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Abstract 

In this work the nuclear modifications of parton distributions are studied 
within the framework of perturbative QCD. It consists of four publications, 
of which the first two concentrate on the theoretical and numerical analysis 
of nuclear effects. In the last two articles further constraints for the nuclear 
effects are sought. This thesis follows the same structure: After a brief in­
troduction in the chapter 1, the theoretical background for the processes in 
question is dealt in the chapter 2. In chapter 3, the analysis of nuclear effects 
is presented, and finally in the chapters 4 and 5 further constraints for the 
sea quark and gluon distributions are studied. 

The nuclear effects are parametrized at the initial scale using only data 
from deep inelastic scattering and Drell-Yan experiments together with mo­
mentum and number density conservation as constraints [I]. QCD scale evo- · 
lut,iou of nuclear effects is studied using Dokshitzer-Gribov-Lipatov-Altarelli­
Parisi (DGLAP) evolution equations. As a result, a scale dependent para­
metrization of nuclear effects is obtained for each parton flavour and nuclear 

mass number A [II]. 

The sea quark distribution is further studied in the Drell-Yan process in 
pA and Pb-Pb collisions in the region where the momentum fraction x > 0.2 
[III]. In this region no direct experimental constraints for the parametriza­
tion are available; parametrization is fixed by the momentum conservation 
together with assumption of stable evolution. By considering different sce­
narios for the sea quark modifications in the region x > 0.2, we find that in 
Pb-Pb collisions at the SPS the effects of the order of 20 % could be seen at 
large M. 

Finally, the lepton pairs produced via heavy mesons in pA collisions are 
studied at different energies in order to find out to what extent they could be 
used to further restrict the nuclear gluon modifications [IV]. The dominant 
process for heavy meson production in pA collision is gg ➔ QQ. As the 
mesons decay to leptons, the lepton pair cross section will thus reflect the 
properties of the gluon distribution. The results indicate that the ratios of 
lepton pair cross sections agree well with the nuclear modifications for gluons. 
Thus, sufficiently accurate measurements at different collider energies could 
be used to improve the accuracy of nuclear gluon distributions over a larger 
kinematical range. 



List of publications 

!III] K.J. Eskola, V.J. Kolhinen, C.A. Salgado and R.L. Thews: Constraints
for the nuclear sea quark distributions from the Drell-Yan process at 
the SPS, JYFL-4/00, LPT Orsay 00-73, hep-ph/0009251, accepted to 
Eur. Phys. J. C. 

!IV] K.J. Eskola, V.J. Kolhinen and R. Vogt: Obtaining the nuclear gluon
distribution from heavy quark decays to lepton pairs in pA collisions, 
JYFL-6/01, hep-ph/0104124, accepted to Nucl. Phys. A. 

Author's contribution 

The author has participated in the formulation of the problem and the prepa­
ration of the article (I], and also written an independent computer code con­
firming the results in publication. 

The author has participated in the formulation and the preparation of 
the article III]. The author has also participated in the numerical analysis of 
the results and helped to implement the obtained parametrization for nuclear 
effects (EKS98) into the CERN PDFLIB library. 

The author has participated in the analysis of the problem and the prepa­
. ration of the article [III] and has performed the numerical computations 
needed. The lowest order computations were done independently by CS, the 
NLO computations were done by the author only. 

The author has participated in the formulation and the preparation of 
the article [IV], written the computer code used and performed all but NLO 
computations, and written the draft version of the article. 

11 

[I] K.J. Eskola, V.J. Kolhinen and P.V. Ruuskanen: Scale evolution of 
nuclear parton distributions, Nucl. Phys. B535 (1998) 351.
https://doi.org/10.1016/S0550-3213(98)00589-6

[II] K.J. Eskola, V.J. Kolhinen and C.A. Salgado: The scale dependent 
nuclear effects in parton distributions for practical applications, Eur. 
Phys. J. C 9 (1999) 61.
https://doi.org/10.1007/s100529900005

https://doi.org/10.1007/s100520100771

https://doi.org/10.1016/S0375-9474(01)01221-0

https://doi.org/10.1016/S0550-3213(98)00589-6
https://doi.org/10.1007/s100529900005
https://doi.org/10.1007/s100520100771
https://doi.org/10.1016/S0375-9474(01)01221-0


Contents 

1 Introduction 

1.1 Parton distributions 

1.2 Nuclear parton distributions 

2 Introduction to the processes 

2.1 Deep inelastic scattering ........... . 

2.1.1 LowP.st orrler deep inelastic scattering . 

2.1.2 Parton model ........ . 

2.1.3 QCD improved parton model 

2.2 Scale evolution . 

2.3 Drell-Yan process 

3 Nuclear effects 

3.1 Parametrization of nuclear effects 

4 Further constraints for sea quark distributions? 

5 Further constraints for gluon distributions? 

5.1 Lepton pair production . . . . 

5.2 Correlated v. uncorrelated pairs . 

5.3 Numerical calculations . . . . . .

5.4 Ratio of lepton pair cross sections 

6 Conclusions 

A EKS98 parametrization 

iii 

1 

1 

2 

6 

6 

6 

9 

1 1

1 3

15 

19 

. . . . . . . 19 

29 

32 

32 

36 

37 

38 

40 

42 



Chapter 1 

Introduction 

1.1 Parton distributions 

Quantum chromodynamics (QCD) is a theory which describes the interac­
tions of the elementary building blocks of matter, quarks and gluons, often 
referred also as partons. In the nature quarks are confined; they are bound 
together by gluons into hadrons. On the parton level the perturbative QCD 
(pQCD) predicts well the behaviour of the interacting partons in the per­
turbative region Q � AQCD· On the hadronic level, for example in deep 
inelastic scattering (DIS) or in proton-proton collision the situation becomes 
more complicated as the structure of the hadron has to be taken into account. 
Since the partons interact with each other inside the hadron their exact mo­
menta can not be determined. The probability of finding a parton with a 
given momentum fraction of the hadron's original momentum is described 
by number density distribution of the parton, or the parton distribution for 
short. In principle QCD describes the behaviour of the parton distributions 
but the calculations become too complicated to be performed. Thus the in­
formation of parton distributions must be obtained experimentally. Based 
on the measurements, several parametrizations of the parton distributions 
have been published by various groups (eg. [11]-[14]). 

Generally, the parton distribution functions Ji , where i stands for a 
parton, i = g, u, u, d, d, .. . , depend on the momentum fraction x of nu­
cleon's momentum carried by the parton, and the interaction energy scale Q2

, 

Ji = fi(x, Q
2

). They are universal in the sense that once they are determined 
at certain values of x and Q2 for some process, they apply to all processes at 
the same x and Q2• For example, the cross sections for hard nucleon-nucleon

1 



2 CHAPTER 1. INTRODUCTION 

scatterings at high energies can be computed through factorization as
da(Q2, vs) = � fi(x1, Q2) 0 Jj(X2, Q2) 0 daij (Q2, X1, X2) + 0(�2 ), (1.1)

iJ 

where D"ij is a perturbatively calculable cross section for a specific partonic
process and Ji is the parton distribution of the parton i. Usually these parton
distributions are given for a free proton. The equivalent distributions for free
neutrons are obtained by using the isospin symmetry.

1.2 Nuclear parton distributions 

The parton distributions of nucleons which are bound to nuclei are different
from those of the free ones. This has been observed in the measurements of
the structure functions F,f in deep inelastic lepton-nucleus scatterings for a
large number of nuclei (32]. The structure function F2 is one of the structure
functions which describe the properties of a hadron. In the parton model
it can be expressed in terms of parton distributions; in the lowest order the
relation is

(1.2)
q 

where eq is the charge of the quark. The experimental results show that
the ratio of F,f to the structure function of deuterium, F,f /Ff, differs from
unity. As deuterium can to a good approximation considered as a sum of
a free proton and a free neutron, this indicates that parton distributions of
bound nucleons are different from those of free ones, J/(x, Q2

) =I= fi(x, Q2
). 

Then for exaple the cross section for hard scattering at high energy nuclear
collisions becomes
da(Q2 , VS)AB = .  _L_ [zAJf1A(x1, Q2

) + (A- ZA)Jt1A(x1, Q2)]0 (1.3)
i,J=q,q,g 

0 [ Zsff B (x2 , Q2) + (B - Zs)JtB (x2 , Q2)] 0 da(Q2, x1, x2)ij + 0(�2 ),
where ff/A stands for the parton distribution of parton type i in a proton in
a nucleus A and Z A stands for proton number of nucleus A.

The x dependence of the ratio R:
2 
= F2A / Ff was observed already in

the early measurements [15]. The Q2 scale dependence of the ratio is much
weaker, and thus it was observed much later. It was first detected in the mea­
surements by the New Muon Collaboration (NMC) of the structure function
F2 of tin V. that of carbon, Fr/ F? at small values of X [16]. An example of
the data is shown in Fig. (1.1).
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Figure 1.1: The ratio Ff O ( x, Q2 ) / F? ( x, Q2 ) as a function of x (left panel) at 
different values of Q2 [17], and as a function of Q2 (right panel) at fixed x = 0.0l 75
[16]. 

The x dependence of R)
2 

is usually divided into four different regions: 
shadowing (R)

2 
� 1) at x :S 0.l, anti-shadowing (R)

2 
2: 1) at 0.1 :S x :S 0.3, 

EMC effect (R)
2 

� 1) at 0.3:Sx:S0.7 and Fermi motion (R)
2 

2: 1) at x--+ l 
and beyond (Fig. ( 1.1)). At the moment the origin of these effects can not 
be explained by a single theoretical description. It is believed that different 
mechanisms are responsible for them in different kinematical regions. 

