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Abstract
The foundations of AI design discourse are worth analyzing. Here, attention is paid to the nature of theory languages used 
in designing new AI technologies because the limits of these languages can clarify some fundamental questions in the 
development of AI. We discuss three types of theory language used in designing AI products: formal, computational, and 
natural. Formal languages, such as mathematics, logic, and programming languages, have fixed meanings and no actual-world 
semantics. They are context- and practically content-free. Computational languages use terms referring to the actual world, 
i.e., to entities, events, and thoughts. Thus, computational languages have actual-world references and semantics. They are 
thus no longer context- or content-free. However, computational languages always have fixed meanings and, for this reason, 
limited domains of reference. Finally, unlike formal and computational languages, natural languages are creative, dynamic, 
and productive. Consequently, they can refer to an unlimited number of objects and their attributes in an unlimited number 
of domains. The differences between the three theory languages enable us to reflect on the traditional problems of strong 
and weak AI.

Keywords Artificial intelligence · Theory languages · Formal languages · Computational languages · Natural languages

1 Introduction

Traditional electromechanical technologies are built on inno-
vative ideas concerning either energy or materials (Bernal 
1969; Derry and Williams 1960; Wiener 1948). Future 
intelligent information technologies will be characterized 
by intelligent information processing (Ford 2014; Fukuda 
2020; Tegmark 2017) and will accomplish numerous tasks 
previously requiring human involvement (Bringsjord and 
Govindarajulu 2020; Minsky 1967; Newell and Simon 1972; 
Russell and Norvig 1995). Consequently, these new tech-
nologies will replace people in various areas. For instance, 
in the near future, autonomous cars, ships, and aircraft will 
transport goods with minimal proximal human effort. Ulti-
mately, intelligent and autonomous systems may become 

ubiquitous, following people from the cradle to the grave 
(Ford 2014; Fukuda 2020; Gungel 2012; Tegmark 2017).

An important instrument in the ideation and application 
of intelligent technologies is theory languages, particularly 
their capacity to determine the scope and limits of intel-
ligent technologies in contemporary society (Saariluoma 
1997). All new ideas and thoughts must be expressed and 
explicated, and for this reason, the theory languages used in 
design work are crucial as they impose limits on research-
ers’ and designers’ thinking (Kant 1781/1976; Kuhn 1962; 
Saariluoma 1997; Wittgenstein 1921/1961).

The foundations of all learning and intelligent think-
ing are engraved in the concepts used by researchers and 
designers. The conceptual limitations of a theory language 
are demarcated by observations, facts, theories, and design 
ideals (Saariluoma 1997; Saariluoma et al. 2016). The foun-
dations of science-based activities entail both an explicit 
and tacit understanding of life and the world. The limits of 
theory languages restrict hypotheses and truths as well as the 
intuitive presuppositions underlying researchers’ thinking 
(Saariluoma 1997). A way forward in research and design is 
to explicate these presuppositions and thereby further clar-
ify how researchers think (Wittgenstein 1953). This kind of 
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reflective scientific activity is called foundational analysis 
(Saariluoma 1997).

The main characteristic of an intelligent society is cap-
tured in the concept of intelligent information processing 
(Floridi 2011, 2013; Newell and Simon 1972; Saariluoma 
et al. 2016). People encode and process information, but 
many technical artefacts can also process information (New-
ell and Simon 1972; Turing 1936–1937, 1950). Therefore, it 
is logical to study the theory languages used in representing 
information in the human mind, in machines, and in their 
collaborative processes.

Digital intelligence and intelligent technologies are 
grounded on a single but versatile notion: information 
(Floridi 2011, 2013; Newell and Simon 1972; Wiener 1948). 
Both technological and human intelligence is possible inso-
far as it is possible to represent reality and to manipulate 
these representations (Petzold 2008; Turing 1936–1937, 
1950). Thus, it is also possible to imitate states of affairs and 
even to hypothetically analyze possible states. Such repre-
sentation manipulation processes have been called informa-
tion processing (Floridi 2011, 2013; Kåhre 2002; Lindsay 
and Norman 1977; Newell and Simon 1972).

