and
the initial state gluon result (190)

4x2

Q2 P µP νMW h
µν =

∑
a

C2
a (1 − ε) αS

2π

∫ 1

x

dw

w

∫ 1

z

dv
v

fa/H

(
x

w

)
Dh

a

(
z

v

) 4
32wv

+ fa/H

(
x

w

)
Dh

g

(
z

v

) 4
32w (1 − v)

+ fg/H

(
x

w

)
Dh

b

(
z

v

)
2w (1 − w)

, (194)

where the sums go over quarks and antiquarks. The metric tensor contraction results
are given in (34), (165), (175) and (193) and they combine into

−gµνMW h
µν = (1 − ε)

∑
a

C2
a

∫ 1

x

dw

w

∫ 1

z

dv
v

fa/H

(
x

w

)
Dh

a

(
z

v

)δ (1 − w) δ (1 − v)

+ 4
3

αS

2π

− 8δ (1 − w) δ (1 − v) + w2 + v2

(1 − w)+ (1 − v)+
+ 2

+
(

ln
(

Q2

m2
D

)
− 1

ε̂

)(
δ (1 − w) Pqq (v) + δ (1 − v) Pqq (w)

)
+ δ (1 − w)

((
1 + v2

)( ln (1 − v)
1 − v

)
+

+ 1 + v2

1 − v ln v + 1 − v
)

+ δ (1 − v)
((

1 + w2
)( ln (1 − w)

1 − w

)
+

− 1 + w2

1 − w
ln w + 1 − w

)
+ fa/H

(
x

w

)
Dh

g

(
z

v

)
αS

2π

Pgq (v)
( 1

1 − w

)
+

− 1 + w − 2v
v

+ δ (1 − w)
v + Pgq (v)

(
ln (v (1 − v)) + ln

(
Q2

m2
D

)
− 1

ε̂

)
+ fg/H

(
x

w

)
Dh

a

(
z

v

)
αS

2π

− 1 +
( 1

1 − v

)
+

Pqg (w)
v + δ (1 − v)

×

Pqg (w)
(

ln
(1 − w

w

)
+ ln

(
Q2

m2
D

)
− 1

ε̂

)
+ w (1 − w)

. (195)
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Here we introduced yet another Altarelli-Parisi splitting function [27]

Pgq (v) = 1 + (1 − v)2

v . (196)

Next, we would like to combine these contractions into the renormalized structure
functions (9) and (10). The parton density functions are renormalized as we did
in Section 3.5 with identities (156). The fragmentation functions are renormalized
according to the MS scheme: [10]

Dh
a

(
z,Q2

f

)
=
∫ 1

z

dv
v Dh

a

(
z

v

)δ (1 − v) + αS

2π
Pqq (v)

(
ln
(

Q2
f

m2
D

)
− 1

ε̂

)
+
∫ 1

z

dv
v Dh

g

(
z

v

)αS

2π
Pgq (v)

(
ln
(

Q2
f

m2
D

)
− 1

ε̂

) (197)

Dh
g

(
z,Q2

f

)
= Dh

g (z) + O (αS) . (198)

Again, explicit gluon fragmentation function redefinition is a next-to NLO correction
and we only recognize here the possible scale dependence. As with the density
functions we take Q2

f = Q2.

We then get our renormalized SIDIS structure functions

1
x

F h
2

(
x, Q2

)
=
∑

a

C2
a

fa/H

(
x,Q2

)
Dh

a

(
z,Q2

)

+
∫ 1

x

dw

w

∫ 1

z

dv
v fa/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π
Cqq,2 (w,v)

+
∫ 1

x

dw

w

∫ 1

z

dv
v fa/H

(
x

w
,Q2

)
Dh

g

(
z

v ,Q2
)

αS

2π
Cgq,2 (w,v)

+
∫ 1

x

dw

w

∫ 1

z

dv
v fg/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π
Cqg,2 (w,v)

 (199)
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2F h
1

(
x, Q2

)
= 1

x
F h

2

(
x, Q2

)
−
∑

a

C2
a

 ∫ 1

x

dw

w

∫ 1

z

dv
v fa/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π

4
34wv

−
∫ 1

x

dw

w

∫ 1

z

dv
v fa/H

(
x

w
,Q2

)
Dh

g

(
z

v ,Q2
)

αS

2π

4
34w (1 − v)

−
∫ 1

x

dw

w

∫ 1

z

dv
v fg/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π
4w (1 − w)

. (200)

Here we have used coefficient functions

Cqq,2 (w,v) = 4
3

− 8δ (1 − w) δ (1 − v) + w2 + v2

(1 − w)+ (1 − v)+
+ 2 + 6wv

+ δ (1 − w)
(
L1 (v) + L2 (v) + 1 − v

)
+ δ (1 − v)