Nuclear modifications in parton distributions play a role in all hard inclu­
sive nuclear processes. Thus their contribution has to be taken into account 
in the calculations. Especially this is important for the inclusive cross sec­
tions of perturbative, hard processes, which are used as a reference in the 
search of the signals of quark gluon plasma (QGP). For example the amount 
of J /iJ! production, which is often used as this kind of signal, depends on 
the nuclear modifications in two different ways: First, the J /iJ! production is 
proportional to the nuclear gluon distributions. Second, the observed height 
of the J /iJ! peak depends on the- normalization of the background events, 
which is fixed by fitting theoretical Drell-Yan results to the data. Again, the 
nuclear modifications appear in proton-nucleus or nucleus-nucleus Drell-Yan 
scattering. 

In addition the calculations of the evolution of QGP requires an estimate 
of the initial condition [54, 55], and since QGP is produced in high energy 
nucleus-nucleus collisions, this estimate depends on the modifications of the 
parton distributions. Omission of nuclear effects in the theoretical calcula­
tions affect significantly the results and makes them less reliable. 
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Several models on the nuclear shadowing effects have been published. 
Models such as the vector meson dominance (VMD) [38, 39), the recombi­
nation model [28, 35, 37], pomeron exchange [40, 41] and pomeron exchange 
and VMD model combined [42, 43] attempt to describe the origin of the 
nuclear effects in hadronic processes. Generally they match the recent data 
qualitatively, but do not predict the results quantitatively. The vector me­
son dominance is based on an assumption that the interacting photon in 
fact fluctuates between a bare photon and a set of electromagnetic ( e+ e-) 
and hadronic states ( vector mesons). In a parton fusion model partons from 
different nucleons overlap, causing interactions between them. The pomeron 
exchange model assumes that at small x the behaviour of F2 is controlled by 
pomeron exchange, and the scattering photon probes essentially the parton 
content of the pomeron instead of that of the nucleus. An overview of the 
existing data and different models is given in Ref. [32]. 

Nuclear effects of parton distributions have also been studied in a model 
independent manner, using only the experimental data to parametrize them 
( e.g. [36]). This has also been the approach in this work. Our main goal 
has been to obtain expressions for the nuclear modifications of parton distri­
butions, and to study whether the observed effects in R:

2 
can be explained 

by the pQCD scale evolution. In this analysis we have assumed that the 
nuclear effects factorize from the nuclear parton distributions, and that the 
scale evolution of nuclear parton distributions is similar to those of a free 
proton. This can be shown [27, 28] to apply in the approximation where 
~ 1/Q2 corrections are neglected. 

W hen determining the scale dependent parton distributions, one of the 
main difficulties arises from the fact that experimental data from both DIS 
and proton-nucleus Drell-Yan (DY) experiments do not lie at fixed values 
of Q2

, as would be ideal for the parametrization of the initial conditions 
for nuclear distributions (Fig 1.2). Thus, an iterative analysis is needed to 
constrain the parametrization: Starting at initial scale Q2 

= Q5 » AQcD, the 
parametrization for the nuclear distributions is evolved up to higher values 
of Q2 using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [44, 45, 
46] evolution equations of perturbative QCD. The results are then compared
to data at corresponding Q2

, and the initial parametrization is modified
accordingly. As a result, a model independent parametrization is obtained
for ratios Rf (x, Q2 ) = J/(x, Q2 )/ fi(x, Q2), as a function of x, Q2 , mass
number A and parton flavour i [I, II].

We have also studied various possibilities to determine the nuclear sea 
[III] and gluon distributions [IV] more accurately. Currently the gluon dis­
tribution is constrained mainly by the momentum conservation and the sea
quark distributions are fixed by the data only at low x. We find that with
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the NMC data [17] (solid lines), [19] (dotted-dashed), [18] (dotted) and in some of 
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The dotted line illustrates the chosen initial scale Q5, above which the DGLAP 
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suitable experiments with sufficient accuracy the uncertainty in determining 
these distributions could indeed be reduced. 



Chapter 2 

Introduction to the processes 

2 .1 Deep inelastic scattering 

Let us begin with a brief look at theoretical background of two of the pro­
cesses which provide the most direct experimental information needed in this 
work, namely the deep inelastic scattering (DIS) and the Drell-Yan process 
(DY). 

We will briefly outline how the structure functions enter into the cross 
sections and how they can be described using parton distribution functions 
of the parton model. We will then further expand the results using improved 
parton model, and finally see how the parton distributions are evolved with 
the interaction energy scale. 

2.1.1 Lowest order deep inelastic scattering 

The cross section of the scattering of a charged lepton from a hadron can be 
written as 

(2.1) 

where 

(2.2) 

is a leptonic tensor, and k (k') the four momentum of the incoming (outgo­
ing) lepton. wµv is a hadronic tensor containing all the information of the 
interactions inside the hadron. In the most general case it is constructed out 
of metric tensor gµv and the independent four momenta of a hadron and a 
photon, p and q (see Fig. (2.1)). The requirements of symmetry and current 
conservation reduce the number of independent parameters in wµv to two, 

6 

=



2.1 DEEP INELASTIC SCATTERING

l 

X 
Figure 2.1: Lowest order deep inelastic lepton-proton scattering. 

and wµv can be written as 
Wµv 

W ( µv qµ qv ) W 
1 ( µ p . q µ) ( v p . q v) = 1 -g - -- + 2- p - -q p - -q , q2 Af2 q2 q2 

7 

(2.3) 

where W1 and W2 are Lorentz-invariant functions to be defined. In general they are functions of v and Q2 where Q2 
= 

-q2 ,

q = k - k'

is the four momentum transfer and 
v= E - E' 

is the energy loss of the lepton. 

(2.4) 

(2.5) 

Let us further define some variables needed later. In the laboratory frame and omitting the mass of a lepton, one obtains 
Q2 _ 2 4EE' . 2 0zab- -q = Sln --

2' -q2 x=--2p· q
p·q y---2p-k

Q2
2Mv' 
v E' 

=

E
= l-

E . 

(2.6) 

(2.7) 

(2.8) 

In the laboratory frame the differential cross section can be written as 
d2a 4a2 E'2 [ 2 . 2 0zab ( 2) 2 0zab ] 

dEdfJ = Q2 
2W1(v,Q )sm (

2
)+W2 v,Q cos (

2
) . 

For pointlike particles one can write 
(2.9) 

(2.10) 

(2.11) 
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where one sees that the terms l\livVi and vvV2 for pointlike charges do not
depend on v and Q2 separately, but only on x = Q2 /(2Mv). This is so 
called Bjork en scaling. It is characteristic for the lowest order calculations
and arises from the fact that nucleons consist of pointlike partons. The
scaling breaks down for the next to leading order calculations, because of the
interaction between the partons. 

Defining the structure functions Fi and F2 as
F1 (x,Q2)= MW 1 ,
F2(x, Q2) = vltV2,

one obtains an expression for the differential cross section, 
d2CY 41ra2 1 

[ 2 2 2 xy M 
] dQ2dx 

= ci4-;; Fi(x, Q )xy + F2(x, Q )(1 - y - 2E) 

(2.12)
(2.13)

(2.14)

The structure functions W 1 and W2 are related to absorption of a virtual
photon. For later discussion it is practical to express Eq. (2.14) using the
total cross sections for absorption of longitudinal and transverse photons.
The cross section for the absorption of a virtual photon with helicity >. is
given by

(2.15)

For polarization vectors equation E · q = E* · q = 0 hold. In addition, using
Feynman gauge sets I:>. Eµ(>.)E�(>.) ➔ -gµv· A convenient way to calculate
the longitudinal cross section is by projection: the polarization vector can 
be written as a linear combination of p and q: Eµ(>. = 0) = apµ + bqµ ­
Using the properties of the polarization vectors, one obtains the expressions 
for the factors a and b. Then, in laboratory frame (E(>.) · p)(E*(>.) · p) =
M2(Q2 + v2)/Q2. 

One can now define the longitudinal and transverse cross sections. The
longitudinal total cross section turns out to be

<YL('y*N) = CY>.=oh*N) = 
Jv

;
7f:(}

M2 
[-w1 + W2(l + �:)], (2.16)

and the transverse total cross section

<Yr('y*N) = �(CY>.=ih*N) +<Y>.=-ih*N)) = 
Jv;

1r:a

M2 
W1. 

Eqs. (2.12) and (2.13) leads now to

MJv2 +M2 

41r2a <YT,

MJv2 + M2 v l 
41r2a ( M

) 
1 + v2 /Q2 

(CYL + CYT ),

(2.17)

(2.18)

(2.19)
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and to ratio 

(2.20) 

Finally, one obtains an expression for differential cross section of lepton­
nucleon deep inelastic scattering: Eq. (2.14) can be written as 

(2.21) 

where 

(2.22) 

is a measure of the virtuality of the photon. The similar equation can be 
written for a lepton-nucleus case, normalized per nucleon: 

For a nucleon the momentum fraction O :S x :S 1, whereas for a nucleus 
0 :S x :S A. For nucleus the tail x > l is diminishingly small, and can safely 
be neglected. In this work we have done so and taken_ x :S 1 for nuclei too. 

We will assume that in the case of nuclear collisions the virtuality R11 (x, Q2 ) 
does not depend on nuclear mass number A. Assumption is reasonable since 
several experiments have shown that (RA - RD) � 0 [29, 30, 31]. Thus, 
all nuclear dependence in this equation is in the structure function F2. It 
is immediately seen that the ratio of two cross sections of DIS at the same 
energy will reflect the ratio of structure functions F2 at these processes. This 
is one of the basic relations which provide us experimental information about 
nuclear parton distributions. 