According to Wiener (1948), information is neither mat-
ter nor energy but instead belongs to its own ontological 
domain. It can be said that our era is one that, to a sig-
nificant degree, emerged from the scientific conceptualiza-
tion of information around the time of the Second World 
War (Aspray 1985; Waldrop 2018). This conceptualization 
served as the basis for mathematical communication theory, 
computer science, and AI (Russell and Norvig 1995; Shan-
non 1948). Through the notion of the mind as an informa-
tion processing system, information processing also con-
stitutes the core of cognitive science (Floridi 2011; Newell 
and Simon 1972; Turing 1950). While the electromechani-
cal substrate of AI is a necessary and important domain of 
human innovation, it is also clear that the construction and 
development of information processes that accomplish tasks 
are equally, if not more, important.

1.1  Aspects of information

Information stands for something and represents various 
states of affairs. Information can be approached from differ-
ent conceptual perspectives. The most common conceptual 
system used in investigating information is the mathemati-
cal theory of information or communication. This theory 
was developed by Shannon (1948) in the late 1940s (Floridi 
2011, 2013). The core problem of traditional information 
theory was determining how to measure the amount of infor-
mation (Kåhre 2002; Shannon 1948; Shannon and Weaver 
1949).

The original concept of information as a quantitative 
measure is a powerful notion in technical design but is 

unsatisfactory with respect to other aspects of informa-
tion. Quantity cannot express what information is about, 
or its quality, and for this reason many researchers have 
sought to extend the original idea by studying the seman-
tic aspects of information (Bar-Hillel and Carnap 1953; 
Floridi 2013; Hintikka 1973). Semantic information refer-
ences reality and as such can express actual-world states 
instead of mere symbols.

As semantic information can express actual-world 
states, it has, consequently, truth values (Bar-Hillel and 
Carnap 1953; Floridi 2013). When the focus is only on the 
amount of information, it is not easy to determine whether 
the information is true or false, because one must know 
the content of the information before it becomes possible 
to decode its truth value. The two main conceptions of 
information in cognitive science have been thus far met-
rical and semantic. Here, we will extend the analysis of 
information to the information content of messages or to 
mental content (Myllylä and Saariluoma 2022; Saariluoma 
1997, 2001; Saariluoma and Rousi 2015). Thus, instead 
of asking how many bits it takes to convey “My Aunt is a 
lunatic”, we ask what this information means in the minds 
of the people to whom it is communicated. We especially, 
we focus on the relevant information contents in mental 
representations.

1.2  Turing’s legacy

Ever since Aristotle (1984), at least, it has been a common 
practice to abstract the formal structures of representa-
tions. Instead of analyzing representations on the concrete 
level, e.g., “All human beings are mortal”, “Socrates is 
a human being”, and thus “Socrates is mortal”, one can 
study the general structure “All A are M, S is A, and thus 
S is M”. Abstraction makes the representation general, 
and by substituting concrete information with the vari-
ables A, M, and S, one can build an unlimited number of 
respective inference patterns. Abstraction extracts a pat-
tern from a concrete context by removing its content. The 
very notion of abstraction implies both what is lost and 
what is gained. What is gained is universality and what is 
lost is particularity. This seems almost painfully obvious, 
but the implication, in terms of AI and its fundamental 
limitations, is significant.

Aristotle’s idea was developed further in the works of 
Leibniz (von Wright 1956). He understood that a step for-
ward could be the formalization of inference operations 
or transformation rules. He presented the idea that one 
could generate one representation from another by deduc-
tion (Passmore 1957; von Wright 1956). This means that 
abstract representations could be transformed into new 
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representations by following inference rules, like moves 
on a chessboard. Leibniz thus created the idea of calculus,1 
a formal system whereby scientific and even metaphysical 
issues could be settled based on the mechanical manipula-
tion of symbols alone, or the sc. characteristica universa-
lis (von Wright 1956). This fundamental idea later became 
the foundation of formal information processing thanks to 
Alan Turing (19351936, 1950).

Turing’s thinking demonstrated that it was possible to 
manipulate information on artificial substrates that possessed 
a quasi-autonomous character or independence from imme-
diate human involvement. One representation can be trans-
formed into another—the insight, which made deciphering 
the Enigma possible (Hodges 2014). There is not necessarily 
anything qualitatively new in conclusions compared to infor-
mation in premises. These kinds of inferential processes take 
place in the thinking human mind (Hodges  2014; Newell 
and Simon 1972; Turing 1950). Transformation processes 
can be called, in some sense, intelligent, and digital intelli-
gence in particular is based on the possibility of representing 
information and manipulating or processing such represen-
tations into other representations. This is a significant step 
forward, as these tasks were previously performed only by 
the human mind. While it is clear that this type of theorizing 
does not as such address the origin of premises, representa-
tions, or the creative character of thought more broadly, this 
omission does not undermine its achievements.