(
L1 (w) − L2 (w) + 1 − w

) (201)

Cgq,2 (w,v) = 4
3

Pgq (v)
( 1

1 − w

)
+

+ δ (1 − w)
(

v + Pgq (v) ln
(
v (1 − v)

))

− 1 + w

v + 2 + 6w (1 − v)
 (202)

Cqg,2 (w,v) =
( 1

1 − v

)
+

Pqg (w)
v − 2Pqg (w) + 4w (1 − w)

+ δ (1 − v)
Pqg (w) ln

(1 − w

w

)
+ w (1 − w)

, (203)

where

L1 (w) =
(
1 + w2

)( ln (1 − w)
1 − w

)
+

(204)

L2 (w) = 1 + w2

1 − w
ln w. (205)

These structure functions coincide with the ones given in References [10, 17].1 The
apparent differences arise from the plus-distribution identities similar to those given

1In the printed version of Reference [10] the exponent in the non-distributional logarithm term
in C

F (1)
2 is on the wrong side of the parenthesis. In the hand-written version the exponent is placed

correctly.
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in the end of Appendix D. We conclude with the NLO SIDIS cross section

d3σh

dxdQ2dz
= 4πα2

em

Q4

∑
a

C2
a

∫ 1

x

dw

w

∫ 1

z

dv
v

fa/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

(206)

× δ (1 − w) δ (1 − v) (1 − y)2 + 1
2

+ fa/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π

(
Cqq,2 (w,v) (1 − y)2 + 1

2 − 4
32y2wv

)

+ fa/H

(
x

w
,Q2

)
Dh

g

(
z

v ,Q2
)

αS

2π

(
Cgq,2 (w,v) (1 − y)2 + 1

2 − 4
32y2w (1 − v)

)

+ fg/H

(
x

w
,Q2

)
Dh

a

(
z

v ,Q2
)

αS

2π

(
Cqg,2 (w,v) (1 − y)2 + 1

2 − 2y2w (1 − w)
).

Again, here the sum a runs over quarks and antiquarks and the coefficient functions
Cqq,2 (w,v), Cgq,2 (w,v) and Cqg,2 (w,v) are given in Equations (201)-(203).



53

5 Numerical calculations

In this Section we present the results of the numerical calculations done with the
results of Sections 3 and 4. We compare how different PDF and FF sets perform in
comparison to the results from the HERA particle accelerator’s HERMES experi-
ment [20] for the two charged pions. We use combinations of CT14 PDF set [28]
and FFs of the sets NNFF1.0 [29] and MAPFF [30]. We also use sets JAM19 [31]
and JAM20 [32] which include both PDFs and FFs determined with a simultaneous fit.

The HERMES experiment measured the yields of π± in an electron-proton scattering
and the derived quantity is the multiplicity of the particles. Multiplicity is defined
as the SIDIS cross section divided by the DIS cross section. We use here the fully
integrated version of the multiplicity defined as

Mπ± (z) = 1∫
dx
∫

dQ2 d2σ
dxdQ2

∫
dx
∫

dQ2 d3σπ±

dxdQ2dz
, (207)

Figure 8. Kinematic acceptance of the HERMES experiment (gray) and the
constraining curves, labels pointing on which side of the curve the constraint is
fulfilled. Here W 2 is the total invariant mass of the photon-proton system.
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where the DIS cross section is as in Equation (160) and the SIDIS cross section
as in Equation (206). The integrals over x and Q2 cover the HERMES kinematic
acceptance, which is presented in Figure 8 with its constraints.

The numerical integration of the DIS and SIDIS cross section was done using
GNU Scientific Library Monte Carlo Integration routines with C++. The PDF sets
and the FF sets were used through the LHAPDF library [33].

The results of this calculation against the HERMES results for π+ are given in Figure
9 and for π− in Figure 10. We see that the numerical multiplicities reproduce the
experimental results reasonably well. Only the multiplicities produced with NNFF1.0
FFs differ clearly from the experimental results. In the fitting process of NNFF1.0
and JAM20 the assumption Dπ+

u = Dπ+

d̄
and the similar favored quark equality for

π− was used and in Reference [34] it is mentioned to cause a deterioration of the
quality of the fit. The MAPFF fit was done without this assumption, so it used
more independent flavors and seems to fit better. It should also be noted that in the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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10-2

10-1

100

101

M
+

(z
)

Multiplicity +

HERMES-data
CT14+NNFF
CT14+MAPFF
JAM19
JAM20

Figure 9. The multiplicities of the HERMES experiment along with numerical
results for π+ using different sets of parton density functions and fragmentation
functions.
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Figure 10. The multiplicities of the HERMES experiment along with numerical
results for π− using different sets of parton density functions and fragmentation
functions.