2.1.2 Parton model 

If the energy of the lepton in lepton-hadron scattering is large enough, the 
lepton will begin to resolve the structure of a hadron and eventually the 
quarks and gluons inside it. In such a case the lepton-hadron scattering can 
be rewritten in terms of parton model: Lepton interacts with pointlike quark 
inside the hadron. The cross section is similar to lepton-lepton scattering 
except that now the momentum of the quark is unknown. It can be written 
in terms of the momentum of the hadron, p = E,P, where p and Pare the 
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momenta of the quark and the hadron, respectively, and O < f, < 1 is the
fraction of the momentum carried by the quark. The quark tensor becomes
now
wµv 

= e; f,c5(f, - x) (- �(g
µv - qµqv

) - _f,_(Pµ - p. q qµ)(Pv - p. q qv
)). 

q M 2 q2 p . q q2 q2 
(2.24)

In order to get the cross section for lepton-hadron scattering, one has to sum
over all the quarks and integrate over the quark momenta

dc/h = . L fo
1 df, fi(f,) dcl-i,

i=u,d,s, ... 

(2.25)

where da is the cross section of lepton-quark scattering and fi(f,)df, is the
number of quarks of type i in the interval [f,P, (f, + df,)P]. Functions fi(Oare thus number density distributions of partons or parton distributions for
short. 

The differential lepton-hadron cross section becomes then
d R.h - 1 e4 d 3 kl L MWµv

(J" - 2s Q4 (21r)32k,o µv 41r (2.26)
where
Wµv =�fo

l �f, fi(f,) Wtv (2.27)

=" 2 fi(x) ( µv _ qµqv

) +
" 2 xfi(x) 

(Pµ _ P · q µ) (Pv _ P · q v)L:eq; 2M g qz L:eq;M( P·q) qz q qz q .

In the above derivation a delta function term o(f, -x) set the momentum
fraction f, carried by the parton equal to the invariant variable x. Conversely,
this means that the virtual photon must have the right value off, in order to
be absorbed by the quark with given momentum fraction x. By comparing equations (2.3) and (2.27) one can now identify F1 and F2in terms of parton distributions:

F1 (x, Q2)

F2(x, Q2)

One also obtains so called Callan-Gross equation for spin-½ particles:
2xFi (x, Q2) = F2 (x, Q2).

(2.28)
(2.29)



2.1 DEEP INELASTIC SCATTERING

2.1.3 QCD improved parton model 

11 

The parton model result presented above is in the lowest order (LO) in terms of the strong coupling constant a8 • It can be further improved by considering the next to leading order (NLO) QCD corrections. These corrections can be divided into three categories: virtual gluon corrections, real gluon emissions and initial state gluons. Taking the gluon corrections into consideration leads to calculation of integrals which diverge. These divergencies are handled using so called reg­ularization procedure. Common methods are to use massive gluon scheme (MG) or dimensional regularization scheme (DR). In massive gluon scheme the gluon is assumed to have a finite mass, which is finally set to zero. In dimensional regularization scheme the calculations are done in N = 4 - 2c: dimensions and c: taken to the limit E ➔ 0 at the end. The divergencies can be categorized according to their origin: Ultraviolet divergencies originate from the self-energy terms of the interaction and can be absorbed into the definition of a coupling constant. Infrared divergency means that the emitted gluon is soft, i.e. its energy E ➔ 0, whereas collinear singularity means that the emitted gluon has a momentum collinear to that of the emitting quark. How these singularities cancel depends on the regu­larization scheme chosen. In the following the main results are given using dimensional regularization scheme. In this scheme the soft singularities will be proportional to 1/c:2 and they will cancel out. The collinear divergencies proportional to 1/E will remain, however, and must be included, factored, into the definition of parton distributions. This procedure is, however, not unique. Several conventions exist, MS and DIS factorization schemes being the most common ones. The interaction term in the lowest order (LO) in O(a) can be represented schematically as 
IMI'~ ( 1-- q (2.30) 

q Adding the virtual gluon corrections brings along the terms 
IMI'~( �q

q 

In the emission of real gluons a quark emits a gluon before of after it 
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interacts with a photon. Graphically the process can be presented as: 

(2.32)

In the case of initial state gluon hadron emits a gluon which splits into a 
quark-antiquark pair, and one of them interacts with incoming photon. 

(2.33)

More explicit calculations of these corrections are represented in Ref. [2]. 
First order gluon corrections in photon quark interaction are also presented 
in Ref. [5] in the case of Drell-Yan process. 

In N -=/- 4 dimensions the gauge coupling eN carries dimensions. It is 
therefore convenient to introduce so called dimensional regularization mass, 
mD, and to define the N-dimensional C\'.8 using the 4-dimensional one with a 
dimensional regularization mass, 

O'.s N = (m't)N/2-2. (2.34)
Summing virtual and real gluon corrections leads to an expression which 

contains 1 / E singularities. A convenient method to handle this situation is 
to define so called plus functions (which in the mathematical sense are not
functions but distributions): 

f
1 

dx f(x) (-1 l ) = f
1 

dx f(x) - J(l) 
+ f(x) ln(l - z). (2.35)

Jz - X + Jz 1 - X 

Let us also define splitting functions, which describe the probability that
a given particle emits another with a certain fraction of the momentum of 
the original particle: 

(2.36)

(2.37)

(2.38)
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For example, function P
q
;qi, sometimes written also as P

qr
•-+

q
;
g
, describes the

probability that a quark qj emits a gluon and the remaining quark qi continues 
with the fraction of z of the original momentum .. Similarly, function P

q9
, or 

Pg-...qq, describes a probability that a gluon splits into a quark-antiquark pair, 
in which the quark has fraction z of gluons momentum. 

Summing up all the as corrections together results, after somewhat lengthy
calculations [5], an expression for F2: 

�F2(x, Q2

) = L e�[Jq(x, Q2

) + fq(x, Q2

)] 
X 

q 

+a,� e; [l �( (!,((, Q') + J;((, Q')) (!�IS (z) _ f;'h•m•(z))

+21
1 

�� 
Jg(�, Q2) (!fIS(z) - J;cheme(z))] , (2.40) 

where z x / � and the quark distributions have been defined as 

Jq(x, Q2
) = 11

�� Jqo(�) [c5(1 - z) + ;; Pqq(z) In ( ��) + asf;cheme(z)] 

+11 

�� J90(�) [ ;; Pq9(z) In ( ��) + asf;cheme(z)] , (2..41)

and the antiquarks fq in a same manner. These expressions contain several
unphysical terms, such as the bare parton distributions f qo, f qo and f90 , 

a
scale mass mt and scheme dependent functions 1rs and !Jcheme. 

Also the collinear poles 1 / c still remain in the expressions for ff IS and 
J;cheme. This means that the definition of parton distributions depends on 
the choice of the factorization scheme. However, once their value is known 
at certain scale, their behaviour as a function of the interaction scale can be
predicted, as will be seen in the next section. 

In the lowest order, and in the DIS scheme in NLO, Eq. (2.40) becomes

F2(x, Q2

) =Le� x [Jq(x, Q2

) + fq(x, Q2

)], (2.42) 
q 

as already mentioned in section 1.2. 

2.2 Scale evolution 

As pointed out at the end of the section 2.1.3, perturbative QCD (pQCD)
does not predict the absolute values of parton distributions. However, once
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their values are fixed at some initial scale Q5, pQCD gives the change of 
the distributions as a function of the scale Q2

. This is so called scale evolu­
tion, often referred also as Altarelli-Parisi or DGLAP evolution, derived by 
Altarelli and Parisi [44], Gribov and Lipatov [45] and Dokshitser [46]. 

Heuristic derivation of evolution is rather straightforward. Let us consider 
flavour non-singlet case, J;rs (x, Q2) = Jq (x, Q2) - fq (x, Q2). By integrating
the quark contribution in Eq. (2.41) over quark distribution function fq (O 
one can now identify for each quark flavour [6] 

1;s (x, Q2 ) = 1;s 
(o) (x)+ ;; 11 

�e 1;s (0 (Pqq (z) ln( ;�) + 21r 1icheme (z)) . 
(2.43) 

It is customary to denote t = In( Q2 / µ2), where µ is used for the factor­
ization scale. The scale µ is arbitraty but should be close to the subprocess 
interaction energy. Differentiating over t gives the relation between the scale 
dependent parton distributions and initial scale parton distributions. 

df ;rs (x, t) = O:s 11 defNS(t t)P (:.) 
dt 21r x e q s

, qq e · (2.44) 

More general derivation for scale evolution can be performed using mo­
ment transformations, i.e. Mellin transformations, of the distributions. 

The above derivation applies for non-singlet distributions only. More 
general expression for scale evolution which includes also gluon distributions, 
can be written in a matrix form: 

These evolution equations sum the leading logarithm terms (as ln(Q2)r 
of the interaction. The process can be expressed as summing the ladder 
graphs: 

(2.46) 

Functions Pij are the splitting functions, and they form the evolution 
kernel of Altarelli-Parisi equations. They can be calculated as a power series 
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A z+ 

B z-

Figure 2.2: Lowest order Drell-Yan process in nucleus-nucleus collision. 

of a5 • Denoting number of flavours by N1, one can write down the first order 
estimate for them. This results the Eqs. (2.36)-(2.39). 

DGLAP evolution will have an essential role in following chapters, where 
we determine the scale evolution and nuclear modifications for the parton 
distributions. Eq. (2.45) is practical for theoretical calculation but numerical 
evaluations requires more explicit form without any plus-functions. These 
expressions are given in next chapter, in Eqs. (3.11)-(3.13). 