The key feature of digital intelligence can be found in 
its fundamental discreteness and clarity, which manifests 
in, for example, stepwise time, discrete symbols, and syn-
tactical rules (Anderson 1993; Newell and Simon 1972). It 
is based on the possibility of representing information and 
manipulating or processing such representations into other 
representations, in such a way that a change in the mechani-
cal processor becomes coincident with a change in the 
representation. The human mind, as it were, extends itself 
outward to the world and maps an aspect of itself (an infor-
mation process) on physical causal processes. In this pro-
cess, the human mind organizes the physical system into a 
mechanism that corresponds to the information process. The 
coherence between representations and physical processes 
is constructed by the human mind using relevant conceptual 
languages (Saariluoma 1997). The level of human involve-
ment needed (and where it is needed) depends partially on 
the developmental stage of technology. Today, aspects of 
computer programming, such as assembly, have become so 
well-specified that they can be automated.

In practice, information-processing machines can accom-
plish many tasks typical of human beings. Even within their 

foundational limitations, originating as numerical calcula-
tors, intelligent information processing systems have become 
extremely powerful (Boden 2016; Russell and Norvig 1995). 
This is why it makes sense to consider the foundations of 
representation languages when thinking about intelligent 
information technologies.

2  Theory languages for processing 
information

Floridi (2011, 2013) pointed out how abstraction levels 
matter in our thinking about information processing. The 
main question in this regard is what the theory languages of 
abstraction are and how these languages affect the innovative 
thinking used in creating an intelligent society.

Theory languages are discourses or language games that 
researchers use when they investigate some specific problem 
(or theme) and design technologies to solve this problem 
(Foucault 1972; Habermas 1981; Wittgenstein 1953). Thus, 
set theory, calculus, and topologies are common theory lan-
guages used to investigate the relevant problems of mathe-
matics. Neuroergonomics, Kansei engineering, and usability 
are examples of human-technology interaction (HTI) design 
languages (Saariluoma et al. 2016).

Theory languages are limited in their capacity to express 
problem-relevant information (Saariluoma 1997). Thus, 
historically, behaviorism in psychology excluded attention, 
memory, and even thinking from the focal areas of psycho-
logical research and, for this reason, it could not investigate, 
for example, human information processing (Lindsay and 
Norman 1977; Watson 1914).

In creating intelligent technological systems, researchers 
and designers need domain- and problem-specific theory 
languages. Here, we will focus on three different theory 
language types important in constructing intelligent tech-
nologies: formal languages (Kleene 1971; Salomaa 1985; 
Turing 1936–1937), computational languages (Avison and 
Fitzgerald 1995; Boden 2016; Harnad 1990), and natural 
languages (Carstairs-McCarthy 2001; Chrystal 1971; Lyons 
1977, 1995; de Saussure 1983).

2.1  Formal languages—their scope and limits

By formal languages, we mean symbolic languages that do 
not have specified and concrete references to the world and 
its entities, events, or ideas. The symbols, syntactic rules, 
and expressions of formal languages are content- and con-
text-free symbolic constructions. On the other hand, one 
cannot claim that formal expressions are necessarily arbi-
trary or randomly irrational. Rather, they are symbolic con-
structions with their own construction rules (Kleene 1971; 
Salomaa 1985). “The world” of abstract formalisms has a 

1 In the original sense, not the branch of mathematics Leibniz devel-
oped along with Newton.
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kind of pristine clarity and strict lawfulness that it seem-
ingly achieves by “rising above” particular facts of the mat-
ter. Typical examples of formal languages are mathematics, 
formal logic, and general-purpose programming languages 
such as C#, Lisp, or Python.

It may be too extreme to say that formal logic or pro-
gramming languages, for example, have no interpretation or 
meanings. One may claim that these languages have minimal 
interpretation, and that one goal of the formal approach is 
to discover valid, algorithmic, and syntactic processes for 
reasoning that do not refer to the content of the expressions 
beyond the necessary minimum. Strictly speaking, program-
ming languages have their references in machine states and 
memories. However, they do not have any other real-world 
references, unless such references are constructed (turning 
them into what we call computational languages).