fitting process some data from HERMES experiment was used in both MAPFF and
JAM19 to constrain the fits, although most of the SIDIS data used by MAPFF is
from the COMPASS experiment [35]. This also seems to be the case with input data
of JAM19 in the interval 0.2 < z < 0.8.
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6 Summary

In this thesis we presented calculations of the NLO pQCD cross sections for DIS
and SIDIS. In Section 2 we reviewed the determination of the LO contributions to
the cross sections. The full NLO DIS cross section is given in Equation (160) using
coefficient functions (154) and (155). The full NLO SIDIS cross section is given in
Equation (206) using coefficient functions (201)-(203). The derived results agree
with those found in the literature. The apparent differences between our results and
those in the literature arise mainly from different expansions of the plus-distribution
and rational (plus-)functions. Equivalences between the results follow from the last
properties given in Appendix D or similar results.

Dimensional regularization made it compact and systematic to carry out the cal-
culation, isolate the appearing divergences and renormalize PDFs and FFs. The
similarity of DIS and SIDIS as processes simplified the calculations of the latter
after the former process was handled already. Most significant differences in the
calculations appear from the phase space integration onwards as in the SIDIS one
more degree of freedom is left out of the phase space integral.

We then numerically calculated multiplicities for pions π± using a few different
PDF and FF sets and compared these with the multiplicities measured in the HER-
MES experiment. The results depended mainly on the FFs used and different FFs
reproduced the HERMES multiplicities to a varying degree. From the four sets
used, two seemed to perform well, one got somewhat close and one did not perform
that well. Each of the FF sets were fitted with either a different method, with
different assumptions or using different datasets. Some possible factors behind the
performance differences were listed, but otherwise it was left as an open question.
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A Feynman rules and dimensional regularization

In this appendix we present the Feynman rules and the corresponding notations
used in this thesis. We then explain how the usage of the dimensional regularization
changes the usage of these rules and the properties of the associated mathematical
objects.

The Feynman rules used in this thesis are taken from Reference [21]. The ex-
ternal lines of the fermions in graphs are presented using the Dirac spinors u (p,s)
where p is the 4-momentum and s the spin index of the fermion:

p,s

f = u (p,s)
p,s

f = u (p,s) .

With antifermions we replace spinor u with v and u with v. For a massless fermion
the spinors fulfill the completeness relation

∑
s

u (p,s) u (p,s) = /p =
∑

s

v (p,s) v (p,s) . (208)

The external lines of the gluon are represented as

k,λ

g α = εα (k,λ)
k,λ

α g = (ε∗)α (k,λ) ,

where λ is the helicity of the gluon, k its 4-momentum and ε the polarization vector.
Polarization vector is contracted with the operator of the vertex it is connected to.
The polarization vectors fulfill sum result [21, 26]

∑
λ

εα (k,λ) (ε∗)β (k,λ) = −gαβ + kαk̄β + kβk̄α

k · k
, (209)

where k is the same as k but with spatial components negated, gµν the metric tensor
and the sum runs over the physical polarizations of the gluon.

The propagator for massless fermions is given by
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p,j

= i /p

p2+iε

where p is the 4-momentum and j the color index. The photon and gluon propagators
used are

q

γ = −igµν

q2

k

g = −i
k2+iε

(
gαβ + η

kαkβ

k2

)
.

The indices of these propagators are contracted by the operators of the two vertices
they are connected into. The photon propagator is in the Feynman gauge and the
gluon gauge parameter η is left undecided. For every closed loop we add integration
over the 4-momentum of the loop with a normalization factor (2π)−4.

Finally the needed vertices are

f

f

γ = −ieCfγµ

f

f

g = −igSγα(tc)i′j .

Here e is the elementary charge, Cf the charge of the fermion in units of the
elementary charge, gS the interaction strength of the strong interaction, γµ Dirac
gamma matrix and tc is the SU(3) color matrix, with c color of the gluon and i′, j the
two color indices of the fermions connected to the vertex. The tensor indices of the
vertices are contracted by the operators of the boson lines conneted to the vertices.
The color matrix identities are presented in full detail for example in Reference [21,
26]. In this thesis the only properties needed are the hermiticity and the fact that

∑
c

tr (tctc) = 4. (210)

Instead of e and gS it is more common to use the coupling constants

αem = e2

4π
, (211)

that is also known as fine structure constant, and

αS = g2
S

4π
, (212)
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when presenting the results as they tend to be functions of the squares of e and gS.