2.3 Drell-Yan process 

Some of the data used for constraining the nuclear parton distribution in this 
work are provided by the Drell-Yan (DY) process in pA collisions. Let us 
therefore briefly present the cross section of this process expressed in terms of 
parton model, and see how the cross section reflects the parton distributions. 
The procedure is very much similar as in the case of deep inelastic scattering. 

In the naive parton model the lowest order cross section of muon pair 
production in hadron-hadron collision is given by [3], [5] 

dc,DY 497rQ�2 rl dx1 dx2 [I: e� (!J1\x1)JJ2) (x2) + J?)(x2)Jf\x1) )]dQ2 s lo x1 x2 q 

(2.47) 

where Q is the mass of the lepton pair ( often denoted also as M), and x1 and 
x2 are the momentum fractions of hadron carried by the quark and antiquark. 
Dimensionless variables are defined as 

s 

T s
and for the subprocess s = (Pq + Pq)2 

= 2pq · Pii· 

(2.48) 

(2.49) 
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Let us also define some kinematical variables and conventions which are used later. In the centre of mass frame ( ems) the four momenta of the incoming quarks can be written as 
(2.50) 

It is customary to use kinematical variables, Feynman variable Xp and ra­
pidity y, defined as: 

2p} 
Xp = y's'

_ ! (E'Y + PI) 
y - ln E 'Y . 2 'Y - Pz The conservation of four momentum implies 

{ x1 = :}se+Y = �(Jx}+4-r+xF),
x2 = Js e-y = �( Jx} + 4-r - Xp ),

which leads to Xp = x 1 - x2 and Q2 = x1x2s.

(2.51) 

(2.52) 
The double differential cross section in LO, corresponding to Eq. (2.47), can be written as 

a _ 1ra 2 (l) (2) (l) (2) 
d2 DY 4 2 1 [

ldQ2dxp - 9Q2
s X1 + X2 � eq (Jq (x1)Jq (x2) + Jq (x2)fq (x1)) (2.53) Clearly, Eqs. (2.47) and (2.53) reveal that the ratio of DY cross sections will reflect the ratio of the sums of the parton distributions. Although the next-to-leading order (NLO) calculation is not used in anal­ysis of the nuclear parton distributions, the NLO cross sections are evaluated in Ref. [III]. Thus we will also write an expression for the NLO cross section for Drell-Yan process. As in the case of DIS, the NLO corrections can be divided into virtual and real gluon corrections, and initial gluon emission. On the parton level these corrections can be presented schematically in the same way as for DIS in the section 2.1.3. As before, they lead to terms which contain infrared and collinear singularities. Using the MS scheme to define the parton distributions, we get an expres­sion for the NLO cross section: Putting all the corrections together yields [3],[5] 
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+(1 +-+ 2)) [5(1 - z) + ;; u::)Y (z) - 2J:15 (z))] 

+ [ (JJ
1l(x1, Q2) + JJ

1

\x1, Q2)) JJ2\x2, Q2 ) + (1 +-+ 2)]
x [;; UfY (z) - f�5 (z))] } , (2.54)

where z = Tj(x1x2) and
JfY (z) -2J:15 (z) = (2.55)

= i [4(1 + z2 ) (ln(l - z)) - 2 1 + z2 lnz + (2
7f

2 

- s) 5(1- z)],3 1-z + 1-z 3 
1:Y (z) - f�5 (z) = (2.56)

= � [(z2 + (1 -z)2) ln ( (l � z)2) - iz2 + 3z + �].
The plus functions are defined in Eq. (2.3 5) in section 2.1.3 . The expression for the double differential cross section is somewhat morecomplicated. For the sake of competeness we will present the result here,
also in MS scheme [8] ( see also [9],[10]). The total differential cross sectioncan be divided into annihilation and Compton terms: 

d2a d2aA d2ac
--- = ---+ ---
dQ2dxF dQ2dxF dQ2dxF' 

where the annihilation term is

and the Compton term

(2.57)

The annihilation part contains both the leading and the next-to-leading orderterms. The LO term is 
(2.60)
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The contribution from NLO annihilation graphs is 

(2.61) 

The dilogarithm function Li2 (x) is defined as Li2 (x) = - ft 
dt 1n(i

t
-t), and the

functions {jA and iI A are given by 

(t1 + i2)(T2 
+ (t1t2)2) 

(t1t2)2(t1 + X2)(t2 + X1)' 
-2

The contribution from the Compton graphs is 

with 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

These results are used in the numerical code [10] applied in the Ref. [III]. 



Chapter 3 

Nuclear effects 

3.1 Parametrization of nuclear effects 

In this chapter we will deal with the nuclear modifications to the parton 
distributions. Our main goal is to obtain expressions for the nuclear mod­
ifications for the parton distributions, i.e. the ratios of nuclear and free 
parton distributions, Rj(x, Q2) = JA(x, Q2 )/ f(x, Q2). Especially we try to 
find constraints for the nuclear gluon distribution. In the previous works in 
this subject [34, 35, 36] the gluon distributions for the nuclei have been al­
most unknown. The only direct constraint for them has been the momentum 
conservation. 

In recent experiments ratio of Fln / F{ has been measured by the NMC 
[16]. Our aim is also to study whether this experimentally observed ratio 
could be explained using the DGLAP analysis of parton distributions. 

As a result, the nuclear effects of parton distributions have been analysed 
and scale dependent expressions for them have been produced (I]. These 
have further been parametrized for practical applications [II]. The analysis 
and the parametrization of the nuclear distributions are explained in detail 
in Refs. (I] and [II]. 

Let us begin with a deep inelastic scattering from a nucleus A with a 
proton number Z. As shown in Eq. (2.23), the nuclear effects in the LO DIS 
cross section factorize into the structure function F2 • In order to find out 
the amount of the nuclear effects, we compare the F,f- to Ff of deuterium. 
Deuterium can to a good approximation be considered as a free proton plus a 
free neutron, without any shadowing effects. This is a reasonable assumption 
since the shadowing corrections to (Ff+ F2)/2 of deuterium are shown to 
be of the order 1 % at x;;:; 0.007 [53]. The choice of deuterium as a reference 
nucleus eliminates also some of the isospin effects. If also the nucleus A is 

19 
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isoscalar, the isospin effects cancel out and the ratio of cross sections reflects 
directly the nuclear effects in parton distributions. 

·writing down the ratio of structure functions of DIS gives

A 2 - F/(x, Q2)
Rp2 

(x, Q ) = F,P (x, Q2) (3.1) 

[Ff A(x, Q2) + p;/A(x, Q2)] + (2Z / A - l)[Ff A(x, Q2) - p;/A(x, Q2)]
Ff D(x, Q2) + p;/D(x, Q2)

(3.2) 

Let us now simplify notations and denote u _ fu(x, Q2) for the known dis­
tribution of u quarks in a free proton, and uA JEIA(x, Q2) for the average 
u-quark distribution in a bound proton of a nucleus A, and similarly for
other quark flavours. For isoscalar nuclei dn/A 

= uA and un/A 
= dA _ We 

will assume that this is a good approximation for the non-isoscalar nuclei as 
well. Using the lowest order QCD improved parton model below charm mass 
threshold, Eq. (2.42) gives 

5(uA 
+ uA 

+ dA +JA)+ 4sA 
+ (2Z - 1)3(uA 

+ uA - dA - JA) 
RA (x Q2) _ A 

F2 ' 
-

5(u + u + d + d) + 4s · 
(3.3) 

To get further constraints for the ratios of nuclear parton distributions 
we use the data of Drell-Yan cross section in pA collisions. The expression 
for the lowest order cross section is given in Eq. (2.53). The ratio of the 
cross sections for pA and pD collisions can be written as 

where 

and we have used the notation qiA) - JJA)(xi, Q2) for i = 1, 2 and q = 

u, d, s, .... The variable Q2 is the invariant mass of the lepton pair. The 
target (projectile) momentum fraction is x2(x1), and x1 = Q2 /(sx2)-
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Let us define the nuclear valence quark distributions as qt qA - q: = 

qA - il and the ratios of nuclear v. free proton distributions as

RA( Q2) - c/(x, Q2) 
li 

x, = q(x, Q2) , RA ( Q2) = 

qt(x, Q2)
qv X, - ( Q2) ·qv x, 

(3.6) 

Similarly we define Rt
+J 

= (uA 
+ JA)/(u + d), Rt_

J 
_ (uA - JA)/(u - d),

R�v -dv 
= (u◊- d◊)/(uv - dv) and for gluons R: _ gA/g. 

Using the notations introduced in Ref. [I] one can now write Eqs. (3.3) 
and (3.4) using the above ratios, multiplied with suitable combinations of free 
parton distributions. Terms Rt_

J 
and Rt-dv 

appear in non-isoscalar part 
only, so concentrating to the isoscalar nuclei reduces Eq. (3 .3) to simplier 
form. Since the DIS data [16, 17, 19, 20] which are used as a constraint for the 
parametrization in this work, are approximately corrected for non-isoscalar 
effects, this assumption can be justified. 

Some further assumptions are needed, since there still are three variables 
to be fixed with two equations. Thus, as a first approximation we take 
R1(x, Q6) = Rt

+J
(x, Q6), Rt(x, Q6) = Ri(x, Q6), and similarly for the va­

lence quarks R�v 
(x, Q6) = Ri

v 
(x, Q6) = R�(x, Q6)- This approximation is 

needed only at the initial scale Q6, in determining the initial distributions 
for the DGLAP evolution. In one of the parton distribution function sets 
used in the analysis, GRV-10 [13], it is assumed that u(x, Q6) = d(x, Q6) 
and thus the corresponding nuclear effects also remain equal throughout the 
evolution. In another set used in the analysis, CTEQ-41 [12], this equality 
is not assumed. 