Formal theory languages have syntactic properties (Salo-
maa 1985). The process of creating a formal language is thus 
based on creating a system of formal symbols and a formal 
axiomatic. Syntax defines the conditions for well-formed 
representations and possible rules for their transformation 
(Kleene 1971; Salomaa 1985). Operations in a formal theory 
language, such as concatenation, are largely content-free 
(Salomaa 1985).

In practice, formal languages can have semantics refer-
ring to sets with members, or so-called model sets. Then, the 
truth of a formal expression can be defined on the grounds of 
a reference to the model set. Expressions are true if the state 
of affairs they define is true in the defined model set. How-
ever, members of the model set do not have actual-world 
references. They form a section of the actual world, but this 
section is too abstract to be directly used in actual-world 
actions.

One can express the intuitive ideas above more systemati-
cally by stating that a formal language has.

1. a set of alphabets as words, which do not yet have refer-
ences to the actual world

2. a set of rules defining how symbols can be syntactically 
combined

3. a set of rewriting rules outlining how one can derive 
from a set of symbols another set of symbols

  Additionally, the following rules apply to expressions 
in a formal language:

4. The semantics of formal expressions can be defined in 
a model set that has elements, but the elements do not 
have concrete actual-world references.

5. The truth of a formal expression is defined on the 
grounds of the prevailing states of affairs in the model 
sets.

6. The expressions of formal languages need only have 
abstract semantics of truth values.

Formal languages are explicitly abstract and essentially 
context- and content-free. Thus, one can study the abstract 
properties of expressions without binding these expressions 
to the specific and concrete properties of any actual-world 
contexts—physical, behavioral, or social. Elementary sen-
tences refer to any object or any state of affairs, and this 
has the consequence that one cannot use formal languages 
to separate concrete objects. On the formal level, people, 
potatoes, or legal statements are equal, although in the actual 
world, they are very different. Abstraction makes expres-
sions minimal in content, and for this reason, formal lan-
guages have problems expressing important actual-world 
concepts. The expressions of formal languages can be sense-
ful or senseless, and as such one cannot ground all of the 
intelligence on any formal language.

Formal languages cannot be used as the sole grounding of 
intelligent information systems. Moreover, formal language 
expressions cannot be used to solve problems of relevance. 
Relevance refers to meanings and to which elements belong 
to one definable group or another. Relevance is a mechanism 
that defines a set of meaningful and meaningless items. This 
operation is not possible in any formal language. The key 
point is that it is impossible strictly from within the language 
(Gödel 1962; Rosen 1991). One can combinatorically divide 
any model set in a number of ways, but there is no formal-
level possibility to decide what or which of the divisions is 
better than the other combinatorial possibilities. Therefore, 
it is essential to shift our attention to partially interpreted 
languages.

2.2  Computational languages

Formal languages such as formal logic or general-purpose 
programming languages are content-free, and they cannot be 
connected with the actual world, but their expressions and 
truth values have been defined by means of model sets (Hin-
tikka 1973). However, it is possible to construct meaningful 
actual-world semantics for formal languages. Their syntactic 
structures and terms can be associated with actual-world 
entities, relations, and events (Minsky 1968).

Theory languages that have actual-world references and 
semantics are called here computational languages. We dis-
cuss computational here in a wider sense, of course than 
mere numerical calculation. Examples of computational 
languages are languages of any system of signs in which 
terms refer to the actual world and thus have actual-world 
references. Simulation models and many engineering design 
languages, such as digital twins, and human digital twins 
provide relevant examples (Boden 2016; Jones et al. 2020; 
Saariluoma et al. 2021). Calculating provides an interesting 
example. Consider the following sentence: “Two apples and 
three oranges make five fruits.” Is this a formal, compu-
tational, or natural language statement? On the face of it, 
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it must be in natural language. But it contains a computa-
tional language that combines a real-world reference and a 
mathematical process that gives the statement coherence. 
Formal it is not, although it could be expressed formally 
by evacuating the content and references. A further point is 
that computational languages are referentially individuated 
based on a functional purpose: digital twins, for example, 
have a purpose for their references (which are selected for 
the computation) and the calculating example could have a 
functional purpose of making the process more intuitive for 
a child or relevant for the purposes of a shopkeeper.