In our thesis we use the Dimensional Regularization [18] to regularize the infinities in
our pQCD results. In this regularization method the calculations are done effectively
first with some spacetime dimension N with which the divergent loop integral or
similar divergent term is well defined and finite. The spacetime dimension N is
left implicit in the resulting expressions. These expressions are then analytically
continued so that the limit N → 4 can be taken. Using the prescription N = 4 − 2ε

the analytic terms are expanded respect to ε = 0 so that the divergences related to
the limit ε → 0 appear as poles ε−n for some natural number n. These poles are
then absorbed into some quantity (here parton density and fragmentation functions)
through renormalization and the final 4-dimensional result is then the remaining
convergent ε → 0 limit.

The change into N dimensions is effectively implemented by changing for exam-
ple momentum and gluon polarization vectors into N -vectors. This change also
affects phase space and loop integrals, where 4 is changed into N in the integration
measure and in the exponent of the normalization factors. Also the metric gµν is
N -dimensional so

gµνgµν = δµ
ν = N. (213)

The algebra of the Dirac gamma matrices is still

{γµ,γν} = 2gµνIN . (214)

For the identity matrix IN of the space of the Dirac gamma matrices it is chosen that

tr (IN) = 4. (215)

The trace could be non-constant, but the only relevant property needed is that
limn→4 tr (In) = 4 [18, 25]. Therefore this is the preferred option. The full effects of
the given changes into the calculations of the Dirac gamma matrix traces is given in
Appendix C.
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As the above-mentioned dimensional regularization procedure changes the spacetime
dimensions it also induces changes in the dimensions of some quantities. Most
relevant change is that the constants e and gS should have dimensions of mass to
the power of 1

2 (4 − N) so that the action of the model defined by the Lagrangian is
dimensionless. This can be implemented by introducing some auxiliary mass mD

and by defining the N -dimensional versions for these constants as

e(N) = e (mD)
1
2 (4−N) and g

(N)
S = gS (mD)

1
2 (4−N) . (216)

Only the change in constant gS is explicitly needed in the calculations of this thesis
as the regularization and renormalization are done for observable structure functions
Fj and they are defined without the elementary charge e.
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B Results for momentum loop integration

In this appendix we define some special functions needed and present the integral
identities used in the loop integral calculations.

We widely employ two special functions in this thesis, the Gamma function and the
Beta function. The Gamma function Γ is the generalization of the factorial in such a
way that

Γ (x + 1) = xΓ (x) , Γ (0) = 1, (217)

and it is defined on the set C \ (−N0), the set of complex numbers excluding the
negatives of natural numbers and zero, or on some subset of this usually containing
the non-negative reals. For z ∈ C such that Re (z) > 0 we use definition [36]

Γ (z) =
∞∫

0

tz−1e−t dt (218)

and with this the continuation to whole C \ (−N0) is guaranteed by (217).

The Beta function is defined for x,y ∈ C such that Re (x) , Re (y) > 0 as

B (x,y) =
1∫

0

tx−1 (1 − t)y−1 dt (219)

and it holds that [21, 36]

B (x,y) = Γ (x) Γ (y)
Γ (x + y) (220)

=
∞∫

0

tx−1

(1 + t)x+y dt. (221)

From the relation between the Beta and the Gamma functions we see that the Beta
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function is at least defined as x,y,x + y ∈ C \ (−N0) as the Gamma function has no
zeros.

We then proceed to the identities needed with the loop integrations. The Feynman
parametrization formula needed here is for every n ∈ N and aj ∈ C, j ∈ {1, . . . ,n}
[21, 26]

1
a1 · · · an

= Γ (n)
n∏

j=1

(∫ 1

0
dxj

)
δ (1 −∑n

k=1 xk)
(∑n

k=1 xkak)n . (222)

To evaluate the loop integrals we use the equation

∫ dN`

(2π)N

(`2)R

(`2 − ∆ ± iε)m = ±i (−1)m+R

(4π)
N
2

∆N
2 +R−m

Γ
(

N
2

) Γ
(
m − N

2 − R
)

Γ
(

N
2 + R

)
Γ (m) (223)

valid for ∆ > 0 and N
2 < m − R. It is taken that N,R,m > 0. To prove this equality

one needs to do Wick rotation in the manner that the ε-prescription specifies. This
leaves us with the Euclidean integral which is rotationally symmetric and can hence
be simplified using the presentation of the N -dimensional unit sphere area [18]

∫
dΩN = 2π

N
2

Γ
(

N
2

) . (224)

Finally, with some change of variables and the Beta function identity (220) we
conclude the result. Similar identities can be found in Reference [21, 26].