The above assumptions lead to two equations, one for DIS and one for 
DY, at a fixed scale Q5: 

R:2 
(x, Q5) Alf (x, Q5)Rt(x, Q5) 

+ [A��(x, Q5) + As(x, Q5)]Rt(x, Q5), (3.7) 
Riy(x, Q5) Bt8(x1, x, Q5)Rt(x, Q5)

+ [B{:(x1,x,Q5) +Bs(x1,x,Q5)]Rt(x,Q5) (3.8)

The coefficients Ai8 , A��' As, B(8 , B!� and Bs, defined as in Ref. [I], are 
known exactly but depend on the parametrization of the parton distribution 
set used for a free proton. 

In the following we have chosen Q5 = 2.25 GeV2
, conveniently below the 

charm mass threshold but in the perturbative region. These two equations 
would fix R◊(x, Q5) and Ri(x, Q5), if only the data lied on a constant Q5. 
As this is not the case, the scale evolution is needed to fix the parameters 
iteratively. The outline of the process is following: 
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Figure 3.1: An example of typical parton distributions: xuv (solid), xu (dashed) 
and xg (dotted-dashed) at Q2 = 2.25 GeV2 for a free proton (MRST98 PDF set). 

First, an initial parametrization is created for the ratio R:
2 
(x, Q5). Sec­

ond, R:
2 
(x, Q5) is decomposed into R◊(x, Q5) and Rt(x, Q5). As a further 

constraint for nuclear valence quarks [36, 34), baryon number conservation 

fo
1 

dx[uv(x, Q5) + dv(x, Q5)]R◊(x, Q5) = fo
1 

dx[uv(x, Q5) + dv(x, Q5)] = 3 

(3.9) 
is required. 

At large values of x valence quarks dominate (see Fig. (3.1)) and R:
2 

follows Rt closely. In this region it is practically impossible to determine Rt 
directly from the data alone. Only momentum conservation and the require­
ment of a stable evolution can be used to constrain the sea quark ratio. At 
small x the situation is the opposite, sea quarks dominate and valence distri­
butions are diminishingly small. To solve the problem, we used a piecewise 
construction to parametrize the ratios. At x :S 0.1 Rt is fixed to have the 
same functional form as R:

2 
but with different parameters. This also fixes 

Rt in this region. At 0.1 < x :S 0.4 Rt is fixed simply by assuming a plateau 
in the ratio: Ri(0.l < x < 0.4, Q5) = Ri(0.l, Q5). This artificial plateau 
causes no significant physical effects and it disappears during evolution as 
Rt ratio smoothens. 

At large x the ratios are set to be equal, Rt(x, Q5) = Ri(x, Q5) =

R:
2
(x, Q5). Although the data and the momentum conservation do not show 

directly that there should be an EMC effect for sea quarks, one can conclude 
that there should be one. The EMC effect exists for the valence quarks and 
since the evolution of gluons is affected by the valence distributions, such 
an effect will be generated for gluons, too. As the evolutions of gluons and 
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sea quarks are coupled, an EMC like effect will also be generated for sea
quarks. Thus, assuming that the evolution of the ratios is not very rapid at
the beginning, it is a plausible to assume an EMC effect both for the input
gluon and sea quark distributions.

The gluon ratio Rt(x, Q5) is then estimated using momentum conserva­
tion and the behaviour of R:(x, Q5) at small x. Since the sea quarks are
shadowed at small x, we expect shadowing of the nuclear gluons as well. A
requirement of stable scale evolution can be used together with the recent
NMC data [16] to further constrain nuclear gluon shadowing. At the small
x limit of the DGLAP equations one obtains
0R:

2
(x, Q2)

olog Q2

where we have used the result1 8F2(x,Q2)/81ogQ2 � l0a8xg(2x,Q2)/(27n-)
[48]. Assuming similar saturation for the shadowing of gluons as for Ff, one
can approximate R

9
(2x, Q2) � R

9
(x, Q2) as x ➔ 0. Eq. (3.10) states, that

as the factor xg(2x, Q2)/ Ff (x, Q2) > 0, the derivative of Rp2 
is such that

Rp2 
tends to R

9
. A stable initial condition is thus obtained by requiring

that R
g
(x, Q5) � Rp2 

(x, Q5) at small values of x. If this approximation is
assumed to be valid for all values of x, some momentum would be missing
for all nuclei; for instance for A = 208 the depletion would be ~ 11 %. Thus,
momentum conservation requires quite strong antishadowing for gluons. The
functional form of R� is given in Appendix of Ref. [I].

After the initial parametrization is created in the described manner, the
parton distributions for all flavours are evolved to higher Q2 using DGLAP
evolution equations (2.45). In the evolution we neglected the parton fusion
corrections, as we expect them to be small [36]. The HERA data (23, 24]
shows no evidence of the fusion corrections at Q2 ,2: 1 GeV2 and x ,2: 10-4, and
although the effect should be stronger in nuclei due to its expected A 1/3 

scaling, we should still be in the safe region of x and Q2 values.
The evolution itself is rather straightforward. Writing down Eqs. (2.45)

in a numerically computable form one obtains:
as(Q2) {� [ 1 dy � (1 + z2)xqJ(y, Q2) - 2xqJ(x, Q2)

1r 3 lx y l - z 

+(1+!ln(l-x))xqJ(x,Q2
)}, (3.11)

1 In the corresponding formulae in Ref. [I) factor 2/3 is missing. 
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as(Q2) {� 11 dy � (1 + z2)xq�(y, Q2) -2xq�(x, Q2)
7f 3 X Y 1-z 
111 z

+- dy- (z2 
+ (1 - z) 2 ) xgA(y, Q2)

4 X Y 

+ ( 1 + 1 ln(l -x) )xq1(x, Q2) }, (3.12) 

as(Q2) {� 11 dy � 1 + (1 -z)2
7f 3 X Y Z 

x L x(qA(x, Q2) + qA(x, Q2))
q=all 

flavours 

(3.13) 

Here q� (q = u, d) stands for nuclear valence and q1 (qs = u, u, d, d, s, s, .. . )
for nuclear sea distributions. In addition z = x/y and Ni is number of 
flavours. In our analysis N1 = 3 at the initial scale, and heavy quarks are 
generated by the evolution at their mass thresholds but treated as massless 
in the evolution. 

In order to obtain the shadowing factors, the evolution equations (3.11)­
(3.13) were solved numerically using two independent programs. Integrals 
were calculated using Fortran NAG libraries, and the differential equations 
were solved by using middle point trapezoidal formula ( essentially 2nd or­
der Runge-Kutta) and 4th order Runge-Kutta method [4]. The results were 
practically identical, which confirmed that the numerical evaluation was done 
adequately. The above analysis was performed using both GRV-1O [13] and 
CTEQ-41 [12] parametrizations for the free parton distributions, taken from 
CERN PDFLIB library [57] at the initial scale Q5.

The schematic picture of this procedure is shown in Fig. (3.2): The 
derivative of the parton distribution with respect to Q2 at fixed value of Xi

is obtained by evaluating the integrals from Xi to 1. Especially, the values of 
the distributions at x < Xi do not contribute to the evolution at Xi-

The distributions were evolved from the initial scale Q5 = 2.25 GeV2

up to Q2 
= 10000 GeV2 . As the initial scale for CTEQ-41 is Q5 = 2.56 

GeV2
, the distribution first had to be evolved downwards to 2.25 GeV2 to 
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t t 
t t t t tQ/ . . . . 

Xo 1 

X 

Figure 3.2: Schematic picture of the evolution: at fixed Xi the change of the 
distribution with respect to Q2 is obtained by performing the integrals (3.11)-(3.13) 
from Xi to 1. 

Experiment Xmin Xmax 

NMC C (re) 0.0035 0.65 
NMC Ca (re) 0.0035 0.65 
NMC Sn/C 0.0125 0.7000 
NMC Ca/C 0.0125 0.7000 
NMC C (95) 0.00015 0.045 
E665 Xe 0.00002 0.075 
Re665 0.0002350 0.3087 
E772 C 0.041 0.269 

Q�in [GeV:l] 
0.74 
0.60 
3.2 
3.4 

0.035 
0.03 

0.1500 
25 

Q�ax [GeV2] 

42 
41 

56.8 
66.4 
5.5 

17.9 
22.50 

138 

Table 3.1: x and Q2 regions probed at different experiments. 

keep the analysis consistent. The evolved distributions were compared to 
the data and the initial conditions were modified accordingly. The process 
was repeated iteratively until the evolved distributions fit the data with an 
adequate accuracy. The data are shown in Fig. (1.2), and the x and Q2

ranges of different experiments are also given in Table (3.1). 
As a result, nuclear modifications for both GRV-LO and CTEQ-4L para­

metrizations were obtained. The ratios RJ, Rj, Rt and R:
2 

for an isoscalar
nucleus A= 208 obtained using GRV-LO set are shown in Fig. (3.3). 