Computational languages are different from formal lan-
guages, such as programming languages, that are used to 
craft them. They are on a linked but separate level. A pro-
gramming language refers to machine operations, strictly 
speaking. A computer program is typically built on the basis 
of a programming language. However, by way of human use, 
a computer program smuggles in a reference to the actual 
world either tacitly or explicitly. This aspect of programs and 
programming—a part of what we refer to as computational 
language—seems to have rarely been noticed explicitly.

Computational languages are built on formal languages 
by giving interpretations i.e. defining references in the actual 
world to formal symbols and their relations. The references 
can be imagined objects and things, as in games. They can 
be physical states encoded by sensory systems. They always 
have unique references in the actual world. However, the 
references are fixed and they cannot vary on the spot. Of 
course, it is possible in neural networks to modify inputs 
and intermediate symbols, but they have static meanings. 
The fundamental point is that while formal languages are 
content-free, computational languages have content given to 
them, but they do not have the power to generate or create 
content (Searle 1991).

A crucial difference between formal and computational 
languages is found in interpretations, meaning-giving, or 
symbol grounding (Harnad 1990). By meaning giving or 
symbol grounding, we refer to the process by which symbols 
and syntactic structures are associated with actual-world 
entities, events, or ideas. In formal languages, symbols or 
syntactic operations do not have any references to aspects 
of the actual world but to model sets only (Hintikka 1963, 
1973; Kleene 1971; Salomaa 1985). In principle, they can 
have such references, as the logical symbol “A” or the num-
ber “n” can refer to all of the entities of the actual world, 
and the number “n” can also refer to all of the entities whose 
number is n, but they do not have any concrete content.

Arithmetic operations can be organized into functions 
that, for instance, make a system move a knight in chess, 
calculate a statistical analysis, or imitate how turbines 
work. If computational operations are not able to carry 
out the required process, they are not valid in the actual 
world to which they refer. The information content gives 

computational languages new properties. Computational 
theory languages present the possibility of asking ques-
tions about meaning, truth, accuracy, and relevance. One 
can study whether the terms of a computational language 
refer to how things are in the actual world, and one can 
ask if the behavior of a computational model is correct; the 
actual world to which it refers corresponds to some level 
of the model, be it output or steps toward it. It is again a 
different but related question whether the model has an 
analogue in the actual world—whether it approximates 
the actual world or merely accurately predicts it through 
a different kind of structure. Note, however, that these 
questions cannot be answered from “within” the model 
but must be evaluated by the powers of the human mind 
vis-à-vis the actual world. This highlights the question of 
whether the model (and the language) is relevant for the 
problem to be solved. A physicist is not primarily inter-
ested in whether the model predicts, but instead, whether 
it predicts and is an analogue to the phenomenon under 
study. In AI, this is not necessarily the case: Results and 
performance are the core issues today—although histori-
cally, AI models were simultaneously models of the mind 
(Newell and Simon 1972).

To summarize:

1. Computational theory language terms are interpreted, 
and thus they have references in defined aspects of the 
actual world.

2. Computational language operations have respective 
actions in the actual world.

3. The truth of expressions and representations can be 
defined by comparing the computational language 
expressions with corresponding states in the actual 
world.

4. It makes sense to ask whether terms and operations are 
correctly defined.

5. One can ask whether or not the given system is relevant, 
although its relevance cannot be defined in computa-
tional language.

6. Computational languages have fixed semantics.

Computational languages have specific features, which 
limit their use. The most important of these features can be 
called static or fixed meanings. A term in a computational 
language has some specified and unique reference. This 
property is an important difference from natural languages. 
The meanings of terms in computational languages are 
defined in a unique manner. They can have some sensory 
value or some variable system of values, but they will 
nonetheless be fixed.

Another property of computational languages is their lim-
ited number of terms. These languages cannot generate an 
infinite number of new concepts and terms on the spot on the 



 AI & SOCIETY

1 3

grounds of new experiences. One could say that computa-
tional languages are not productive, which is a key property 
of natural languages (Lyons 1977). Therefore, as computa-
tional languages cannot generate an infinite number of new 
words and other signs, they are static and limited compared 
to natural languages.

The problem of fixedness and the stable character of com-
putational languages is not new. It was likely first noticed by 
Ludwig Wittgenstein (1953) in his sc. late philosophy. In this 
philosophy, he demonstrated the problematic character of 
defining terms, which have, at best, a family resemblance, in 
that one interpretation of the word game, e.g., children play-
ing a board game, has very little in common with playing 
NFL football or with partisan political games. The meaning 
of a word is defined by how it is used (Wittgenstein 1953). 
Equally, the meaning of a concept changes according to how 
it is deployed: Politics can be thought of as a game, but also 
as theater. War can be thought of as a game, but also as an 
extension of politics. To improve the clarity of our analysis, 
we will consider natural languages more closely.