In dimensional regularization it is enough that the condition for Equation (223)
N
2 < m − R holds for some N . Then, using the analytic properties of the Gamma
function, the analytic continuation of the right-hand side is used to define the effective
version of the left-hand side for N that the original integral would not be well defined.
In this thesis mainly to find the limit N → 4. One can see that the right-hand side
should be well defined as long as m − N

2 − R /∈ −N.

Before taking the said limit we may also need to integrate the integrals intro-
duced by the Feynman parametrization. Integration is done using the definition of
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the Beta function and

1∫
0

dx′
1−x′∫
0

dy′ (bx′ + by′ + c) (x′y′)a = (Γ (a + 1))2

Γ (2a + 3)

(
c + 2b

a + 1
2a + 3

)
, (225)

where b, c ∈ R, c 6= 0 and a > −1. This identity can be seen for example through
standard integration by parts and the definition of the Beta function.
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C Trace identities

In this appendix we deduce the N -dimensional results for two traces needed in the
calculations. First is

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
, (226)

with pa = p − k, pb = p′ − k and both p and p′ = p + q massless. The second is

tr
(
/p

′Λαµ/pΛνβ

)
gαβgµν , (227)

with pa = p − k, pb = p′ + k,

Λαµ = 1
p2

a

γµ/pa
γα + 1

p2
b

γα/pb
γµ (228)

and each p, p′ and k = p + q − p′ massless.

We deduce the values for these traces by using the N -dimensional metric and
Dirac gamma matrices that obey properties (213), (214) and (215). These rules
imply

/a/b + /a/b = 2a · b (229)

/a/a = a2 (230)

γµ
/pγµ = (2 − N) /p (231)

γα
/pγµ = 2pαγµ − 2/pgαµ + 2pµγα − γµ

/pγα (232)

tr
(
/a/b
)

= 4a · b. (233)

Also for every sequence of gamma matrices (γµ1 ,γµ2 , · · · ,γµn) it holds that

tr (γµ1γµ2 · · · γµn) = tr (γµn · · · γµ2γµ1) . (234)
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With Equation (232) the first trace (226) becomes

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
= 2tr

(
/p

′γµ
/pγµ/pb/pa

)
− 2tr

(
/p

′γµ
/p/pa/pb

γµ

)
+ 2tr

(
/p

′
/pa/pγα

/pb
γα

)
− tr

(
/p

′γµ
/pγµ

/pa
γα/pb

γα

)
. (235)

Using Equation (231)

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
= 2 (2 − N)

(
tr
(
/p

′
/p/pb/pa

)
− tr

(
/p

′
/p/pa/pb

)
+tr

(
/p

′
/pa/p/pb

)
− 1

2 (2 − N) tr
(
/p

′
/p/pa/pb

))
(236)

and with Equations (229), (230) and (233) we get

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
= 2 (2 − N) (4p · p′pa · pb + 4p · pap′ · pb

−1
2 (8 − N) tr

(
/p

′
/p/pa/pb

))
. (237)

Now substituting pa = p − k, pb = p′ − k, p2 = p′2 = 0 and −2p · p′ = q2 we conclude
with

tr
(
/p

′γµ
/pγα

/pa
γµ/pb

γα

)
= 2 (2 − N) q2

(
2q2 + 4 (p + p′) · k

+ 8
q2 p · k p′ · k − (4 − N) k2

)
. (238)

For the second trace (227) we find that

tr
(
/p

′Λαµ
/pΛµα

)
= 1

p4
a

tr
(
/p

′γµ
/pa

γα
/pγα/pa

γµ

)
+ 1

p4
b

tr
(
/p

′γα
/pb

γµ
/pγµ/pb

γα

)
+ 1

p2
ap2

b

tr
(
/p

′γµ
/pa

γα
/pγµ/pb

γα

)
+ 1

p2
ap2

b

tr
(
/p

′γα
/pb

γµ
/pγα/pa

γµ

)
. (239)

On the right-hand side the first two traces both simplify to

(2 − N)2 tr
(
/p

′/k/p/k
)

(240)
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through Equations (231) and (230) and the relations of our momenta. It can further
be seen that

tr
(
/p

′/k/p/k
)

= 8p · kp′ · k (241)

= −2p2
ap2

b . (242)

The third and the fourth traces in Equation (239) are the same as the order of the
gamma matrices in the trace can be inverted without of changing the value of the
trace. Also the third trace is the same as (226) up to the interchange of p and pa.
With similar steps as with the trace (226) we then find that

tr
(
/p

′γµ
/pa

γα
/pγµ/pb

γα

)
= 2 (2 − N)

(
tr
(
/p

′
/pa/pb/p

)
− tr

(
/p

′
/pa/p/pb

)
+tr

(
/p

′
/p/pa/pb

)
− 1

2 (2 − N) tr
(
/p

′
/pa/p/pb

))
. (243)