Although the difference between the absolute parton distribution sets 
might be as large as ~ 2 for gluons, it turns out that in the ratios RJ, Rj, 
and Rt the set-dependence is quite small [II]. Since the expected difference
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Figure 3.3: Scale evolution of the ratios R�(x, Q2), RJ(x, Q2), Rt(x, Q2) and 
RA (x, Q2) for an isoscalar nucleus A=208. The ratios are shown as functions of
x at fixed values of Q2 = 2.25 GeV2 (solid lines), 5.39 GeV2 (dotted), 14.7 GeV2 

(dashed), 39.9 GeV2 (dotted-dashed), i.08 GeV2 (double-dashed), equidistant in 
logQ2, and 10000 GeV2 (dashed). For R◊ only the first and last ones are shown. 
The ratios were obtained using GRV-10 [13] set for the free parton distributions. 

between the sets is highest at large A and Q2
, the calculated nuclear modi­

fications were compared for A = 208 at Q2 
= 10000 GeV2. The results [II] 

show that the deviation of Rf08 (x, Q2) between the GRV-10 and CTEQ-41 
sets is largest for gluons at small x, of the order of 5 %. Comparing these to 
the uncertainties in determining the initial ratios, especially the shadowing 
at small x, and the behaviour of gluon distribution in general, one can con­
clude that the effect of set dependence can be neglected. The nuclear parton 
distribution for a parton type i in a nucleus A can thus be expressed by the 
terms of a corresponding free parton distribution and the obtained ratio Rf: 

The parton distributions are usually given for the free parton in a proton;

Eq. (3.14) thus gives a parton distribution for a proton bound in a nucleus. 
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Assuming the isospin symmetry, the corresponding distributions can also be 
obtained in a bound neutron. 

As the set dependence of parton distributions in the nuclear modifica­
tions appears to be small, it becomes appealing to provide a set independent 
parametrization for nuclear effects. The original modifications for nuclear 
effects were calculated using 180 values of 10-5 < x < 1, 69 values of 2.25 
GeV2 < Q2 < 104 GeV2 , 8 values of A ( 4, 9, 12, 27, 40, 56, 117, 208) and for 8 
types of parton flavour (uv , dv , u, d, s, c, b, g), making 794880 numbers in 
total. In order to make these nuclear modifications more useful for practical 
applications, a further parametrization of modifications was produced [II]. 
This parametrization, named as EKS98, is presented in detail in Appendix 
A. It provides nuclear modifications Rf (x, Q2 ) for the x and Q2 regions
mentioned above for each parton flavour and A > 2. It is also the first
parametrization of the nuclear effects which has been included in the CERN
PDFLIB library [57].

In Fig (3.4) the ratio Ffn / F? is calculated in four different ways and 
compared to the data measured by the NMC [16]. Two of the curves are ob­
tained directly using the nuclear ratios for GRV-1O [13] and CTEQ-41 [12] 
distributions separately, and two others are calculated by using the EKS98 
[II ] parametrization along with GRV-1O and CTEQ-41 free parton distribu­
tions. The difference between the curves is indeed insignificant. 
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Figure 3.4: The ratio FJn / Ff as a function of Q2 at several different fixed values 
of x [16]. Two of the four curves in the figure are obtained directly using the nuclear 
ratios for the GRV-10 and CTEQ-41 distributions separately. Two other curves 
are calculated by using GRV-10 and CTEQ-41 distributions for free nucleons and 
taking nuclear effects from the EKS98 parametrization. As seen in the figure, the 
difference between the calculated curves is barely visible. 



Chapter 4 

Further constraints for sea quark 

distributions? 

As pointed out in Chapter 3, valence quark distributions dominate the struc­
ture function Ff at l;:i.re;e x .� 0.2 .. 0.3. Therefore, the ratio R�2 effectively 
constraints the valence quark ratio R� but not that of the sea quarks, Rj or 
gluons, Rt. Momentum conservation and the requirement of stable evolution 
are about the only methods to fix sea quark ratio at this region. As explained 
in Chapter 3, we have assumed an EMC effect for sea quark distributions. 
In order to improve the input distribution of the DGLAP analysis and to 
find additional experimental constraints for the nuclear modifications of sea 
quarks, we have studied the nuclear effects in Drell-Yan process at the SPS 
energies [III]. 

The nuclear effects in the Drell-Yan process can be divided into two cate­
gories. First there are effects arising from the dynamics of a collision. These 
can be described as the "genuine" nuclear effects and they also include the 
modifications of parton distributions. Second, the isospin effects, i.e. dif­
ferent relative proton and neutron numbers, cause difference between the 
isoscalar and non-isoscalar pA collisions even if the nuclear modifications on 
parton distributions or collision dynamics were neglected. 

The ratio of the inclusive Drell-Yan cross section in pA v. pD collisions 
was given in Eq. (3.4). For isoscalar nuclei this ratio reflects directly the nu­
clear modifications of parton distributions. For non-isoscalar nuclei, however, 
the isospin effects have to be taken into account. It turns out that the isospin 
corrections are very sensitive for the parton distribution set chosen. In the 
earliest sets it was assumed that u = d. Measurements ofNA51 Collaboration 
showed that this is not the case, but instead the ratio u/d = 0.51±0.04±0.05 
at x = 0.18 [33]. In the study of the behaviour of the sea distributions, we 
have used modern parton distribution sets which take the u =/:- d asymmetry 

29 
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into account. 
. 1 dupA duPP 1 dupA 1 dupD 

We have calculated the cross sections A�/� and A�/ 2 �,which can be formed using the results of NA50 measurements at the CERN
SPS. They have measured the inclusive dilepton production in pp, pD, p-�Be 
and p-1�!W collisions at Eiab = 450 GeV ( vs = 30 GeV), using the rapidity 
range 3 < Ylab < 4 (-0.46 < Yem < 0.54) and mass M around the J /'iJ! peak. 
For M;:: 4 GeV, the mass spectrum is dominated by Drell-Yan dileptons. 

We calculated the above ratios of cross sections using MRST98 ( central 
gluon) parton distribution set [11] and integrating over the NA50 rapidity 
bin. Although the nuclear modifications Rf (x, Q2) are determined in the 
lowest order only, we calculated also the next to leading order cross sections. 
This can be justified because the Q2 evolution of the nuclear modifications is 
slow. The EKS98 parametrization can thus be used as a first approximation 
for the NLO calculations as well. The results in Ref. [III] show that the LO 
and NLO results are very close to each other and the LO results are a good 
approximation to the NLO ones. 

The net effect of nuclear modifications in Drell-Yan ratios turn out to be 
small at the SPS energy Eiab = 450 GeV / c and in the kinematical region 
1 GeV � M � 10 GeV, 3 < Ylab < 4. This is mainly because of two rea­
sons. F irst, the nuclear effects for sea quarks at the probed x2 values are 
small, and second, the corresponding valence distribution is antishadowed 
in this region. These two effects partly cancel each others, leaving only a 
weak net effect. Thus, in this region the experimental measurements are not 
necessarily accurate enough to fix the nuclear modifications. 

In an attempt to find constraints for nuclear sea distributions in the 
EMC region, one must consider larger values of x. This implies using lower 
energies. The N A50 Collaboration has measured the dilepton production 
also in Pb-Pb collisions at E1ab = 158 AGeV (vs = 17.2 GeV). This data 
would provide useful constraints, if only there were data for pp or pD events 
at the corresponding energy. To our knowledge, however, no such data exist. 
In theory the ratio of Pb-Pb v. pp or pD cross sections could be formed using 
pp or pD data from different experiments, rescaled to the correct energy, or, 
by taking them directly from theoretical calculations. 

We have studied the sensitivity of the Drell-Yan cross section to the dif­
ferent assumptions of the sea quark modifications in the EMC region. First 
we calculated t�f Platio of shadowed v. non-shadowed Drell-Yan cross sec-

duPbPb du tions, � / ndM;had , in a normal manner using the usual EKS98 nuclear 
modifications. Second, we used EKS98 for valence and also for sea at x < 0.1 
but assumed no EMC effect for sea. Instead, we interpolated Rs(x, Q2 ) lin­
early from x = 0.3 to the region of Fermi motion, at x;:: 0.8. Third, we set 
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= 1 and used no nuclear modifications for sea quarks at all. The results 
show (See Fig 5. in Ref. [III]) that using EKS98 the net nuclear effect in 
the ratio is of the order of 20 % at masses larger than 7 GeV. In this region 
the other scenarios give only ~ 10 % nuclear effects. At smaller mass values 
the ratios of different scenarios are closer to each other: the ones containing 
nuclear effects show some 5 % depletion at M =3 GeV, while the scenario 
with no nuclear effects for the sea quarks has practically no depletion at all 
at this M. We conclude, that if the measurements of the ratio of Drell-Yan 
cross sections at Eiab = 158 AGeV were made with a precision of~ 5-10 % or 
better, they could be used to constrain the EMC effect of nuclear sea quark 
distributions. 

The effects of nuclear modifications in Drell-Yan process have further 
consequences as dileptons are used in determining the J /w spectrum. Our 
study [III] shows that the slope of the invariant mass distribution of Drell­
Yan pairs is affected by nuclear effects. At J /w peak M ~ 3 GeV the nuclear 
shadowing effect is 5 %, whereas at M 2: 7 GeV it is 20 %, as pointed 
out above. However, the data at large mass values have smaller weight in 
the x2 fits because of large statistical uncertainties, and thus the fits are 
dominated by data around mass values of 4 GeV. The nuclear effects are 
therefore expected to remain smaller than 5 % for the extrapolation of Drell­
Yan cross section from 4 Ge V down to 3 Ge V. 



Chapter 5 

Further constraints for gluon 

distributions? 

As previously mentioned, the initial conditions for nuclear gluon distribu­
tions can be constrained only indirectly using the scale dependence of the 
ratio F,f(x, Q2). Unfortunately, the only measured set of data is the ratio 
Ffn / F? at 0.02 < x < 0.2 by the NMC [16]. At other values of x, gluon 
distribution can be restricted only by the requirement of stable evolution 
and the momentum conservation which provides an overall limit, essentially 
determining the amount of antishadowing of Rt(x, Q5). In order to find ad­
ditional constraints for the nuclear gluon modifications at the initial scale, we 
have studied the heavy quark induced lepton pair production in pA collisions. 