2.3  Natural languages

Natural languages refer to the ways in which people speak 
and communicate with each other. They are sign systems 
with a number of specific characteristics. There are at least 
6000 distinctive natural languages, but they have common 
features, which make them similar as a means of communi-
cation, expression, and thinking (Leech 1983; Lyons 1977, 
1995). To understand the function of natural languages in 
designing intelligent technologies, it is essential to consider 
some specific properties of natural languages compared to 
formal and computational languages.

Natural languages are in principle arbitrary; their words 
and signs can be morpho-syntactically and grammatically 
formed, and signs are discrete so that they can be differ-
entiated from each other (Leech 1983; Lyons 1977). Even 
ambiguous terms with multiple references can be differen-
tiated on the conceptual level by contextual information. 
Terms also have historical origins, and they have their arbi-
trariness, but it does not mean that any term can be used for 
any reference in practice. Natural languages are productive, 
as mentioned. This means that the speakers can generate and 
understand an unlimited number of expressions, and they 
can create new expressions on the spot. Finally, the expres-
sions of natural language refer to their references through 
human mental representations and are as such expressions 
of human thoughts (Lyons 1977, 1995).

Natural languages have subsystems. One can call them, 
for example, social dialects, language games, or discourses 
(Habermas 1981, 2009; Wittgenstein 1953). These subsys-
tems of natural languages often pertain to specific domains 

and specific—although not necessarily fixed—sets of terms 
and meanings, and they are deployed by people who partici-
pate in and have experience with these domains and accept 
their associated discourse rules. Professionals such as air-
craft pilots, paper engineers, psychologists, and economists 
live in their professional discourses.

The subsystems of natural languages are not strictly dif-
ferentiated because they keep changing. Natural languages 
form linguistic platforms on which specific discourses are 
built. Thus, medical doctors can dictate sentences in which 
normal language expressions are made more precise by Latin 
names. In ICT (information and communication technol-
ogy), one can use such metaphoric expressions as “agent” 
technology. Words as signs can be ambiguous and have mul-
tiple meanings. The conceptual contents evolve in use, and 
vague and metaphorical beginnings may result in precise and 
differentiated conceptual systems. In this sense, discourses 
(and the products thereof) evolve from premises and presup-
positions that are fixed in a pragmatic sense, not in principle.

Natural languages are open and dynamically changing 
systems, and we can build an unlimited number of words 
and expressions in and through them. Every word is capa-
ble of having varying references. Thus, meanings in natu-
ral language are not fixed in the same way as they are in 
computational and formal languages. This openness makes 
natural languages creative. In principle though not always 
in practice, it is possible to find an expression for anything 
in human thoughts and in the actual world—including for-
mal languages, as we are indeed doing here. Words as signs 
are symbols, which get meaning only when they are asso-
ciated with concepts in the human mind. The meaning of 
meanings is in the contents of concepts (Ogden and Rich-
ards 1923). Thus, formal and computational languages are 
subsets of natural languages where, in the former, a domain 
has been abstracted from particularities, and, in the latter, 
abstractions are organized with respect to such particulari-
ties. “Traffic” between formal, computational, and natural 
languages is possible as they all originate in and are derived 
from the same natural language components, most broadly 
understood. Incidentally, these arguments can be seen to 
favor meaning and content as ontologically more basic than 
content-free formal operations.

The meanings of formal and computational languages 
are fixed, either in model sets or in some subdomain of the 
actual world. Thanks to the openness and creativity of natu-
ral languages, the problem of meanings in natural languages 
is somewhat different. The references of expressions can 
vary. Historically, atoms in, for example, Democritus’s time 
were different from atoms as described by Dalton, which in 
turn diverged from modern conceptions of atoms (Bernal 
1969). The meanings of terms in natural languages and their 
sub-languages keep changing in the course of conceptual 
change and advancement (Saariluoma 1997).
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One can ask what makes it possible for people to use 
natural languages in design thinking. Meanings in natural 
languages can be discerned through mental representations. 
Ogden and Richards (1923) argued that words refer to the 
actual world through concepts. Thus, concepts give mean-
ings to words and expressions. In the same way, Chomsky 
(1957) and Fodor (1990) based their ideas concerning mean-
ing on the notion of mental representations, and thus they 
left behind traditional behavior and other semantics, which 
saw meaning as a direct relation between signs and their 
actual-world references. Indeed, the dynamic and context-
sensitive character of natural language makes sense once it 
is noted that it has an intimate and, once developed, almost 
automatic relation to other mental processes.