By substituting the definitions of pa and pb with k2 = 0 we get

tr
(
/p

′γµ
/pa

γα
/pγµ/pb

γα

)
= 2 (2 − N)

(
8p · p′pa · pb + 1

2 (4 − N) tr
(
/p

′/k/p/k
))

. (244)

Now the only thing we need is to substitute

pa · pb = −1
2q2 (245)

and we can conclude that

tr
(
/p

′Λαµ
/pΛµα

)
= −2 (N − 2)2

(
p2

a

p2
b

+ p2
b

p2
a

)
+ 16 (N − 2)

p2
ap2

b

q2p · p′

− 4 (N − 2) (N − 4) . (246)
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D Plus-distributions

In this appendix we define a certain class of distributions called plus-distributions
and present relevant identities needed in this thesis. Some of the properties and
equivalent definitions are given for example in References [16, 21, 24].

For any function q : [0,1) → R that is integrable on every subinterval [0,a] ⊂ [0,1) we
define a plus-distribution (or plus-function) (q(x))+ that acts on a smooth function
f , for which f(x) − f(1) vanishes in the limit x → 1 sufficiently rapidly, as

1∫
z

(q(x))+ f(x) dx =
1∫

0

q(x)
(
f(x) − f(1)

)
dx −

z∫
0

q(x)f(x) dx (247)

=
1∫

z

q(x)
(
f(x) − f(1)

)
dx − f(1)

z∫
0

q(x) dx. (248)

On this thesis we will be using two functions as a plus-distribution defining function
q :

1
1 − x

and ln (1 − x)
1 − x

. (249)

For the corresponding plus-distributions it holds by Equation (248) that

1∫
z

( 1
1 − x

)
+

f(x) dx =
1∫

z

f(x) − f(1)
1 − x

dx + f(1) ln (1 − z) (250)

1∫
z

(
ln (1 − x)

1 − x

)
+

f(x) dx =
1∫

z

f(x) − f(1)
1 − x

ln (1 − x) dx + 1
2f(1) ln2 (1 − z) . (251)

During the DIS calculation we will confront terms similar to

1∫
z

f(x)
(1 − x)1+ε

(
a + b

ε

)
dx (252)
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for some a,b ∈ R. Note that with ε < 0 this integral is well defined, but through
analytical continuation this does not need to be the case for our results of this
Appendix. These terms are to expanded respect to ε to take the limit ε → 0 and to
isolate the poles presenting the divergences related to that limit. We expand next
the two terms in the integrand of Equation (252) using plus-distributions, Dirac
delta functions and the identity

1
(1 − x)ε = exp (−ε ln (1 − x)) (253)

=
∞∑

k=0

(−ε)k

k! lnk (1 − x) . (254)

First we have

1∫
z

f(x)
(1 − x)1+ε dx =

1∫
z

f(x) − f(1)
(1 − x)1+ε dx + f(1)

1∫
z

1
(1 − x)1+ε dx (255)

=
1∫

z

f(x) − f(1)
1 − x

dx − 1
ε
f(1) + f(1) ln (1 − z) + O (ε) , (256)

so by Equation (250) in a distributional sense

1
(1 − x)1+ε =

( 1
1 − x

)
+

− 1
ε
δ (1 − x) + O (ε) . (257)

Next we have

1∫
z

f(x)
ε (1 − x)1+ε dx = 1

ε

1∫
z

f(x) − f(1)
(1 − x)1+ε dx + f(1)

ε

1∫
z

1
(1 − x)1+ε dx (258)

= 1
ε

1∫
z

f(x) − f(1)
1 − x

dx −
1∫

z

f(x) − f(1)
1 − x

ln (1 − x) dx

− 1
ε2 f(1) + f(1)

ε
ln (1 − z) − f(1)

2 ln2 (1 − z) + O (ε) . (259)

Hence by Equations (250) and (251) we have in a distributional sense

1
ε (1 − x)1+ε = 1

ε

( 1
1 − x

)
+

− 1
ε2 δ (1 − x) −

(
ln (1 − x)

1 − x

)
+

+ O (ε) . (260)
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In the SIDIS calculation we will also face terms like

I[f ] ≡
1∫

z

1∫
w

f(x,y)
(1 − x)1+ε (1 − y)1+ε dy dx. (261)

where f is a smooth function. By Equation (260) we have

1
(1 − x)1+ε =

( 1
1 − x

)
+

− 1
ε
δ (1 − x) − ε

(
ln (1 − x)

1 − x

)
+

+ O
(
ε2
)