5 .1 Lepton pair production 

The dominant process which produces heavy quark pairs ( QQ = cc, bb) in 
pA or pp collision is mediated via gluons: gg ➔ QQ. These quarks fragment 
into heavy mesons such as D or B, which may later decay semileptonically. 
The resulting lepton pairs therefore carry direct information of the input 
gluon distributions of the colliding hadrons. The ratio of lepton pair cross 
sections in pA and pp collisions, dCJ"PA / dCJ"PP , should thus reflect the nuclear 
modifications of gluons, Rt(x, Q2). To qualify this has been the main goal 
in Ref. [IV]. 

In order to study the Rt dependence of the ratio of cross sections, we 
have calculated the lepton pair cross sections in pA and pp collisions using 
the EKS98 parametrization of nuclear modifications [II] for bound nucleons. 

The general picture of the process is described in Fig. (5.1). The corre-
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Figure 5.1: Lepton pair production in nucleon-nucleus collision. The most 
dominant process is mediated via gluons, which produce a QQ pair. Quarks 
fragment into heavy mesons H H, which may decay semileptonically. 

sponding differential cross section of lepton pair production is 

d<JpA➔ ll+X

dMadYa 

J d3PLd3fJz J d3fJHd3PJ[o(Ma - M(p1,P[)) o(ya - Y(P1,P[))

drH➔l+x (fJH) drH➔I+x (PH) d<JpA➔HH+x
x----- ----� -----

d3Pl d3fJz d3fJHd3PJ[
x0(Ymin < Yl, YI< Ymax)0(cpmin < q)1, c/)r < q)ma;x) • (5.1) 

where we have generically denoted the heavy quarks as Q and heavy meson 
as H, and where Ma and Ya are the invariant mass and the rapidity of the 
lepton pair, defined as 

M(p1,P[) 

Y(P1,P[) 

(5.2) 

(5.3) 

The 0 functions define the acceptance cuts in the detector simulations for 
the rapidity and azimuthal angle of a single lepton. 

The produced mesons may decay semileptonically. The decay rate is 
denoted by dfH ➔l+X (pH)/ d3PL, and it gives the probability distribution that
a meson H with momentum PH decays to a lepton l with momentum PI·

Taking the integrated decay rate to leptons v. anything gives the branching 
ratio, B = f1 /f, the probability that the meson produces a lepton. We have 
used values B = 0.172 for D± and B = 0.105 for B± decay to leptons. 
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Using a fragmentation function Dg to describe quark fragmentation to 
mesons, the H H production cross section can be written as 

where z is the fraction of the parent quark momentum carried by the final 
state meson. There are several different models for fragmentation functions. 
In this work we have chosen the simplest one, the delta function fragmenta­
tion, Dg(z) = 5(1- z), which assumes that each quark will always produce 
one hadron. The results have also been confirmed using another typical frag­
mentation function, the Peterson et al. fragmentation [52], in which the 
meson momentum is smeared according to 

(5.5) 

The normalization, N, is fixed by the requirement LH Jl dz Dg (z) = 1. 
The peak of the fragmentation function is at z � 1 - 2EQ with a width 
EQ � (mq/mQ)2. We have assumed e.g. that all the c quarks fragment into 
D mesons so that H = D for charm. In the ratio of pA v. pp cross sections 
the difference caused by different fragmentation schemes is negligible. 

The hadronic heavy quark production cross section per nucleon in pA 
collisions can be factorized into the general form 

� fo
1 

dx1 fo
1 

dx2 ff (x1, Q2)J/(x2 , Q2)EQE
Q 

i,J 

X 

daij➔
QQ 

d3fJQd3'f¾ 
(5.6) 

The parton distributions are evaluated at the scale Q2 ~ m} = p} + mt. To 
lowest order, LO, the partonic cross section is 

where p1 and p2 are the four momenta of the incoming partons. 
Finally, the cross sections for lowest order (LO) subprocesses for heavy 

quark pair production, convoluted with parton distributions can be written 
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as 

When summed (averaged) over final (initial) state colours and spins, thesquared matrix elements can be written as (see e.g. Ref. [51]) 
64 7r20:2 

L 1Mgg➔QQ l2 = 9 .§2 s {(m2 -£ )2 
+ (m2 - u)2 

+ 2m2s}, (5.9)
and 
L 1Mqq➔ QQl2 

= 
(5.10) 

2 2 [12( 2 �( 2 A) 8 (m2 -i)(m2 -u) - 2m2(m2 + i)7r as .§2 m -t; m - u + 3 (m2 -£)2 
8 (m2 -i)(m2 - u) - 2m2(m2 

+ u) 2 m2(s -4m2) 
+-----------------�---3 (m2 - u)2 3 (m2 - i)(m2 -u) 

_ 6(m2 _ i)(m2 _ u) + m2(u _ i) _ 6(m2 _ i)(m2 -u) + m2(t -u)l ·s(m2 - i) s(m2 - u) 
The corresponding lowest order QCD graphs are shown in Fig. (5.2). The total normalization, a-PA

➔ll = B2a-pA-.HfI = B2a-pA-.QQ, is obtainedby integrating Eqs. (5.1) and (5.4) over the total phase space. Let us alsodefine expressions for the double differential distribution, 
da-QQ l 1 [ 1 da-pA➔QQ+X

] d3 .... d3 .... = E E- A EQ EQ d3 .... d3.... PQ 'PQ Q Q PQ 'PQ 
and the total cross section of QQ production per nucleon, 

d- QQ 
Jd3 .... d3.... o-PQ 'PQ-d3-.... -d3-.... -PQ 'PQ
J daij-.QQ dp}dy1dY2 L xiff (x1, Q2)xd/(x2, Q2) ij dt 

(5.11) 

(5.12) 
where x1,2 = mr / ,/s ( e±Yi + e±Y2 ). The rapidities of the heavy quarks are 
y1,2. The total QQ cross sections per nucleon in pp and pA interactions are presented in Table (5.1). 



36 CHAPTER 5. FURTHER CONSTRAINTS FOR GLUON DISTRIBUTIONS?
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Figure 5.2: Lowest order QCD diagrams for QQ production. Above: the qq --+ 
QQ. Below: gg --+ QQ

SPS (A= 208) [µb] RHIC (A= 197) [µb] LHC (A= 208) [µb] 
~cc 
(;pp 1.188 143.7 6137 
~cc 
O"pA 1.282 140.1 4826 
-bb
(;pp 1.674 X 10-5 1.412 251.9 

-bb
O"pA 1.464 X 10-5 1.513 226.7 

Table 5.1: The total QQ production cross sections per nucleon in pp and pA 
interactions. 

5.2 Correlated v. uncorrelated pairs 

In pA collision, along with correlated lepton pairs, i.e. leptons from same 
nucleon-nucleon subcollision, a number of uncorrelated pairs are produced. 
Since in general one would like to concentrate on correlated or uncorrelated 
pairs alone, separation of these different pairs is vital. In the Ref. [IV], 
we have also estimated the relative amounts of correlated and uncorrelated 
lepton pairs. To start with, we assume that all subprocess interactions are 
independent and _the number of interaction can be described by a Poisson 
distribution. Let N QQ be the average number of pp interactions per collision.

We consider the impact parameter integrated QQ cross section, 

where b is the impact parameter and the number of produced QQ pairs is 
N QQ(b) = TA(b)o-QQ_ Multiplying it with the unit normalized QQ distribu-
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tion to power N and differentiating with respect to d3pQd3'hJ we get 

(5.14) 

The power N and the delta functions have been written as a product and a 
sum, respectively, in order to separate the subcollision to which they belong. 
This is indicated by indices j and k. For correlated pairs j = k, stating that 
Q and Q originate from the same subcollision, whereas j =J. k means that 
they come from different subcollisions. 

Using the definition of the nuclear overlap function, TAB(b) = J ds TA(s) x 
x TB (b - s) with A = B, and assuming Woods-Saxon distribution for the nu­
clear density, we get J d2s T](s) = TAA(O) = A2 /(1r R�)- Thus, for correlated 
pairs we find 

dapA
➔QQ+X daQQ corr A----

d3fJQd3PcJ = d3fJQd3'hJ '

while for uncorrelated pairs 

dapA
➔QQ+X A2 daQQ daQQ uncorr 

d3fJQ d3'hJ n R� d3fJQ d3'hJ . 

(5.15) 

(5.16) 

As seen in Eq. (5.16), the cross section of uncorrelated pairs is a product 
of two independent single quark cross sections. This fact can be utilized to 
study the ratio of cross sections of uncorrelated lepton pairs from pA and 
pp collisions. The uncorrelated ratio would probe the square of the nuclear 
modifications, (R:)2, instead of R: as the correlated ratio does. 

5.3 Numerical calculations 

We calculated the lepton pair cross sections by generating numerically lepton 
pairs in proton-nucleus collision using a Monte Carlo method. For simplicity 
we have assumed a nucleus to consist of A protons. As the gg ➔ QQ is 
the dominant process for heavy quark production, and as the gluon parton 
distribution is the same for protons and neutrons, this assumption will not 
significantly affect on the results. We used MRST98 LO (central gluon) 
parton distribution functions [11] from PDFLIB [57] along with EKS98 [II] 
nuclear modifications. Factorization scale was chosen to be Q2 

= 4m} for cc 
and Q2 

= m} for bb.



38 CHAPTER 5. FURTHER CONSTRAINTS FOR GLUON DISTRIBUTIONS?

The c quark fragments into n+ , D0 and Ds mesons with relative respec­
tive weight 1:1:0.3 [56]. However, in this study we neglected Ds mesons, 
which should not affect significantly the results. The other quarks were frag­
mented similarly: c --+ n- and D0

; b --+ B+ and If; and b --+ B- and 
Bo. 