2.4  Meaning and mental representation

Information exists in signs and their organized collections 
or representations. These signs have references that can in a 
narrow sense also be called meanings. The use of an expres-
sion defines its meaning (Wittgenstein 1953). However, the 
references of signs, such as words or pictures, obtain their 
meaning content in human minds (Lyons 1977; Ogden and 
Richards 1923). The Rosetta Stone, for example, is a col-
lection of hieroglyphic signs, but these signs had no known 
meanings at the time the stone was discovered and as such 
was not understood. They had references in principle, but 
their communicative value could not be much more than 
mere scrapes on the stone’s surface until Champollion was 
able to interpret them using the non-hieroglyphic texts 
found on the same stone. Some references in forgotten lan-
guages may be impossible to ever know, such as customs, 
if no information is available. Other references are more 
universal, such as basic emotional states, which are widely 
accessible to most human beings. The broader point is that 
there are no references and no languages that we cannot, in 
principle, know due to their grounding in the human mind. 
There are of course countless references and meanings that 
an individual may never know in their lifetime, but this does 
not speak to the limitations of the language as such.

The necessity of mental content in defining the meanings 
of terms can be demonstrated by the sc. world end thought 
experiment. Thought experiments in general are instruments 
for concretizing conceptual problems in research (Kuehne 
2005). In the “world end thought experiment,” we assume 
that all of humankind has been destroyed. However, ants 
have been able to survive. Eventually, one ant enters the 
Metropolitan Museum of Art, ultimately walking on the sur-
face of Madame Ginoux, painted by van Gogh. Would this 
ant be capable of understanding that it is walking not on a 
red book or a chair but instead on its painted representa-
tions? Only a human observer could make such a discrimi-
nation because ants do not write books or craft chairs due to 

the limitations of their nervous and cultural systems. Thus, 
in the absence of human minds, information about books or 
chairs would be absent. This means that human information 
exists only insofar as a human being is present to decode 
it, whereas information comprehensible to an ant is of an 
entirely different kind.

Our ant would be able to communicate information about 
states of affairs with other ants by chemicals or movements. 
It would not, however, be capable of communicating human 
mental content because it would lack the faculties needed to 
mentally represent objects such as books, chairs, or paint-
ings. It is therefore entirely justifiable to assert that human 
mental content is essential for defining human meanings. 
The consequence of previous arguments is that we have 
to separate the content of thoughts from the semantics of 
the language. Human thinking gives meanings to linguistic 
expressions.

2.5  Power of expression

The foundations of any kind of thinking are versatile. For 
example, the ways in which experiments are constructed 
necessarily limit what they can tell us about the human mind 
(Saariluoma 1997). Long ago, a mathematician was able to 
prove that there is no (natural) number that could express 
the ratio of the diagonal to the side of a square (Saariluoma 
1997). This well-known Pythagorean case also reveals some-
thing more important than the idea that the world is not 
rational. There are mathematical problems that go beyond 
the power of expression of a particular theory language, 
i.e., the arithmetic of natural numbers. The solution to the 
problems posed by the Pythagorean sage was to develop a 
new theory language called real numbers. The limitations 
of theory languages do not concern mathematics alone as, 
for example, behaviorist social research cannot shed light on 
human information processing.

The power of expression is important here with respect 
to the scope and limits of the three presented theory lan-
guages. If some issue or state of affairs is outside the scope 
of a theory language, it cannot be faithfully represented in 
or through it. Thus, the actual world is outside and cannot 
be represented in formal languages. It is thus necessary to 
expand formal languages by associating them with the actual 
world and transforming them into computational languages.