(262)

and hence up to the zeroth order in ε and in a distributional sense

1
(1 − x)1+ε (1 − y)1+ε =

( 1
1 − x

)
+

(
1

1 − y

)
+

+ δ (1 − x)
(

ln (1 − y)
1 − y

)
+

+ δ (1 − y)
(

ln (1 − x)
1 − x

)
+

− 1
ε
δ (1 − x)

(
1

1 − y

)
+

− 1
ε
δ (1 − y)

( 1
1 − x

)
+

+ 1
ε2 δ (1 − x) δ (1 − y) . (263)

We finish this appendix with a frequently used plus function property and its
implications. If f(1) = 0 then for any plus function (q(x))+ we have in a distributional
sense

f(x) (q(x))+ = f(x)q(x). (264)

Because of this in a distributional sense
( 1

1 − x

)
+

(1 − x) = 1, (265)( 1
1 − x

)
+

x =
( 1

1 − x

)
+

− 1 (266)

and
( 1

1 − x

)
+

x2 =
( 1

1 − x

)
+

− (1 + x) . (267)

Last of these identities also implies that

x2 + y2

(1 − x)+ (1 − y)+
= 2

(1 − x)+ (1 − y)+
− 1 + x

(1 − y)+
− 1 + y

(1 − x)+
. (268)
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E Approximations

In this appendix we present some of the approximation identities needed during this
thesis.

Often in this thesis the approximations done are based on identities

(f(x))ε =
∞∑

k=0

εk

k! (ln (f(x)))k (269)

1
1 − f (ε) =

∞∑
k=0

(f (ε))k . (270)

Right-hand side of the latter equation is well defined only when |f (ε) | < 1. Another
needed identity is the expansion of the Gamma function Γ (1 + x) with small values
of x. At most the second order terms are needed so

Γ (1 + x) = 1 − xγE + x2

2

(
γ2

E + π2

6

)
+ O

(
x3
)

(271)

will suffice here. In this equation γE is Euler-Mascheroni constant for which it holds
that

γE = Γ′(1) =
∞∫

0

e−t ln (t) dt ≈ 0.57721... (272)

Note that the latter equality is just the derivative identity of the gamma function:
for every n ∈ N0

Γ(n)(x) =
∞∫

0

tx−1et (ln (t))n dt. (273)

Using Equations (271) and (270) it can be calculated that

Γ (1 + x) Γ (1 − x) = 1 + x2 π2

6 + O
(
x4
)

, (274)
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1
Γ (1 − x) = 1 − xγE + x2

2

(
γ2

E − π2

6

)
+ O

(
x3
)

(275)

and

Γ (1 − x)
Γ (1 − 2x) = 1 − xγE + x2

2

(
γ2

E − π2

2

)
+ O

(
x3
)

. (276)

Furthermore

Γ (1 − x) Γ (1 + x) Γ (1 − x)2

Γ (1 − 2x) = 1 + O
(
x3
)

(277)

or

1
Γ (1 − x) = Γ (1 + x) Γ (1 − x)2

Γ (1 − 2x) + O
(
x3
)

. (278)

We will also deploy the result

1
ε

(
4πm2

D

Q2

)ε Γ (1 − ε)
Γ (1 − 2ε) = 1

ε
+ ln

(
4πm2

D

Q2

)
− γE + O (ε) (279)

= 1
ε̂

− ln
(

Q2

m2
D

)
+ O (ε) , (280)

where we introduced the notation

1
ε̂

≡ 1
ε

+ ln (4π) − γE (281)

= 1
ε

(4π)ε

Γ (1 − ε) + O (ε) . (282)

The point with this notation is to compactly group the pole with remnant coefficients
of the dimensional regularization as they all are included into the renormalization in
the MS scheme.
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F Phase space integration

In this appendix we calculate the phase space integrals for the 4-momentum processes
p,q → p′ and p,q → k,p′ with p2 = p′2 = k2 = 0 and N space-time dimensions. The
results are used in the deeply inelastic parton model context given in Section 2.1
and the processes are those given in Section 2.3. We denote the corresponding phase
space integrals PSp′ [f ] and PSp′,k [f ] where f is the matrix element or the partonic
tensor of the process. We use here the DIS variables defined in Equation (3), the
Mandelstam variable ŝ = (p + q)2 and the variable w given in Equation (12).

In the phase space integrations we need to integrate the N -dimensional Dirac
delta function. Results similar to the case N = 4 hold for N 6= 4. If p = (p0,~p) is an
N -vector with p2 = m2 then

∫ dN−1~p

2p0 f(p) =
∫

dNpδ+
(
p2 − m2

)
f(p) (283)

as for a smooth function g

δ (g (x)) =
∑

x0∈g−1({0})

δ (x − x0)
|g′ (x0)|

. (284)

Using Equation (283) one finds

∫ dN−1~p

2p0 δ(N) (p − c) f(p) = δ+
(
c2 − m2

)
f(p)

∣∣∣
p=c

. (285)

In the results above the notation δ+ means that the normal Dirac delta function
arguments are restricted to accept p0 > 0 or in the latter equality c0 > 0 only.