We used JETSET /PYTHIA [56] subroutines to describe the decay of 
mesons. To obtain statistically adequate results we created 2 x 106 QQ pairs, 
and let each let each pair separately fragment and decay 103 times. Factor of 
two originates from the fact that the uncorrelated lepton pairs were formed 
from two different QQ pairs. 

We then searched all the e±e=i= , µ
±

µ=i= and e±
µ=i= pairs, and binned them 

according to their mass and rapidity. We also calculated the average (x1), 
(x2) and ( Q), as well as the average of their squares, for each (Y([, M11) bin. 

The pp and pA results were calculated for SPS ( Js =17.3 GeV), RHIC 
( Js =200 GeV) and LHC ( Js=5500 GeV), using the same center of mass 
energies as in AA collisions to probe the same x values in all collisions. At 
the SPS and LHC, we assume a Pb (A=208) target and an Au (A=197) 
target at RHIC. 

Detector based rapidity cuts were imposed, but generally we did not at­
tempt to simulate the features of different detectors. For instance azimuthal 
angle cuts as well as minimum energy cuts were not included. 

5 .4 Ratio of lepton pair cross sections 

The ratio of cross sections of lepton pairs, 
do-PA /dM 

r =----

u 
- do-PP /dM 

(5.17) 

for correlated e±e=i= and µ
±

µ=i= pairs from DD and BE decays in pA and pp 
collisions is shown in Fig. (5.3) at the SPS, RHIC and LHC energies (solid 
curves). The cross sections are integrated over the pair rapidity. These ratios 
are compared to the nuclear gluon modifications, R

9
(x, Q) at x = (x2), and 

both at Q = (Q) (dashed curves) and Q = � (dotted-dashed curves). 
The Fig. (5.3) shows that the ratio R: indeed follows closely the ratio of 
cross sections r 

u
· The higher the energy, the better is the agreement. The 

difference between r u and R: is caused partly because some of the QQ pairs 
are produced through the qq --+ QQ channel, and partly by the phase space 
integration, as explained in Ref. [IV]. 

Similarly, the ratios of uncorrelated cross sections were compared to 
(R:)2. The behaviour is similar as in the correlated case, now only the 
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Figure 5.3: The ratio of e±e=F and µ
±

µ'f pair cross sections from correlated DD

and BB decays in pA and pp collisions, ru , at SPS, RHIC and LHC energies (solid 
curves). The nuclear gluon distribution, R1(x2, Q), at (x2) and (Q) ( �) of 
each Ma bin is indicated by the dashed (dotted-dashed) curves. 

difference between r�ncorr and (R:)2 is slightly larger. This is due to the
increased phase space effects as the integration over the rapidity of one of 
the leptons allows a larger phase space for the other one. 

The results are encouraging: measurements with sufficient accuracy could 
be used to pin down the behaviour of nuclear gluon distributions at different 
regions of momentum fraction x.



Chapter 6 

Conclusions 

We have studied the nuclear effects of parton distributions, with our main 
goal to obtain expressions for the nuclear modifications for the parton dis­
tributions, the ratios of nuclear v. free parton distributions. We have also 
studied ways to find constraints for sea quark and gluon distributions. As 
comparison to experiments we studied whether the observed Q2 evolution of 
FJn / F� can be described in terms of DGLAP evolution. 

We based our analysis on the experimental data only and did not use 
any specific model of nuclear effects. Using data from deep inelastic lepton­
nucleus scattering and Drell-Yan experiments we have produced a scale de­
pendent parametrization of nuclear modifications of parton distributions. Us­
ing the produced parametrization we have calculated the ratio of structure 
functions of tin v. carbon, FJn / F2c. Our calculations are in good agreement 
with the corresponding NMC data, as shown Fig. (3.4). Although the higher 
twist, ~ 1/Q2

, effects are interesting in the low Q2 region, they do not seem 
to play a significant role in the observed scale evolution and the leading order 
DGLAP analysis is sufficient to explain the observed phenomena, at least in 
the region x 2; 0.01 and Q2 > 2.25 GeV2

. 

As additional constraints for the nuclear modifications are still needed, 
we have further studied the EMC region of sea distributions. By assuming 
several different scenarios for the behaviour of sea distributions, we have 
shown that the assumed EMC effect of sea quarks, if really there, could be 
observed in the Drell-Yan process. Although the effect turns out to be small 
in pA collisions, it could be detected for example in the Pb-Pb collisions at 
SPS with E1ab = 158 AGeV. 

In attempt to find restrictions for the nuclear gluon distributions, their 
effect on the ratio of lepton pair cross sections in pA and pp collisions was 
studied. The ratio of cross sections of lepton pairs reflects quite well the 
nuclear gluon modifications and can be used to probe them, assuming that 
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the experimental measurements can be done with sufficient accuracy. Several 
such measurements have been proposed. The NA60 experiment at the SPS 
l59], the PHENIX detector at RHIC l60] and the ALICE detector at LHC 
[61] provide all a possibility to measure nuclear effects at different -Js and x
regions. At NA60, a 20 % antishadowing in Rt induce a 10 % enhancement
in the ratio of cross sections. The measurements within this accuracy would
fix the nuclear gluon distribution at region 0.17,:S x ,:S 0.4. At higher energies
the gg channel becomes more dominant and the Rt follows the ratio of cross 
sections more closely. At RHIC, the PHENIX detector could be used to 
measure the heavy quark production with x values as low as 3 x 10-3

. The 
ALICE detector at the LHC goes even lower, down to 3 x 10-5

_ 

Generally it appears that this study explains well the scale dependent be­
haviour of parton distributions in nuclei. However, plenty of future work still 
remains. A procedure in which new data could be automatically included 
would be very useful. Also a proper x2 minimization should be included into 
the determination of the initial effects Rf (x, Q5). The next-to-leading order 
calculations would provide a more consistent analysis, although we do not 
expect the NLO effects affect very much the ratio of parton distributions. 
Also the higher twist effects both in evolution and in multiple scatterings 
require further analysis. The parametrization method could also be stream­
lined: instead of parametrizing the ratio F.f / Ff at the initial scale Q5, one 
could parametrize directly the ratios R� and Ri at this scale. 

In this study we have not utilized the neutrino data for structure functions 
F2 and F3 , because of their limited statistic [62]. The neutrino data with 
increased statistics and mass number systematics could be taken into account 
in the analysis in the future. 



Appe11dix A 

EKS98 parametrization 

In the Ref. [II] the nuclear parton distributions have been parametrized1 

for each parton flavour (uv, dv, u, d, s, c, b, g) and for 8 values of A( 4, 9, 12, 27, 40, 56,117,208) at 180 values of 10-6 < x < l and 69 valuesof 2.25 GeV2 < Q2 < 104 GeV2
. This makes 794880 numbers in total. Forpractical purposes we have introduced a further parametrization of the nu­clear modifications by parametrizing each of the above variable separatelyusing MINUIT Fortran code [58] for x2 minimization. The outline of the parametrization is following: First, the Q2 dependencewa.s parametrized using a function

with the initial conditions Ro = Rk ( x, Qf, A) and z = log( Q2 /Qi). Scale Qfis the minimum Q2 for each parton: for light quarks and gluons it is Q5, andfor c and b it is the mass threshold: 
Q2_

1-

Q2_
1-Q2_
1-

Q5 = 2.25 GeV2 

2.54958 GeV2 

21.3474 GeV2 

for Uv, dv, u, d, s and g,

for c,
for b.

(A.2)
(A.3)
(A.4)

The x dependence of the coefficient functions (p}(x, A), p�(x, A) andpi(x, A)) was then fixed using a piecewise construction with 10 functions: 
Pt(x, A)= 
{ PiO(A) + kf(A)z' + kt(A)z'2 

+ k1(A)x' + k!(A)x'2 if
c + k�(A)x + k�(A)x2 

+ kHA)x3 
+ ki(A)xE 

+ kt(A)z
(A.5)

X < X116 

if X > X116,

1 The numerical work for the parametrization is done mainly by C.A. Salgado. 
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where z' = In(x/x0), z = ln(x/x116), x' = x - x0 and x = x - x116. The 
parameter C is fixed by the continuity of Pi at x = x116, where x11 6 is the 
116th element in the x grid. In addition, x0 _ 10-6

, PiD(A) = Pi(Xo , A) and 

E = { 19
27 

for P1 and P2 
for p3. (A.6) 

Next, the A dependence of each of the 10 previous coefficients (including 
Pio) was parametrized using a function 

(A.7) 

with z = ln(A/4). 
As a result, the parametrization is described with 3 x 10 x 8 x 3=720 

numbers plus the initial conditions for Rk of each parton flavour at Q2 = Qf 
as a function of x and A. 

Finally, the A dependence of initial conditions Rk are also parametrized 
using a similar functional form as in (A.7): 

(A.8) 

where, as before, z = ln(A/4). In this manner the initial conditions can be 
described with 180 x 3 x 8 numbers. 

As the ratios Rf are approximately set-independent [II], the absolute 
parton distributions of protons in a nucleus A with Z protons and (A - Z) 
neutrons can be obtained simply by multiplying the parton distributions ff 
of any modern lowest order set by parametrization Rf. 

(A.9) 

Assuming the isospin symmetry, the corresponding distributions can also be 
obtained for the bound neutrons. 

Based on this parametrization, a Fortran code named as EKS98 [II) 
was created and released for public use. It provides nuclear modifications 
Rf (x, Q2) for 10-5 S x S 1, 2.25 GeV2 S Q2 S 104 GeV2 and 2 S A for each
parton flavour i = (g, uv , dv , u, d, s, c, b). This code has also been included 
in the recent version of the CERN PDFLIB library [57]. 
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