Nevertheless, computational languages also have their 
limits. They are constructed on the grounds of formal lan-
guages, and they accordingly share some limits typical of 
formal languages. For instance, they have a limited set of 
terms and fixed meanings and are thus incapable of render-
ing an accurate representation of the actual world in gen-
eral. They can operate only on the computational abstraction 
level.
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The power of expression also lends a new understanding 
of the relations between the three theory languages. Formal 
languages are abstractions of natural and computational lan-
guages. Thus, they cannot express the concrete details of the 
actual world without interpretation. Interpretation makes it 
possible to create computational languages, which can refer 
to any aspect of the actual world. However, their fixed mean-
ings do not allow them the creativity possessed by natural 
languages. Moving from natural languages to computational 
and formal languages in constructing representations makes 
the representations more abstract, but moving from formal to 
natural languages makes them more concrete and powerful.

3  Machine and human thinking

Because intelligent machines process information, the limits 
of theory languages have an interesting consequence. Spe-
cifically, the limits of the three theory languages presented 
here concerning their power of expression make it possible 
to scrutinize, from a new point of view, the classic problem 
of comparing human and machine languages. Machines can 
process information, but this means that their limits depend 
on those of the representational language on which they rely. 
Machines can only be as intelligent as the limits of their 
representational language allow.

All intelligent machines use computational languages in 
representing information. Therefore, the limits of compu-
tational languages determine the limits of machine intelli-
gence. If a computational language does not have the capac-
ity to express or construct representations, then the machines 
operating according to the language lack this capacity as 
well. Thus, the differences between natural languages and 
computational languages provide one interesting basis on 
which to discuss human and machine intelligence and their 
relative capacity to think.

One crucial limitation of computational languages is their 
fixed semantics. The world can vary indefinitely, and there-
fore natural languages have dynamic semantics. The refer-
ences in natural languages are associated on the spot with 
symbols and ideas that convey meanings. The meanings of 
computational languages are defined by references when the 
alphabets and operations of these languages are constructed.

Computational representations can in principle describe 
any aspect of the real world. However, they are always 
limited in scope. The world, i.e., objects, events, actions, 
and thoughts, is not limited but can be infinitely complex. 
Even an object as simple as a coffee cup has endless attrib-
utes. Consequently, no AI system can generate unlimited 
representations of the world, just as no description of an 
infinite world can be included inside itself. Computational 
languages and their respective representations thus always 
constitute limited descriptions of the world, and accordingly, 

no universal and general machine intelligence is possible. 
Any time the meaning of a term or an operation is fixed, 
some part of the world is excluded from the system.

However, one can consider the problem of human and 
machine intelligence from another perspective. AI systems, 
such as chess-playing programs, can surpass human per-
formance, but they are useless in other domains. Similarly, 
it is possible to create computational languages and their 
respective computational representations for other domains. 
Thanks to the fixed semantics of these languages, they can 
be generalized only to a limited degree or extent and the 
type of fluid context-switching typical of human thought 
is difficult if not impossible to achieve. Furthermore, fixed 
semantics also mean that AI finds fixed domains or environ-
ments most tractable—for obvious reasons.

Human natural languages operate differently as they pos-
sess an unlimited number of symbols and can generate and 
define new symbols for any situation on the spot. Whereas 
computational languages obtain their semantics by definition 
and convention, natural languages acquire their semantics 
through concepts and human thoughts and, for this reason, 
these semantics are intrinsically dynamic.

As a matter of fact, computational terms acquire their 
meanings through natural languages, and their representa-
tions constitute subsets of natural language representations. 
Thanks to the dynamic nature of human thinking, natural 
language expressions obtain their content from the human 
mind and thus have no predefined limits. Of course, it is 
true that computational (and formal) languages also obtain 
their content (and other features) from human thought. The 
relationship here, however, is very different, as a natural lan-
guage is part of the same immediate system as thought and is 
therefore by necessity and evolution highly related and com-
plementary. In the external and artificial systems for which 
computational languages are used, this proximity is lost and 
various constraints are introduced. Thus, the fixed semantics 
of computational languages and associated representations 
make it impossible for AI to achieve either the generality 
or the versatility of human thinking. Furthermore, there at 
present no other basis for AI, given their grounding in formal 
and computational languages.

Of course, it is possible to build domains and problem-
specific systems, which, in solving problems, can surpass 
human thinking. As there is no limit to the number of spe-
cific AI systems that can be constructed, it makes no sense 
to argue that AI, as a whole, could not surpass human per-
formance, in all known specific domains. In such cases, it 
can be said that AI is “good enough” but nevertheless not 
sufficiently powerful to surpass human performance in all its 
generalities and manifestations. When operating in domains 
(or across domains) that are not specific, well-defined, or 
simple, human intelligence will remain crucial.
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