Then the phase space integrals. First we consider the process p,q → p′ :

PSp′ [f ] =
∫ dN−1~p′

2(2π)N−1p′0 (2π)N δ(N) (p + q − p′) f (p′) . (286)
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Using Equation (285) and discarding masses we get

PSp′ [f ] = 2πδ+
(
q2 + 2p · q

)
f (p + q) . (287)

Next we use the Dirac delta property (284) regarding the zeros of its arguments to
find that

PSp′ [f ] = 2π

Q2 δ+ (1 − w) f (p + q) . (288)

The second phase space integral is for the process p,q → p′,k. Note that even
though we handle p′ and k differently here the process can be made similarly the
other way around. We choose here to use delta functions to integrate p′ right at
the beginning and parametrize the now unintegrable degrees of freedom of k with
variables presented above. Using equations (283) and (285) we find that

PSp′,k[f ] =
∫ dN−1~p′

2(2π)N−1p′0

∫ dN−1~k

2(2π)N−1k0 (2π)N δ(N) (p + q − p′ − k) f (p′,k) (289)

= (2π)2−N
∫

dNk δ+
(
(p + q − k)2

)
δ+
(
k2
)

f (p + q − k,k) . (290)

Next we change the integration variables k into k0 and (N − 1)-dimensional spherical
coordinates using ~p as the base, so that the first coordinate angle θk is the angle
between ~p and ~k. We also take that the function f is a constant function of every
coordinate angle except θk. The change of variables and these assumptions change
the integral as
∫

dNkf̃ (k) =
∫

dk0
∫

d
∣∣∣~k∣∣∣ ∣∣∣~k∣∣∣N−2 ∫ π

0
dθk sinN−3 (θk)

∫
dΩN−2f̃

(
k0,

∣∣∣~k∣∣∣ ,θk

)
(291)

= 2π
N
2 −1

Γ
(

N
2 − 1

) ∫ dk0
∫

d
∣∣∣~k∣∣∣ ∣∣∣~k∣∣∣N−2 ∫ π

0
dθk sinN−3 (θk) f̃

(
k0,

∣∣∣~k∣∣∣ ,θk

)
,

(292)

where we used the area of the N -dimensional unit sphere (224). In Equation (290)
we will first use the k0 integral to act on the second delta function and then use the∣∣∣~k∣∣∣ integral to act on the first delta function. Considering the second we use the fact
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that

δ+
(
k2
)

= 1
2
∣∣∣~k∣∣∣δ+

(
k0 −

∣∣∣~k∣∣∣) . (293)

The easiest way to handle the first delta function is to go momentarily to the center-
of-momentum frame (CMS, abbreviation of center-of-momentum system), where
~p + ~q = 0, and then write the result in a Lorentz invariant form. Using k0 =

∣∣∣~k∣∣∣ in
the CMS we have

δ+
(
(p + q − k)2

)
= δ+

(
(p + q)2 − 2

(
p0 + q0

)
k0
)

(294)

= 1
2 |p0 + q0|

δ+

(∣∣∣~k∣∣∣− p0 + q0

2

)
(295)

= 1
2ŝ

1
2
δ
(∣∣∣~k∣∣∣− 1

2 ŝ
1
2

)
. (296)

These steps transform (290) into

PSp′,k[f ] = (16π)1− N
2

1
Γ
(

N
2 − 1

) ∫ π

0
dθk sinN−3 (θk) (ŝ)

N−4
2 f (p,q,θk) . (297)

As a final step we perform a change of variable from θk to variable v defined as

v ≡ 1
2 (1 + cos θk) (298)

= 1
4

sin2 (θk)
1 − v

. (299)

Because

dv = −1
2 sin θkdθk (300)

we have
∫ π

0
dθk sinN−3 (θk) f (θk) = 2N−3

∫ 1

0
dv (v (1 − v))

N
2 −2 . (301)

Hence

PSp′,k[f ] = (4π)1− N
2

1
Γ
(

N
2 − 1

) ∫ 1

0
dvv

N
2 −2 (1 − v)

N
2 −2 (ŝ)

N−4
2

2 f (p,q,v) . (302)
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We also note that even though v is defined in a specific frame it has a Lorentz
invariant expression. In CMS p′ = (k0, − ~k) and hence we get

1 − v = p · k

2k0p0 = p · k

p · (k + p′) = p · k

p · q
. (303)

This Lorentz invariant form is the definition used in Sections 3 and 4.
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